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On the Public Communication Needed
to Achieve SK Capacity

in the Multiterminal Source Model∗
Manuj Mukherjee† Navin Kashyap† Yogesh Sankarasubramaniam‡

Abstract—The focus of this paper is on the public com-
munication required for generating a maximal-rate secret key
(SK) within the multiterminal source model of Csiszár and
Narayan. Building on the prior work of Tyagi for the two-
terminal scenario, we derive a lower bound on the communication
complexity, RSK, defined to be the minimum rate of public
communication needed to generate a maximal-rate SK. It is well
known that the minimum rate of communication for omniscience,
denoted by RCO, is an upper bound on RSK. For the class of
pairwise independent network (PIN) models defined on uniform
hypergraphs, we show that a certain “Type S” condition, which is
verifiable in polynomial time, guarantees that our lower bound on
RSK meets the RCO upper bound. Thus, PIN models satisfying our
condition are “RSK-maximal”, indicating that the upper bound
RSK ≤ RCO holds with equality. This allows us to explicitly
evaluate RSK for such PIN models. We also give several examples
of PIN models that satisfy our Type S condition. Finally, we
prove that for an arbitrary multiterminal source model, a stricter
version of our Type S condition implies that communication from
all terminals (“omnivocality”) is needed for establishing a SK of
maximum rate. For three-terminal source models, the converse
is also true: omnivocality is needed for generating a maximal-
rate SK only if the strict Type S condition is satisfied. However,
for source models with four or more terminals, counterexamples
exist that show that the converse does not hold in general.

Index Terms—Communication complexity, information-
theoretic security, PIN model, secret key generation

I. INTRODUCTION

Maurer [1] and Ahlswede and Csiszár [2] independently
introduced the problem of generating a secret key (SK) for a
pair of terminals observing distinct, albeit correlated, compo-
nents of a discrete memoryless multi-component source. The
SK is to be generated by communicating interactively over a
noiseless public channel, and it is to be kept secure from all
passive eavesdroppers having access to the public channel. The
problem was subsequently extended to a multiterminal setting
by Csiszár and Narayan [3]. The Csiszár-Narayan model is
now commonly referred to as the multiterminal source model.
The quantity of interest in these papers, and indeed in much of
the literature that followed on this topic [4], [5], [6], [7], is the
secret key capacity, i.e., the supremum of the rates of SK that
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can be generated within this model. In the two-terminal case,
an exact characterization of the SK capacity can be found in
the original works of Maurer [1] and Ahlswede and Csiszár
[2]. Csiszár and Narayan [3] later gave an elegant single-letter
expression for SK capacity in the general multiterminal source
model.

In all the aforementioned studies, the noiseless public chan-
nel is viewed as an unlimited free resource, and no attempt is
made to restrict the amount of communication sent through
it. Indeed, Csiszár and Narayan [3, Section VI] left open
the question of determining the minimum rate of interactive
public communication needed to achieve SK capacity. Tyagi
[8] addressed this question in the two-terminal case, and gave
an exact, although difficult to compute, characterization of the
minimum rate of communication. In this paper, we extend
some of Tyagi’s ideas to the multiterminal setting, and apply
them to give an explicit answer to Csiszár and Narayan’s open
question in some interesting special cases, namely, certain
instances of the so-called pairwise independent network (PIN)
model [5], [6].

A. Our Contributions

The primary focus of our work is on the following question:
What is the minimum rate of interactive public communication
required to achieve SK capacity in the multiterminal source
model? We shall refer to the minimum rate of public com-
munication as the communication complexity1 of achieving
SK capacity, denoted by RSK. Csiszár and Narayan’s original
proof of the achievability of their single-letter expression for
SK capacity [3, Theorem 1] used a (non-interactive) commu-
nication protocol that enabled “omniscience” at all terminals,
which means that the communication over the public channel
allows each terminal to recover the observations of all the
other terminals. It follows from their results that RSK is always
upper bounded by RCO, the minimum rate of interactive
public communication required to achieve omniscience at all
terminals. Furthermore, RCO is given by the solution to a
linear program [3, Proposition 1] (see (1) in Section II), so
it can be computed efficiently. On the other hand, it is also
well known that omniscience is not necessary for maximal-
rate SK generation — see the remark following Theorem 1

1Our use of “communication complexity” differs from the use prevalent in
the theoretical computer science literature where, following [9], it refers to the
total amount of communication, in bits, required to perform some distributed
computation.
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in [3], and also the proof of Theorem 3.2 in [4]. Indeed, it
is not difficult to find examples where RSK � RCO; our
Example IV.1 is one such. Thus, the sources for which we
have RSK = RCO constitute the worst-case sources in terms
of communication complexity; we call such sources RSK-
maximal. We give a sufficient condition for a PIN model
defined on a uniform hypergraph to be RSK-maximal, and
show that PIN models satisfying this condition do exist. For
these PIN models, it is easy to explicitly compute RCO, which
then gives us an exact expression for RSK. This is the first
(non-trivial) explicit evaluation of RSK to be found in the
literature, for a multiterminal source model with more than two
terminals. Interestingly, for PIN models defined on ordinary
graphs (i.e., each edge is incident with only two vertices), our
sufficient condition is also necessary, which gives us an exact
characterization, decidable in polynomial time, of ordinary
graph PIN models that are RSK-maximal.

The main tool in our analysis is a lower bound on RSK
obtained via a multiterminal extension of Tyagi’s work [8].
Tyagi’s characterization of RSK for two terminals [8, Theo-
rem 3] was in terms of the minimum rate of an interactive
common information, a type of Wyner common information
(see [10]). In order to appropriately generalize these ideas,
we propose extensions of conditional mutual information and
Wyner common information to the setting of more than two
terminals. With these new multiterminal definitions in hand,
we essentially follow the approach in [8] to derive a lower
bound on RSK in terms of the minimum rate of a multiterminal
analogue of interactive common information. As in the case
of Tyagi’s result for two terminals, an exact evaluation of this
bound appears to be a difficult task even for simple source
models such as Markov chains. However, unlike the two-
terminal result, we are unable to show that our lower bound to
RSK is tight in general. Luckily, we are able to evaluate this
bound exactly for certain PIN models as mentioned above, and
the bound turns out to be tight in these cases as it matches the
RCO upper bound.

A secondary line of investigation carried out in this paper
concerns the question of whether some terminals need to
communicate at all in order to achieve SK capacity. It is
well known that, in order to generate a maximal-rate SK in
the two-terminal model, it is sufficient for only one terminal
to communicate [1], [2], [3]. All this terminal has to do is
convey its local observations to the other terminal at the least
possible rate of communication required to do so. Thus, in the
two-terminal setup, it is never necessary for both terminals
to communicate to generate a capacity-achieving SK. Even
in the case of more than two terminals, there are examples
wherein not all terminals need to communicate — again, see
the remark following Theorem 1 in [3]. However, as we will
show in this paper, there are plenty of other examples where all
terminals must communicate in order to achieve SK capacity.
We coin the term “omnivocality” to describe the state when all
terminals communicate. The problem of interest to us then is
the following: Characterize the instances of the multiterminal
source model in which omnivocality is necessary for maximal-
rate SK generation. In this paper, we report some partial
progress towards such a characterization.

In [7], Gohari and Anantharam considered the scenario
where a subset of terminals is required to remain silent, and
yet all the terminals must agree upon an SK using only the
communication from terminals that are allowed to talk. They
derived a linear programming formulation for the maximum
SK rate achievable in this scenario. Observe that omnivocality
is necessary for achieving SK capacity in a source model iff
any one terminal not being allowed to communicate strictly
lowers the maximum achievable SK rate for that model.
This establishes a correspondence between the omnivocality
condition and the Gohari-Anantharam scenario involving silent
terminals. We use this correspondence to identify a sufficient
condition under which omnivocality is necessary for achieving
SK capacity in a source model with at least three terminals.
We further show that in the case of exactly three terminals, our
sufficient condition is also necessary. Based on this evidence,
we had conjectured in [11] that our condition was always
necessary and sufficient. Unfortunately, a counterexample has
been given by Chan et al. [12] that shows that the condition is
not necessary for four or more terminals. This has also been
independently observed by Zhang et al. in [13].

B. Related work
Besides the work of Tyagi [8] that we have already men-

tioned, a few other recent papers have considered the SK
generation problem from a communication complexity angle.
The line of work that is perhaps most directly related to
ours is that of Courtade and co-authors [14], [15], [16],
which considers the coded cooperative data exchange (CCDE)
problem [17] with the goal of generating an SK. This is, in
essence, a single-shot version of the SK generation problem
defined on hypergraph PIN models. Here, by “single-shot”,
we mean that each terminal sees only one realization of
the component of the source available to it, as opposed to
the Csiszár-Narayan setup within which each terminal sees
a sequence of i.i.d. realizations. The single-shot SK capacity,
i.e., the maximum size (as opposed to maximum rate) of an SK
that can be generated, was evaluated in [14, Theorem 6]. The
capacity achieving protocol used is a one-shot version of the
communication-for-omniscience protocol of [3]. The follow-
up works [15] and [16] addressed the issue of determining the
minimum amount (again, as opposed to rate) of communica-
tion required to generate an SK of a particular size. However,
this is done under a additional linearity requirement on the
communication, i.e., the communication is required to be a
linear function of the source outputs. Theorem 11 of [16] then
gives an explicit characterization of what could be rightfully
called the linear communication complexity of generating an
SK of a given size, in terms of the minimum number of
hyperedges of an “inherently τ -connected subhypergraph”.
It was further shown in [16, Theorem 4] that there exist
hypergraph PIN models for which non-linear communication
protocols for achieving (single-shot) SK capacity require lower
amounts of communication than the linear communication
complexity. It should be emphasized that our results do not
make any linearity assumptions on the public communication.

In [18], Liu et al. study public communication for SK gen-
eration in another variant of the multiterminal source model.
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The authors consider m + 1 terminals observing correlated
i.i.d. sources. One terminal acts as the communicator, sending
information to each of the remaining m terminals via m
different noiseless channels. A communication rate-key rate
tradeoff region is identified for this model. Although the model
in [18] can be completely solved, it is different from the
Csiszár-Narayan model treated in the current paper both in
the way that the terminals communicate as well as in the
manner in which the eavesdroppers cooperate. In particular,
in the model considered in [18], each of the m different
links have individual eavesdroppers, but cooperation is not
allowed among them. Secrecy is no longer guaranteed if the
eavesdroppers cooperate.

Communication complexity has also been studied for two-
terminal function computation without a secrecy constraint. In
his PhD thesis, Zhao gave an upper bound [19, Theorem 3]
on the maximum rate of a common randomness achievable
from a (non-interactive) communication of a given rate R, the
communication being restricted to a single transmission from
one terminal to the other. The common randomness here is
essentially a function of the source that can be agreed upon
by both terminals. There is no requirement that the common
randomness be kept secure from an eavesdropper. Courtade
[20, Theorem 4] subsequently pointed out a small correction
to Zhao’s bound in light of the correction made to the strong
data processing inequality in [21].

Braverman and Rao in [22, Theorem II.3] gave an exact
characterization of the communication complexity for two-
party interactive function computation.2 The communication
complexity is shown to be equal to an information-theoretic
quantity called the internal information cost. In a follow-
up work, Braverman and Schneider provide an algorithm to
compute the internal information cost for binary function
computation — see Theorem 1.1 of [23].

Turning our attention to the topic of omnivocality originally
studied in our paper [11], Zhang et al. [13] have recently
obtained some new results. In particular, their Theorem 5
gives a sufficient condition for when a particular terminal
must communicate in any SK-capacity-achieving protocol. Our
original sufficient condition for omnivocality [11, Theorem 4]
(Theorem 10 in this paper) can now be obtained as a conse-
quence of Zhang et al.’s Theorem 5. In addition, Theorem 4
of [13] provides a sufficient condition that guarantees the
existence of an SK-capacity-achieving protocol within which
a given terminal can remain silent.

C. Organization

The paper is organized as follows. In Section II, we provide
the definitions and preliminaries needed for the rest of the
paper. In Section III, we state and prove our lower bound
on the communication complexity RSK. In Section IV, we
identify a class of uniform hypergraph PIN models which
are RSK-maximal. Section V identifies a condition that makes
omnivocality necessary for achieving SK capacity. The issue

2To be precise, the quantity which we are calling communication complex-
ity is referred to as amortized communication complexity in [22].

of verifying whether that condition holds for a given multi-
terminal source model is addressed in Section VI. The effect
on RSK of local randomization at the terminals is discussed
in Section VII. Finally, Section VIII summarizes our results
and presents some open problems. To preserve the flow of the
exposition, the proofs of some of our results have been moved
to appendices.

II. PRELIMINARIES

We start by giving a mathematical description of the multi-
terminal source model of [3]. Throughout, we use N to denote
the set of positive integers. Consider a set of m terminals
denoted by M = {1, 2, . . . ,m}. Each terminal i ∈ M
observes n i.i.d. repetitions of the random variable Xi taking
values in the finite set Xi. The n i.i.d. copies of the random
variable are denoted by Xn

i . For any subset A ⊆M, XA and
Xn
A denote the collections of random variables (Xi : i ∈ A)

and (Xn
i : i ∈ A), respectively. The terminals communicate

through a noiseless public channel, any communication sent
through which is accessible to all terminals and to poten-
tial eavesdroppers as well. An interactive communication is
a communication f = (f1, f2, · · · , fr) with finitely many
transmissions fj , in which any transmission sent by the ith
terminal is a deterministic function of Xn

i and all the previous
communication, i.e., if terminal i transmits fj , then fj is a
function only of Xn

i and f1, . . . , fj−1. We denote the random
variable associated with f by F; the support of F is a finite set
F . The rate of the communication F is defined as 1

n log|F|.
Note that f, F and F implicitly depend on n.

