E2 201 (Aug-Dec 2014)

Homework Assignment 3

Discussion: Friday, Sept. $12 \quad$ Quiz: Friday, Sept. 19

This assignment consists of two pages.

1. Let X and Y be random variables with joint $\operatorname{pmf} p(x, y)$ tabulated as follows:

	Y		
X	$\frac{1}{6}$	$\frac{1}{12}$	$\frac{1}{12}$
	$\frac{1}{12}$	$\frac{1}{6}$	$\frac{1}{12}$
	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{6}$

(a) Give a good lower bound on the probability of error in estimating X from an observation of Y.
(b) Find an estimator $\widehat{X}=g(Y)$ for which the probability of error $\operatorname{Pr}[g(Y) \neq X]$ equals the lower bound obtained in (a).
2. Prove the Cèsaro mean theorem:

If $\left(a_{n}\right)$ is a sequence of real numbers that converges to a limit $L \in \mathbb{R}$, then $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} a_{i}=L$.
Is the converse true?
3. Consider a time-invariant Markov chain on a finite-state space \mathcal{X}, with transition probability matrix P. Show that the Markov chain has $\operatorname{Unif}(\mathcal{X})$ as a stationary distribution if and only if the matrix P is doubly stochastic.
4. Problem 4.30, Cover \& Thomas, 2nd ed.
5. A box contains two coins. Coin 1 is fair $(\operatorname{Pr}[H]=1 / 2)$, and Coin 2 is biased so that $\operatorname{Pr}[H]=p$ for some $p \neq 1 / 2$. One of these coins is chosen uniformly at random, i.e., $\operatorname{Pr}[$ Coin 1 is chosen $]=\operatorname{Pr}[\operatorname{Coin} 2$ is chosen] $=1 / 2$. Let X denote the identity of the coin that is picked, so that $X=i$ if Coin i is picked. The chosen coin is tossed repeatedly, with $Y_{1}, Y_{2}, Y_{3}, \ldots$ denoting the outcomes of the sequence of coin tosses.
(a) Is the random process $\mathbf{Y}=\left(Y_{1}, Y_{2}, Y_{3}, \ldots\right)$ stationary?
(b) Is the random process $\mathbf{Y}=\left(Y_{1}, Y_{2}, Y_{3}, \ldots\right)$ i.i.d.?
(c) What is the entropy rate, $\mathcal{H}(\mathbf{Y})$, of \mathbf{Y} ?
[Hint: First argue that $\lim \frac{1}{n} H\left(Y^{n}\right)$ is equal to $\lim \frac{1}{n} H\left(Y^{n} \mid X\right)$.]
(d) Does $-\frac{1}{n} \log p\left(Y^{n}\right)$ converge to $\mathcal{H}(\mathbf{Y})$ in probability?
6. Consider the same set-up as in the previous problem. We are interested in binary $n: k$ block codes for the source $\mathbf{Y}=\left(Y_{1}, Y_{2}, Y_{3}, \ldots\right)$. Recall our definition of $k(n, \delta)$ to be the least integer k for which there exists a binary n : k block source code (f, g) for \mathbf{Y}, with $P_{\text {err }} \leq \delta$. Show that for $0 \leq \delta<1 / 2$, we have

$$
\lim _{n \rightarrow \infty} \frac{k(n, \delta)}{n}=1
$$

Why does $\frac{k(n, \delta)}{n}$ not converge to $\mathcal{H}(\mathbf{Y})$?
7. Let \mathcal{C} be a D-ary prefix code with codeword lengths $\ell_{1}, \ell_{2}, \ldots, \ell_{m}$, and let T be any code tree for \mathcal{C}.
(a) Show that $\sum_{i=1}^{m} D^{-\ell_{i}}=1$ iff every leaf of T is a codeword of \mathcal{C}.
(b) Show that if $\sum_{i=1}^{m} D^{-\ell_{i}}<1$, then there exist arbitrarily long sequences of code symbols in \mathcal{D}^{*} which cannot be resolved (parsed) into sequences of codewords.
8. Problem 5.30, Cover \& Thomas, 2nd ed.

