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Abstract—In this paper, we consider the setting of
the pattern maximum likelihood (PML) problem stud-
ied by Orlitsky et al. We present a well-motivated
heuristic algorithm for deciding the question of when
the PML distribution of a given pattern is uniform.
The algorithm is based on the concept of a “uniform
threshold”. This is a threshold at which the uniform
distribution exhibits an interesting phase transition in
the PML problem, going from being a local maximum
to being a local minimum.

I. Introduction

Consider the problem where we are given a sequence
of n i.i.d. samples from a fixed but unknown underlying
probability distribution p, and we are required to estimate
the multiset of probabilities in p. In particular, we are
not required to determine the correspondence between the
symbols of the underlying alphabet and the probabilities
in the multiset. Such a problem arises naturally in the con-
text of universal compression of large-alphabet sources [1],
and has several other applications, for example, population
estimation from a small number of samples [2].

The pattern ψ or ψ(xn) of a sequence xn = x1, . . . , xn
is a data structure that keeps track of the order of oc-
currence and the multiplicities of the distinct symbols in
the sequence xn; for a precise definition, see Section II.
The pattern maximum likelihood (PML) distribution of a
pattern ψ is the multiset of probabilities that maximizes
the probability of observing a sequence with pattern ψ. It
has been observed that for a sequence xn sampled from an
unknown underlying probability distribution p, the PML
distribution of ψ(xn) is a good estimate of the multiset
of probabilities in p in situations where n is much smaller
than the support size of p [3], [4].

However, the problem of determining the PML dis-
tribution (henceforth termed the “PML problem”) of a
given pattern ψ appears to be computationally hard. This
problem has been analytically solved for all patterns of
length up to 14 [5]–[9]. Algorithms for approximating the
PML distribution exist in the literature [10], [11].

In this paper, we are motivated by the possibly simpler
question of determining when the PML distribution of a
pattern is a uniform distribution. While we are unable to
give a complete answer to this question, we are able to
prove a remarkable phase transition phenomenon. For k ∈

Z+, let Uk denote the uniform distribution on k symbols.
Given a pattern ψ, we can explicitly compute a quantity
Θ(ψ) such that for all k < Θ(ψ), Uk is a local maximum for
the PML problem, among all distributions p with support
size k; and for all k > Θ(ψ), Uk is a local minimum. We
call Θ(ψ) the uniform threshold of ψ.

Based on the uniform threshold, we propose a heuris-
tic for classifying a pattern as having a uniform PML
distribution (a uniform pattern) or a non-uniform PML
distribution (a non-uniform pattern). For a pattern ψ that
is classified as having a uniform PML distribution, the
algorithm also gives the support size k of the distribution
Uk that maximizes, among all uniform distributions, the
probability of observing a sequence with pattern ψ. If
the classification by the algorithm is correct, then this Uk
is the true PML distribution for ψ; otherwise, it works
as a good approximation of the PML distribution. For
a non-uniform pattern, the algorithm from [11] can be
used to find an approximate PML distribution. We present
analytical and experimental evidence in support of the
validity of our proposed pattern classification algorithm.

The rest of this paper is organized as follows. We pro-
vide the necessary definitions and notation in Section II.
In Section III, we state and prove the phase transition
phenomenon mentioned above, and in doing so, give an ex-
plicit expression for the uniform threshold. In Section IV,
we study a quantity called the “optimal uniform support
size”. The relationship between the uniform threshold and
the optimal uniform support size forms the basis of our
proposed pattern classification algorithm, described in
Section V. Section VI contains some experimental results
in support of our algorithm. The paper ends in Section VII
with a conjecture.

II. Definitions and Notation
Given a sequence xn = x1, . . . , xn over some alphabet,

the pattern of xn is the sequence ψ = ψ1, ψ2, . . . , ψn
obtained by replacing each xj by the order of its first
occurrence in xn [11]. More precisely, for each symbol x
occurring in xn, let ν(x) denote the number of distinct
symbols seen in the shortest prefix of xn that ends in
the symbol x. Then, ψj = ν(xj) for j = 1, 2, . . . , n.
The pattern ψ(xn) is defined to have length n and size
m, where m is the number of distinct symbols in xn.