Definition 1. A common randomness (CR) obtained from
an interactive communication F is a sequence of random
variables J(n), n ∈ N, which are functions of Xn

M, such
that for any 0 < ε < 1 and for all sufficiently large
n, there exist Ji = Ji(X

n
i ,F), i = 1, 2, . . . ,m, satisfying

Pr[J1 = J2 = · · · = Jm = J(n)] ≥ 1− ε.

When J(n) = Xn
M we say that the terminals in M have

attained omniscience. The communication F which achieves
this is called a communication for omniscience. It was shown
in Proposition 1 of [3] that the minimum rate achievable by a
communication for omniscience, denoted by RCO, is equal to

min
(R1,R2,...,Rm)∈RCO

m∑
i=1

Ri, where the region RCO is given by

RCO =

{
(Ri)i∈M :

∑
i∈B

Ri ≥ H(XB |XBc), B (M
}
. (1)

Henceforth, we will refer to RCO as the “minimum rate of
communication for omniscience”. Further, it can be seen from
the description of RCO that RCO < ∞. More precisely, note
that the point (R1, R2, . . . , Rm) defined by Ri = H(Xi) for
all i lies in RCO, and hence RCO ≤

∑m
i=1H(Xi) <∞.

Definition 2. A real number R ≥ 0 is an achievable SK
rate if there exists a CR K(n), n ∈ N, obtained from an
interactive communication F satisfying, for any ε > 0 and for
all sufficiently large n, I(K(n); F) ≤ ε and 1

nH(K(n)) ≥ R−ε.
The SK capacity is defined to be the supremum among all
achievable rates. The CR K(n) is called a secret key (SK).
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From now on, we will drop the superscript (n) from both
J(n) and K(n) to keep the notation simple.

The SK capacity can be expressed as [3, Theorem 1]

C(M) = H(XM)−RCO. (2)

Other equivalent characterizations of C(M) exist in the litera-
ture. Csiszár and Narayan observed in [3, Section V] that since

the linear program RCO = min
(R1,R2,...,Rm)∈RCO

m∑
i=1

Ri, with the

constraints defined by (1), has an optimal solution, by strong
duality, the dual linear program also has the same optimal
value. Using this fact, the expression for SK capacity can be
rewritten as

C(M) , H(XM)−max
λ∈Λ

∑
B∈B

λBH(XB |XBc), (3)

where B is the set of all non-empty, proper subsets of M,
and Λ is the set of all fractional partitions defined on B. To
be precise, any λ = (λB : B ∈ B) ∈ Λ satisfies λB ≥ 0,
for all B ∈ B, and

∑
B:i∈B λB = 1, for all i ∈ M. It is a

fact that H(XM)−maxλ∈Λ

∑
B∈B λBH(XB |XBc) ≥ 0 [24,

Proposition II].
Another characterization of SK capacity can be given via

the notion of multipartite information defined as follows:

I(XM) , min
P

∆(P) (4)

with ∆(P) , 1
|P|−1

[∑
A∈P H(XA)−H(XM)

]
and

the minimum being taken over all partitions P =
{A1, A2, · · · , A`} of M, of size ` ≥ 2. Note that I(Xn

M) =
nI(XM). The quantity I(XM) is a generalization of the mu-
tual information to a multiterminal setting; indeed, for m = 2,
we have I(X1, X2) = I(X1;X2). Note that I(XM) = 0 iff
there exists a partition P = {A1, A2, . . . , A`} of M, with
` ≥ 2, such that the random variables XA1

, XA2
, . . . , XA` are

mutually independent. It was shown in Theorem 1.1 of [25]
and Theorem 4.1 of [12] that

C(M) = I(XM). (5)

For the rest of this paper we shall use C(M) and I(XM)
interchangeably.

The partition {{1}, {2}, . . . , {m}} consisting of m single-
ton cells will play a special role in the later sections of
this paper; we call this the singleton partition and denote
it by S. The sources where S is a minimizer for (4) will
henceforth be referred to as Type S sources. If S is the unique
minimizer for (4) then we call such a source strict Type S. A
connection between the optimal fractional partition in (3) and
the optimal partition in (4) was pointed out in [25]. For any
partition P of M define λ(P) as follows: λ(P)

B , I{Bc∈P}
|P|−1 ,

for all B ∈ B and I{.} is the indicator function. It is
easy to check that λ(P) is a fractional partition on B, and
∆(P) = H(XM)−

∑
B∈B λ

(P)
B H(XB |XBc). Hence, for any

partition P which is a minimizer in (4), the corresponding
λ(P) is an optimal fractional partition for (3).

We are now in a position to make the notion of communi-
cation complexity rigorous.

Definition 3. A real number R ≥ 0 is said to be an achievable
rate of interactive communication for maximal-rate SK if for
all ε > 0 and for all sufficiently large n, there exist (i) an
interactive communication F satisfying 1

n log|F| ≤ R+ε, and
(ii) an SK K obtained from F such that 1

nH(K) ≥ I(XM)− ε.
The infimum among all such achievable rates is called the

communication complexity of achieving SK capacity, denoted
by RSK.

The proof of Theorem 1 in [3] shows that there exists an
interactive communication F that enables omniscience at all
terminals and from which a maximal-rate SK can be obtained.
Therefore, we have RSK ≤ RCO < ∞. Hence, in terms of
communication complexity, the sources that satisfy RSK =
RCO are the worst-case sources. We will henceforth refer to
them as RSK-maximal sources. Such sources do exist, as will
be shown in Sections IV and VI.

Tyagi gave a characterization of RSK in the case of a two-
terminal model [8, Theorem 3].3 The key to his characteriza-
tion was the observation that conditioned on a maximal-rate
SK K and the communication F from which K is extracted, the
observations of the two terminals are “almost” independent:
1
nI(Xn

1 ;Xn
2 |K,F) → 0 as n → ∞. Thus, the pair (K,F)

is a Wyner common information [10] for the randomness
at the terminals. Tyagi used the term “interactive common
information” to denote any Wyner common information that
consisted of a CR along with the interactive communication
achieving it.

We extend Tyagi’s ideas to the setting of m ≥ 2 ter-
minals. We first extend the definition of conditional mutual
information to the multiterminal setting. We will refer to the
multiterminal analogue of the conditional mutual information
as the conditional multipartite information (CMI). As a natural
extension of (4), we could define CMI as minP ∆(P|L),

where ∆(P|L) , 1
|P|−1

[∑
A∈P H(XA|L) − H(XM|L)

]
.

Note that

∆(P|L) = H(XM|L)−
∑
B∈B

λ
(P)
B H(XB |XBc ,L). (6)

Using this definition, we can indeed generalize Tyagi’s argu-
ments to the case of m ≥ 2 terminals and obtain a lower bound
on RSK. It turns out, however, that a stronger lower bound
can be obtained by defining CMI to be equal to ∆(P ′|L),
where P ′ is any partition that achieves the minimum in (4).
One complication now is that there could be more than one
choice of P ′ that achieves the minimum in (4), and two
distinct choices of P ′ could yield different values for ∆(P ′|L).
We simply choose the finest partition P∗ that achieves the
minimum in (4); we henceforth refer to this partition P∗ as
the fundamental partition of the source XM. We then define
CMI as

IP∗(XM|L) , ∆(P∗|L), (7)

3It should be clarified that Tyagi’s characterization was for “weak” SKs,
which are defined as in our Definition 2, except that the security condition
I(K;F) ≤ ε is weakened to 1

n
I(K;F) ≤ ε. However, using techniques from

[26], for example, it may be possible that Tyagi’s achievability results can be
extended to obtain SKs that satisfy the stronger security condition, without
increasing RSK.
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the subscript P∗ being used to emphasize the role of the
fundamental partition in the definition. It needs to be clarified
here that P∗ exists and is unique by Theorem 5.2 of [12]. For
Type S sources it is easy to see that P∗ = S.

The definition of IP∗(XM|L) applies to any collection
of jointly distributed random variables XM; in particular it
applies to the collection Xn

M. To be clear,

IP∗(Xn
M|L) ,

1

|P∗|−1

[ ∑
A∈P∗

H(Xn
A|L)−H(Xn

M|L)

]
.

We point out an important consequence of our definition
of IP∗(XM|L). We have IP∗(XM|L) = 0 iff the random
variables XM are conditionally independent across the cells
of P∗ given L. We are now in a position to extend the notion
of the Wyner common information to a multipartite setting.4

Definition 4. A (multiterminal) Wyner common information
(CIW ) for XM is a sequence of finite-valued functions L(n) =
L(n)(Xn

M) such that 1
n IP∗(Xn

M|L
(n)) → 0 as n → ∞. An

interactive common information (CI) for XM is a Wyner
common information of the form L(n) = (J,F), where F is
an interactive communication and J is a CR obtained from F.

Again, we shall drop the superscript (n) from L(n) for
notational simplicity. Wyner common informations L do exist:
for example, the identity map L = Xn

M is a CIW . To see
that CIs (J,F) also exist, observe that J = Xn

M and a
communication F enabling omniscience constitute a CIW , and
hence, a CI.

Definition 5. A real number R ≥ 0 is an achievable CIW
(resp. CI) rate if there exists a CIW L (resp. a CI L = (J,F))
such that for all ε > 0, we have 1

nH(L) ≤ R+ ε for all suffi-
ciently large n. We denote the infimum among all achievable
CIW (resp. CI) rates by CIW (XM) (resp. CI(XM)).

The proposition below records the relationships between
some of the information-theoretic quantities defined so far.

Proposition 1. For a multiterminal source Xn
M, we have

H(XM) ≥ CI(XM) ≥ CIW (XM) ≥ I(XM).

Proof: The first inequality is due to the fact that there
exists a CI of rate H(XM). The second follows from the
fact that a CI is a special type of CIW , so that CI(XM) ≥
CIW (XM).

For the last inequality, we start by observing that for any
function L of Xn

M, we have

I(Xn
M)− IP∗(Xn

M|L)

= I(Xn
M; L)−

∑
B∈B

λ
(P∗)
B I(Xn

B ; L|Xn
Bc) (8)

= H(L)−
∑
B∈B

λ
(P∗)
B H(L|Xn

Bc), (9)

where (8) follows from (6) and (7) and hence,
1

n
H(L) = I(XM)− 1

n
IP∗(Xn

M|L). (10)

4In fact, there exist other ways of generalizing Wyner common information
to the multiterminal setting (see [27] and [28]).

Now, if L is any CIW of rate R, then by Definitions 4 and 5,
for every ε > 0, we have 1

nH(L) ≤ R+ε and 1
n IP∗(Xn

M|L) ≤
ε for all sufficiently large n. Thus, in conjunction with (10),
we have R + ε ≥ 1

nH(L) ≥ I(XM) − ε for all sufficiently
large n. In particular, R + ε ≥ I(XM) − ε holds for any
ε > 0, from which we infer that R ≥ I(XM). The inequality
CIW (XM) ≥ I(XM) now follows.

Finally, analogous to Definition 3, we have a definition of
achievable rate of interactive communication required to get a
CI.

Definition 6. A real number R ≥ 0 is said to be an achievable
rate of interactive communication for CI if for all ε > 0
and for all sufficiently large n, there exist (i) an interactive
communication F satisfying 1

n log|F| ≤ R+ ε, and (ii) a CR
J such that L = (J,F) is a CI. We denote the infimum among
all such achievable rates by RCI.

III. LOWER BOUND ON RSK

The goal of this section is to state and prove a lower bound
on RSK, which partially extends Tyagi’s two-terminal result
[8, Theorem 3] to the multiterminal setting.

Theorem 2. For any multiterminal source XM, we have

RSK ≥ RCI ≥ CI(XM)− I(XM).

By Proposition 1, the lower bounds above are non-negative.
The ideas in our proof of Theorem 2 may be viewed as

a natural extension of those in the proof of [8, Theorem 3].
We start with three preliminary lemmas. In all that follows,
λ∗ = λ(P∗), and moreover, λ∗ = (λ∗B : B ∈ B). The first
lemma is the multiterminal extension of [8, Lemma 7].

Lemma 3. For any function L of XM, we have

nI(XM) = IP∗(Xn
M|L) +H(L)−

∑
B∈B

λ∗BH(L|Xn
Bc).

Proof: The result is just a restatement of (9).

Lemma 4. For any CR J obtained from an interactive com-
munication F,

lim
n→∞

1

n

∑
B∈B

λ∗BH(J|Xn
Bc ,F) = 0.

Proof: Fix an ε > 0. We have for all sufficiently large n,
by Fano’s inequality,

1

n

∑
B∈B

λ∗BH(J|Xn
Bc ,F) ≤ 1

n

∑
B∈B

λ∗B (h(ε) + εH(Xn
Bc ,F))

≤ 1

n

∑
B∈B

λ∗B (h(ε) + εH(Xn
M,F))

=
1

n

∑
B∈B

λ∗B (h(ε) + εH(Xn
M))

=
1

n

∑
B∈B

λ∗B (h(ε) + nεH(XM))
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≤ (2m − 2) [h(ε) + εH(XM)] ,
(11)

where h(.) is the binary entropy function, and (11) follows
from the fact that, by definition, λ∗B ≤ 1 and |B|= 2m−2. Note
that the expression in (11) goes to 0 with ε, since h(ε) → 0
as ε→ 0, and H(XM) ≤ log(

∏m
j=1|Xj |).

