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Abstract—In this work, we consider two-dimensional
(2-D) binary channels in which the 2-D error patterns
are constrained so that errors cannot occur in adjacent
horizontal or vertical positions. We consider proba-
bilistic and combinatorial models for such channels. A
probabilistic model is obtained from a 2-D random field
defined by Roth, Siegel and Wolf (2001). Based on the
conjectured ergodicity of this random field, we obtain
an expression for the capacity of the 2-D non-adjacent-
errors channel. We also derive an upper bound for the
asymptotic coding rate in the combinatorial model.

I. Introduction
Recent advances in storage technology (e.g., [10], [11])

provide means of achieving very high storage densities by
writing data ever more densely on the two-dimensional (2-
D) surface of the storage medium. This has led to several
recent studies of storage channel models in which the data
to be stored constitute the input, the media irregularities
and the physics of the read/write process account for
the noise, and the final data that is retrieved constitute
the channel output [3], [4], [7]. Realistic storage channel
models are often difficult to handle analytically, as the
noise in such channels is, in general, input-dependent and
has 2-D correlations.

In this paper, we consider a 2-D additive-noise channel
model in which the noise is independent of the input, but
which exhibits strong 2-D correlations. Our model is a 2-
D extension of the one-dimensional (1-D) channel model
considered in a recent work of Mazumdar and Barg [6].
While we do not claim our model to be a realistic model
for a storage channel, it serves to illustrate the difficulties
involved in analytically handling 2-D correlations.

The channel model considered in [6] was one in which
a binary noise vector n gets added (modulo-2) to a
binary input vector x, with n being independent of x,
and additionally having the property that 1s cannot be
in adjacent positions of n. Thus, errors cannot occur in
adjacent positions; hence, the term non-adjacent error
vector. They considered both probabilistic and combinato-
rial (adversarial) models for such a channel. In particular,
they showed the surprising fact [6, Prop. 2.3] that, in the
combinatorial model, a code can correct all non-adjacent
error vectors of Hamming weight at most t iff the code is
t-error-correcting in the usual (unconstrained) sense.

To describe the 2-D extension of the 1-D non-adjacent-
error model, we need some definitions. For F ⊆ Z2,
an F -configuration is a mapping z : F → {0, 1}, and

{0, 1}F denotes the set of all F -configurations. The value
of z ∈ {0, 1}F at position (i, j) ∈ F will be denoted
by zi,j . An F -configuration z satisfies the (2-D) hard
square constraint [9] if for all (i, j), (i′, j′) ∈ F such that
|i − i′| + |j − j′| = 1, either zi,j = 0 or zi′,j′ = 0 (or
both). The set of all F -configurations z satisfying the
hard square constraint is denoted by HS(F ). Note that
if we define a 2-D additive-noise channel with inputs from
{0, 1}F and error patterns from HS(F ), we get a channel
model on F in which errors cannot occur in adjacent
positions along the horizontal and vertical directions. A
probability distribution on HS(F ) yields a probabilistic
channel model, while a combinatorial model is obtained by
allowing only those error patterns from HS(F ) that have
at most t 1s.

The 2-D situation is significantly different from, and
usually a lot harder to handle than, the 1-D set-up. For
instance, defining a useful probability measure on HS(F)
is not easy, even when F is a rectangular array. Roth,
Siegel and Wolf [9] defined a probability measure µm,n on
HS(∆m,n), where ∆m,n is an m × n parallelogram of the
form (Figure 1)

∆m,n =
{

(i, j) ∈ Z2 : 0 ≤ i < m, 0 ≤ i+ j < n
}
.

This measure can be extended to a measure µ on HS(Z2),
which can then be restricted to HS(F ), for any (measur-
able) F ⊂ Z2, to obtain a suitable measure on HS(F ).
Consider, for example, the case when F is an n×n square:

�n =
{

(i, j) ∈ Z2 : 0 ≤ i < n, 0 ≤ j < n
}
.

We will show that the resulting probabilistic channel
model has a meaningful notion of channel capacity, if we
assume that the measure µ is ergodic. Squares are used
for illustrative purposes only — channels defined by any
sequence of “well-behaved” subsets Fn (see conditions (F1)
and (F2) in Section II-B) can be similarly analyzed.

