The Treewidth of MDS and Reed-Muller Codes

Navin Kashyap Andrew Thangaraj

Abstract

The constraint complexity of a graphical realization ofreelir code is the maximum dimension
of the local constraint codes in the realization. The trelfwof a linear code is the least constraint
complexity of any of its cycle-free graphical realizatiofi$is notion provides a useful parametriza-
tion of the maximume-likelihood decoding complexity for déiar codes. In this paper, we prove the
surprising fact that for maximum distance separable codé$eed-Muller codes, treewidth equals
trelliswidth, which, for a code, is defined to be the leaststm@int complexity (or branch complex-
ity) of any of its trellis realizations. From this, we obtairact expressions for the treewidth of these
codes, which constitute the only known explicit expressifam the treewidth of algebraic codes.

1 Introduction

A (normal) graphical realization of a linear codeconsists of an assignment of the coordinate§ of
to the vertices of a graph, along with a specification of linear state spaddmaar “local constraint”
codes to be associated with the edges and vertices, respectively, oafie[g]. Cycle-free graphical
realizations, or simplyree realizationsare those in which the underlying graph is a tree. Tree realiza-
tions of linear codes are interesting because the sum-product algoriBAh @8 such a realization is an
exact implementation of maximum-likelihood (ML) decoding [16]. The notion afstaint complexity
of a tree realization was introduced by Forney [5] as a measure of theutatigmal complexity of the
corresponding SPA algorithm. It is defined to be the maximum dimension amotgctieconstraint
codes constituting the realization. Threewidthof a linear code is the least constraint complexity of
any of its tree realizations.

The minimal tree complexity measure defined for linear codes by Halford AnddJ6] is a close
relative of treewidth. There are also closely related notions of treewidthedkefor graphs [3] and
matroids [7]; these relationships are discussed in more detail in [10]. Krfi@gts about the treewidth
of graphs and matroids imply that computing the treewidth of a code is NP-hard.

For a lengthr linear code over the field,, the computational complexity of implementing ML
decoding, via the SPA on an optimal tree realization){q"), wheret is the treewidth of the code
[10]. In particular, ML decoding is fixed-parameter tractable with respetreewidth, which means
that for codes whose treewidth is bounded by a fixed congtaviL decoding can be performed in
polynomial time. Thus, treewidth provides a useful parametrization of Mibbdieg complexity.

Trellis representations (or trellis realizations) of codes are specias cdigeee realizations which
have received extensive attention in the literature (see e.qg., [14]). tothiext of trellis representations,
constraint complexity is usually called branch complexity. We define herwgeliswidth of a code to
be the least branch complexity of any of its trellis representations (optimizzdatiypossible orderings
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of the coordinates of the code). As trellis representations are instahtes oealizations, trelliswidth
is at least as large as treewidth. In fact, it is known that trelliswidth can be tatgédr than treewidth:
it was shown in [11] that the ratio of trelliswidth to treewidth can grow at mosarfitigmically with
blocklength, and that there are codes with arbitrarily large blocklengthsatigeve this logarithmic
growth rate. The only known code family achieving logarithmic growth rate isfridtio is a family
consisting of cut-set codes of a certain class of graphs. The codas farttily all have treewidth equal
to 2, and rate approximately'4, but minimum distance only 4 [10].

It is not known if there are any other code families for which there is a sigmifiadvantage to
be gained in going from trellis representations to tree realizations that aredgogally more complex.
In the only previous investigation reported on this question, Forney [3idered the family of Reed-
Muller codes. He showed that for a certain natural tree realization ofi-Reéler codes, obtained
from their well-known recursivéu|u + v| construction, the constraint complexity is, in general, strictly
larger than the trelliswidth of the code. But this still leaves open the possibilityttaee may be other
tree realizations whose constraint complexity beats trelliswidth. In partigulagves undecided the
question of whether the treewidth of a Reed-Muller code can be strictly lasstthtrelliswidth.

In this paper, we show that for Reed-Muller codes, treewidth is equattistvidth. The proof of
this makes use of structural properties known for optimal trellis realizatibReed-Muller codes, and
also relies strongly on a certain separator theorem for trees. A similar gtrategy also works on the
much simpler case of maximum distance separable (MDS) codes, wherensgysitow that treewidth
equals trelliswidth. These results yield the first explicit expressions fardéesvidth of classical alge-
braic codes.

The rest of this paper is organized as follows. After providing the rsecgslefinitions and notation
in Section 2, we describe, in Section 3, our proof strategy for showirigréewidth equals trelliswidth
for certain codes. Sections 4 and 5 deal with MDS and Reed-Muller cosgeectively. The technical
details of some of the proofs are given in appendices.

2 Preliminaries and Notation

The notation[n| denotes the set of positive integers from Into[a, b] denotes the seti € Z : a <

i < b}. An (n, k) linear code is a code of lengthand dimensiork. Then coordinates of the code are
indexed by the elements of an index $eunless specified otherwisé,= [n]. Given a linear cod€
with index setl, for J = {j1, j2,...,js} C I, the shortening of to the coordinates id is denoted’
and defined as follows:

CJ:{lech...CjS: c1cy...cp €C, ci:Oforz'géj}.

The notions of treewidth and trelliswidth are central to this article, and wealtdfase next.

2.1 Treewidth and trelliswidth

For brevity, we provide only the necessary definitions and main resuttdetails, see [5],[10].