The last lemma we need, stated without proof, is a special
case of [4, Lemma B.1]. It is the multiterminal extension of
[8, Lemma 5].

Lemma 5 ([4], Lemma B.1). For an interactive communica-
tion F we have

H(F) ≥
∑
B∈B

λ∗BH(F|Xn
Bc).

With these lemmas in hand, we can proceed to the proof of
Theorem 2.

Proof of Theorem 2: The proof is done in two parts. In
the first part, we prove that RCI ≥ CI(XM)− I(XM). In the
second part, we show that RSK ≥ RCI.

Part I: RCI ≥ CI(XM)− I(XM)

The idea is to show that I(XM) +RCI is an achievable CI
rate, so that CI(XM) ≤ I(XM) +RCI.

Fix an ε > 0. By the definition of RCI, for all sufficiently
large n, there exists an interactive communication F satisfying
1
n log|F| ≤ RCI + ε/2 and a CR J such that L = (J,F)
is a CI. We will show that 1

nH(J,F) ≤ I(XM) + RCI + ε
for all sufficiently large n. This, by Definition 5, shows that
I(XM) +RCI is an achievable CI rate.

Setting L = (J,F) in Lemma 3, we obtain

1

n

[
H(J,F)−

∑
B∈B

λ∗BH(F|Xn
Bc)

]
− I(XM)

=
1

n

[∑
B∈B

λ∗BH(J|Xn
Bc ,F)− IP∗(Xn

M|J,F)

]
≤ ε/2, (12)

where (12) follows from Lemma 4. Re-arranging, we get

1

n
H(J,F) ≤ I(XM) +

1

n

∑
B∈B

λ∗BH(F|Xn
Bc) + ε/2

≤ I(XM) +
1

n
H(F) + ε/2,

the second inequality coming from Lemma 5. Finally, using
the fact that 1

nH(F) ≤ 1
n log|F| ≤ RCI + ε/2, we see that

1

n
H(J,F) ≤ I(XM) +RCI + ε

which is what we set out to prove.
Part II: RSK ≥ RCI

Fix ε > 0. From the definition of RSK , there exist an
interactive communication F and an SK K obtained from F
such that, for all sufficiently large n, 1

n log|F| ≤ RSK +ε and
1
nH(K) ≥ I(XM)− ε. We wish to show that (K,F) is a CI,
so that by Definition 6, we would have RSK ≥ RCI.

Setting L = (K,F) in Lemma 3, we have for all sufficiently

large n,

1

n
IP∗(Xn

M|K,F)

= I(XM)− 1

n
H(K,F) +

1

n

∑
B∈B

λ∗BH(F|Xn
Bc)

+
1

n

∑
B∈B

λ∗BH(K|Xn
Bc ,F)

≤ I(XM)− 1

n
H(K|F) + ε (13)

≤ I(XM)− 1

n
H(K) + ε+ ε (14)

≤ 3ε, (15)

where (13) follows from Lemmas 4 and 5, (14) follows from
the fact that I(K; F) ≤ ε, while (15) is due to the fact that
1
nH(K) ≥ I(XM)− ε. Thus, by Definition 4, (K,F) is a CI.

An issue with our Theorem 2 is that the bounds are
difficult to evaluate explicitly, as we do not have a computable
characterization of CI(XM). For the special case of the two-
terminal model, Theorem 3 of [8] shows that both the bounds
in Theorem 2 are tight. However, at least one of the bounds
in our Theorem 2 is not tight in general, as shown by the
following example.

Example III.1. Let Zn1 , Z
n
2 , Z

n
3 and Zn4 be four independent

i.i.d. sequences of Bernoulli(1/2) random variables, and let
M = {1, 2, 3, 4}. We construct a source Xn

M as follows:

Xn
1 = (Zn1 , Z

n
2 ),

Xn
2 = (Zn1 , Z

n
3 ),

Xn
3 = (Zn2 , Z

n
3 , Z

n
4 ), and

Xn
4 = Zn4 .

It is straightforward to verify that P∗ = {{1, 2, 3}, {4}} and
I(XM) = 1.

Now, consider J = Zn4 , and let F be a communication
where terminal 3 broadcasts Zn4 and every other terminal
remains silent. Thus, J is a CR achievable with F. Also,
H(Xn

1 , X
n
2 , X

n
3 |J,F) + H(Xn

4 |J,F) −H(Xn
M|J,F) = 0, so

that (J,F) is in fact a CI. Therefore, via Definition 5, we have
CI(XM) ≤ 1

nH(J,F) = 1, and hence by Proposition 1, again
noting that I(XM) = 1, we have CI(XM) − I(XM) = 0.
Theorem 2 thus gives the lower bound RSK ≥ 0. However,
since the combined observations of terminals 1 and 2 are
independent of the observation of terminal 4, these terminals
cannot agree upon an SK of rate 1 without a non-zero rate of
communication. This shows that at least one of the inequalities
in Theorem 2 is not tight.

In the general multiterminal model, with m ≥ 3, the best
known upper bound on RSK is the minimum rate of commu-
nication for omniscience, RCO. In the following section, we
identify a large class of sources where our lower bound equals
RCO, i.e., the sources are RSK-maximal.
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IV. RSK-MAXIMALITY IN UNIFORM HYPERGRAPH PIN
MODELS

This section focuses on a special class of sources called
the PIN model, introduced in [5] and [6]. A broad class
of PIN models defined on uniform hypergraphs (which is a
generalization of the PIN models of [5] and [6]) is identified
to be RSK-maximal in this section.

In our view, PIN models form a natural class of models
for SK agreement, wherein there are various independent SKs
being initially shared within various small subsets of terminals,
and these SKs need to be combined and distilled to form a
group key common to all terminals. The original PIN model on
graphs, as defined in [5], was motivated by multipath wireless
networks, where the channels between pairs of terminals are
reciprocal, and uncorrelated across different pairs of terminals
and across different time-coherence intervals. The PIN model
we study in this paper is due to [6], which is a specialized
version of the earlier PIN model of [5]. PIN models on
hypergraphs have been studied extensively in the context of
the CCDE problem [14],[16],[17], where subsets of terminals
share a common random variable, independent of those shared
between other subsets.

Briefly, a hypergraph PIN model5 is defined on an under-
lying hypergraph H = (V, E) with V = M, the set of m
terminals of the model, and E being a multiset of hyperedges,
i.e., subsets of V .6 For a hyperedge e having ` copies in the
multiset E , we represent the different copies as e1, e2, . . . , e`.
To keep the notation simple, if a hyperedge e has only one
copy in E , we simply represent it as e instead of e1. Unless
otherwise stated, we will assume that each hyperedge in E has
only one copy. For n ∈ N, we define E(n) to be the multiset
of hyperedges formed by taking n copies of each element of
the multiset E . Associated with each hyperedge e ∈ E(n) is
a Bernoulli(1/2) random variable ξe; the ξes are all mutually
independent. With this, the random variables Xn

i , i ∈M, are
defined as Xn

i = (ξe : e ∈ E(n) and i ∈ e). Each random
variable ξe, e ∈ E(n), should be thought of as one bit of
SK initially shared among the terminals in e. By allowing E
to be a multiset in our model, so that a hyperedge can have
multiple copies in E , we allow the initial number of bits of SK
shared within one subset of terminals (i.e., one hyperedge) to
be different from that shared within another subset (hyperedge)
— see Appendix D for an example.

When every e ∈ E satisfies |e| = t, we call H a t-
uniform hypergraph. We will show that any Type S uniform
hypergraph PIN model is RSK-maximal.

Theorem 6. For a Type S PIN model defined on an underlying
t-uniform hypergraph H = (V, E), we have CI(XM) =
CIW (XM) = H(XM), and hence, RSK = RCI = RCO =
m−t
m−1 |E|.

5Strictly speaking, the term “hypergraph PIN model” is a misnomer, as
this model does not in general have the pairwise independence property that
characterizes the PIN models on graphs considered in [6]. We have simply
chosen to retain the “PIN model” nomenclature for backward compatibility
with [6].

6Note that we allow E to contain multiple copies of a hyperedge. In the
graph theory literature, such a hypergraph is sometimes referred to as a “multi-
hypergraph”.

Type S PIN models defined on t-uniform hypergraphs do
indeed exist, as we will see in Section VI. Also, it is possible
to efficiently determine if a given source XM (not necessarily
a PIN model) is Type S; a strongly polynomial-time algorithm
for this has been given by Chan et al. [12]. In Section VI, we
present another useful, but inefficient, test for deciding the
Type S property.

The proof of Theorem 6 will require a technical lemma
which we state below.

Lemma 7. For any t-uniform hypergraph PIN model and any
function L of Xn

M we have
m∑
i=1

I(Xn
i ; L) ≤ tH(L). (16)

The lengthy proof of this lemma is deferred to Appendix A.
Proof of Theorem 6: Observe that λ(S)

B = 1
m−1 , when-

ever |B| = m − 1 and λ
(S)
B = 0, otherwise. Hence, for any

Type S source Xn
M, we have

IP∗(Xn
M|L) = H(Xn

M|L)− 1

m− 1

m∑
i=1

H(Xn
M\{i}|X

n
i ,L)

(17)
using (6) and (7). Now assume that XM arises from a PIN
model defined on a t-uniform hypergraph H = (V, E), and
consider any function L of Xn

M. This allows us to further
simplify (17):

IP∗(Xn
M|L)

= H(Xn
M)−H(L)

− 1

m− 1

m∑
i=1

[H(Xn
M)−H(Xn

i )−H(L|Xn
i )]

=
n(t− 1)|E|
m− 1

−H(L) +
1

m− 1

m∑
i=1

H(L|Xn
i ) (18)

=
n(t− 1)|E|
m− 1

− 1

m− 1

[
m∑
i=1

I(Xn
i ; L)−H(L)

]

=
n(t− 1)

m− 1

(
|E|− 1

n
H(L)

)
− 1

m− 1

[
m∑
i=1

I(Xn
i ; L)− tH(L)

]

≥ n(t− 1)

m− 1

(
|E|− 1

n
H(L)

)
, (19)

the equality (18) using the facts that H(Xn
M) = n|E| and∑m

i=1H(Xn
i ) = nt|E|, and (19) following from Lemma 7.

We will now compute CI(XM) using Proposition 1. The
upper bound gives us CI(XM) ≤ |E|, as H(XM) = |E|.
For the lower bound, let L be any CIW so that for any ε >
0, we have 1

n IP∗(Xn
M|L) < (t−1)ε

(m−1) for all sufficiently large
n. The bound in (19) thus yields 1

nH(L) > |E|−ε for all
sufficiently large n. Hence, it follows that CIW (XM) ≥ |E|.
From the upper and lower bounds in Proposition 1, we then
obtain CIW (XM) = CI(XM) = H(XM).

Now from Theorem 2 we have RSK ≥ RCI ≥ CI(XM) −
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I(XM). Hence, we have

RSK ≥ RCI ≥ |E|−I(XM) = H(XM)− I(XM) = RCO,
(20)

where the last equality is from (2). But we also have RSK ≤
RCO, as pointed out in Section II, which proves that RSK =
RCI = RCO.

To obtain the exact expression for RCO, we note that by
(2) and (4), RCO = H(XM) − ∆(S) = m

m−1H(XM) −
1

m−1

∑m
i=1H(Xi). This simplifies to the expression stated in

the theorem using the facts (already mentioned above) that
H(XM) = |E| and

∑m
i=1H(Xi) = t|E|.

It turns out that for PIN models on graphs (i.e., t = 2),
the Type S condition is also necessary for RSK-maximality.
It is possible that this holds for PIN models on t-uniform
hypergaphs (with t ≥ 3) as well, but we do not have a proof
for this yet.

Theorem 8. A PIN model defined on a graph is RSK-maximal
iff it is Type S.

We will prove the necessity of the Type S condition by
showing that any graph PIN model that is not Type S has an
SK-capacity-achieving protocol of communication rate strictly
less than RCO. To do this, we need a few preliminaries.
Consider a graph G = (V, E) and define G(n) = (V, E(n))
for any positive integer n. The spanning tree packing number
of G(n), denoted by σ(G(n)), is the maximum number of edge-

disjoint spanning trees of G(n). It is a fact that lim
n→∞

1

n
σ(G(n))

exists (see [6, Proposition 4]); we denote this limit by σ(G)
and call it the spanning tree packing rate of the graph G.
It was shown in [6, Theorem 5] that for a PIN model on
G, we have C(M) = σ(G). Therefore, by (2) we have
RCO = H(XM) − σ(G) = |E| − σ(G). We also have the
following lemma, the proof of which is given in Appendix B.

Lemma 9. For a PIN model defined on a graph G, we have
RSK ≤ (m− 2)σ(G).

Proof of Theorem 8: The “if” part follows from Theo-
rem 6. For the “only if” part, consider a PIN model on G that
is not of Type S. Using the fact that SK capacity equals the
spanning tree packing rate, we then have via (4)

σ(G) = C(M) < ∆(S) =
|E|

m− 1
.

Therefore, |E| > (m − 1)σ(G), or equivalently, |E|−σ(G) >
(m− 2)σ(G). Since RCO = |E|−σ(G), we obtain RCO > RSK
via Lemma 9.

It is natural to ask at this point whether all Type S sources
(not necessarily PIN models) are RSK-maximal. The answer
turns out to be “No”, as shown by the following example.