For example, the word “sleepless” has pattern 123342311,
which is of length 9 and size 4. We will canonically
represent a pattern ψ as 1µ12µ2 . . .mµm , where µj is the
multiplicity of the symbol j, i.e., the number of times j
appears, in ψ. Note that µ1 + · · ·+ µm = n. The pattern
ψ in our example has canonical form 1322334.

We now define pattern probabilities. Let p = (p(x))x∈X
be a probability distribution over a discrete set X . A
sequence xn obtained by taking n i.i.d. samples from p
will have probability given by P (xn) ∆=

∏n
j=1 p(xj). The

probability of observing a sequence with pattern ψ of
length n is then given by

P (ψ; p) ∆=
∑

xn:ψ(xn)=ψ

P (xn).

Clearly, all patterns ψ with the same canonical form
1µ12µ2 . . .mµm will have the same pattern probability
P (ψ; p). If p is the uniform distribution Uk, then it is
readily verified that for any pattern ψ of length n and
size m ≤ k, we have P (ψ;Uk) = Pu(n,m; k), where

Pu(n,m; k) ∆= k(k − 1)(k − 2) · · · (k −m+ 1)(1/k)n. (1)

The PML probability of a pattern ψ is defined as

PPML(ψ) ∆= max
p

P (ψ; p)

the maximum being taken over all discrete distributions p.
Any distribution that attains the maximum above is called
a PML distribution of ψ, denoted by pPML(ψ). For the
purposes of this paper, we will assume that the maximum
is indeed attained by some discrete distribution p.1

III. Phase Transition at the Uniform Threshold
In this section, we detail the phase transition phe-

nomenon briefly described in the introduction. For k ∈ Z+,
let [k] denote the set {1, 2, . . . , k}, and let Π[k] denote the
simplex of probability distributions on [k]:

Π[k] = {p = (p1, . . . , pk) : pj ≥ 0 ∀j,
k∑
j=1

pj = 1}.

Let ψ be a pattern having canonical form 1µ12µ2 . . .mµm .
For any p ∈ Π[k] with k ≥ m, we can write

P (ψ; p) =
∑
σ

m∏
i=1

pµi

σ(i), (2)

where the summation runs over all one-to-one maps σ :
[m] → [k]. Let πψ[k] : Π[k] → [0, 1] be the function defined
by the mapping p 7→ P (ψ; p). We then have the following
phase transition phenomenon.

Theorem 1. For a pattern ψ having canonical form
1µ12µ2 . . .mµm , with n = µ1 + · · ·+ µm, define

Θ(ψ) = n2 − n∑m
i=1 µ

2
i − n

. (3)

1In general, to guarantee that the maximum is always attained,
we must allow “mixed” distributions; see [1], [2].

Then, for m ≤ k < Θ(ψ), the uniform distribution Uk is a
local maximum of the function πψ[k], and for k > Θ(ψ), Uk
is a local minimum.

Proof: The proof approach is based on that of Theo-
rem 20 in [12]. Let p = Uk, so that p is in the interior of the
simplex Π[k]. Pick an arbitrary direction ξ ∈ Rk \{0} such
that for all t within a sufficiently small interval around
0, the point p(t) = p + t ξ continues to lie within Π[k].
Note that this implies that

∑k
j=1 ξj = 0. Consider the

function g(t) = P (ψ; p(t)). We will show that g′(0) = 0,
g′′(0) < 0 if k < Θ(ψ), and g′′(0) > 0 if k > Θ(ψ).
Since the direction ξ is arbitrary, this suffices to prove the
theorem.

Now, from (2), g(t) is expressible as
∑
σ gσ(t), where

gσ(t) =
∏m
i=1(pσ(i) + t ξσ(i))µi . Differentiation, together

with the fact that pj = 1
k for all j, yields g′σ(0) =

1
kn−1

∑m
i=1 µiξσ(i). Hence,

g′(0) =
∑
σ

g′σ(0) = 1
kn−1

m∑
i=1

µi
∑
σ

ξσ(i).