A tree is a connected graph with no cycles. The set of nodes and théesdgas of a tred” are
denoted by (T") andE(T'), respectively. Degree-1 nodes in a tree are cddlades and all other nodes
are callednternal nodes We let L(T") denote the set of leaves 6t A tree is apathif all its internal
nodes have degree 2; and isubic treeif all its internal nodes have degree 3. A path with at least one
edge has exactly two leaves; a cubic tree witleaves has — 2 internal nodes.

LetC be an(n, k) linear code with index set. A tree decompositioof C is a pair(T,w), whereT'
isatreeand : I — V(7) is an assignment of coordinates(fo the nodes of .

Given a tree decompositiaf’,w) of C, for each node of T, we define a quantity, as follows.

Let E(v) denote the set of edges @fincident onv. Fore € E(v), letT, , denote the component of



T — e (T with e removed) notontainingv. Finally, let]. , = w_l(V(Teyv)) be the set of coordinates
of C that are assigned to nodesTin,. Then,

ko =k— Y dim(Cy,,). 1)

ecE(v)

The quantityx,, above is the dimension of the local constraint code at nddehe minimal realization
of C on (T, w), denoted byM (C; T, w).

Let x(C;T,w) = H%/aé) k., denote the constraint complexity 8#(C; T,w). The treewidth of a
ve

codeC, denoted by:(C), is then defined as

k(C) (I%lwn) K(C; T, w). (2)
Itis, in fact, enough to perform the minimization in (2) over cubic tréesith n leaves, and mappings
w that are bijections betwednand L (7).
The trelliswidth ofC, which we will denote byr(C), can be defined using the above notation as
follows:
7(C) = Hirin k(C; P, ), (3)

whereP is the path om nodes, and the minimization is over mappingthat are bijections betwedn
andV (P). From (2) and (3), itis clear that(C) < 7(C).

Let vy, v9,...,v, be the nodes of the path, listed in order from one leaf to the other. For the
bijectionr : I — V(P) that maps to v; (1 < i < n), we obtain from (1),

Ky, =k — dim(cﬂ[l,ifl]) - dim(cﬂ’[i+1,n])7 (4)

wherer[a,b] = {7 (j) : a < j < b}.

2.2 Generalized Hamming weights

The generalized Hamming weights of a linear code, introduced and studi&8]idifnit the possible
dimensions of shortened versions of the code. So, they are related tontipéegity of tree realizations
in a natural way.

Let C be an(n, k) linear code with index set. We will use the notatiorD C C to say thatD is a
subcode of. For a subcod® C C, we define its support(D) = {i : Jcica...cn, € Ds.te; # 0}.
The p-th generalized Hamming weight @f, denotedd,,(C), is the size of the smallest support of a
p-dimensional subcode @, i.e.,d,(C) = min{|x(D)| : D C C,dim(D) = p}for1l < p < k. Itis
known that0) < d;(C) < d2(C) < -+ < di(C) < n. Also, d;(C) is the minimum distance af.

A closely related definition is that of maximal limited-support subcode dimensigoisl < s <
n, Us(C) is defined to be the maximum dimension of a subcod€ efith support at most, i.e.,
Us(C) = max{dim(D) : D C C, |x(D)| < s}. The maximal limited-support subcode dimensions can
be computed using the generalized Hamming weights as follows:

Us(C) = usuch thatl,(C) < s < dy4+1(C) (5)

with the convention thafy(C) = 0 anddj1(C) = n + 1. We also definé/y(C) = 0.

3 TheProof Strategy

From the relevant definitions, treewidth cannot exceed trelliswidth forcadgC, i.e., x(C) < 7(C).
We now describe a general strategy that can be used to show the oppesitality in certain cases.



Consider an(n, k) linear codeC, with index set/. The idea of using maximal limited-support
subcode dimensions to study the complexity of trellis realizatioldsvedis introduced in [9]. We extend
that idea to tree realizations here. EbrC I, C; is a subcode of with support at mostJ|. So,
dim(C;) < U};(C). Therefore, given any tree decompositigh w) of C, we obtain from (1) that for
anyv € V(T),

ko >k — Y Up, (). (6)
ecE(v)

Now, recall from the definition of treewidth that it suffices to carry outrfirimization in (2) over
tree decompositiond&l’, w) in which 7" is a cubic tree with: leaves, and is a bijection betweei and
L(T). For such gT',w), we note that!. | is simply the number of leaves ifi. ,, and for an internal
nodev € V(T'), the summation in (6) contains exactly three terms.

Letn. , denote the number of leavesin,, and note that these numbers, are determined purely
by the topology off". At an internal node in a cubic tre€l” with n leaves, we will list the edges il (v)
in the form of an ordered triplg; (v) e2(v) ez(v)] such thall < ng, ()0 < Ney(w)0 < Ney () < 1 I
the nodev is clear in the context, we will use the simplified notation= n., (., fori = 1,2, 3.

Suppose thaf" is a cubic tree withn leaves having an internal nodesuch that the numbers
ni,no, N3 satisfyZ?:1 Un,(C) < k—7(C). Then, by (6), for any bijections between/ and L(T"),
we havex, > 7(C), and hence:(C; T, w) > 7(C). Consequently, if every cubic tree withleaves had
such a node, then we would have(C) > 7(C). Since the opposite inequality is always true, we have
proved the following proposition.

Proposition 1. LetC be an(n, k) linear code with the property that for any cubic tréewith n leaves,
there always exists an internal node= V' (7") such thath’:1 Un,(C) < k—7(C), wheren; = ng,(y) -
Then,x(C) = 7(C).