Example IV.1. Let W be a Ber(p) rv, for some p ∈ [0, 1]:
Pr[W = 1] = 1−Pr[W = 0] = p. Let X1, . . . , Xm be random
variables that are conditionally independent given W , with

Pr[Xi = 01|W = 0] = 1− Pr[Xi = 00|W = 0] = 0.5

and

Pr[Xi = 11|W = 1] = 1− Pr[Xi = 10|W = 1] = 0.5

for i = 1, 2, . . . ,m. Denote by h(p) the binary entropy of p.
It is easy to check that H(XA) = |A|+h(p) for all A ⊆M,

and H(Xi|Xj) = 1 for all distinct i, j ∈ M. Therefore, all
partitions P ofM satisfy ∆(P) = h(p), and hence, I(XM) =
h(p). In particular, XM defines a Type S source. Furthermore,
using (2), we have RCO = m.

We now show that RSK < RCO. Consider a Slepian-Wolf
code (see [29, Section 10.3.2]) of rate H(X1|X2) = 1 for
terminal 1. All terminals can recover Xn

1 since H(X1|Xi) = 1
for all i ∈ {2, 3, · · · ,m}. Then, using the balanced coloring
lemma [3, Lemma B3] on Xn

1 , an SK of rate H(X1) −
H(X1|X2) = h(p) can be obtained. Hence, RSK ≤ 1 < m =
RCO.

In fact, there exist non RSK-maximal sources with S being
a unique minimizer for (4). We provide one such example in
Appendix C.

V. OMNIVOCALITY: WHEN IS IT NECESSARY?

It is a well-established fact (see [1], [2]) that to generate
a maximal-rate SK within a two-terminal source model, it
is enough for only one terminal to communicate.7 So it
is natural to ask whether this fact extends to the general
multiterminal setting. In other words, for m ≥ 3, is there
always an SK generation protocol involving m − 1 or fewer
terminals communicating that achieves SK capacity? If not,
can we identify a class of sources where omnivocality, i.e., all
terminals communicating, is required to achieve SK capacity?
This section addresses these questions. The main result of this
section says that if a source is strict Type S, then omnivocality
is required for achieving SK capacity.

Theorem 10. For a strict Type S source on m ≥ 3 termi-
nals, omnivocal communication is necessary for achieving SK
capacity.

There indeed exist sources which are strict Type S. We give
a few examples of such sources in Section VI.

Theorem 10 gives a sufficient condition for identify-
ing sources where omnivocality is necessary to generate a
maximal-rate SK. The next result shows that the condition is
also necessary when m = 3, i.e., for any source on 3 terminals
which is not strict Type S, there always exists a non-omnivocal
key generation protocol that leads to SK capacity.

Theorem 11. In the three-terminal source model, omnivocal
communication is necessary for achieving SK capacity iff the
singleton partition S is the unique minimizer for I(XM) in
(4).

7To be precise, the results in [1] and [2] are based on a weaker notion
of secrecy, where in Definition 2, the condition I(K;F) ≤ ε is replaced by
1
n
I(K;F) ≤ ε. However, it can be shown that one terminal communicating

suffices to achieve SK capacity for m = 2, in the stronger sense as in
Definition 2. Terminal 1 uses a Slepian-Wolf code of rate H(X1|X2) to com-
municate Xn

1 to terminal 2. Both terminals now use a balanced coloring (see
[3, Lemma B.3]) on Xn

1 to get a strong SK of rate I(X1;X2) = I(X1, X2).
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A conjecture was made in [11] that the necessity of omnivo-
cality implies a strict Type S source for any m ≥ 3. It turns
out that the conjecture is incorrect. Chan et al. have found
an explicit example [12, extension to Example C.1] of a non-
strict Type S PIN model on m > 3 terminals that requires
omnivocality to achieve SK capacity. For ease of reference,
we reproduce this example in Appendix D.

The recent work of Zhang et al. [13] also deserves a special
mention here. This work addresses the somewhat more general
question of when communication from a specific terminal
i ∈M is necessary in order to achieve SK capacity. Theorem
4 of Zhang et al. gives a sufficient condition for the existence
of an SK-capacity-achieving protocol in which terminal i
remains silent, while their Theorem 5 gives conditions under
which terminal i must talk in order to achieve SK capacity.
Indeed, the sufficient condition for omnivocality we present
in our Theorem 10 follows easily from their Theorem 5. As
pointed out by Zhang et al., their theorems almost completely
resolve the question they address, except for one case that
is not covered by the theorems. They conjectured that in this
case, SK capacity could be achieved with terminal i remaining
silent. Footnote 4 of [12] reports that using the successive
omniscience techniques developed in [30], the conjecture of
Zhang et al. can be proved, thereby solving the problem
completely.

We now turn to the proofs of Theorems 10 and 11. We
prove the former theorem first. The main technical result used
in the proof is the SK capacity with silent terminals by Gohari
and Anantharam in [7, Theorem 6]. More precisely, suppose
we restrict ourselves to SK generation protocols where, only
an arbitrary subset of terminals T ⊂ M is allowed to
communicate. We denote the maximum rate of SK that can
be generated by such protocols by IT (XM). Then we have8

Theorem 12 (Theorem 6, [7]). For any T ⊂M, IT (XM) =

H(XT )−R(min)
T , where R(min)

T = min
R∈RT

∑
i∈T

Ri, with

RT =

{
R = (Ri, i ∈ T ) :

∑
i∈B∩T

Ri ≥ H(XB∩T |XBc),

∀B (M, B ∩ T 6= ∅
}
.

(21)

Note that if I(XM) > IT (XM) for all T ⊂ M of size
|T | = m − 1, then omnivocality is necessary for achieving
SK capacity. Thus, our approach for showing that omnivocal
communication is needed in certain cases is to use Theorem 12
to prove that I(XM) > IT (XM) for all (m− 1)-subsets T ⊂
M. For this, we will need a lower bound on R

(min)
T when

|T | = m− 1. To prove this bound, we make use of a simpler
characterization (than that given in Theorem 12) of the rate
region RT when |T | = m− 1.

Lemma 13. Let T = M \ {u} for some u ∈ M. The rate

8Theorem 6 of [7] was based on the weaker notion of secrecy pointed out
in Footnote 7. However, it can be easily verified that the result is still valid
for the stronger notion of secrecy as in Definition 2.

region RT is the set of all points (Ri, i ∈ T ) such that∑
i∈B

Ri ≥ H(XB |XT\B) ∀B ( T,B 6= ∅, and (22)∑
i∈T

Ri ≥ H(XT |Xu).

Proof: Observe that RT is defined by constraints on sums
of the form

∑
i∈B′ Ri for non-empty subsets B′ ⊆ T . When

B′ = T , the constraint is simply
∑
i∈T Ri ≥ H(XT |Xu).

Now, consider any non-empty B′ ( T . From Theorem 12,
we see that constraints on

∑
i∈B′ Ri arise as constraints on∑

i∈B∩T Ri in two ways: when B = B′ and when B =
B′ ∪ {u}. Thus, we have two constraints on

∑
i∈B′ Ri:∑

i∈B′
Ri ≥ H(XB′ |XM\B′),

obtained when B = B′, and∑
i∈B′

Ri ≥ H(XB′ |XT\B′),

obtained when B = B′ ∪ {u}. The latter constraint is clearly
stronger, so we can safely discard the former.

We can now prove the desired lower bound on R(min)
T .

Lemma 14. Let m ≥ 3 be given. For T ⊂ M with |T | =
m− 1, we have

R
(min)
T ≥ 1

m− 2

∑
j∈T

H(XT\{j}|Xj).

Proof: Consider any T ⊂M with |T | = m−1. For each
j ∈ T , let Bj = T \ {j}. Now, let (Ri, i ∈ T ) be any point
in RT . Applying (22) with B = Bj , we get∑

i∈Bj

Ri ≥ H(XT\{j}|Xj),

for each j ∈ T . Summing over all j ∈ T , we obtain∑
j∈T

∑
i∈Bj

Ri ≥
∑
j∈T

H(XT\{j}|Xj). (23)

Exchanging the order of summation in the double sum on the
left-hand side (LHS) above, we have∑

j∈T

∑
i∈Bj

Ri =
∑
i∈T

∑
j∈Bi

Ri

=
∑
i∈T

(m− 2)Ri = (m− 2)
∑
i∈T

Ri.

Putting this back into (23), we get∑
i∈T

Ri ≥
1

m− 2

∑
j∈T

H(XT\{j}|Xj).

Since this holds for any point (Ri, i ∈ T ) ∈ RT , the lemma
follows.

For the proof of Theorem 10, we need some convenient
notation. For T ⊂ M, |T | = m − 1, define ∆T (S) ,

1
m−2 [

∑
i∈T H(Xi)−H(XT )].
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Lemma 15. For m ≥ 3 terminals, if the singleton partition S
is the unique minimizer for I(XM), then ∆T (S) < ∆(S) for
all T ⊂M with |T | = m− 1.

Proof: For any u ∈ M, consider T = M \ {u}. Using
∆(S) = 1

m−1 [
∑m
i=1H(Xi) −H(XM)] and the definition of

∆T (S) above, it is easy to verify the identity
m−1
m−2∆(S) = ∆T (S) + 1

m−2I(Xu;XT ).

Re-arranging the above, we obtain

∆T (S)−∆(S) = 1
m−2 [∆(S)− I(Xu;XT )]

= 1
m−2 [∆(S)−∆(P)], (24)

where P is the 2-cell partition {{u}, T} ofM. By assumption,
the expression in (24) is strictly negative.

With this, we are ready to prove Theorem 10.
Proof of Theorem 10: We will show that I(XM) >

IT (XM) for any T ⊂ M with |T | = m − 1. First, note
that since S is, by assumption, a minimizer for (4), we have
I(XM) = ∆(S). Next, by Theorem 12 and Lemma 14, we
have

IT (XM) ≤ H(XT )− 1
m−2

∑
i∈T

H(XT\{i}|Xi)

= 1
m−2

[
(m− 2)H(XT )−

∑
i∈T

[H(XT )−H(Xi)]

]
= ∆T (S).

Therefore, IT (XM) ≤ ∆T (S) < ∆(S) = I(XM), the second
inequality coming from Lemma 15.

We conclude this section with the proof of Theorem 11.
Note that when m = 3, (4) reduces to

I(XM) = min{I(X{1,2};X3), I(X{1,3};X2),

I(X{2,3};X1), ∆(S)}, (25)

and so, the unique minimizer condition is equivalent to

∆(S) < min{I(X{1,2};X3), I(X{1,3};X2), I(X{2,3};X1)}.

Note also that ∆(S) = 1
2 [H(X1) + H(X2) + H(X3) −

H(X{1,2,3})].

Proof of Theorem 11: The “if” part is by
Theorem 10. For the “only if” part, suppose that
∆(S) ≥ min{I(X{1,2};X3), I(X{1,3};X2), I(X{2,3};X1)}.
Then, ∆(S) is either (a) greater than or equal to at least two
of the three terms in the minimum, or (b) greater than or equal
to exactly one term. Up to symmetry, it suffices to distinguish
between two cases:

Case I: ∆(S) ≥ max{I(X{1,2};X3), I(X{1,3};X2)}.
Case II: min{I(X{1,3};X2), I(X{2,3};X1)} > ∆(S) ≥

I(X{1,2};X3).
In each case, we demonstrate a capacity-achieving communi-
cation in which at least one terminal remains silent.

We deal with Case I first. Observe that ∆(S) can be
written as 1

2 [I(X1;X2)+I(X{1,2};X3)]. Thus, the assumption
∆(S) ≥ I(X{1,2};X3), upon some re-organization, yields

I(X1;X2) ≥ I(X{1,2};X3), i.e.,

I(X1;X2) ≥ I(X1;X3) + I(X2;X3|X1). (26)

Similarly, using the identity ∆(S) = 1
2 [I(X1;X3) +

I(X{1,3};X2)] in the assumption ∆(S) ≥ I(X{1,3};X2), we
obtain I(X1;X3) ≥ I(X{1,3};X2), i.e.,

I(X1;X3) ≥ I(X1;X2) + I(X2;X3|X1). (27)

The equalities in (26) and (27) can simultaneously hold iff

I(X1;X2) = I(X1;X3) and
I(X2;X3|X1) = 0.

(28)

From (28), it is not hard to deduce that the quan-
tities I(X{1,2};X3), I(X{1,3};X2) and ∆(S) are all
equal to I(X1;X2), and I(X{2,3};X1) = I(X1;X2) +
I(X1;X3|X2) ≥ I(X1;X2). In particular, I(X{1,2,3}) =
I(X1;X2).

From the first equality in (28), we also have H(X1|X2) =
H(X1|X3). Now, it can be shown by a standard random
binning argument that there exists a communication from
terminal 1 of rate H(X1|X2) = H(X1|X3) such that Xn

1

is a CR. It then follows from the “balanced coloring lemma”
[3, Lemma B.3] that an SK rate of H(X1) − H(X1|X2) =
I(X1;X2) is achievable. Thus, the SK capacity, I(X{1,2,3}) =
I(X1;X2), is achievable by a communication in which termi-
nals 2 and 3 are both silent.

Now, consider Case II, in which we obviously have
I(X{1,2,3}) = I(X{1,2};X3). The idea here is to show that
a valid communication of rate H(X{1,2}|X3) exists in which
terminal 3 is silent and (Xn

1 , X
n
2 ) is a CR. Given this, an

application of [3, Lemma B.3] shows that an SK rate of
H(X{1,2}) − H(X{1,2}|X3) = I(X{1,2};X3) is achievable.
Thus, there is a I(X{1,2,3})-achieving communication in which
terminal 3 is silent.