For any fixed i ∈ [m], the inner summation
∑
σ ξσ(i) can be

evaluated as follows. As σ ranges over all one-to-one maps
from [m] to [k], for each j ∈ [k], σ(i) takes the value j

exactly (k−1)!
(k−m)! times. Hence,

∑
σ ξσ(i) = (k−1)!

(k−m)!
∑k
j=1 ξj =

0 by choice of ξ. Thus, g′(0) = 0.
Next, we compute g′′(0) =

∑
σ g
′′
σ(0). Straightforward

computations yield

g′′σ(0) = 1
kn−2

( m∑
i=1

µiξσ(i)

)2

−
m∑
i=1

µiξ
2
σ(i)

 .
Re-write the term within square brackets as

m∑
i=1

µi(µi − 1)ξ2
σ(i) +

∑
(i,`):i 6=`

µiµ`ξσ(i)ξσ(`).

Summing over all one-to-one maps σ : [m]→ [k], we obtain
m∑
i=1

µi(µi − 1)
∑
σ

ξ2
σ(i) +

∑
(i,`):i 6=`

µiµ`
∑
σ

ξσ(i)ξσ(`).

As above,
∑
σ ξ

2
σ(i) = (k−1)!

(k−m)!
∑k
j=1 ξ

2
j . Similarly, for

i 6= `,
∑
σ ξσ(i)ξσ(`) = (k−2)!

(k−m)!
∑

(s,t)∈[k]2:s6=t ξsξt. We

also have 0 =
(∑k

j=1 ξj

)2
, from which we obtain∑k

j=1 ξ
2
j = −

∑
(s,t)∈[k]2:s 6=t ξsξt. Hence,

∑
σ ξσ(i)ξσ(`) =

− (k−2)!
(k−m)!

∑k
j=1 ξ

2
j . Putting it all together, we find that

g′′(0) = C(ξ)

(k − 1)
m∑
i=1

µi(µi − 1)−
∑

(i,`)∈[m]2:i 6=`

µiµ`

 ,
where C(ξ) = 1

kn−2

(∑k
j=1 ξ

2
j

)
(k−2)!
(k−m)! is a positive factor.

Further simplification using the fact that
∑m
i=1 µi = n



yields

g′′(0) = C(ξ)
[
k

(
m∑
i=1

µ2
i − n

)
− (n2 − n)

]
,

from which the desired result follows.
The quantity Θ(ψ) will be called the uniform threshold

for the pattern ψ. Note that the uniform threshold is finite
iff ψ 6= 123 . . . n.

The following is an immediate consequence of Theo-
rem 1.

Corollary 1.1. A necessary condition for the PML dis-
tribution of a pattern ψ to be uniform is that Θ(ψ) ≥ m.

For example, if ψ is such that µ1 > 1 and µi = 1 for
2 ≤ i ≤ m, then Θ(ψ) = n2−n

µ2
1−µ1

and m = n− (µ1 − 1). In
this case, it may be verified that Θ(ψ) ≥ m iff µ1 ≤ 1+

√
n.

In the next section, we give a stronger necessary condition
for a pattern to have a uniform PML distribution, based
on which we develop a pattern classification algorithm.

We end this section with an observation about the
convergence behaviour of the uniform threshold. Let
X1, X2, X3, . . . be a sequence of i.i.d. samples drawn from
a distribution p supported on a finite set [k]. For j ∈ [k],
let fj(Xn) denote the empirical frequency of the symbol
j in Xn ∆= X1, X2, . . . , Xn. By the strong law of large
numbers, fj(Xn) converges to pj for all j ∈ [k], almost
surely. Now, consider the uniform threshold for the pattern
ψ(Xn), which can be expressed as

Θ
(
ψ(Xn)

)
=

1− 1
n∑m

i=1(µi

n )2 − 1
n

.