The 1-D and 2-D cases are quite different within the
combinatorial channel model as well. In contrast with
the 1-D case [6, Prop. 2.3], a code correcting t hard-
square errors need not be a t-error-correcting code. We
demonstrate this by giving a simple example. A code
C ⊆ {0, 1}F is t-hard-square error-correcting (resp. t-error-
correcting) if for any two different x1, x2 ∈ C, and for any
two e1, e2 ∈ HS(F ) (resp. e1, e2 ∈ {0, 1}F ) with Hamming
weights at most t, we have

x1 ⊕ e1 6= x2 ⊕ e2,
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Fig. 1. Parallelogram ∆m,n

where ⊕ denotes coordinate-wise modulo-2 addition. Now
for the example. Take F = {(i, j) : 0 ≤ i < 2, 0 ≤ j < 3},
a 2× 3 rectangular array. Let

C =
{(

0 0 0
0 0 0

)
,

(
0 1 0
1 1 1

)}
.

It can be easily verified that this code is 2-hard-square
error-correcting. To see that it is not 2-error-correcting,
take

e1 =
(

0 1 0
1 0 0

)
, e2 =

(
0 0 0
0 1 1

)
.

The Roth-Siegel-Wolf (RSW) measure µ can be used
to derive a useful result within the combinatorial channel
model as well. Consider a sequence of 2-D channels defined
on squares �n, and let tn = τn2. For any sequence of tn-
hard-square-correcting codes Cn ⊆ {0, 1}�n of rate R, i.e.,
with |Cn| = d2n

2Re, an upper bound on R can be derived
using the RSW measure µ.

The rest of this paper is organized as follows. In Sec-
tion II, we describe in detail the RSW measure and its
properties, including its conjectured ergodicity. Section III
presents applications of the RSW measure to the analysis
of 2-D channels with hard-square errors.

II. The Roth-Siegel-Wolf (RSW) Measure

We begin by describing the RSW probability measure
and some of its properties. The notation and terminology
used in this section are largely borrowed from [9].

A. Measures on Finite Parallelograms

Recall, from Section I, the definitions of ∆m,n and
HS(∆m,n). Row i in ∆m,n consists of all the locations
(i, j) such that −i ≤ j < n − i. Diagonal d consists of
all locations (i, d− i) such that 0 ≤ i < m. Row (diagonal)
0 is referred to as the horizontal (diagonal) boundary.

We proceed by defining a probability measure µm,n on
HS(∆m,n). Let Z denote a random ∆m,n-configuration
taking values from HS(∆m,n). Hereafter, we denote this as
Z ∈µm,n HS(∆m,n). Let Zi,j denote its value at location

(i, j). For every z ∈ HS(∆m,n),

µm,n(z) = Pr(Z = z)
= µ0(z0,0) · µh(z0,1, z0,2, . . . , z0,n−1|z0,0)
· µd(z1,−1, z2,−2, . . . , zm−1,1−m|z0,0)

·
m−1∏
i=1

n−1−i∏
j=−i+1

ϑ (zi,j |zi,j−1, zi−1,j , zi−1,j+1) .

(1)

Each component will be defined below:
1) The measure µh on the horizontal boundary takes

the form of a first-order Markov process:

µh(w1, . . . , wn−1|w0) =
n−1∏
j=1

Pr(wj |wj−1), (2)

with transition probabilities given by

Pr(wj = 0|wj−1 = c) =
{
α if c = 0
1 if c = 1.

(3)

Let this Markov process be termed as the horizontal
Markov process Mh.

2) The values of µ0 are set to the stationary probabili-
ties of Mh, i.e.,

µ0(0) = 1− µ0(1) = 1
2− α. (4)

3) The measure µd on the diagonal boundary also takes
the form of a first-order Markov process:

µd(w1, . . . , wn−1|w0) =
m−1∏
j=1

Pr(wj |wj−1), (5)

with transition probabilities given by

Pr(wj = 0|wj−1 = c) =
{
β0 if c = 0
β1 if c = 1.

