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Abstract

The constraint complexity of a graphical realization of a linear code is the maximum dimension
of the local constraint codes in the realization. The treewidth of a linear code is the least constraint
complexity of any of its cycle-free graphical realizations. This notion provides a useful parametriza-
tion of the maximum-likelihood decoding complexity for linear codes. In this paper, we prove the
surprising fact that for maximum distance separable codes and Reed-Muller codes, treewidth equals
trelliswidth, which, for a code, is defined to be the least constraint complexity (or branch complex-
ity) of any of its trellis realizations. From this, we obtainexact expressions for the treewidth of these
codes, which constitute the only known explicit expressions for the treewidth of algebraic codes.

1 Introduction

A (normal) graphical realization of a linear codeC consists of an assignment of the coordinates ofC
to the vertices of a graph, along with a specification of linear state spaces and linear “local constraint”
codes to be associated with the edges and vertices, respectively, of the graph [4]. Cycle-free graphical
realizations, or simplytree realizations, are those in which the underlying graph is a tree. Tree realiza-
tions of linear codes are interesting because the sum-product algorithm (SPA) on such a realization is an
exact implementation of maximum-likelihood (ML) decoding [16]. The notion of constraint complexity
of a tree realization was introduced by Forney [5] as a measure of the computational complexity of the
corresponding SPA algorithm. It is defined to be the maximum dimension among thelocal constraint
codes constituting the realization. Thetreewidthof a linear code is the least constraint complexity of
any of its tree realizations.

The minimal tree complexity measure defined for linear codes by Halford and Chugg [6] is a close
relative of treewidth. There are also closely related notions of treewidth defined for graphs [3] and
matroids [7]; these relationships are discussed in more detail in [10]. Known facts about the treewidth
of graphs and matroids imply that computing the treewidth of a code is NP-hard.

For a length-n linear code over the fieldFq, the computational complexity of implementing ML
decoding, via the SPA on an optimal tree realization, isO(nqt), wheret is the treewidth of the code
[10]. In particular, ML decoding is fixed-parameter tractable with respect to treewidth, which means
that for codes whose treewidth is bounded by a fixed constantt, ML decoding can be performed in
polynomial time. Thus, treewidth provides a useful parametrization of ML decoding complexity.

Trellis representations (or trellis realizations) of codes are special cases of tree realizations which
have received extensive attention in the literature (see e.g., [14]). In thecontext of trellis representations,
constraint complexity is usually called branch complexity. We define here thetrelliswidth of a code to
be the least branch complexity of any of its trellis representations (optimized over all possible orderings
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of the coordinates of the code). As trellis representations are instances of tree realizations, trelliswidth
is at least as large as treewidth. In fact, it is known that trelliswidth can be muchlarger than treewidth:
it was shown in [11] that the ratio of trelliswidth to treewidth can grow at most logarithmically with
blocklength, and that there are codes with arbitrarily large blocklengths that achieve this logarithmic
growth rate. The only known code family achieving logarithmic growth rate of this ratio is a family
consisting of cut-set codes of a certain class of graphs. The codes in this family all have treewidth equal
to 2, and rate approximately1/4, but minimum distance only 4 [10].

It is not known if there are any other code families for which there is a significant advantage to
be gained in going from trellis representations to tree realizations that are topologically more complex.
In the only previous investigation reported on this question, Forney [5] considered the family of Reed-
Muller codes. He showed that for a certain natural tree realization of Reed-Muller codes, obtained
from their well-known recursive|u|u + v| construction, the constraint complexity is, in general, strictly
larger than the trelliswidth of the code. But this still leaves open the possibility that there may be other
tree realizations whose constraint complexity beats trelliswidth. In particular,it leaves undecided the
question of whether the treewidth of a Reed-Muller code can be strictly less than its trelliswidth.

In this paper, we show that for Reed-Muller codes, treewidth is equal to trelliswidth. The proof of
this makes use of structural properties known for optimal trellis realizations of Reed-Muller codes, and
also relies strongly on a certain separator theorem for trees. A similar proof strategy also works on the
much simpler case of maximum distance separable (MDS) codes, where againwe show that treewidth
equals trelliswidth. These results yield the first explicit expressions for thetreewidth of classical alge-
braic codes.

The rest of this paper is organized as follows. After providing the necessary definitions and notation
in Section 2, we describe, in Section 3, our proof strategy for showing that treewidth equals trelliswidth
for certain codes. Sections 4 and 5 deal with MDS and Reed-Muller codes, respectively. The technical
details of some of the proofs are given in appendices.