A comment on the proof strategy implied by Proposition 1 is in order. To showstldg > 7(C)
(and hencex(C) = 7(C)), the obvious strategy would be to show, for each tree decomposifian)
of C, the existence of a nodec V(T) for which, > 7(C), wherek, is given by (6). In general, the
nodev would depend on the trég as well as on the coordinate assignmentHowever, in the proof
method based upon Proposition 1, the idea is to find, for a diYem), a nodev € V(7T') that depends
only on the topology of", and thus, isndependentf w, for whichx,, > 7(C) holds. It is a remarkable
fact that this proof strategy can be made to work for MDS and Reed-Mcdliées, as we will see in
Sections 4 and 5.

The hypothesis of Proposition 1 requires the existence of a node in aiyytoee, whose removal
partitions the tree into components with a certain property. The property indbésis that the cor-
responding partition of the number of leaves,into ny, ny, ng satisﬁesZ?:1 Un,(C) < k—7(C).
Structural results of this form are known as separator theoreme G 3])

A classical separator theorem is a theorem of Jordan [8] that stateanpatee onn nodes has
an internal node whose removal leaves behind connected components witistr./2 nodes each. A
trivial modification of the simple proof of this theorem shows that the two gecwees of “nodes” in the
theorem statement can be replaced by “leaves”. For easy refemeacecord this as a proposition for
the special case of cubic trees.

Proposition 2. In any cubic tree witm > 3 leaves, there exists an internal nodsuch thatn,, (., <
n/2fori=1,2,3.

Another classical (edge) separator theorem is the following resu[@}). every cubic tred" with
n leaves contains an edgesuch that both components 6f— e have at mos®n /3 leaves. Now, one
of these two components must have at leg@ leaves; letr be the node incident with for which this
component il ,,. Then, for thisv, we havens € [n/2,2n/3]. We record this fact below.

Proposition 3. In any cubic tree witm > 3 leaves, there exists an internal nodsuch thata,., (. , €
[n/2,2n/3].



As we will see in the next two sections, Propositions 2 and 3 allow us to deaMiit® and Reed-
Muller codes, respectively. We consider MDS codes first.

4 Treewidth of MDS Codes

MDS codes arén, k) linear codes for which the minimum distance equals k + 1. Basic facts about
MDS codes can be found in [12].
LetC be an(n, k) MDS code, with index sef = [n]. The generalized Hamming weights®fvere
computed in [15] as follows:
dy(C)=n—k+p, 1<p<k.

From this, the maximal limited-support subcode dimensiéhé¢) for 1 < s < n, can be determined
using (5). They are given by

0, 1<s<n-—k,
Us(C) = (7)
q, S:n_k+Q7q:1727'”7k'

Equivalently,Us(C) = max{0,s — (n — k) }. We use this to compute(C) next.

Let H be a parity-check matrix fof. For a subsety/ C I, the codeC; has dimension equal to
|J| — rank(H|;), whereH | ; refers to the restriction off to the columns indexed by. AsC is MDS,
rank(H|;) = min{|J|,n — k}. Hencedim(C;) = max{0, |J| — (n — k)} = U);(C). Therefore, for
any permutationr of I, we have for integers < a < b < n, dim(Cﬂ[ajb]) = Up_q+1(C). Therefore,
the right-hand-side of (4) is always equalite- U;_1(C) — U,,—;(C). It follows directly from this that

T(C) = max (k — Ui_l(C) — Un_Z(C)) =k — min (Uz_l(C) + Un_l(C))

1<i<n 1<i<n
A straightforward computation using (7) yields

0, if n—k >k,

min (Ui-1(C) + Un—i(C)) = {zk —n—1, ffn-—k<k

1<i<n

achieved for = n — k 4+ 1. We thus have the following result.
Proposition 4. The trelliswidth of an(n, k) MDS codeC is given byr(C) = min{k,n — k + 1}.

With this, we have
k —7(C) = max{0,2k —n — 1}. (8)

We can now prove that the treewidth of an MDS code equals its trelliswidth.

Theorem 5. For an (n, k) MDS codeC, we have

k(C) = 7(C) = min{k,n — k + 1}.

Proof. The statement is trivial for = 1,2, or whenk = n, so we assume > 3 andl < n — k. Let
T be a cubic tree with. leaves, and let be the node guaranteed by Proposition 2. We will showthat
satisfies the hypothesis of Proposition 1.

Setni = ne(v),0r @ = 1,2,3, and recall that, by definitiom; < ns < ng. By choice ofv, we also
haven; < n/2fori = 1,2, 3. For convenience, we writg,,, for U,, (C).

Caseln —k > k.
In this casen; < n/2 <n — k, sothaty . U,, = 0by (7). Moreover, by (8)k — 7(C) = 0.
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Case2l1<n-—k<k.

Now, we haven; < n/2 < k. We must show tha} _, U,, < 2k —n — 1. If n3 < n — k, then
> ;Un, =0.So,we assumes = k—0,with1 < § < 2k —n. ThenU,, =nz—(n—k) =2k—n—9¢
andn; +ne =n—ng3 =n—k+ 4. So, we have

Upi +Upy + Uy, = max{0,k —n+ni} +max{0,k —n+nz} +2k—n—9
max{0,k —n+ni,k—n+ng,2k —2n+n; +no} +2k—n—94
max{2k —n — 0,3k — 2n 4+ ny — 9,3k — 2n}

2k —n—1,

IN

IN

where the last inequality holds because 1,n, <n—k+d—1landn —k > 1.