To show that the desired communication exists, we argue
as follows. For i = 1, 2, let Ri be the rate at which terminal
i communicates. A standard random binning argument shows
that an achievable (R1, R2) region, with terminal 3 silent, for a
communication intended to allow recoverability of (Xn

1 , X
n
2 )

as CR at all terminals is given by

R1 ≥ H(X1|X2), R2 ≥ H(X2|X1),

R1 +R2 ≥ H(X{1,2}|X3).
(29)

Now, using the assumption in Case II that ∆(S) ≥
I(X{1,2};X3), we will prove that the inequality

H(X1|X2) +H(X2|X1) ≤ H(X{1,2}|X3) (30)

holds. It would then follow from (29) that there exist achiev-
able rate pairs (R1, R2) with R1 +R2 = H(X{1,2}|X3), thus
completing the proof for Case II.

So, let us prove (30). We have ∆(S) = 1
2 [H(X1)+H(X2)+

H(X3) − H(X{1,2,3})] and I(X{1,2};X3) = H(X{1,2}) +
H(X3)−H(X{1,2,3}). Using these expressions in the inequal-
ity ∆(S) ≥ I(X{1,2};X3), and re-arranging terms, we obtain

1

2
[H(X1)+H(X2)−2H(X{1,2})] ≥

1

2
[H(X3)−H(X{1,2,3})],
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which is equivalent to (30). This completes the proof of the
theorem.

VI. FINDING THE MINIMIZING PARTITION

The condition that the singleton partition be a unique
minimizer for I(XM) plays a key role in the results of
Section IV and V. Thus, it would be very useful to have a way
of checking whether this condition holds for a given source
XM, m ≥ 3. The brute force method of comparing ∆(S)
with ∆(P) for all partitions P with at least two parts requires
an enormous amount of computation. Indeed, the number
of partitions of an m-element set is the mth Bell number,
Bm, an asymptotic estimate for which is (logw)1/2wm−wew,
where w = m

logm [1 + o(1)] is the solution to the equation
m = w log(w + 1) [31, Example 5.4]. The proposition below
brings down the number of comparisons required for verifying
the unique minimizer condition to a “mere” 2m −m− 2.

For any non-empty subset B = {b1, b2, . . . , b|B|} of M
with |B| < m, define PB , {Bc, {b1}, {b2}, . . . , {b|B|}} to
be the partition of M containing |B|+1 cells, of which |B|
cells are singletons comprising the elements of B. Note that
if |B| = m− 1, then PB = S.

Proposition 16. For m ≥ 3, let Ω = {B ⊂ M : 1 ≤ |B| ≤
m− 2}. The singleton partition S is
(a) a minimizer for I(XM) iff ∆(S) ≤ ∆(PB) ∀B ∈ Ω;
(b) the unique minimizer for I(XM) iff ∆(S) < ∆(PB) ∀B ∈
Ω.

There is in fact a strongly polynomial-time algorithm (see
[12]) for determining the minimizing partition of (4). However,
Proposition 16 is better suited to the purposes of our work.

Proof of Proposition 16: We prove (b); for (a), we simply
have to replace the ‘>’ in (31) below with a ‘≥’.

The “only if” part is obvious. For the “if” part, suppose
that ∆(S) < ∆(PB) for all B ⊂ M with 1 ≤ |B| ≤ m− 2.
Consider any partition P of M, P 6= S, with |P| ≥ 2. We
wish to show that ∆(P) > ∆(S).

The following identity can be obtained from the definition
of ∆(P) by some re-grouping of terms:∑

A∈P
|Ac|∆(PAc) = (|P|−1)[∆(P) + (m− 1)∆(S)].

Thus, we have

∆(P) =
1

|P|−1

∑
A∈P
|Ac|∆(PAc)− (m− 1)∆(S)

>
1

|P|−1

∑
A∈P
|Ac|∆(S)− (m− 1)∆(S) (31)

= m∆(S)− (m− 1)∆(S) = ∆(S). (32)

The inequality in (31) is due to the fact that at least one
A ∈ P is not a singleton cell, so that PAc 6= S , and
hence, ∆(PAc) > ∆(S) by assumption. To verify the first
equality in (32), observe that

∑
A∈P |Ac|=

∑
A∈P

∑
i/∈A 1 =∑m

i=1

∑
A∈P:i/∈A 1 = m(|P|−1).

Next, we apply Proposition 16 to some interesting special
cases. Random variables X1, X2, . . . , Xm, m ≥ 2, are called

isentropic if H(XA) = H(XB) for any pair of non-empty
subsets A,B ⊆M having the same cardinality. Equivalently,
X1, . . . , Xm are isentropic if, for all non-empty A ⊆ M,
the entropy H(XA) depends only on |A|. As a result, for
disjoint subsets A,B ⊆M, conditional entropies of the form
H(XA|XB) depend only on |A| and |B|.

Corollary 17. Isentropic random variables form a Type S
source.

The proof involves checking that ∆(S) ≤ ∆(PB) holds for
all B ∈ Ω, so that the result follows from Proposition 16(a).
We defer the details to Appendix E.

There are many examples of isentropic random variables.
For example, exchangeable random variables (cf. [32]) are
isentropic. (Random variables X1, X2, . . . , Xm are exchange-
able if for every permutation Π : M → M, the distribution
of XΠ(1), XΠ(2), . . . , XΠ(m) remains unchanged.) A more
relevant example for us is the PIN model defined on the
complete t-uniform hypergraph on m vertices, Km,t. More
precisely, the complete t-uniform hypergraph Km,t = (V, E)
has V = M, and exactly one copy of every t-subset (i.e.,
subset of cardinality t) ofM belongs to E . It is straightforward
to check that the random variables X1, X2, . . . , Xm in the PIN
model on Km,t are isentropic, and hence the source is Type S.
In fact, we will show below that this PIN model is strict Type
S, and therefore it satisfies the hypothesis of Theorem 10.
For this and other results proved in the rest of this section,
it will be useful to state a specialization of Proposition 16 to
hypergraph PIN models.

In the case of hypergraph PIN models, for any B ∈ Ω,
∆(PB) can be written as ∆(PB) =

∑
e∈E [PB(e)−1]

|PB |−1 , where
PB(e) is the number of parts of the partition PB intersecting
with e. On the other hand, ∆(S) = (t−1)|E|

m−1 . Hence, Proposi-
tion 16 can be rewritten for the PIN model as

Corollary 18. For a PIN model described on a t-uniform
hypergraph, the singleton partition S is
(a) a minimizer for I(XM) iff (t−1)|E|

m−1 ≤
∑
e∈E [PB(e)−1]

|PB |−1
∀B ∈ Ω;
(b) the unique minimizer for I(XM) iff (t−1)|E|

m−1 <∑
e∈E [PB(e)−1]

|PB |−1 ∀B ∈ Ω.

Corollary 19. The PIN model on Km,t is strict Type S.

The proof is a relatively straightforward matter of checking
that the condition in Corollary 18(b) holds — see Appendix E
for the details.

We next give an example of a non-isentropic source which is
strict Type S. Consider the PIN model defined on a k-regular
k-edge-connected graph (t = 2). Formally, a graph G = (V, E)
is called k-regular if every vertex in v ∈ V has degree k, i.e.,
there are exactly k edges in E which are incident with the
vertex v. A graph is called k-edge-connected if deletion of
any k-subset of E does not disconnect the graph, but there
exists at least one (k + 1)-subset of E the removal of which
disconnects the graph.

Corollary 20. A PIN model on any k-regular, k-edge-
connected graph is strict Type S.
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The proof is again an application of Corollary 18(b); the
details are in Appendix E.

The m-cycle Cm is a special case of a k-regular and
k-edge-connected graph, with k = 2. Formally, the m-
cycle Cm = (V, E), is a graph with V = M and E =(⋃m−1

i=1 {{i, i+ 1}}
)⋃
{{1,m}}. The complete graph Km,2

is another example of a k-regular k-edge-connected graph with
k = m−1. There is in fact a broad class of k-regular k-edge-
connected graphs called the Harary graphs (see [33] and [34])
of which Cm and Km,2 are special cases.

So far, the only example we have seen of a strict Type
S source on a t-uniform hypergraph, with t > 2, has been
the PIN model on the complete t-uniform hypergraph, Km,t.
It is natural to ask whether other classes of PIN models on
t-uniform hypergraphs (t > 2) exist which are strict Type
S. The answer is ‘yes’. We will construct a class of uniform
hypergraphs with t = 3, such that the PIN models on them are
strict Type S. To do this, we introduce the Steiner triple system
(STS) defined on the set M. An STS on M is a collection
of 3-subsets of M, which we will denote by STS(M), such
that any pair of elements from M is a subset of exactly one
element of STS(M). A trivial example of an STS is m = 3
and STS(M) = {{1, 2, 3}}. It is a fact that such collections
indeed exist as long as gcd(m − 2, 6) = 1 (see [35, Theo-
rem 2.10]). For example, consider m = 7. Then, STS(M) ={
{1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {1, 5, 6}, {2, 6, 7}, {1, 3, 7},

{4, 5, 7}
}

. Now, consider the 3-uniform hypergraphs HSTS =

(M,STS(M)), for all m such that STS(M) exists. We will
show that a PIN model defined on HSTS with m > 3 is strict
Type S.

Corollary 21. A PIN model on HSTS with m > 3 is strict
Type S.

Again, the proof of the corollary is given in Appendix E.
Corollaries 19, 20 and 21 show that the PIN models on

Km,t, k-regular k-edge-connected graphs, and HSTS satisfy
the hypotheses of both Theorems 6 and 10. Thus, for these
sources to achieve SK capacity, an omnivocal communica-
tion is required. Also, the minimum rate of communication
required is RCO. Hence, in terms of public communication,
these are the worst-case sources.

VII. LOCAL RANDOMIZATION

The results we have presented so far in this paper assume
that the communication and the common randomness obtained
from it are deterministic functions of the source. Now, Theo-
rem 3 of [3] shows that the SK capacity is not increased even
if we allow local randomization (private randomness) at the
terminals. In this section, we briefly discuss how local ran-
domization at the terminals affects the rate of communication
needed to achieve SK capacity.

Consider mutually independent random variables
U1, U2, . . . , Um, which are independent of Xn

M as well,
with each terminal i ∈ M having access to Ui. As usual,
UA, A ⊆ M denotes the collection of random variables

(Ui : i ∈ A). We redefine the quantities in Definitions 1–6
by replacing any Xn

A, A ⊆ M, in the definitions with
the corresponding (Xn

A, UA). We decorate the redefined
quantities with a ˜ to distinguish them from the previously
defined quantities; thus, I(XM) becomes Ĩ(XM, UM), RSK
becomes R̃SK, and so on. From Theorem 3 of [3], we have
Ĩ(XM, UM) = I(XM). Moreover, since anything achievable
without local randomization is also achievable with it, we
have the following inequalities: R̃SK ≤ RSK, R̃CI ≤ RCI
and C̃I(XM, UM) ≤ CI(XM). Furthermore, the proof of
Theorem 2, with the necessary minor modifications, yields
the inequalities R̃SK ≥ R̃CI ≥ C̃I(XM, UM)− I(XM).

In the case of two terminals, Tyagi showed that local
randomization has no effect on RSK [8, Lemma11]. The proof
first argues that R̃CI = RCI, and then leverages the fact that
RCI = RSK (in the two-terminal case) to complete the proof:
R̃SK ≥ R̃CI = RCI = RSK. The first part of Tyagi’s argument
can be easily extended to the multiterminal scenario, as we do
next. However, we run into trouble in the second part of the
argument, as we only have the inequality RCI ≤ RSK in the
general multiterminal case (Theorem 2).

Proposition 22. For a multiterminal source Xn
M with local

randomization UM, we have R̃CI = RCI.

Proof: Since RCI ≥ R̃CI holds trivially, we need to show
RCI ≤ R̃CI to complete the proof. To proceed, let (J,F) be any
C̃I. We will show that one can always construct a CI from J,F
with a lower rate of communication, and hence, RCI ≤ R̃CI.
Fix an ε > 0 and let |P∗| = `. It follows from (the redefined)
Definition 4 that for all sufficiently large n, we have

ε >
1

n(`− 1)

[ ∑
A∈P∗

H(Xn
A, UA|J,F)−H(Xn

M, UM|J,F)

]

=
1

n(`− 1)

[ ∑
A∈P∗

H(UA|J,F)−H(UM|J,F)

]

+
1

n(`− 1)

[ ∑
A∈P∗

H(Xn
A|UA, J,F)−H(Xn

M|UM, J,F)

]

≥ 1

n(`− 1)

[ ∑
A∈P∗

H(Xn
A|UA, J,F)−H(Xn

M|UM, J,F)

]
.

(33)

The inequality in (33) is due to the fact that the term[ ∑
A∈P∗

H(UA|J,F)−H(UM|J,F)

]
is non-negative, since it

can be written as the conditional relative entropy between
the joint distribution of UM and the product of the marginal
distributions of (UA : A ∈ P∗) conditioned on J,F.

Therefore, there exists at least one realization UM = uM
satisfying

1

n(`− 1)

[ ∑
A∈P∗

H(Xn
A|J,F, UA = uA)

−H(Xn
M|J,F, UM = uM)

]
=

1

n
IP∗(Xn

M|UM = uM, J,F)
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< ε

for all sufficiently large n. Fixing UM = uM the terminals can
still agree upon (J,F), which is a CI since 1

n IP∗(Xn
M|UM =

uM, J,F) < ε, for all sufficiently large n. Also, the range
of F can only be lowered when conditioned on UM = uM,
hence reducing the communication rate. Therefore, we have
RCI ≤ R̃CI.