2 Preliminaries and Notation

The notation[n] denotes the set of positive integers from 1 ton; [a, b] denotes the set{i ∈ Z : a ≤
i ≤ b}. An (n, k) linear code is a code of lengthn and dimensionk. Then coordinates of the code are
indexed by the elements of an index setI; unless specified otherwise,I = [n]. Given a linear codeC
with index setI, for J = {j1, j2, . . . , js} ⊆ I, the shortening ofC to the coordinates inJ is denotedCJ

and defined as follows:

CJ = {cj1cj2 . . . cjs
: c1c2 . . . cn ∈ C, ci = 0 for i /∈ J}.

The notions of treewidth and trelliswidth are central to this article, and we define these next.

2.1 Treewidth and trelliswidth

For brevity, we provide only the necessary definitions and main results; for details, see [5],[10].
A tree is a connected graph with no cycles. The set of nodes and the set of edges of a treeT are

denoted byV (T ) andE(T ), respectively. Degree-1 nodes in a tree are calledleaves, and all other nodes
are calledinternal nodes. We letL(T ) denote the set of leaves ofT . A tree is apath if all its internal
nodes have degree 2; and is acubic treeif all its internal nodes have degree 3. A path with at least one
edge has exactly two leaves; a cubic tree withn leaves hasn − 2 internal nodes.

Let C be an(n, k) linear code with index setI. A tree decompositionof C is a pair(T, ω), whereT
is a tree andω : I → V (T ) is an assignment of coordinates ofC to the nodes ofT .

Given a tree decomposition(T, ω) of C, for each nodev of T , we define a quantityκv as follows.
Let E(v) denote the set of edges ofT incident onv. For e ∈ E(v), let Te,v denote the component of
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T − e (T with e removed) notcontainingv. Finally, letIe,v = ω−1(V (Te,v)) be the set of coordinates
of C that are assigned to nodes inTe,v. Then,

κv = k −
∑

e∈E(v)

dim(CIe,v
). (1)

The quantityκv above is the dimension of the local constraint code at nodev in the minimal realization
of C on (T, ω), denoted byM(C; T, ω).

Let κ(C; T, ω) = max
v∈V (T )

κv denote the constraint complexity ofM(C; T, ω). The treewidth of a

codeC, denoted byκ(C), is then defined as

κ(C) = min
(T,ω)

κ(C; T, ω). (2)

It is, in fact, enough to perform the minimization in (2) over cubic treesT with n leaves, and mappings
ω that are bijections betweenI andL(T ).

The trelliswidth ofC, which we will denote byτ(C), can be defined using the above notation as
follows:

τ(C) = min
π

κ(C; P, π), (3)

whereP is the path onn nodes, and the minimization is over mappingsπ that are bijections betweenI
andV (P ). From (2) and (3), it is clear thatκ(C) ≤ τ(C).

Let v1, v2, . . . , vn be the nodes of the pathP , listed in order from one leaf to the other. For the
bijectionπ : I → V (P ) that mapsi to vi (1 ≤ i ≤ n), we obtain from (1),

κvi
= k − dim(Cπ[1,i−1]) − dim(Cπ[i+1,n]), (4)

whereπ[a, b] = {π(j) : a ≤ j ≤ b}.

2.2 Generalized Hamming weights

The generalized Hamming weights of a linear code, introduced and studied in [15], limit the possible
dimensions of shortened versions of the code. So, they are related to the complexity of tree realizations
in a natural way.

Let C be an(n, k) linear code with index setI. We will use the notationD ⊑ C to say thatD is a
subcode ofC. For a subcodeD ⊑ C, we define its supportχ(D) = {i : ∃ c1c2 . . . cn ∈ D s.t.ci 6= 0}.
The p-th generalized Hamming weight ofC, denoteddp(C), is the size of the smallest support of a
p-dimensional subcode ofC, i.e.,dp(C) = min{|χ(D)| : D ⊑ C, dim(D) = p} for 1 ≤ p ≤ k. It is
known that0 ≤ d1(C) < d2(C) < · · · < dk(C) ≤ n. Also,d1(C) is the minimum distance ofC.

A closely related definition is that of maximal limited-support subcode dimensions. For 1 ≤ s ≤
n, Us(C) is defined to be the maximum dimension of a subcode ofC with support at mosts, i.e.,
Us(C) = max{dim(D) : D ⊑ C, |χ(D)| ≤ s}. The maximal limited-support subcode dimensions can
be computed using the generalized Hamming weights as follows:

Us(C) = u such thatdu(C) ≤ s < du+1(C) (5)

with the convention thatd0(C) = 0 anddk+1(C) = n + 1. We also defineU0(C) = 0.