(6)

Here, β0 and β1 are assigned values in such a way
that they are consistent with the stationary distri-
bution along the horizontal boundary:

β0 = α

α+ q1 − αq1
and β1 = q1

α+ q1 − αq1
, (7)

where q1 is as given in (8) below.
4) The fourth component of the expression in (1) is de-

fined using two parameters q0 ∈ [0, 1) and q1 ∈ (0, 1]:

ϑ (0|u, y, v) =
{
qv, if u = y = 0
1, otherwise.

(8)

We next state two main results from [9] that will be
of use to us. For this, we need some definitions: row i in
Z ∈µm,n

HS(∆m,n) is said to form a first-order Markov
chain identical to the horizontal boundary if for 1 − i ≤



j < n− i and every non-empty word c = (c1, c2, . . . , cl) of
length l ≤ i+ j,

Pr
(
Zi,j = 0 | (Zi,j−1, . . . , Zi,j−l) = c

)
=
{
α, c1 = 0
1, c1 = 1

provided the event on which we condition has positive
probability. Similarly, diagonal d in Z ∈µm,n

HS(∆m,n)
is said to form a first-order Markov chain identical to
the diagonal boundary if for 1 ≤ i ≤ m and every word
c = (c1, c2, . . . , cl),

Pr
(
Zi,d−i = 0 | (Zi−1,d−(i−1), . . . , Zi−l,d−(i−l)) = c

)
= βc1

provided the event on which we condition has positive
probability.

Theorem 1 ([9], Proposition 2.1). For m,n ≥ 2, q0 ∈
(0, 1) and q1 ∈ (0, 1], entries in each row (diagonal)
form a first-order Markov chain identical to the horizontal
(diagonal) boundary if and only if

α = −q1 +
√
q2
1 + 4q1(1− q0)

2(1− q0) . (9)

For a measure µm,n, the entropy H(µm,n) is defined as

H(µm,n) = −
∑

z∈HS(∆m,n)

µm,n(z) log2(µm,n(z)).

For ξ ∈ [0, 1], h(ξ) , −ξ log2 ξ − (1− ξ) log2(1− ξ). In [9]
it is shown that, when (9) is satisfied,

H(µ) , lim
m,n→∞

H(µm,n)
mn

= β0

2− α (αh(q0) + (1− α)h(q1)) .
(10)

For the rest of this paper we only consider probability
measures µm,n satisfying the condition given in (9).

B. Extension to a Random Field on Z2

The measures µm,n, for fixed q0 and q1, are defined on
parallelograms ∆m,n. For the channel model that we have
in mind, it is necessary to extend this to a measure on
HS(Z2), the set of 0/1-configurations on Z2 that satisfy
the hard square constraint. The extension is by a stan-
dard application of the Kolmogorov extension theorem [2,
Chapter IV.6, Theorem 1], and we only sketch the details.

Define parallelograms Λn, n ∈ Z+, as follows: Λn ,
∆2n+1,2n+1+(−n, 0) is the (2n+1)×(2n+1) parallelogram
obtained by translating ∆2n+1,2n+1 vertically by n coor-
dinates (so that the top-leftmost point moves from (0, 0)
to (−n, 0)). The parallelograms Λn contain (0, 0) as their
centre, and form an increasing sequence of nested sets,
with

⋃∞
n=1 Λn = Z2. The measures µ2n+1,2n+1, originally

defined on ∆2n+1,2n+1, may equivalently be defined on the
translates Λn instead. Formally, µ̃n , µ2n+1,2n+1 ◦ T−1

n ,
where Tn(i, j) = (i, j) + (−n, 0) for all (i, j) ∈ Z2, is the
equivalent measure on Λn. Assuming, as we do, that the
condition in (9) holds, it is an easy exercise to verify using
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Fig. 2. A horizontal random process, Zh
[0,4], of diagonal width 5.

(1) and Theorem 1 that the measures µ̃n, n = 1, 2, . . ., are
consistent: µ̃n, when restricted to Λn−1, coincides with
µ̃n−1. Therefore, by the Kolmogorov extension theorem,
as n → ∞, the measures µ̃n extend to a unique measure
µ on the σ-algebra generated by cylinder sets in {0, 1}Z2 .
The measure µ defines a random field Z = (Zi,j)(i,j)∈Z2 ,
where each Zi,j is a binary-valued random variable. The
measure µ and the random field Z will be called the RSW
measure and the RSW random field, respectively.