Since it is not clear whether the equality RSK = RCI
holds in general for a multiterminal model (see the discussion
following the proof of Theorem 2 in Section III), we are unable
to extend Proposition 22 to obtain the equality R̃SK = RSK.
Of course, in cases where we do have the equality RSK = RCI
being true, such as in Theorem 6, we can conclude that local
randomization does not affect RSK.

Corollary 23. For a Type S PIN model defined on a t-uniform
hypergraph, we have R̃SK = RSK.

We conjecture that the equality R̃SK = RSK in fact holds for
the general multiterminal source model, at least under some
mild conditions on the amount of private randomness allowed.
We are only able to prove this for “weak” SKs, which (as noted
previously in Footnote 3) are defined as in our Definition 2,
except that the security condition I(K; F) ≤ ε is weakened to
1
nI(K; F) ≤ ε. It is known [3] that the SK capacity remains
unchanged even under the weaker security requirement.

Proposition 24. For a multiterminal source Xn
M with local

randomization UM satisfying 1
nH(UM) → 0 as n → ∞, we

have for the problem of weak SK generation

RSK = R̃SK.

Proof: Since, RSK ≥ R̃SK is valid trivially, we need
to show that RSK ≤ R̃SK. We follow an approach similar to
the proof of Proposition 22. Let K be any maximal-rate weak
SK achievable with communication F and local randomization
UM. We will extract from (K,F) a maximal-rate weak SK
and a communication achieving it without the assistance of
the local randomization. The extracted communication will
have a lower rate, and hence, we will have RSK = R̃SK.
To proceed, fix ε > δ > 0. K being a maximal-rate SK,
I(XM) − 1

nH(K) < ε−δ
2 and 1

nI(K; F) < ε−δ
2 hold for all

sufficiently large n. Therefore, for all sufficiently large n, we
have

ε−δ

> I(XM)− 1

n
H(K) +

1

n
I(K; F)

= I(XM)− 1

n
H(K|UM) +

1

n
I(K; F|UM)

− 1

n
I(K;UM) +

1

n
[I(K; F)− I(K; F|UM)]

≥ I(XM)− 1

n
H(K|UM) +

1

n
I(K; F|UM)− 2

n
H(UM)

(34)

≥ I(XM)− 1

n
H(K|UM) +

1

n
I(K; F|UM)− δ, (35)

where (34) is because of the inequalities |I(K; F) −
I(K; F|UM)| ≤ H(UM) and I(K;UM) ≤ H(UM), and (35)

follows from the fact that 1
nH(UM)→ 0 as n→∞.

Now, observe that I(XM)− 1
nH(K|UM) and 1

nI(K; F) are
non-negative quantities. Thus, (35) guarantees the existence of
a realization UM = uM, satisfying I(XM) − 1

nH(K|UM =
uM) < ε and 1

nI(K; F|UM = uM) < ε, for all sufficiently
large n. Therefore, fixing UM = uM, we can choose K to
be a maximal-rate weak SK achievable using F without any
local randomization. Moreover, the restriction UM = uM can
only lower the range of F and hence the communication rate.
Hence, we have RSK ≤ R̃SK as required.

VIII. CONCLUDING REMARKS

This paper dealt with two important aspects of the public
communication required to generate maximal-rate SKs in
the multiterminal source model, one being the communica-
tion complexity RSK, and the other being omnivocality. By
extending the arguments in [8] to the setting of multiple
terminals, we derived a lower bound on RSK in terms of
an information-theoretic quantity called the (multiterminal)
interactive common information. In the two-terminal case, it
was shown in [8] that this bound is always tight. Proving such
a result for the general multiterminal case remains an open
problem.

The minimum rate of communication for omniscience, RCO,
is still the best known upper bound on RSK. We proved that
uniform hypergraph PIN models satisfying a certain “Type
S” condition are RSK-maximal. In other words, for these
PIN models, RSK is equal to RCO. It was also shown via
counterexamples that the Type S condition is not sufficient
to guarantee RSK-maximality for an arbitrary multiterminal
source model. A complete characterization of RSK-maximal
sources is an interesting open problem.

It should be pointed out that neither our lower bound nor
the RCO upper bound takes into account the fact that the public
communication is allowed to be interactive. It is possible that
incorporating this information somehow leads to better bounds
on RSK.

The problem of characterizing communication complexity
in the multiterminal source model is the stepping stone towards
two bigger problems of interest. One is to characterize the
communication rate region required to achieve SK capacity.
The second problem is that of determining the minimum rate
of communication required to generate an SK of any arbitrary
rate less than or equal to SK capacity. Both these questions
appear to be difficult to answer at this point. In fact, these
questions are still open for the two-terminal case. It should
be pointed out that these questions have been answered for a
model similar to the multiterminal source model in [18]. How-
ever, that model has severe constraints on the eavesdroppers,
which makes it exactly solvable but different from our model.

On the issue of omnivocality, we proved that for all strict
Type S sources, omnivocality is needed to achieve SK ca-
pacity. The converse of this fact, i.e., omnivocality is required
only if the source is strict Type S turns out to be true for three
terminals, but no longer holds for four or more terminals. A
more general problem along these lines is, given an arbitrary
multiterminal source model, what is the minimum number of
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terminals that must participate in a public communication to
generate a maximal-rate SK for the entire set of terminals? The
answer to the “dual” of this problem, i.e., what is the maximum
rate of SK that can be generated when a fixed number of
terminals remain silent, is already known from the work of
Gohari and Anantharam [7].

APPENDIX A
PROOF OF LEMMA 7

First we state two lemmas which we will require for the
proof.

Lemma 25. For independent random variables X ,Y and W ,
and any other random variable Z, we have

I(X;Z|W ) ≤ I(X;Z|W,Y ).

Proof: This follows by expanding I(X;Y,Z|W ) in
two different ways using the chain rule, and noting that
I(X;Y |W ) = 0.

Lemma 26. For independent random variables X and Y , and
any other random variable Z, we have

I(X;Z) + I(Y ;Z) ≤ I(X,Y ;Z).

Proof: By Lemma 25, we have I(X;Z) ≤ I(X;Z|Y ),
and hence, I(X;Z) + I(Y ;Z) ≤ I(X;Z|Y ) + I(Y ;Z) =
I(X,Y ;Z).

We first show that it is enough to prove Lemma 7 for
the complete t-uniform hypergraph PIN model Km,t (refer to
Section VI for details on Km,t) and the corresponding source
Xn
M. Consider any t-uniform hypergraph H = (V, E) with
|V|= m and the corresponding source X̂n

M, and fix a function
L of X̂n

M. For any t-subset e of V , define r(e) to be the number
of times it occurs in the multiset E , and call r = max

e⊂V:|e|=t
r(e).

Now, construct a new source as follows: To the multiset E(n)

add n(r − r(e)) copies of each t-subset e of V . Associate
with each of these newly added subsets independent Ber(1/2)
random variables, which are independent of the pre-existing
Ber(1/2) random variables as well. Observe that the source
thus constructed is none other than Xnr

M . Moreover, we clearly
have

∑m
i=1 I(Xnr

i ; L) ≥
∑m
i=1 I(X̂n

i ; L), and hence it is
enough to show that tH(L) ≥

∑m
i=1 I(Xnr

i ; L).
For the rest of proof, we will take Xn

M to be the source
described on Km,t. We also have I(Xn

M; L) = H(L) from
the fact that L is a function of Xn

M. We now show that the
PIN model on Km,t satisfies

m∑
i=1

I((ξne : i ∈ e, e ∈ E); L) ≤ t I((ξne : e ∈ E); L), (36)

where ξne represents the collection of the n ξe’s associated
with the n copies of the hyperedge e in E(n).

For any i ∈ M, let Ei denote the set of hyperedges
containing i, so that the left-hand side of (36) can be expressed
as
∑m
i=1 I((ξne : e ∈ Ei); L). Now, we write Ei as a union

of two disjoint sets E≥i and E≯i, i.e., Ei = E≥i
⋃̇
E≯i. The

set E≥i is the subset of Ei containing no terminals from
{1, 2, . . . , i−1}. The set E≯i is thus the subset of Ei containing

at least one terminal from {1, 2, . . . , i − 1}. Observe that we
have |E≥i|=

(
m−i
t−1

)
for 1 ≤ i ≤ m − t + 1 and |E≥i|= 0 for

m− t+ 2 ≤ i ≤ m. Therefore,
m∑
i=1

I((ξne : e ∈ Ei); L)

= I ((ξne : e ∈ E≥1) ; L) +

m−t+1∑
i=2

[
I
((
ξne : e ∈ E≯i

)
; L
)

+ I
(

(ξne : e ∈ E≥i) ; L
∣∣∣ (ξne : e ∈ E≯i

))]
+

m∑
i=m−t+2

I ((ξne : e ∈ Ei) ; L)

≤ I ((ξne : e ∈ E≥1) ; L)

+

m−t+1∑
i=2

I

(
(ξne : e ∈ E≥i) ; L

∣∣∣(ξne : e ∈
⋃
j≤i

E≯j
))

+

m−t+1∑
i=2

I
((
ξne : e ∈ E≯i

)
; L
)

+

m∑
i=m−t+2

I ((ξne : e ∈ Ei) ; L) (37)

= I ((ξne : e ∈ E) ; L)︸ ︷︷ ︸
P

+

m−t+1∑
i=2

I
((
ξne : e ∈ E≯i

)
; L
)

︸ ︷︷ ︸
Q

+

m∑
i=m−t+2

I ((ξne : e ∈ Ei) ; L)︸ ︷︷ ︸
R

, (38)

where (37) follows from Lemma 25. Note that for t = 2, (36)
follows directly from (38): by virtue of Lemma 26, we have
Q + R ≤ P , so that the right-hand side (RHS) of (38) is at
most 2P , as desired. However, the case of t > 2 is not as
simple and needs further work.

To achieve the RHS of (36), we require Q+R ≤ (t− 1)P .
We proceed by defining Q(i) = I

((
ξne : e ∈ E≯i

)
; L
)

for all
2 ≤ i ≤ m − t + 1, and thus, Q =

∑m−t+1
i=2 Q(i). Similarly,

define R(i) = I ((ξne : e ∈ Ei) ; L) for all m− t+ 2 ≤ i ≤ m,
so that R =

∑m
i=m−t+2R(i). The key ideas are the following:

1) Expand each Q(i) using the chain rule into conditional
mutual information terms of the form I(ξne ; L|· · ·), and
further condition them on additional ξnẽ s appropriately.

2) Allocate these conditional mutual information terms to
appropriate R(i)s.

3) Use the chain rule to sum each R(i) and the terms
allocated to it to obtain P .

Since the conditional mutual information term I(ξne ; L|· · ·) can
only increase upon further conditioning on additional ξnẽ s (by
Lemma 25), we have Q+R ≤ (t− 1)P as required.

To proceed, we need to define a total ordering on the set E .
We represent a hyperedge e as a t-tuple (i1i2 . . . it), with the
ijs, 1 ≤ j ≤ t, being the terminals which are contained in e,
ordered according to i1 < i2 < . . . < it. We will use ‘<’ to
denote the lexicographic ordering of the t-tuples (hyperedges)
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in E . Furthermore, based on the ordering ‘<’, we index the
hyperedges of E as ej , 1 ≤ j ≤

(
m
t

)
, satisfying ei < ej iff

i < j. As an example, Table I illustrates the indexing of the
hyperedges in K5,3.

TABLE I: Indexing of the hyperedges in K5,3

Hyperedge Index
(123) 1
(124) 2
(125) 3
(134) 4
(135) 5
(145) 6
(234) 7
(235) 8
(245) 9
(345) 10

To proceed further, using the chain rule we expand each
Q(i) into a sum of conditional mutual information terms of
the form Qe , I(ξne ; L|(ξnẽ : ẽ < e, ẽ ∈ E)) as follows:

Q(i) = I((ξne : e ∈ E≯i); L)

=
∑
e∈E≯i

I(ξne ; L|(ξnẽ : ẽ < e, ẽ ∈ E≯i))

≤
∑
e∈E≯i

I(ξne ; L|(ξnẽ : ẽ < e, ẽ ∈ E)) (39)

=
∑
e∈E≯i

Qe, (40)

where (39) follows from Lemma 25. Hence, we have Q ≤∑m−t+1
i=2

∑
e∈E≯i Qe. A total of

∑m−t+1
i=2

[(
m−1
t−1

)
−
(
m−i
t−1

)]
=

(t − 1)
(
m−1
t

)
Qe terms are generated. Next, each R(i) is

allocated
(
m−1
t

)
terms Qej , 1 ≤ j ≤

(
m
t

)
, satisfying i /∈ ej .