The sum
∑m
i=1(µi

n )2 is the same as
∑k
j=1 f

2
j , which con-

verges almost surely to
∑n
j=1 p

2
j . Hence, the (random)

sequence of uniform thresholds Θ
(
ψ(Xn)

)
, n = 1, 2, . . . ,

converges almost surely to 1∑k

j=1
p2

j

.

IV. Optimal Uniform Support Size

A stronger necessary condition than that in Corol-
lary 1.1 can be obtained from the following observation.
For a pattern ψ to have a uniform distribution Uk∗ as its
PML distribution, it must be the case that
(a) Uk∗ maximizes the pattern probability P (ψ;Uk)

among all uniform distributions Uk; and
(b) k∗ ≤ Θ(ψ).
With this in mind, we define the optimal uniform support
size of a pattern ψ of length n and size m to be an integer
k that achieves the maximum in

max
k:k≥m

Pu(n,m; k), (4)

where Pu(n,m; k) is as defined in (1). The optimal uniform
support size will be denoted by k∗u(ψ) or k∗u(n,m). We then
have the following corollary to Theorem 1.

Corollary 1.2. A necessary condition for the PML distri-
bution of a pattern ψ to be uniform is that Θ(ψ) ≥ k∗u(ψ).

A few clarifying remarks about the definition of k∗u(ψ)
are in order. If ψ is such that m = n = 1 (i.e., ψ = 1),
then P (ψ; p) = 1 for all distributions p. Thus, k∗u(ψ)
can be any k ∈ Z+ in this case. If m = n > 1, then
Pu(m,m; k) =

∏m−1
i=1 (1− i

k ), which strictly increases with
k, and the maximum in (4) is not attained for any finite
k. In this case, we simply define k∗u(m,m) = ∞. The
following proposition covers all other cases.

Proposition 2. Let ψ be a pattern of length n and size
m < n. Then, the maximum in (4) is attained by a
unique integer k ≥ m, i.e., k∗u(n,m) is unique. Further-
more, Pu(n,m; k) is a strictly increasing function of k for
m ≤ k ≤ k∗u(n,m), and is a strictly decreasing function of
k for k ≥ k∗u(n,m).

Proof: Consider the function

f(x) = x(x− 1) · · · (x−m+ 1)(1/x)n,

and note, from (1), that Pu(n,m; k) = f(k) for k ≥ m.
Taking the derivative, we obtain

f ′(x) = f(x)
x

[
x

x− 1 + x

x− 2 + · · ·+ x

x−m+ 1 − (n− 1)
]

Since f(x)/x is positive for x ≥ m, the sign of f ′(x) is
determined by the factor within square brackets above,
which we will denote by ϕ(x). Note that we can write

ϕ(x) = 1
x− 1 + 2

x− 2 + · · ·+ m− 1
x− (m− 1) + (m−n). (5)

Thus, ϕ(x) is strictly decreasing in x, and since m < n,
ϕ(x) < 0 for all sufficiently large x.

Therefore, we have one of two cases:
(a) ϕ(x) < 0, and hence, f ′(x) < 0 for all x ≥ m;
(b) there exists a unique x∗ ≥ m such that ϕ(x) =

f ′(x) = 0; for m ≤ x < x∗, we have ϕ(x) > 0, and
hence, f ′(x) > 0; and for x > x∗, we have ϕ(x) < 0,
and hence, f ′(x) < 0.

In the first case, f(k) is strictly decreasing in the range
k ≥ m, with a unique maximum attained at k = m; thus,
k∗u(n,m) = m here.

In the second case, f(x) strictly increases up to x∗,
and thereafter, strictly decreases. In particular, x∗ is the
unique maximum of f(x) in the range x ≥ m. There-
fore, if x∗ is an integer, then k∗u(n,m) = x∗. Otherwise,
f(k) = Pu(n,m; k) potentially has two maxima (among
integers k ≥ m): k = bx∗c and k + 1 = dx∗e. However,
note that if we set f(k) = f(k + 1), and solve for m, we
obtain

m = (k + 1)− kn

(k + 1)n−1 .

