E2 201 (Aug-Dec 2014)

Homework Assignment 4

Discussion: Friday, Sept. 26 Quiz: TBA

This assignment consists of two pages.

- 1. [Problem 5.36, Cover & Thomas, 2nd ed.]
 - (a) Can (1, 2, 2) be the codeword lengths of a binary Huffman code? What about (2, 2, 3, 3)?
 - (b) What codeword lengths $(\ell_1, \ell_2, \dots, \ell_m)$ can arise from binary Huffman codes?
- 2. [Problem 5.17(b), Cover & Thomas, 2nd ed.] Find an optimal binary prefix-free code for the probability mass function (p_k) defined by

$$p_k = (2/3) (1/3)^{k-1}, \ k = 1, 2, 3, \dots$$

- 3. Problem 5.20, Cover & Thomas, 2nd ed.
- 4. Problem 5.25, Cover & Thomas, 2nd ed.
- 5. Rényi entropy.

Let X be a discrete random variable with pmf $p(x), x \in \mathcal{X}$. For any real number $\alpha > 0, \alpha \neq 1$, the Rényi entropy of order α is defined as

$$H_{\alpha}(X) = \frac{1}{1-\alpha} \log_2 \sum_{x \in \mathcal{X}} p(x)^{\alpha}.$$

As usual, H(X) denotes the Shannon entropy $-\sum_x p(x) \log_2 p(x)$.

(a) Show that $H_{\alpha}(X) \ge H(X)$ for all $\alpha < 1$, and as $\alpha \to 1$, $H_{\alpha}(X)$ converges to H(X).

Let a > 1 be a real number. For a source code $C = \{c(x) : x \in \mathcal{X}\}$ with codeword lengths $\ell(x), x \in \mathcal{X}$, define the *a-exponential mean* of C to be

$$L_a(\mathcal{C}) = \log_a \mathbb{E}[a^{\ell(X)}] = \log_a \left(\sum_{x \in \mathcal{X}} p(x) a^{\ell(x)}\right)$$

- (b) Recall that $L(\mathcal{C})$ is the expected codeword length: $L(\mathcal{C}) = \mathbb{E}[\ell(X)]$. Show that $L_a(\mathcal{C}) \ge L(\mathcal{C})$ for all a > 1, and as $a \to 1$, $L_a(\mathcal{C})$ converges to $L(\mathcal{C})$.
- (c) Define $\alpha = \frac{1}{1 + \log_2 a}$, and note that $\alpha \to 1$ as $a \to 1$. For $x \in \mathcal{X}$, set

$$\ell(x) = \left[-\log_2 \frac{p(x)^{\alpha}}{\sum_{x \in \mathcal{X}} p(x)^{\alpha}} \right]$$

Show that there exists a prefix code C with codeword lengths $\ell(x), x \in \mathcal{X}$, and furthermore,

$$H_{\alpha}(X) \le L_a(\mathcal{C}) < H_{\alpha}(X) + 1$$

(d) From the result of part (b), deduce that for any uniquely decodable code C,

$$L_a(\mathcal{C}) \ge H(X).$$

[*Remark*: It can in fact be shown (by means of Hölder's inequality) that for any uniquely decodable code C, $L_a(\mathcal{C}) \ge H_\alpha(X)$ with $\alpha = \frac{1}{1 + \log_2 a}$. Thus, for an optimal code \mathcal{C}^* (which minimizes $L_a(\mathcal{C})$ among all uniquely decodable codes \mathcal{C}), we have $H_\alpha(X) \le L_a(\mathcal{C}^*) < H_\alpha(X) + 1$.]

The definition of Rényi entropy is due to Alfred Rényi (1961). The results of parts (b)–(d) above are due to Lorne Campbell (1966).

- 6. (a) Let Y be a continuous random variable with cumulative distribution function (cdf) F(y). Show that W = F(Y) is uniformly distributed over [0, 1].
 - (b) Let W be a continuous random variable uniformly distributed over the interval [0, 1]. Consider the binary representation of W as $0.X_1X_2X_3...$ Show that $X_1, X_2, X_3, ...$ form a sequence of i.i.d. Bernoulli(1/2) random variables.
- 7. Let X_1, X_2, X_3, \ldots be any sequence of binary random variables specified by the joint distributions $p(x^n)$, $n = 1, 2, \ldots$ Let *F* denote the cumulative distribution function of $Y = \sum_{i=1}^{\infty} X_i 2^{-i}$ (i.e., *Y* is the real number with binary representation $0.X_1 X_2 X_3 \ldots$). Show that if $y \in [0, 1]$ has binary representation $0.x_1 x_2 x_3 \ldots$, then

$$F(y) = \sum_{k:x_k=1} p(x^{k-1}0).$$

8. Consider a binary stationary Markov source X with transition probability matrix

$$P = \begin{bmatrix} \frac{3}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{3}{4} \end{bmatrix}$$

Length-3 sequences (X_1, X_2, X_3) generated by this source are to be encoded into binary codewords using a lossless source code.

- (a) Compute the entropy rate $\mathcal{H}(\mathbf{X})$, and the entropy $H(X_1, X_2, X_3)$.
- (b) Determine an optimal binary prefix-free code for encoding length-3 sequences (X_1, X_2, X_3) generated by the source. What is the expected codeword length?
- (c) If the length-3 sequences generated by the source were to be encoded using arithmetic coding, what would be the expected codeword length?
- (d) Determine the codewords assigned by arithmetic coding to the source sequences (0, 1, 1) and (1, 0, 0).