The RSW random field Z has many nice properties. By
construction, µ(Z ∈ HS(Z2)) = 1. The random variables
(Zi,j)(i,j)∈Λn

are jointly distributed according to µ̃n. It is
again an easy exercise to verify using (1) and Theorem 1
that the random variables indexed by any translate of Λn
are distributed according to µ̃n as well. It follows that the
random field Z is stationary.

From Theorem 1, it follows that for any fixed i ∈ Z,
the “horizontal” random process Zh

i = (Zi,j)j∈Z along
row i is a stationary first-order Markov process. Similarly,
the “diagonal” random process Zd

d = (Zi,d−i)i∈Z along
diagonal d is a stationary first-order Markov process. In
fact, more can be said. For i, d ∈ Z, and an integer ` > 0,
define two vector-valued random processes: the horizontal
random process of diagonal width ` (see Figure 2),

Zh
[i−(`−1),i] =

(
[Zi,j , Zi−1,j+1, . . . , Zi−(`−1),j+(`−1)]

)
j∈Z,

and the diagonal random process of horizontal width `,

Zd
[d,d+`−1] =

(
[Zi,d−i, Zi,d+1−i, . . . , Zi,d+(`−1)−i]

)
i∈Z.

It can be verified (using (1), (2) and (5)) that both these
vector-valued random processes are stationary first-order
Markov processes. In fact, they are ergodic.

Lemma 2. For any i, d ∈ Z and ` > 0, the Markov chains
Zh

[i−(`−1),i] and Zd
[d,d+`−1] are ergodic.

Proof: Let S = {s ∈ {0, 1}` :
s contains no adjacent 1s} denote the state space of
these Markov chains. Clearly the all-zero vector, 0, is in
S. Since the hard square model places a constraint only
on the placement of adjacent 1s, we have Pr(s|0) > 0 and
Pr(0|s) > 0 for all s ∈ S. Thus, the Markov chains are
irreducible and aperiodic, and hence, ergodic.



The above lemma leads us to believe that the following
conjecure is true.

Conjecture 1. The stationary random field Z is ergodic.

To be precise, the conjecture states that the (invari-
ant) measure µ is ergodic with respect to the Z2 action
generated by the commuting shifts along the horizontal
and diagonal (or for that matter, vertical) directions. A
rigorous proof of this eludes us at present.

But, if we assume the conjecture to be true, then we have
a law of large numbers and an asymptotic equipartition
property (AEP). That is to say, for any “well-behaved”
sequence of subsets Fn ⊂ Z2, n = 1, 2, . . ., the following
hold (see e.g. [5, Theorems 1.3 and 1.4]):

lim
n→∞

1
|Fn|

∑
(i,j)∈Fn

Zi,j = µ0(1) a.s. (11)

where µ0(1) is as given in (4), and for µ-a.e. z ∈ {0, 1}Z2 ,

lim
n→∞

− 1
|Fn|

log2 µ
(
Zi,j = zi,j ∀ (i, j) ∈ Fn

)
= H(µ), (12)

where H(µ) is as defined in (10). We should clarify what
it means for a sequence (Fn) to be “well-behaved”. Theo-
rems 1.3 and 1.4 of [5] show that it is sufficient for (Fn)
to satisfy the following two conditions:

(F1) for all (i, j) ∈ Z2, the symmetric difference between
Fn and its translate (i, j) + Fn should be vanishingly
small relative to the cardinality of Fn:

lim
n→∞

|Fn ∆ ((i, j) + Fn)|
|Fn|

= 0;

(F2) for some constant K > 0 and all n, we must have∣∣∣∣∣∣
⋃

k≤n−1
(Fn − Fk)

∣∣∣∣∣∣ ≤ K|Fn|,
where Fn − Fk , {a− b : a ∈ Fn, b ∈ Fk}.