For positive integers k,m, n, this is possible iff m = n =
1, which is not allowed by the assumption that n > m.



Therefore, once again, f(k) = Pu(n,m; k) has a unique
maximum among the integers k ≥ m.

The following corollary will be useful later.

Corollary 2.1. For any fixed m, we have k∗u(n,m) = m
for all n > m+

∑m−1
j=1

j
m−j .

Proof: From (5), we see that for n > m+
∑m−1
j=1

j
m−j ,

we have ϕ(m) < 0, and hence, ϕ(x) < 0 for all x ≥ m.
Thus, case (a) in the proof of Proposition 2 applies, and
hence, k∗u(n,m) = m.

From Proposition 2, it is clear that when m < n, the
optimal uniform support size can be computed by stepping
through the integers k ≥ m until the pattern probability
Pu(n,m; k) does not increase. This is formalized in Algo-
rithm 1. The condition in the while loop of the algorithm
is equivalent to Pu(n,m; k) < Pu(n,m; k + 1).

Algorithm 1
1: procedure Optimal Uniform Support Size(n,m)
2: k := m
3: while

(
k−m+1
kn < 1

(k+1)n−1

)
do

4: k ← k + 1
5: end while
6: return k
7: end procedure

The limiting behaviour of the optimal uniform support
size differs from that of the uniform threshold discussed
at the end of Section III. Again, let X1, X2, X3, . . . be
a sequence of i.i.d. samples drawn from a distribution p
with support [k]. From the strong law of large numbers, it
follows that the size m of the patterns ψ(Xn) converges
to k almost surely. In other words, almost surely, the size
of the patterns ψ(Xn) equals k for all sufficiently large n.
Therefore, from Corollary 2.1, we obtain that k∗u

(
ψ(Xn)

)
converges to k almost surely. Note that k ≥ 1∑k

j=1
p2

j

, the

almost-sure limit of Θ
(
ψ(Xn)

)
, with equality iff p = Uk.

This follows from the Cauchy-Schwartz inequality: 1 =(∑k
j=1 pj

)2
≤
(∑k

j=1 12
)(∑k

j=1 p
2
j

)
.

V. A Pattern Classification Algorithm
Our proposed pattern classification algorithm is based

on a slight relaxation of the necessary condition in Corol-
lary 1.2. The algorithm is governed by a parameter ε > 0,
which can be used to control the trade-off between com-
putational complexity and performance.

Recall from Section I that we call a pattern uniform if
it has a PML distribution that is uniform; otherwise, we
call the pattern non-uniform. Algorithm 2 below is our
proposed pattern classification algorithm.

Clearly, if the input to the algorithm is a uniform
pattern ψ, then Corollary 1.2 shows that the algorithm
correctly classifies the pattern as uniform. In this case,
the distribution Uk with k = k∗u(ψ), which the algorithm

Algorithm 2
1: procedure Classify(ψ)
2: if (k∗u(ψ) ≤ Θ(ψ) + ε) then
3: Classify ψ as Uniform
4: else
5: Classify ψ as Non-Uniform
6: end if
7: end procedure

would have to determine by a call to the procedure in
Algorithm 1, is the true PML distribution for ψ. If the
input ψ is non-uniform, it is possible for the algorithm
to classify it as uniform. In particular, if it happens that
Θ(ψ) < k∗u(ψ) ≤ Θ(ψ) + ε, so that ψ is guaranteed to
be non-uniform, the Classify procedure still classifies it
as uniform. The algorithm is designed to do this for two
reasons:
(a) For a pattern ψ classified as uniform, there is no

further computational complexity involved in deter-
mining its presumed PML distribution Uk, with k =
k∗u(ψ).

(b) The distribution Uk, with k = k∗u(ψ), is actually a
good approximation for pPML(ψ), with the quality of
the approximation getting better as ε ↘ 0. We will
justify this statement at the end of this section.