Thus, in both cases, we see that U,, < k — 7(C), and so, by Proposition 1, we haw¢C) =
7(C). O

5 Reed-Muller codes

For a positive integem and a non-negative integerwith 0 < r < m, ther-th order binary Reed-
Muller code of length2™, denoted RMr,m), is defined as follows. LeP™ denote the set of all
Boolean polynomials imn variables of degree less than or equattéor an integef, 0 < i < 2™ — 1,
with binary expansion = Z;":_Ol bj(i)27, b;(i) € {0,1}, we letb(i) = (bo(), b1(3), -, bm—1()).
Forf e P let f(b(i)) = f(bo(i),b1(7),- - ,bm—1(7)). The code RMr, m) is defined as

RM(r,m) = {[f(b(0)) f(b(1)) --- f(b(2™ =1))]: f € P"}. (9)

The code RMr, m) has length = 2™, dimensiork(r,m) = >-7_ ('), and minimum distancg™ "
[12]. In (9), the order of evaluation of the functighis according to the index sét= [0, 2™ — 1]. This
is called the standard bit order.

We will denote the treewidth and trelliswidth of RM m) by x(r, m) andr(r, m), respectively.

51 Trelliswidth of RM (r, m)

Let C be the Reed-Muller code R, m) in the standard bit order, so that= [0,2™ — 1]. In this
section, we derive an exact expression for the trelliswidtf. of
Let P be the path om = 2™ nodes, withvg, v1,...,v,_1 being the nodes oP, listed in order
from one leaf to the other. For any: I — V(P), we obtain from (4), in a manner analogous to the
derivation of (6),
Ky; > k(r,m) — U;(C) — Up—1-i(C),

fori =0,1,...,n— 1. Thus,

k(C; Pym) > k(r,m) — O<ngn_1(Ui(C) + Up—1-i(C)). (10)
Note that the right-hand-side is independentp$o that by (3),
7(C) 2 k(rym) —  min (Ui(C) + Un-1-i(C))- (11)

It is shown in [9] that for RMr, m) in the standard bit order, we have for= 0,1,...,n — 1,
dim(Cp 7)) = Uit1(C) and dim(Cj; 1)) = Un—i(C). (12)

It follows that whenr simply maps to v; for all i € I, then we have equality in (10), and hence, in (11).
To put this another way, the branch complexity of the minimal trellis represent@ti@M(r, m) in the
standard bit order attains the lower bound on, and thus equals, the trettissfithe code. Techniques
from [2] allow us to compute, with very little effort, the branch complexity of thidlis representation.
We give the details of this computation in Appendix A. From this, we obtain thewWoilp result.
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Proposition 6. The trelliswidth of the Reed-Muller code RiMim) is given by

o= TRz
ST ifm<2r 1
Recall that the dimension of the code RMm) is given byk(r,m) = >7_ (7). We will find
it convenient to definé(r', m’) to beZ;T/:O (”JL') for all non-negative integers, m/, including when
r’ > m/. with the usual conventions thé@) =1and (’?/) = 0 for j > m'. Thus, forr’ > m/ > 0,
k(+',m') = 2™. Following these conventions, we give an expression for the differ&qem) —
T(r,m).

Proposition 7. For the Reed-Muller code RM, m), we have

min{2(r—1),m—1}

k(r,m) — 7(r,m) = > k(r—1—1T[i/2],m—1—1i).

=0

We present the algebraic manipulations required to prove this propositiopgenaix A.

It is instructive to explicitly write out some of the terms of the summation in the lagigsition.
Whenm > 2r, we have

E(r,m)—71(r,m) = k(r—1,m—1)+k(r —2,m —2) + k(r —2,m — 3)
+ k(r—3,m—4)+ k(r—3,m —25)
+ -+ k(0,m—2r+2)+ k(0,m—2r+1), (13)

and whenmn < 2r — 1, we have

kE(r,m) —7(r,m) = k(r—1,m—1) r—2,m—2)+k(r—2m-—3)

(
(r—=3,m—4)+k(r—3,m—5)
+ ot k(r— 1= [252],1) + k(r — 1 — [221],0). (14)
52 Treewidth of RM(r,m)
We state below our main result showing that the treewidth of a Reed-Mullerempaals its trelliswidth.

Theorem 8. The treewidth of the Reed-Muller code Rivin) is given by

—27—1 .
( ) =7( ) = E§=o(mrfj ) if m>2r+1,
R\T,Tm) = T\Tr,m) = 1 + me’r'fl (M72j*1) |f m < 2’]" +1
j=0 r—j .

The rest of this section is devoted to a proof of the above result, whictwi®Htioe strategy outlined
in Section 3. Some of the technical details of the proof are presented imédjges B and C.

Let RM(r, m) be given. Ifm < 2, orr = m, then RMr, m) is an MDS code, which has been dealt
with in Section 4. Henceforth, we will assume> 3 andr < m — 1.

Let T' be a cubic tree witlm = 2™ leaves,m > 3, and letW = {v € V(T) : ng)0 €
[n/2,2n/3]}. By Proposition 3|V is non-empty. Let™ € W be a node that achievesax{n., )., :
v e W} Write nf = ng, ()i = 1,2,3.

Lemma9. We have1/6 < n} < n/3.
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Figure 1: For, we havens = nj + nj.

Proof. If n5 < n/6, then from the fact that] < nj3, we obtainn} + n3 < n/3, so thatn; > 2n/3, a
contradiction. Sopy > n/6. However,n/6 is not an integer fon = 2™, and son; > n/6.