The convergence in probability versions of (11) and (12)
are: for all ε > 0,

Pr

∣∣∣∣∣∣ 1
|Fn|

∑
(i,j)∈Fn

Zi,j − µ0(1)

∣∣∣∣∣∣ ≤ ε
 n→∞−→ 1 (13)

and

Pr
[∣∣∣∣− 1
|Fn|

log2 µ(ZFn
)−H(µ)

∣∣∣∣ ≤ ε] n→∞−→ 1, (14)

where ZFn
is the collection of rvs (Zi,j)(i,j)∈Fn

, and Pr is
computed with respect to the measure µ.

It is easy to verify that the n × n parallelograms ∆n,n

and the n × n squares �n each form a “well-behaved”
sequence of subsets of Z2; observe that condition (F2)
is satisfied with K = 4 for both sequences. Therefore,
assuming Conjecture 1 to be true, (11)–(14) hold with
Fn = �n. Not having a proof for Conjecture 1, we

provide some experimental evidence in support of (13) and
(14) when Fn = �n. Recall from Section II-A that the
measures µm,n are parametrized by q0 and q1; therefore,
so is the measure µ. For various choices of q0 and q1, and
n = 10, 30, 50, 100, 200, 300, 400, 500, we considered 1000
�n-configurations z generated according to the probability
measure πn , µ|�n

. Let γ(n) denote the fraction of �n-
configurations z such that | 1

n2

∑
i,j zi,j − µ0(1)| ≤ 0.005;

and let θ(n) denote the fraction of �n-configurations z
that are “0.005-typical”, i.e., | − 1

n2 log2 πn(z) − H(µ)| ≤
0.005. For most values of (q0, q1) considered, we found that
γ(n) ≥ 0.95 for n ≥ 200, and θ(n) ≥ 0.95 for n ≥ 400. In
almost all cases, γ(500) and θ(500) were very close to 1.
This gives us reason to believe that (13) and (14) hold.

We make note of one last fact about the RSW random
field Z. Assuming Conjecture 1, the following holds for any
“well-behaved” sequence of sets Fn ⊂ Z2:

lim
n→∞

1
|Fn|

H(ZFn
) = H(µ), (15)

where H(ZFn
) refers to the joint entropy of the rvs

(Zi,j)(i,j)∈Fn
, and H(µ) is as defined in (10); see Defini-

tion 4.1 and the subsequent discussion in [5].
III. 2-D Hard-Square-Error Channel Models
We will now use the properties of the RSW measure

and field noted in the previous section to derive results
pertinent to 2-D channel models with additive hard-square
errors. Throughout our discussion, we will fix a “well-
behaved” sequence of sets Fn ⊂ Z2. For concreteness, it
may be useful to think of Fn as either ∆n,n or �n.
A. Probabilistic Channel Model

Consider a channel Q(n) defined on Fn, with input
X(n) ∈ {0, 1}Fn and output Y (n) ∈ {0, 1}Fn related by

Y (n) = X(n) ⊕ Z(n) (16)

where Z(n) ∈ HS(Fn) is a random variable independent
of X(n), distributed according to the RSW measure µ
(restricted to Fn); and ⊕ denotes coordinate-wise modulo-
2 addition. The information-theoretic capacity of the se-
quence of channels Q(n), n = 1, 2, . . ., is defined as

C = lim
n→∞

max
P

1
|Fn|

I(X(n);Y (n)), (17)

the maximum being taken over probability distributions P
on the input X(n). From the fact that X(n) and Z(n) are
independent, we obtain that I(X(n);Y (n)) = H(Y (n)) −
H(Z(n)) ≤ |Fn|−H(Z(n)), with equality achieved iff X(n)

(and hence, Y (n)) is uniformly distributed. Therefore, via
(15), we obtain that C = 1−H(µ).

A code C(n) for Q(n) is a subset of {0, 1}Fn . Its rate is
given by 1

|Fn| log2 |C(n)|. A rate R is said to be achievable
over the channels (Q(n))n∈Z+ if for n = 1, 2, . . . , there
exists a code C(n) with rate R(n) and probability of error1

1The probability of error is defined with respect to a suitable choice
of decoder g(n) : {0, 1}Fn → C(n); see e.g., [1, Chapter 8].



P
(n)
e over the channel Q(n) such that R(n) → R and
P

(n)
e → 0, as n→∞. We then have the following theorem.