This allocation procedure is explained in detail below and is
also formalized in Algorithm 1. We add a further conditioning
on each Qej allocated to R(i) to make it Qej|i , I(ξnej ; L|(ξnẽ :
ẽ < ej , ẽ ∈ E), (ξnẽ : ẽ ∈ Ei)). Lemma 25 and the definition of
Qej|i ensure that R(i)+

∑
j:i/∈ej Qej ≤ R(i)+

∑
j:i/∈ej Qej|i =

P .
We now give a more detailed description of the allo-

cation procedure. Construct a table T with rows indexed
by i = 2, 3, . . . ,m − t + 1 and the columns indexed by
j = 1, 2, . . . ,

(
m
t

)
. This table records the availability (for

allocation) of a Qej from the expansion of Q(i) in (40).
Initialize the table as follows: T (i, j) = 1 if a Qej came from
Q(i) in (40); else T (i, j) = 0. We carry out the allocation
procedure on each R(i) in ascending order of i. The procedure
of allocation is as follows. The idea is to allocate the necessary
Qej s to R(i) in ascending order of j. Once an i and ej are
fixed, we test whether i /∈ ej is satisfied. If not, we increment
j by 1. If i /∈ ej is satisfied, then the availability of Qej from
Q(k), for all 2 ≤ k ≤ m − t + 1, is checked using the table
T . The smallest k which satisfies T (k, j) = 1 is chosen, and
R(i) is allocated the Qej coming from that Q(k). The table is
then updated with T (k, j) = 0 to record that the Qej from that
Q(k) is no longer available for allocation. We then increment

j by 1 and repeat the allocation procedure. Once all Qej s with
i /∈ ej have been allocated to R(i), we begin the allocation
procedure for R(i+1). We formally summarize this allocation
procedure in Algorithm 1.

Algorithm 1
i = m− t+ 2, j = 1.
while i ≤ m do

if i /∈ ej then
k = 2.
while k ≤ m− t+ 1 do

if T (k, j) = 1 then
Choose the Qej coming from Q(k) in (40).
Add the additional conditioning to make it Qej|i .
Allocate this term to R(i).
T (k, j)← 0.
Break.
end if
if T (k, j) = 0 && k = m− t+ 1 then

Declare ERROR and halt.
end if
k ← k + 1.

end while
end if
j ← j + 1.
if j =

(
m
t

)
+ 1 then

i← i+ 1.
j ← 1.

end if
end while

The flow of Algorithm 1 for K5,3 is illustrated in Example
A.1 further below. We now make the following claims:

Claim 1. Algorithm 1 never terminates in ERROR.

Claim 2. Algorithm 1 exhausts all the Qe terms generated in
(40).

Claim 1 ensures that each R(i), for all m− t+ 2 ≤ i ≤ m,
is allocated all the Qej s satisfying i /∈ ej . Therefore, using
Claim 2, we have

Q+R =

m∑
i=m−t+2

R(i) +
∑
j:i/∈ej

Qej


≤

m∑
i=m−t+2

R(i) +
∑
j:i/∈ej

Qej|i

 = (t− 1)P.

This completes the proof of Lemma 7, modulo the proofs of
Claims 1 and 2, which we give below.

Proof of Claim 1: ERROR is possible only if for some
m − t + 2 ≤ i ≤ m and for some e satisfying i /∈ e, all
the Qe terms generated in (40) have already been allocated.
This is impossible as there are always enough Qes. To see this,
suppose e contains t−1−p terminals from {m−t+2, . . . ,m},
i.e., there are p R(i)s requiring an allocation of Qe. Since the
hypergraph is t-uniform, e must contain p+ 1 terminals from
{1, 2, . . . ,m − t + 1}. This implies that the total number of
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Qes generated in (40) is p. Therefore, we clearly have enough
Qes for all R(i)s.

Proof of Claim 2: As discussed earlier, the total number
of Qe terms generated in (40) is (t − 1)

(
m−1
t

)
. Also, the

total number of Qe terms required by each R(i) is
(
m−1
t

)
.

Therefore, using Claim 1, the claim follows.

Example A.1. We illustrate how Algorithm 1 proceeds for
K5,3. Denote the hyperedges in E using 3-tuples, i.e., the
hyperedge containing terminals 1, 2 and 3 is (123). The
indexing of E is illustrated in Table I. So for this case
we have Q(2) = I(ξn(123), ξ

n
(124), ξ

n
(125); L) and Q(3) =

I(ξn(123), ξ
n
(134), ξ

n
(135), ξ

n
(234), ξ

n
(235); L). Thus, (40) takes the

form

Q(2) ≤ I(ξn(123); L) + I(ξn(124); L|(ξne : e < (124))

+ I(ξn(125); L|(ξne : e < (125)), (41)

Q(3) ≤ I(ξn(123); L) + I(ξn(134); L|(ξne : e < (134))

+ I(ξn(135); L|(ξne : e < (135))

+ I(ξn(234); L|(ξne : e < (234))

+ I(ξn(235); L|(ξne : e < (235)). (42)

Observe that R(4) and R(5) require four Qe terms each, and
a total of eight Qe terms are in fact available from (41) and
(42). The table T is initialized as follows:

1 2 3 4 5 6 7 8 9 10
2 1 1 1 0 0 0 0 0 0 0
3 1 0 0 1 1 0 1 1 0 0

We will now illustrate a few of the allocations carried out
by Algorithm 1. The algorithm begins with i = 4 and j = 1
and Q(123) needs to be allocated to R(4). With k = 2 we see
that T (k, 1) = 1, and hence we allocate Q(123) coming from
Q(2) to R(4). The table T is then updated as below.

1 2 3 4 5 6 7 8 9 10
2 0 1 1 0 0 0 0 0 0 0
3 1 0 0 1 1 0 1 1 0 0

Next we will illustrate the allocation of Q(123) to R(5), i.e.,
i = 5 and j = 1. The state of the table T just before this step
is shown below.

1 2 3 4 5 6 7 8 9 10
2 0 1 0 0 0 0 0 0 0 0
3 1 0 0 1 0 0 1 0 0 0

Setting k = 2, we see that T (k, 1) = 0. So, we move to
k = 3, for which T (k, 1) = 1. Hence the Q(123) term coming
from Q(3) is allocated to R(5), and the table T is updated
as below.

1 2 3 4 5 6 7 8 9 10
2 0 1 0 0 0 0 0 0 0 0
3 0 0 0 1 0 0 1 0 0 0

We give one last example of an allocation. Observe that e =
(234) is the largest (in terms of the ordering on E) hyperedge
such that Qe needs to be allocated to R(5). We will now
illustrate this step. This happens when i = 5 and j = 7. The
updated table T just before this step is shown below.

1 2 3 4 5 6 7 8 9 10
2 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 1 0 0 0

With k = 2, we see that T (k, 7) = 0. So set k = 3, and
note that T (k, 7) = 1. So, we allocate to R(5) the Q(234)

term contributed by Q(3). Upon updating, the table T now
has all entries to be 0. Observe that at this point no other
allocation is required, as the Qej s for j = 8, 9 and 10 are not
required by R(5) since terminal 5 is contained in each of e8,
e9 and e10. Thus Algorithm 1 successfully terminates. Finally,
we rewrite (41) and (42) with underbraces showing the R(i)
term to which each Qe term was allocated by Algorithm 1.

Q(2) ≤ I(ξn(123); L)︸ ︷︷ ︸
R(4)

+ I(ξn(124); L|(ξne : e < (124))︸ ︷︷ ︸
R(5)

+ I(ξn(125); L|(ξne : e < (125))︸ ︷︷ ︸
R(4)

(43)

Q(3) ≤ I(ξn(123); L)︸ ︷︷ ︸
R(5)

+ I(ξn(134); L|(ξne : e < (134))︸ ︷︷ ︸
R(5)

+ I(ξn(135); L|(ξne : e < (135))︸ ︷︷ ︸
R(4)

+ I(ξn(234); L|(ξne : e < (234))︸ ︷︷ ︸
R(5)

+ I(ξn(235); L|(ξne : e < (235))︸ ︷︷ ︸
R(4)

(44)

It can be clearly seen from (43) and (44) that R(i), i = 4, 5,
have each been allocated with all Qes with i /∈ e, and no Qe
is left unallocated.

APPENDIX B
THE PROOF OF LEMMA 9

Fix an n ∈ N and let {T1, T2, . . . , Tσ(n)} be a set of
edge-disjoint spanning trees of G(n) of maximum cardinality
σ(n) := σ(G(n)). We will run Protocol 1 of [32] independently
on each of the trees Tj , 1 ≤ j ≤ σ(n). For the sake of
completeness, we describe the protocol below.

Fix a spanning tree Tj , 1 ≤ j ≤ σ(n), and fix a specific
edge e from the set of edges of Tj . Define ξ(Tj) := ξe,
where, as usual, ξe denotes the random variable associ-
ated with the edge e. For any vertex i ∈ M, denote
by dj(i) the degree of the vertex i in the spanning tree
Tj . For any vertex i satisfying dj(i) > 1, without loss
of generality we label the edges of Tj incident on it by
e(1), e(2), . . . , e(d), where d = dj(i). The communication
from terminal i derived from Tj is FTj (i) := (ξe(1) ⊕
ξe(2), ξe(2) ⊕ ξe(3), . . . , ξe(d−1) ⊕ ξe(d)), where ⊕ denotes the
modulo-2 sum. Let FTj =

(
FTj (1),FTj (2), . . . ,FTj (m)

)
, and

let FTj denote the range of FTj . It is not hard to check the
following facts: Firstly, every terminal can recover ξ(Tj) from
FTj . Secondly, I(FTj ; ξ(Tj)) = 0. Thirdly,

log|FTj | =

m∑
i=1

[dj(i)− 1] =

m∑
i=1

dj(i)−m
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= 2(m− 1)−m = m− 2, (45)

where we have used the fact that the number of edges in any
spanning tree is m− 1.

To complete the proof, we show that this protocol has
communication rate (m − 2)σ(G) and achieves SK capacity.
Denote the entire communication (FT1

,FT2
, . . . ,FT

σ(n)
) by

F and denote its range by F . Set K = (ξ(T1), ξ(T2), . . . ,
ξ(Tσ(n))). Noting that the spanning trees Tj , 1 ≤ j ≤ σ(n) are
edge-disjoint, we have, using the independence of the random
variables associated with the edges in E(n), H(K) = σ(n),
log|F|= (m−2)σ(n) and I(K; F) = 0. Therefore, K is a secret

key satisfying lim
n→∞

1

n
H(K) = σ(G), and hence the protocol

is capacity-achieving. The protocol used a communication rate
of (m− 2)σ(G) and thus RSK ≤ (m− 2)σ(G).

APPENDIX C
AN EXAMPLE OF A NON-RSK-MAXIMAL STRICT TYPE S

SOURCE

In this section we provide an example of a source which
is strict Type S and yet is non RSK-maximal. To construct
such a source we need to define “clubbing together” of
independent multiterminal sources on M. Formally, for in-
dependent sources Xn

M and Y nM, define the clubbed source
ZnM as Zni = (Xn

i , Y
n
i ), for all i ∈ M. Π∗X and Π∗Y

are defined to be the sets of partitions of M which are
minimizers of (4) for Xn

M and Y nM, respectively. We will
denote the communication complexity (resp. minimum rate
of communication for omniscience) for the individual sources
Xn
M and Y nM by RSKX and RSKY (resp. RCOX and RCOY )

respectively. The clubbed source satisfies the following result.

Proposition 27. Consider two independent multiterminal
sources Xn

M and Y nM and the corresponding clubbed source
ZnM. Then we have

I(ZM) ≥ I(XM) + I(YM) (46)

with equality iff Π∗X
⋂

Π∗Y 6= ∅.

Proof: Consider any partition P = {A1, A2, · · · , A`} of
M. We have

∆(P) =
1

`− 1

[∑̀
i=1

H(ZAi)−H(ZM)

]

=
1

`− 1

[∑̀
i=1

H(XAi)−H(XM)

]
︸ ︷︷ ︸

∆X(P)

+
1

`− 1

[∑̀
i=1

H(YAi)−H(YM)

]
︸ ︷︷ ︸

∆Y (P)

, (47)

where (47) follows from the independence of Xn
M and Y nM.

Thus we have from (47) that minP ∆(P) ≥ minP ∆X(P)+
minP ∆Y (P) with equality iff P ∈ Π∗X

⋂
Π∗Y . The result

follows.
We conclude the section by constructing a non RSK-

maximal source with S being the unique minimizer in (4).

Example C.1. Consider a clubbed source ZnM = (Xn
M, Y

n
M),

where Xn
M is the source described in Example IV.1 and

Y nM corresponds to the PIN model on a k-regular, k-edge-
connected graph. By Corollary 20, we have Π∗Y = {S}.

Since Π∗X
⋂

Π∗Y = {S}, using Proposition 27 we have SK
capacity I(ZM) = I(XM)+I(YM). By independently running
protocols achieving RSKX and RSKY , an SK of rate I(XM) +
I(YM), i.e., SK capacity can be achieved. The communication
rate used in independently running the two protocols is RSKX+
RSKY . Now, (2) and the independence of Xn

M and Y nM show
that RCO = RCOX +RCOY . On the other hand, it is shown in
Example IV.1 that RSKX < RCOX . Therefore, we have

RSK ≤ RSKX +RSKY < RCOX +RCOY = RCO.

APPENDIX D
A NON-STRICT TYPE S SOURCE REQUIRING

OMNIVOCALITY9

For m ≥ 4, consider the multigraph G = (V, E) with V =
M as usual. The multiset E consists of m − 2 copies of the
edges {i, i+ 1} for 1 ≤ i ≤ m− 1, and m− 1 copies of the
edge {1,m}. Using techniques derived in [6, Theorem 5], it
can be shown that for the PIN model defined on G, we have
I(XM) = m− 1. We will show below that this PIN model is
non-strict Type S , and yet it requires omnivocality to achieve
SK capacity.