If n5 > n/3, thenn] + nj < 2n/3. Letv be the neighbour of* incident with edge:;(v*). Then,
settingns = ng,(,),,, We see thabs = nj + n3; see Figure 1. But this means thef < n3 < 2n/3,
which contradicts our choice of. O

We will show thath’:1 Unz < k(r,m) —7(r, m), which will prove Theorem 8 by virtue of Propo-
sition 1. Here, and in all that follows, we ugg as shorthand fot/;,(RM(r, m)),
Denote byn(™ and3(™ the largest integers if, 2n/3] and[0, n/3], respectively. Explicitly,

Qm _ )3 2 3 !fm!s odd, (15)
2.9m _ 2 jf mis even
3 3
and
Loom 2 ifmi
3m) 3 5 | m!s odd, (16)
3-2m—35 ifmiseven
Equivalently, in binary form,
1,0,1,0,1,---,0,1) if mi
b(a™) = (1,0,1,0,1,---,0,1) | m!sodd 17)
(0,1,0,1,---,0,1) if m is even
and
1.0.1.0.---.1 if mi
b(ﬁ(m)): (07 707 707 5 70) | m!S Odd (18)
(1,0,1,0,---,1,0) if m is even

When there is no ambiguity, we will drop the superscripts frgftt) and 5™ for notational ease.
Now, what we know is that} € [2"~!, o] andn} € [[£2™], 3. In fact, it can be directly verified
from the expression fom that [% 2m] = a — 2™~ 4+ 1. We wish to show tha}p_ Un: < k(r,m) —
7(r, m). We will do this in two steps: first, we show in Lemma 10 below tEaUn; <Uy+Ug+ Uy,
and then, we prove in Lemma 11 thiét + Us + Uy = k(r,m) — 7(r,m).
Write n} = a—iandn} = 8—j, so thaty} = 2" — (n}+n3) = i+j+1, wherei € [0,a—2m"!]
and;j € [0, 8 — (o — 2™~ 4 1)]. The following lemma shows th&t Un: < Ua + Ug +Us.



Lemma10. Fori € [0, — 2™~ 1], andj € [0, 8 — (o — 2™~ + 1)], we have

(Ua = Ua—i) + (Ug = Us—j) = Uirjt1 — UL

Proof. See Appendix B. O
Lemmall. U, + Ug+ Uy = k(r,m) — 7(r,m).

Proof. The minimum distance of R, m) is 2"~". Since we have assumed m — 1, the minimum
distance is at least 2, and hentg,= 0. In Appendix C, we show the following: when > 2r,

r—1 1 4o . _
U, = Zi:_(i Hretmm ==z s =a (19)
Yoy k(r—1—14,m — 2i) if s =0.

Examining the above summations term-by-term, it may be verified that the altermmatede the right-
hand side of (13), beginning with(r — 1, m — 1), sum toU,,, while the remaining terms sum ;.
Hence, whemn > 2r, the statement of the lemma holds.
Whenm < 2r, we show in Appendix C that
m—1
0. — Z%k(r—l—i,m—l—%) if m is odd (20)
Yoy k(r—1—i,m—1-2i) if miseven

and
m—1

>4 k(r—1—i,m—2i) if misodd

Ug = i
Zik(r—1—14,m—2i) if miseven

(21)

This time, it can be seen that the alternate terms on the right-hand side obét#)ning withk(r —
1,m—1), sumtoU,, while the remaining terms sum &d;. This completes the proof of the lemmal]

With this, the proof of Theorem 8 is complete.

6 Concluding Remarks

In this paper, we proved the surprising fact that for the families of MDER@ed-Muller codes, if we
use the maximum dimension of local constraint codes to measure the complexigyaghical realiza-
tion, then there is no advantage to be gained in going from trellis realizatioyslmftee realizations
on more complex tree topologies. This is particularly surprising for ReelifeMeodes, given that they
have a natural binary-tree structure arising from the recufsive+ v| construction (see e.g. [5]). Of
course, the situation could be different if we used some other measuhefoomplexity of a graphical
realization, for example, the sum of the local constraint dimensions.

It is also quite remarkable that the proof strategy outlined in Section 3 — naichehyifying in any
cubic treeT" a nodev € V(T') such thatx, > 7(C) for everytree decomposition of the codeon
T — succeeds for MDS and Reed-Muller codes. As noted in that sectionstthiegy ignores the
role played by the coordinate assignmenin determining the local constraint code dimensien, It
seems unlikely that this method of proof would succeed for other code famitiegould of course
be interesting to devise a set of tools that could be used to compute treewidtimpdy to determine
whether or not treewidth can be strictly less than trelliswidth, for other famifiefgebraic codes.



Appendix A: Proofs of Propositions 6 and 7

In this appendix, we compute the branch complexity of the minimal trellis reptagsamof RM(r, m)

in the standard bit order, from which the expressions in Proposition & amd obtained. We refer the

reader to the survey by Vardy [14] for the necessary backgroarideotheory of trellis representations.
Let 7(r,m) ando(r, m) denote, respectively, the branch complexity and state complexity of the

minimal trellis representation of R, m) in the standard bit order. Berger and Be’ery [1] gave an

explicit expression foe (r, m):

min{r,m—r—1} (m —9j - 1>
o(r,m) = Z , .

71 —_—
i=0 J

A different derivation of the above was given by Blackmore and NofgpnWe rely heavily on tools
from [2] to prove the following result, which is equivalent to Proposition 6.

Proposition 12.
o(r,m) if m>2r41,
T(r,m) = _
olr,m)+1 ifm<2r+1.

We introduce some terminology and notation that will be needed in the proad prtiposition. Let
C be the code RNF, m) in the standard bit order, and tet= 2. Let7 be the minimal trellis of. For
i=0,1,...,n,the dimension of the state space at depith7 is denotedr;. Thus,o(r, m) = max; o;.
Fori =0,1,...,n — 1, we denote by the dimension of the branch space between the state spaces at
depthsi andi + 1; then,7(r, m) = max; 7.