3 The Proof Strategy

From the relevant definitions, treewidth cannot exceed trelliswidth for anycodeC, i.e., κ(C) ≤ τ(C).
We now describe a general strategy that can be used to show the oppositeinequality in certain cases.
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Consider an(n, k) linear codeC, with index setI. The idea of using maximal limited-support
subcode dimensions to study the complexity of trellis realizations ofC was introduced in [9]. We extend
that idea to tree realizations here. ForJ ⊆ I, CJ is a subcode ofC with support at most|J |. So,
dim(CJ) ≤ U|J |(C). Therefore, given any tree decomposition(T, ω) of C, we obtain from (1) that for
anyv ∈ V (T ),

κv ≥ k −
∑

e∈E(v)

U|Ie,v |(C). (6)

Now, recall from the definition of treewidth that it suffices to carry out theminimization in (2) over
tree decompositions(T, ω) in whichT is a cubic tree withn leaves, andω is a bijection betweenI and
L(T ). For such a(T, ω), we note that|Ie,v| is simply the number of leaves inTe,v, and for an internal
nodev ∈ V (T ), the summation in (6) contains exactly three terms.

Let ne,v denote the number of leaves inTe,v, and note that these numbersne,v are determined purely
by the topology ofT . At an internal nodev in a cubic treeT with n leaves, we will list the edges inE(v)
in the form of an ordered triple[e1(v) e2(v) e3(v)] such that1 < ne1(v),v ≤ ne2(v),v ≤ ne3(v),v < n. If
the nodev is clear in the context, we will use the simplified notationni = nei(v),v for i = 1, 2, 3.

Suppose thatT is a cubic tree withn leaves having an internal nodev such that the numbers
n1, n2, n3 satisfy

∑3
i=1 Uni

(C) ≤ k − τ(C). Then, by (6), for any bijectionω betweenI andL(T ),
we haveκv ≥ τ(C), and henceκ(C; T, ω) ≥ τ(C). Consequently, if every cubic tree withn leaves had
such a nodev, then we would haveκ(C) ≥ τ(C). Since the opposite inequality is always true, we have
proved the following proposition.

Proposition 1. LetC be an(n, k) linear code with the property that for any cubic treeT with n leaves,
there always exists an internal nodev ∈ V (T ) such that

∑3
i=1 Uni

(C) ≤ k−τ(C), whereni = nei(v),v.
Then,κ(C) = τ(C).

A comment on the proof strategy implied by Proposition 1 is in order. To show that κ(C) ≥ τ(C)
(and hence,κ(C) = τ(C)), the obvious strategy would be to show, for each tree decomposition(T, ω)
of C, the existence of a nodev ∈ V (T ) for whichκv ≥ τ(C), whereκv is given by (6). In general, the
nodev would depend on the treeT as well as on the coordinate assignmentω. However, in the proof
method based upon Proposition 1, the idea is to find, for a given(T, ω), a nodev ∈ V (T ) that depends
only on the topology ofT , and thus, isindependentof ω, for whichκv ≥ τ(C) holds. It is a remarkable
fact that this proof strategy can be made to work for MDS and Reed-Mullercodes, as we will see in
Sections 4 and 5.

The hypothesis of Proposition 1 requires the existence of a node in any cubic tree, whose removal
partitions the tree into components with a certain property. The property in this case is that the cor-
responding partition of the number of leaves,n, into n1, n2, n3 satisfies

∑3
i=1 Uni

(C) ≤ k − τ(C).
Structural results of this form are known as separator theorems (seee.g., [13])

A classical separator theorem is a theorem of Jordan [8] that states thatany tree onn nodes has
an internal node whose removal leaves behind connected components withat mostn/2 nodes each. A
trivial modification of the simple proof of this theorem shows that the two occurrences of “nodes” in the
theorem statement can be replaced by “leaves”. For easy reference,we record this as a proposition for
the special case of cubic trees.

Proposition 2. In any cubic tree withn ≥ 3 leaves, there exists an internal nodev such thatnei(v),v ≤
n/2 for i = 1, 2, 3.

Another classical (edge) separator theorem is the following result (cf.[13]): every cubic treeT with
n leaves contains an edgee such that both components ofT − e have at most2n/3 leaves. Now, one
of these two components must have at leastn/2 leaves; letv be the node incident withe for which this
component isTe,v. Then, for thisv, we haven3 ∈ [n/2, 2n/3]. We record this fact below.

Proposition 3. In any cubic tree withn ≥ 3 leaves, there exists an internal nodev such thatne3(v),v ∈
[n/2, 2n/3].
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As we will see in the next two sections, Propositions 2 and 3 allow us to deal withMDS and Reed-
Muller codes, respectively. We consider MDS codes first.

4 Treewidth of MDS Codes

MDS codes are(n, k) linear codes for which the minimum distance equalsn− k + 1. Basic facts about
MDS codes can be found in [12].