Thus, the parameter ε controls a trade-off between compu-
tational complexity of the classification algorithm and the
approximation error obtained when a uniform distribution
is used to approximate the PML distribution for a non-
uniform pattern.

The next theorem provides some theoretical justification
for our pattern classification algorithm.

Theorem 3. Let X1, X2, X3, · · · be a sequence of i.i.d.
samples drawn from a distribution p with support [k], i.e.,
p = (p1, . . . , pk) with pj > 0 for all j ∈ [k].
(a) If p = Uk, then the probability that Algorithm 2

declares the pattern ψ(Xn) to be non-uniform goes to
0 as n→∞.

(b) If p is a non-uniform distribution, then for the pa-
rameter ε > 0 chosen in Algorithm 2, the following
statements hold:
• if k − 1∑k

j=1
p2

j

> ε, then the probability that

the algorithm declares the pattern ψ(Xn) to be
uniform goes to 0 as n→∞;

• if k − 1∑k

j=1
p2

j

< ε, then the probability that

the algorithm declares the pattern ψ(Xn) to be
uniform goes to 1 as n→∞;

The proof follows in a routine manner from the fact
that, almost surely, Θ

(
ψ(Xn)

)
converges to 1∑k

j=1
p2

j

and

k∗u
(
ψ(Xn)

)
converges to k. We omit the details.

The theorem above indicates that when the underlying
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Fig. 1. A plot showing the performance of the pattern classifier
for two underlying distributions with support size 500. The y-axis
records the number, out of 2000 length-n patterns generated inde-
pendently from the underlying distribution, of patterns that were
classified as having a uniform PML distribution.

distribution p is non-uniform and k − 1∑k

j=1
p2

j

< ε, then

the classification algorithm will, with probability going
to 1, misclassify a non-uniform pattern as uniform. In
this case, the PML distribution of the pattern will be
determined to be Uk, again with probability going to 1
(since k∗u

(
ψ(Xn)

)
converges to k almost surely). Now,

consider the `2 distance between Uk and the underlying
(non-uniform) distribution p:

‖p− Uk‖2 =

√√√√ k∑
j=1

(
pj −

1
k

)2
=

√√√√ k∑
j=1

p2
j −

1
k
.

Since k − 1∑k

j=1
p2

j

< ε, we have

k∑
j=1

p2
j −

1
k
<
ε
∑k
j=1 p

2
j

k
≤ ε

k
.

Hence, ‖p− Uk‖2 ≤
√
ε/k. Thus, despite the misclassifi-

cation of the pattern, the presumed PML distribution Uk
is a very good approximation (in terms of `2 distance) of
the underlying distribution p.

VI. Experimental Results
For experimental validation of our algorithm, we consid-

ered i.i.d. samples drawn from an underlying distribution
p. For each value of n from 1 to 1400, we generated 2000
sets of n independent samples drawn from p. For each set
of n samples, we ran our classification algorithm on the
length-n pattern derived from the samples. We kept track
of the number of times, out of 2000, that the algorithm
classified the length-n pattern as uniform. Figure 1 plots
the results obtained for two different underlying distribu-
tions p. One distribution is the uniform distribution on 500

symbols. The other distribution is a strongly non-uniform
distribution supported on {1, 2, . . . , 500}, given by pj =
c/(50 + j) for j = 1, 2, . . . , 500, where c is a normalization
constant required to make p a probability mass function.
We used ε = 25 in our classification algorithm; note that
for the non-uniform distribution, k − 1∑k

j=1
p2

j

≈ 182.7,

which is much larger than ε. The results clearly indicate
that our pattern classification algorithm works well when
the number of samples is sufficiently large.

VII. A Conjecture
We would like to be so bold as to make the following

conjecture, which is essentially a converse to Corollary 1.2.
We admit that the conjecture is based on extremely
limited experimental evidence.

Conjecture 1. Suppose that the pattern ψ has a discrete
PML distribution. If k∗u(ψ) < Θ(ψ), then the PML distri-
bution of ψ is Uk, with k = k∗u(ψ).
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