The following definitions were made in [2] for< i < n — 1:

(@) if dim(Cpiy1,n—1)) = dim(C;_y,—1)) — 1, theni is called gpoint of gainof C; and
(b) if dim(Cjg ;) = dim(Cjp ;1)) + 1, theni is called gpoint of fall of C.

As per our notation from Section b(i) denotes ther-bit binary representation 6f0 < i < n—1.
Let |b(7)|o and|b(i)|; denote the number @k andls, respectively, itb (7).

Lemma 13 ([2], Proposition 2.2) For0 <i <n — 1,
(a) 7 is a point of gain ot iff [b(i)|; < 7;

(b) i is a point of fall ofC iff [b(i)|o < 7.

Proof of Proposition 12 It is a fact that for any minimal trellis representation, branch complexity
either is equal to the state complexity or is exactly one more than the state complexigrticular,
o(r,m) <7(r,m) < o(r,m)+ 1. So, to prove Proposition 12, it suffices to show that

7(r,m) = o(r,m) + 1iff m < 2r. (22)

Suppose that(r, m) = 7; for somei € [0,n — 1]. From the local behaviour &f described in [2,
p. 44], it follows that we can have = o(r,m) + 1 iff o; = o(r,m) andi + 1 is a point of gain as well
as a point of fall ofC.

Thus, ifr; = o(r,m) + 1, then by Lemma 135 = |b(i + 1)|1 + |b(i + 1)|o < 2r. This proves the
“only if” direction of (22).

Conversely, suppose: < 2r. The proposition is clearly true i = r, since RMm,m) =
{0,1}%", and we haver(m,m) = 0 andr(m,m) = 1. So, we may assume > r + 1. Takei to be

10



such thatb(i) = (0,0...,0,1,0,1,0,...,1,0), with |b(z)[; = m —r — 1. Then, by Theorem 2.11 in
[2], 05 = o(r,m). Also,b(i+1) = (1,0,...,0,1,0,1,0,...,1,0), with [b(i 4+ 1)|; = m —r < r and
|b(i+1)|p = m— (m —r)=r. Hence, by Lemma 13,+ 1 is a point of gain as well as a point of fall
of C. Hence,;r; = o(r,m) + 1, which completes the proof of (22), and hence, of Proposition 121

We next present the algebraic manipulations needed to prove Proposition 7

Proof of Proposition 7 We divide the proof into three cases.
Case 1m > 2r + 1. We have

krom) —7(rm) = 3 (" _i<m;ijj_1>

2 ()%
-2 ()2
= 2|6)- )

II= =

]

[\~

=

|

M =

Y

— L E

b.g -

| =
I =

= \_}
-~
~_

k(r—1—1[i/2],m —1—1).

In the above chain of equalities, equality (a) uses the fact that for irgeger b and; > 1, we
have (7) — (%) = 4=, (;%,); this is just repeated application of the ident(t) = (7-}) + (*").
Equallty (b) is obtained by exchanging the order of the summationatinl ;.

Case 2:m = 2r. Here,

k(r,m) —7(r,m) = ;0 (T) -1 —g (m ; i]j— 1>
_ ; (T) > m_Q(Tj_]) _ 1)

and now we carry on from equality (a) of Case 1.

11



Case 3m < 2r — 1. This is the most tedious case. We start with

k(r,m) —7(r,m) = Ji; <T) 1 mj_ZTO_I <m ; 3jj_ 1)
20 2.0
2r—m

m—1—1
SRV

Now, forj > 1, write (Z”) = (") - (?) =yt (m__l‘z) Hence,

J Jj—1

2r—m m m—12r—m m—1—i

> ( ) => Y < . > (24)
=1 N i=0 j=1 i1

Also,
2(m—r—1) r—[i/2]

m—1 r—[i/2] X

—1 - —1-=

>y ") e (M) (25
= Jj=2r—m+1 J 1=0 j=2r—m+1 J

aswhen > 2(m —r —1)+ 1, we haver — [i/2] < 2r —m, so that the inner summati(ﬁ;g’flﬁl

is empty. Plugging (24) and (25) into (23), we find that

m—1r—[i/2] 1 m—1
k(r,m) — =3 ¥ <m ! )—;k(r—l—[i/ﬂ,m—l—i).

=0 j=1

This completes the proof of Proposition 7. O

Appendix B: Proof of Lemma 10

We recast the statement of Lemma 10 into an equivalent statement about t@pegsentations of
integers. From (12) and the notion of points of fall from [2] (see AmleR\), we see that fol <

s < 2™, Uy is equal to the number of points of fall of RIM m) within the interval[0, s — 1]. Thus, by
Lemma 13U, is equal to the number of integers[ih s — 1] whosem-bit binary representations have
at leastmn — r 1s.

For an integey € [0,2™ — 1], let wt(j) denote the Hamming weight of (i.e., the number of 1s in)
the binary representatids(j). For a subset C [0,2™ — 1], letw;(S) denote the number of integers
j € S withwt(j) > i. We setw;() = 0. Then, Lemma 10 is equivalent to the following assertion: for
i€[0,a—2m"1andj € [0,8— (o —2m"1 4 1)], we have

win—r(lv =i, 0 = 1]) + wi—([6 = 5, 6 = 1]) = wm—r([1,7 + j]). (26)

Since Lemma 10 needs to be shown for any RWh) with 0 < r < m — 1, we see that (26) must be
shown for anym —r € {1,2,...,m}. With this in mind, we define fo6 C [0,2" — 1],

W (S) = [wi(S) w2(S) -+ w(S)].