We first show that the source is not strict Type S. Simple
computations reveal the following facts: H(Xi) = 2(m− 2),
for all i ∈ {2, 3, . . . ,m − 1}, H(X1) = H(Xm) = 2(m −
2) + 1, H(X1, Xm) = 3(m − 2) + 1 and H(XM) =
m(m − 2) + 1. Using these it is easy to check that ∆(S) =
m − 1, and moreover, ∆(P ′) = m − 1, where P ′ =
{{1,m}, {2}, {3}, . . . , {m − 1}}. Hence the source Xn

M is
Type S, but not strict Type S.

Now, we show that this source requires omnivocality to
achieve SK capacity. As in the proof of Theorem 10, we
make use of Theorem 12, and show that for any T ⊂ M
with |T | = m − 1, we have IT (XM) < I(XM). Let
T = M \ {u} with u ∈ M. Using symmetry it is enough
to show IT (XM) < I(XM) for the following two cases:

Case I: u = 1.
Case II: u ∈ {2, 3, . . . ,m− 2}.

In both cases we will derive lower bounds on R
(min)
T and

hence obtain an upper bound on IT (XM). First we deal with
Case I with T = {2, 3, . . . ,m}. In this case, H(XT ) = m(m−
2)+1. Also, any point inRT satisfies the following constraints
from (22):

m−1∑
i=2

Ri ≥ H(X2, X3, . . . , Xm−1|Xm) = (m− 2)2,

Rm ≥ H(Xm|X2, X3, . . . , Xm−1) = m− 1.

9This example is a contribution of Chan et al. See [12, extension to
Example C.1].
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Using the above constraints, we have R
(min)
T ≥ (m − 1) +

(m− 2)2. Thus,

IT (XM) = H(XT )−R(min)
T

≤ m(m− 2) + 1− (m− 1)− (m− 2)2

= m− 2

< m− 1 = I(XM). (48)

Hence, SK capacity cannot be achieved with terminal 1
remaining silent.

Next we deal with Case II. Assume an arbitrary u ∈
{2, 3, . . . ,m− 2} is silent. As in Case I, we have H(XT ) =
m(m − 2) + 1. We see from (22) that the rate region RT is
defined in part by the following constraints:

u−1∑
i=1

Ri +Rm

≥ H(X1, X2, . . . , Xu−1, Xm|Xu+1, Xu+2, . . . , Xm−1)

= u(m− 2) + 1,

m−1∑
i=u+1

Ri

≥ H(Xu+1, Xu+2, . . . , Xm−1|X1, X2, . . . , Xu−1, Xm)

= (m− u− 1)(m− 2).

The above constraints imply that R(min)
T ≥ (m − 2)(m −

1) + 1 = (m − 2)2 + (m − 1). Hence, as in (48), we have
IT (XM) < I(XM).

Therefore, the source Xn
M cannot attain SK capacity with-

out using omnivocality.

APPENDIX E
PROOFS OF COROLLARIES OF PROPOSITION 16

In this section, we give the proofs of Corollaries 17, 19,
20 and 21. We start with the corollary stating that isentropic
random variables form a Type S source.

Proof of Corollary 17: For a partition P of M with
|P|≥ 2, let us define

δ(P) ,
1

|P|−1

∑
A∈P

H(XAc |XA) = H(XM)−∆(P).

By virtue of Proposition 16(a), we need to show that δ(PB) ≤
δ(S) for all B ∈ Ω.

For isentropic random variables, the quantity H(XB |XBc),
for any B ⊆M, depends only on the cardinality of B. Thus,
for 1 ≤ k ≤ m, define g(k) , H(X{1,2,...,k}|XM\{1,2,...,k});
also, set g(0) = 0. With this, we can write

δ(PB) =
1

|B|

[
H(XB |XBc) +

∑
i∈B

H(XM\{i}|Xi)

]

=
1

|B|
g(|B|) + g(m− 1).

Also, note that δ(S) = m
m−1g(m−1). Thus, we have to show

that g(|B|)
|B| ≤

g(m−1)
m−1 for all B ∈ Ω. We accomplish this

by proving that for isentropic random variables, the function
g(k)/k is non-decreasing in k, or equivalently, kg(k + 1) −
(k + 1)g(k) is always non-negative. Indeed, we have g(k +
1) = H(XM) − H(X{k+2,...,m}) and g(k) = H(XM) −
H(X{k+1,...,m}) = g(k + 1)−H(Xk+1|X{k+2,...,m}). Thus,

kg(k + 1)−(k + 1)g(k)

= (k + 1)H(Xk+1|X{k+2,...,m})− g(k + 1).

It is straightforward to show that the above quantity is non-
negative:

g(k + 1) = H(X{1,2,...,k+1}|X{k+2,...,m})

≤
k+1∑
i=1

H(Xi|X{k+2,...,m})

= (k + 1)H(Xk+1|X{k+2,...,m}),

since, for 1 ≤ i ≤ k + 1, H(Xi|X{k+2,...,m}) =
H(Xk+1|X{k+2,...,m}) by isentropy.

Next, we prove Corollary 19, which states that the PIN
model on Km,t is strict Type S.

Proof of Corollary 19: Fix a set B ( M with
|B| ≤ m − 2. We will use Corollary 18 to show that the
PIN model on Km,t is strict Type S. First we make the
observation that |E| =

(
m
t

)
for the case of Km,t. To proceed,

we need to evaluate the expression
∑
e∈E [PB(e) − 1]. We

first consider the case when |B| ≥ t. The fact that |B| is at
least t implies that there are

(|B|
t

)
hyperedges which contain

only elements of B, i.e., intersect the partition PB in t parts.
Now fix an i with 1 ≤ i ≤ t − 1. There are

(|B|
i

)(
m−|B|
t−i

)
hyperedges containing any i terminals from B and any t − i
terminals from M \ B, i.e., intersecting the partition PB
in (i + 1) parts. Any remaining hyperedge will contain ter-
minals from Bc only and hence will intersect the partition
PB in only one part. As a result, we have

∑
e∈E [PB(e) −

1] = (t − 1)
(|B|
t

)
+
∑t−1
i=1

(|B|
i

)(
m−|B|
t−i

)
i = (t − 1)

(|B|
t

)
+

|B|
∑t−1
i=1

(|B|−1
i−1

)(
m−|B|
t−i

)
. Observe that

∑t−1
i=1

(|B|−1
i−1

)(
m−|B|
t−i

)
is equal to

(|B|−1
t−1

)
subtracted from the coefficient of xt−1 in

the expansion of (1 + x)|B|−1(1 + x)m−|B| = (1 + x)m−1.
Therefore,

∑t−1
i=1

(|B|−1
i−1

)(
m−|B|
t−i

)
=
(
m−1
t−1

)
−
(|B|−1
t−1

)
, and

hence, for |B| ≥ t, we have∑
e∈E

[PB(e)− 1]

= |B|
(
m− 1

t− 1

)
+ (t− 1)

(
|B|
t

)
− |B|

(
|B|−1

t− 1

)
= |B|

(
m− 1

t− 1

)
−
(
|B|
t

)
. (49)

Next, we turn our attention to the case of |B| < t. In this
case there are no hyperedges containing only terminals in B.
For any i satisfying 1 ≤ i ≤ |B|, there exist

(|B|
i

)(
m−|B|
t−i

)
hyperedges intersecting the partition in (i + 1) parts, as in
the earlier case. However, all the remaining hyperedges are
contained in Bc only, and hence play no part in the expression∑
e∈E [PB(e) − 1]. Thus, noting |B| < t, we have as in the
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previous case,

∑
e∈E

[PB(e)− 1] = |B|
|B|∑
i=1

(
|B|−1

i− 1

)(
m− |B|
t− i

)
= |B|

(
m− 1

t− 1

)
. (50)

We will now apply Corollary 18. When |B| ≥ t, using (49)
we have
1

|B|
∑
e∈E

[PB(e)− 1]− (t− 1)|E|
m− 1

=

(
m− 1

t− 1

)
− 1

|B|

(
|B|
t

)
− t− 1

m− 1

(
m

t

)
(51)

=
1

t

[
(m− 1)! t

(m− t)! (t− 1)!
− m!

(t− 2)! (m− t)! (m− 1)

−
(
|B|−1

t− 1

)]
=

1

t

[
(m− 1)!

(t− 2)! (m− t)!

(
t

t− 1
− m

m− 1

)
−
(
|B|−1

t− 1

)]
=

1

t

[(
m− 2

t− 1

)
−
(
|B|−1

t− 1

)]
> 0, (52)

where (52) holds as |B| ≤ m−2. For the case of |B| < t, we
have
1

|B|
∑
e∈E

[PB(e)− 1]− (t− 1)|E|
m− 1

=

(
m− 1

t− 1

)
− t− 1

m− 1

(
m

t

)
=

1

t

[(
m− 2

t− 1

)]
(53)

> 0,

where (53) follows from (51) and (52). Thus, using Corol-
lary 18 we have the result.

Next up is the proof of Corollary 20, which states that PIN
models on k-regular, k-edge-connected graphs are strict Type
S .

Proof of Corollary 20: Consider a k-regular, k-edge-
connected graph G = (V, E). Using k-regularity, we have
|E| = km

2 . As usual, we fix a B ( M satisfying 1 ≤
|B| ≤ m − 2 and proceed to evaluate the expression∑
e∈E [PB(e) − 1]. Observe that for an ordinary graph, the

sum
∑
e∈E [PB(e)−1] = |EPB |, where EPB is the set of edges

whose end-points lie in different cells of the partition PB . To
proceed, we perform a graph contraction operation along the
partition PB on G to get a new graph G′ = (V ′, E ′). More

precisely, we take V ′ = B
⋃
{Bc} and E ′ =

{
{i, j} ∈ E :

i, j ∈ B
}⋃{

{Bc, i} : ∃{i, j} ∈ E , i ∈ B, j ∈ Bc
}

, so that

|EPB | = |E ′|. Now, the degree of every v ∈ V ′ satisfying
v ∈ B is k, whereas by the k-edge connectivity the degree of
Bc in G′ is at least k. Hence, we have |EPB | = |E ′| ≥

k(|B|+1)
2 .

Therefore,

1

|B|
∑
e∈E

[PB(e)− 1]− |E|
m− 1

=
1

|B|
|EPB |−

km

2(m− 1)

≥ k

2

[
|B|+1

|B|
− m

m− 1

]
> 0, (54)

where, (54) follows from the fact that |B| ≤ m − 2. Using
Corollary 18 we have the result.

Finally, we give the proof of Corollary 21, which states
that a PIN model obtained from a Steiner triple system (STS)
is strict Type S. Recall that HSTS = (M,STS(M)) is a 3-
uniform hypergraph obtained from an STS on M.

Proof of Corollary 21: We will use Proposition 16 to get
the result. First, we calculate H(Xi) for any i ∈M. Observe
that H(Xi) counts the number of elements of STS(M)
containing i. Now, fixing i ∈ M, there are m − 1 pairs
of elements from M which contain i. Any set in STS(M)
containing i contains two such pairs. Further, by the definition
of STS, we know that any such pair is a subset of exactly
one element of STS(M). Hence, we have H(Xi) = m−1

2 .
Next, we evaluate H(XM) = |STS(M)|. Note that there
are

(
m
2

)
pairs of elements in M, each pair being a subset

of exactly one element of STS(M). Also, each element
of STS(M) contains three such pairs. Therefore, we have
H(XM) = |STS(M)|= m(m−1)

6 . Using these facts, we have

∆(S) = 1
m−1

[
m(m−1)

2 − m(m−1)
6

]
= m

3 .

Now, fix a B ( M with 1 ≤ |B| ≤ m − 2 and
evaluate ∆(PB). We consider two cases: 1 ≤ |B| ≤ m − 3
and |B| = m − 2. First, consider 1 ≤ |B| ≤ m − 3.
To proceed, we calculate a lower bound on H(XA) for
any A ( M. Observe that H(XA) counts the number of
sets in STS(M) which contain at least one element from
A. We will calculate an upper bound on the number of
elements of STS(M) containing only elements of Ac, and
subtract it from |STS(M)| to get the required lower bound.
The total number of pairs formed by the elements of Ac

is
(
m−|A|

2

)
. Again, as each element of STS(M) contains

3 pairs, the required upper bound is b (m−|A|)(m−|A|−1)
6 c.

Thus, we have H(XA) ≥ |STS(M)|− (m−|A|)(m−|A|−1)
6 . So,

H(XBc) ≥ |STS(M)|− |B|(|B|−1)
6 , and hence, ∆(PB) ≥

1
|B|

[
|B|(m−1)

2 − |B|(|B|−1)
6

]
= m−1

2 − |B|−1
6 . Therefore,

∆(PB)−∆(S) ≥ m− 1

2
− |B|−1

6
− m

3

=
1

6
[m− 2− |B|]

> 0, (55)

where (55) follows from the fact that |B| < m− 2.

To complete the proof, we show that ∆(PB) −∆(S) > 0
is satisfied when |B| = m−2. To this end, we fix a B =M\
{i, j}, where i, j ∈ M. We will exactly calculate H(XBc),
which is the number of elements of STS(M) containing at
least one of i and j. It has been shown earlier that i and j
each occur in exactly m−1

2 elements, and they occur together
exactly once. Therefore, we have H(XBc) = m−2, and hence,
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∆(PB) = 1
m−2

[
(m−2)(m−1)

2 + (m− 2)− m(m−1)
6

]
. Thus,

∆(PB)−∆(S) =
1

m− 2

[
(m− 2)(m− 1)

2

+ (m− 2)− m(m− 1)

6

]
− m

3

=
m− 3

3(m− 2)

> 0, (56)

where (56) follows from the fact that m > 3.
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