Theorem 3. Assuming Conjecture 1 holds, all rates R <
1−H(µ) are achievable. Conversely, if R is an achievable
rate, then R ≤ 1−H(µ).

The proof of the theorem follows standard information-
theoretic arguments. The achievability part is proved by
a random coding argument using typical set decoding, for
which the AEP in the form of (14) is needed. The converse
is an easy application of Fano’s inequality, requiring (15).

B. Combinatorial Channel Model
The notion of a t-hard-square error-correcting (t-hsec)

code C ⊆ {0, 1}F , for F ⊂ Z2, was introduced in Section I.
We consider t-hsec codes for the channels defined by
the “well-behaved” sequence of sets Fn. In particular,
we are interested in the maximum rate of codes whose
error-correction capability, t, is a constant fraction of the
blocklength of the code, i.e., t = τ |Fn| for some fixed
τ > 0. Note that when error patterns satisfy the hard
square constraint, τ cannot exceed 1/2.

For a fixed τ ∈ [0, 1/2], and n = 1, 2, . . . , let Mn(τ)
denote the maximum size of a (τ |Fn|)-hsec code C ⊆
{0, 1}Fn . Define R(τ) = lim sup

n→∞
1
|Fn| log2Mn(τ). We derive

here an upper bound on R(τ).
Fix µ0(1) to be τ − δ for some small δ ∈ (0, τ).

Then, from (4), we have α = 1−2(τ−δ)
1−(τ−δ) . It can be easily

verified that choosing the parameters (q0, q1) of µm,n in
the following way satisfies the condition in (9):

q0 ∈
[
max(0, α

2 + α− 1
α2 ), 1

]
and q1 = α2

1− α (1− q0).
(18)

Hence, for any choice of (q0, q1) satisfying (18), an RSW
measure µ exists. Assume that Conjecture 1 holds.

Consider the channels Q(n), n = 1, 2, . . . , defined by
(16). Since µ0(1) = τ − δ, by (13), the probability that
more than τ |Fn| errors occur in the channel Q(n) goes to
0 as n→∞. Hence, any family of (τ |Fn|)-hsec codes can
operate over the channels Q(n) with probability of error
going to 0 as n → ∞. Therefore, using Theorem 3, and
letting δ → 0, we conclude that R(τ) ≤ 1 −H(µ), where
µ is parametrized by (q0, q1) as in (18), with α = 1−2τ

1−τ .
Using the expression for H(µ) from (10), and tightening
the bound by choosing the best possible (q0, q1), we obtain

R(τ) ≤ 1− max
(q0,q1)

1− 2τ
1− 2τ + q1τ

[(1− 2τ)h(q0) + τ h(q1)] ,
(19)

the maximum being taken over all (q0, q1) satisfying (18)
with α = 1−2τ

1−τ .
We numerically evaluated the upper bound in (19) for

τ ∈ [0, 1/2], and found it to be decreasing in τ for
τ ∈ [0, 0.228], and increasing thereafter. Since R(τ) must
be non-increasing in τ , we use the bound R(τ) ≤ R(0.228)
for all τ ≥ 0.228. The upper bound is plotted in Figure 3.
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Fig. 3. Comparison of the derived upper bound on R(τ), calculated
from (19), with the asymptotic Hamming bound and the first MRRW
upper bound. Also plotted is the asymptotic GV lower bound.

For comparison’s sake, also plotted are the asymptotic
Hamming and first MRRW upper bounds [8, Chapter 4]
for (τ |Fn|)-correcting codes (for unconstrained error pat-
terns), and the asymptotic Gilbert-Varshamov (GV) lower
bound.

We believe that the upper bound on R(τ) can be further
tightened. Indeed, we conjecture that asymptotic code
rates of hsec codes can be no better than those for codes
correcting unconstrained errors. This conjecture stems
from an as-yet-unproved assertion that for large values of
n, among Fn-configurations of Hamming weight at most
2t, all but a vanishingly small fraction can be written as a
sum of two configurations in HS(Fn) of weight at most t
each. Consequently, the arguments in the proof of [6, Prop.
2.3] will go through in the asymptotic regime.
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