12



As usual, we will drop the superscript:) when it can be gleaned unambiguously from the context.
Proposition 14. For m > 2 and0 < 4,j < (™ — 2m~1 we have

wi ([l — i, o™ — 1) 4w (30 — 5, 0 —1]) > W™ ([1,4 + j]), (27)
with the inequality above holding componentwise.

Observe that this proposition is slightly stronger than Lemma 10, since the latieremuires
0<j<p™ —(alm—2m=141), Itis easy to verify thaB™ — (a(™) —2m~1 1 1) < o(m) —2m-1,
The remainder of this appendix is devoted to a proof of Proposition 14.pida is by induction on
m, which is why we have taken care to include the superscripts and 5 in the statement of the
proposition. The main ingredients in the inductive proof are the simple fadt§aha non-negative
integer;j, wt(25) = wt(j) and w25 + 1) = wt(j) + 1. The rest is merely careful bookkeeping.

Let P(™) (i, j) denote the inequality in (27). The induction argument is built upon certain implica
tions among the”(") (i, j), as stated in the series of lemmas below. We introduce here some notation

that we will use in the proofs of these lemmas. For a set of integjense write2.S and2S + 1 to mean
the sets{2j : j € S} and{2j + 1 : j € S}, respectively. Bylf:?b)], with1 < a < b < m, we mean
the vector[z; zo ... zp), With z; = 1 fora < i < b, andz; = 0 otherwise. Again, we will drop the

superscrip{m) when there is no ambiguity.

Lemma 15. For evenm, P (i, j) implies P("+1(2i 4+ 1,2j5). For odd m, P (i, ) implies
P41 (24,25 +1).

Proof. For evenm, we haven+1) = 24(™) 1 1, andp(™+) = 25 SetS = [a(™ — i, (™) —1]
andT = [ — j, 3™ — 1]. Now, P(™) (4, 5) implies

w(m D (28) + wm+l (27
w(mtD (28 4+ 1) + wmHD (27 4 1)

wlm D (2[1,0 + 4)) (28)

>
> wmt(Q[1,i 4 j] 4+ 1) (29)

since wt2j) = wt(j) and wi2;j + 1) = wt(j) + 1 for any non-negative integgr Henceforth, all the
w’s in this proof arew (™ 1’s. Combining (28) and (29), we have
w([2a(™) — 2,200 —1]) + w([26 — 25,280 —1]) > w([2,2i + 2j + 1]),
which is the same as
w(a™t) — 2 — 1, o) — 9]y 4 w([p0mTD) — 25, 0D 1)) > w([2,2i + 25 +1]).  (30)

Now, w([1,2i 4+ 25 + 1]) = w([2,2i +2j +1]) + 18’31). Also, w ([ —2i — 1, a(m+1) 1)) =

w([alm D) —2i —1,a(m+) —2)) £ 16" since wia(" D) — 1) = wi(2a("™) = wt(a (™) = m /2,
by (17). Therefore, ’

w([a™D — 2 — 1,0 — 1)) 4 w(pm T — 25,60 +Y _1]) > w([1,2i + 25 +1]), (31)
which is P(+1)(2i 4 1, 2j).
The proof for oddn is along similar lines. O
Lemma16. (a) Whena!™ — i is even, the two inequalitieB(™) (i, j) and P(™) (i + 2, j) together
imply P (i + 1, ).
(b) When3(™) —j is even, the two inequalitie®™ (i, j) and P("™) (i, j+2) together implyP"™ (i, j+
).

13



Proof. We only prove (a), as the proof of (b) is completely analogous. In thisfpatl omitted super-
scripts are to be taken to lfen).

Letz = wt(a—i—1) andy = wt(i+;j+1). We havew ([a—i—1,a—1]) = w([a—i,a—1])+1} 4,
andw([1,i + j 4+ 1]) = w([L,i + j]) + 13- We want to showP"™) (i + 1, j):

w(la —i,a=1]) + 14 +w([B — 7,8 —1]) > w([L,i+j]) + 11y (32)
If z >y, thenP(™ (4, j) clearly implies (32). So, suppose< 3. Then, (32) becomes
w(la—i,a—=1))+w([B—7,8-1]) 2 w([l,i+j]) + Lzy1y),

or equivalently,

wi([Li+jg)+1 ifa+1<I<y

L . (33)
wi([1,i+ j]) otherwise

wmm—@a—lb+wﬂﬁ—mﬁ—u)z{

Let2’ = wt(a — ¢ — 2) andy’ = wt(i + j + 2). Sincea — i is even, we see that + 1 = x or
a2’ < z. Now, we have

w(la—i-2a-1]) = w(la—ia—=1])+ 1y, + 11 (34)
w(lLi+j+2) = w([Li+g])+1p,+1py (35)
Thus,P(™) (i 4 2, j) is equivalent to
w(la—i,a=1]) + 1o +W([B—7,8—1]) > W([l,i+j]) + Ljpy14 + Ly (36)
Using the fact that’ < z, (36) implies that forr + 1 <1 < y,
wi(fa —i,a = 1)) +wi([B— 4,8 = 1]) = wi([1,i+j]) + 1.

SinceP("™ (4, 5) clearly implies the “otherwise” part of (33), we have shown tR&®) (7, j) and P (i+
2, j) together imply (33), i.e.P"™ (i + 1, 5). O

Lemma 17. For evenm, the following implications hold:

(@ P (i,j) = P™(2i+1,2j);

(b) P(m) (i—1,79) /\P(m)(z Jj) = P(m+1)(22 27);

(€) P (i, ) AP (3,5 +1) = P24 +1,25 + 1);

(d) P (i —1,5) APU (i, 5) APC (i — 1,5 +1) APU (5,5 +1) = P™+1)(24,25 4 1).
Proof. (a) follows directly from Lemma 15.

