E2 201 (Aug-Dec 2014)

Homework Assignment 3

Discussion: Friday, Sept. 12 Quiz: Friday, Sept. 19

This assignment consists of two pages.

1. Let X and Y be random variables with joint pmf p(x, y) tabulated as follows:

		Y	
X	$\begin{array}{c c} \frac{1}{6} \\ \frac{1}{12} \\ \frac{1}{12} \end{array}$	$\begin{array}{c} \frac{1}{12} \\ \frac{1}{6} \\ \frac{1}{12} \end{array}$	$\begin{array}{r} \frac{1}{12} \\ \frac{1}{12} \\ \frac{1}{12} \\ \frac{1}{6} \end{array}$

- (a) Give a good lower bound on the probability of error in estimating X from an observation of Y.
- (b) Find an estimator $\hat{X} = g(Y)$ for which the probability of error $\Pr[g(Y) \neq X]$ equals the lower bound obtained in (a).
- 2. Prove the Cèsaro mean theorem:

If (a_n) is a sequence of real numbers that converges to a limit $L \in \mathbb{R}$, then $\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} a_i = L$.

Is the converse true?

- 3. Consider a time-invariant Markov chain on a finite-state space \mathcal{X} , with transition probability matrix P. Show that the Markov chain has $\text{Unif}(\mathcal{X})$ as a stationary distribution if and only if the matrix P is doubly stochastic.
- 4. Problem 4.30, Cover & Thomas, 2nd ed.
- 5. A box contains two coins. Coin 1 is fair $(\Pr[H] = 1/2)$, and Coin 2 is biased so that $\Pr[H] = p$ for some $p \neq 1/2$. One of these coins is chosen uniformly at random, i.e., $\Pr[\text{Coin 1 is chosen}] = \Pr[\text{Coin 2 is chosen}] = 1/2$. Let X denote the identity of the coin that is picked, so that X = i if Coin i is picked. The chosen coin is tossed repeatedly, with Y_1, Y_2, Y_3, \ldots denoting the outcomes of the sequence of coin tosses.
 - (a) Is the random process $\mathbf{Y} = (Y_1, Y_2, Y_3, \ldots)$ stationary?
 - (b) Is the random process $\mathbf{Y} = (Y_1, Y_2, Y_3, ...)$ i.i.d.?
 - (c) What is the entropy rate, $\mathcal{H}(\mathbf{Y})$, of \mathbf{Y} ? [*Hint*: First argue that $\lim \frac{1}{n}H(Y^n)$ is equal to $\lim \frac{1}{n}H(Y^n|X)$.]
 - (d) Does $-\frac{1}{n}\log p(Y^n)$ converge to $\mathcal{H}(\mathbf{Y})$ in probability?
- 6. Consider the same set-up as in the previous problem. We are interested in binary n : k block codes for the source Y = (Y₁, Y₂, Y₃,...). Recall our definition of k(n, δ) to be the least integer k for which there exists a binary n : k block source code (f, g) for Y, with P_{err} ≤ δ. Show that for 0 ≤ δ < 1/2, we have</p>

$$\lim_{n \to \infty} \frac{k(n,\delta)}{n} = 1.$$

Why does $\frac{k(n,\delta)}{n}$ not converge to $\mathcal{H}(\mathbf{Y})$?

- 7. Let C be a D-ary prefix code with codeword lengths $\ell_1, \ell_2, \ldots, \ell_m$, and let T be any code tree for C.
 - (a) Show that $\sum_{i=1}^{m} D^{-\ell_i} = 1$ iff every leaf of T is a codeword of C.
 - (b) Show that if $\sum_{i=1}^{m} D^{-\ell_i} < 1$, then there exist arbitrarily long sequences of code symbols in \mathcal{D}^* which cannot be resolved (parsed) into sequences of codewords.
- 8. Problem 5.30, Cover & Thomas, 2nd ed.