(b): If PU™ (5 —1,5) andP™) (i, j) are true, then by Lemma 15, we hak€"+1) (2; — 1,25) and
P+ (2 + 1,27) being true. Sincen + 1 is odd, a1 is odd (see (17)). It now follows from
Lemma 16(a) thaP™+1)(2i, 25) holds.

(c): This follows by an argument similar to part (b), except that Lemma)li§@pplied.

(d): By part (b),P(™+1) (24, 25) andP("+1)(2i, 2j+2) hold. Therefore, by Lemma 16(kp("+1) (2i, 25+
1) holds. O

Arguments similar to those used in the above proof show the next result.
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Lemma 18. For oddm, the following implications hold:
(@) P (i, j) = P (24,25 4 1);
(b) P (i, 5 — 1) A P™(i,5) = PU"1)(24,25);
(€) P (i, ) AP (i 4+1,5) = P24+ 1,25 +1);
(

(d) P (i, 5 —1) AP (i, 5) AP (i 41,5 — 1) AP (i 4 1,5) = P (20 4 1,25).

We are now in a position to prove Proposition 14.

Proof of Proposition 14 Set/(™) = (™) — 2m=1 We wish to show that fom > 2, P(™) (i, j) holds
for0 < 1,7 < ™). Itis easy to verify this directly fom = 2 andm = 3, so we start the induction by
assuming that for some odd > 3, P(™)(i, 5) holds for0 < i,j < (™).

For oddm, the implications in Lemma 18 are enough to show ﬁﬁﬁ’f“)(i,j) holds forl < i <
200m) and1 < j < 2¢(™ 4+ 1. Note also that for oden, we have/(m+1) = 2¢(™) as can be verified
from (15). SinceP™+1)(0,0), P+ (0, 1) andP(™+1) (1, 0) trivially hold, we have thaP("+1) (i, )
holds for0 < i < ¢+ and0 < j < ¢(m+1) 41,

Now, m + 1 is even, and we have shown above tR&t*+1)(i, j) is true for0 < i < ¢(™+1) and
0 < j < ¢m+D) 4 1. The implications in Lemma 17 are then sufficient to show #&t*2) (4, j) holds
for 1 <i,j < 200"+ 4 1. Again, P(™+2)(0,0), P(™+2)(0,1) and P(™+2)(1,0) can be seen to hold
trivially, so P(+2) (i, 5) in fact holds for0 < i, < 2¢(™+D 4 1. This completes the induction step,
since for evenn + 1, it follows from (15) that/("+2) = 2¢(m+1) 4 1, O

As observed earlier, Proposition 14 proves Lemma 10.

Appendix C: Computing U, and U

To derive the expressions in (19)—(21), we make use of (5) andudt iEfsWei [15] that explicitly
determines the generalized Hamming weight hierarchy of /®M). Any non-negative integer <
k(r,m) can be uniquely expressed as a sum

¢
u= Z k(ri, m;), (37)
=1
wherer > r;1 >rog > ... > 1, >0, m > mqy > mg > ... > my > 0, and for alli, m; —r; =
m —r +1—1i[15, Lemma 2]. The above representation is called(ihe:)-canonical representation
of u.

Theorem 19 ([15], Corollary 6) For 0 < u < k(r,m), given the uniquér, m)-canonical representa-
tion of u as in (37), we have, (RM(r,m)) = S3¢_, 2.

For convenience, we will henceforth wridg (RM(r, m)) simply asd,,.
Assume thatn > 2r. We want to show that (19) holds. We will only prove here the result for
s = a, as the result fos = (§ can be proved analogously. L&be the integer given by

0= k(r—im+1-2i). (38)
=1

Note that the above is the-, m)-canonical representation af. By Theorem 19, we haveé; =
St 2m =2 binary form,b(d;) = (0,0,...,0,0,1,0,1,...,0,1), the number of 1s ilb(d;)
beingr. Comparing this with the binary form ef given in (17), it is clear thai; < a.
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Next, writet + 1 as

ﬂ—f—l:Zk(r—i,m—f—l—2i)+k(0,m—2r)7
i=1

using the fact thak(0, m — 2r) = (mgw) = 1. This is again in(r, m)-canonical form, and hence by
Theorem 19, we hawé, ;1 = >__, 2™ 1204 9m=27 |n binary form, this i (dsz+1) = (0,0,...,0, 1,
1,0,1,...,0,1), the number of 1s here beimg+ 1. Comparing with (17), we see that< d; 1.
Sinced; < o < dg1, we have by (5){/, = . Observe that; as given by (38) is precisely equal
to the claimed value df’,, in (19).
Now, assumen < 2r. We wish to show (20) and (21). We sketch the proof for (21) hereptbef
for (20) is similar. Set

m—1
ao )X k(r—1—im—20) ifmisodd
Zik(r—1—14i,m—2i) if miseven

The above is thér, m)-canonical representation of and hence,

212m7% if mis even

m—1 .
. {Zﬁl 2m=2 if m is odd

Comparingb(d;) with b(/3) given in (18), it can be seen thét < .
The (r, m)-canonical representation af+ 1 is given by

m_

2 k(r—1—d,m—20)+k(r—3,1) if m is even

i=1

m—1
{Ziﬁk(rliam%)—l—k(rlngl,()) if m is odd

Again, d;+1 can be obtained from Theorem 19, and the subsequent comparisoranf forms shows
that3 < dy4+1. Hence, by (5), we havEs = @, which proves (21).
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