Let C be an(n, k) MDS code, with index setI = [n]. The generalized Hamming weights ofC were
computed in [15] as follows:

dp(C) = n − k + p, 1 ≤ p ≤ k.

From this, the maximal limited-support subcode dimensions,Us(C) for 1 ≤ s ≤ n, can be determined
using (5). They are given by

Us(C) =

{

0, 1 ≤ s ≤ n − k,

q, s = n − k + q, q = 1, 2, · · · , k.
(7)

Equivalently,Us(C) = max{0, s − (n − k)}. We use this to computeτ(C) next.
Let H be a parity-check matrix forC. For a subsetJ ⊆ I, the codeCJ has dimension equal to

|J | − rank(H|J), whereH|J refers to the restriction ofH to the columns indexed byJ . As C is MDS,
rank(H|J) = min{|J |, n − k}. Hence,dim(CJ) = max{0, |J | − (n − k)} = U|J |(C). Therefore, for
any permutationπ of I, we have for integers1 ≤ a ≤ b ≤ n, dim(Cπ[a,b]) = Ub−a+1(C). Therefore,
the right-hand-side of (4) is always equal tok − Ui−1(C) − Un−i(C). It follows directly from this that

τ(C) = max
1≤i≤n

(k − Ui−1(C) − Un−i(C)) = k − min
1≤i≤n

(Ui−1(C) + Un−1(C)).

A straightforward computation using (7) yields

min
1≤i≤n

(Ui−1(C) + Un−i(C)) =

{

0, if n − k ≥ k,

2k − n − 1, if n − k < k.

achieved fori = n − k + 1. We thus have the following result.

Proposition 4. The trelliswidth of an(n, k) MDS codeC is given byτ(C) = min{k, n − k + 1}.

With this, we have
k − τ(C) = max{0, 2k − n − 1}. (8)

We can now prove that the treewidth of an MDS code equals its trelliswidth.

Theorem 5. For an (n, k) MDS codeC, we have

κ(C) = τ(C) = min{k, n − k + 1}.

Proof. The statement is trivial forn = 1, 2, or whenk = n, so we assumen ≥ 3 and1 ≤ n − k. Let
T be a cubic tree withn leaves, and letv be the node guaranteed by Proposition 2. We will show thatv
satisfies the hypothesis of Proposition 1.

Setni = nei(v),v, i = 1, 2, 3, and recall that, by definition,n1 ≤ n2 ≤ n3. By choice ofv, we also
haveni ≤ n/2 for i = 1, 2, 3. For convenience, we writeUni

for Uni
(C).

Case 1:n − k ≥ k.
In this case,ni ≤ n/2 ≤ n − k, so that

∑

i Uni
= 0 by (7). Moreover, by (8),k − τ(C) = 0.

5



Case 2:1 ≤ n − k < k.
Now, we haveni ≤ n/2 < k. We must show that

∑

i Uni
≤ 2k − n − 1. If n3 ≤ n − k, then

∑

i Uni
= 0. So, we assumen3 = k−δ, with 1 ≤ δ < 2k−n. Then,Un3

= n3− (n−k) = 2k−n−δ
andn1 + n2 = n − n3 = n − k + δ. So, we have

Un1
+ Un2

+ Un3
= max{0, k − n + n1} + max{0, k − n + n2} + 2k − n − δ

≤ max{0, k − n + n1, k − n + n2, 2k − 2n + n1 + n2} + 2k − n − δ

= max{2k − n − δ, 3k − 2n + n2 − δ, 3k − 2n}

≤ 2k − n − 1,

where the last inequality holds becauseδ ≥ 1, n2 ≤ n − k + δ − 1 andn − k ≥ 1.

Thus, in both cases, we see that
∑

i Uni
≤ k − τ(C), and so, by Proposition 1, we haveκ(C) =

τ(C).

5 Reed-Muller codes

For a positive integerm and a non-negative integerr with 0 ≤ r ≤ m, the r-th order binary Reed-
Muller code of length2m, denoted RM(r, m), is defined as follows. LetPm

r denote the set of all
Boolean polynomials inm variables of degree less than or equal tor. For an integeri, 0 ≤ i ≤ 2m − 1,
with binary expansioni =

∑m−1
j=0 bj(i)2

j , bj(i) ∈ {0, 1}, we letb(i) = (b0(i), b1(i), · · · , bm−1(i)).
Forf ∈ Pm

r , let f(b(i)) = f(b0(i), b1(i), · · · , bm−1(i)). The code RM(r, m) is defined as

RM(r, m) = {[f(b(0)) f(b(1)) · · · f(b(2m − 1))] : f ∈ Pm
r }. (9)

The code RM(r, m) has lengthn = 2m, dimensionk(r, m) =
∑r

j=0

(

m
j

)

, and minimum distance2m−r

[12]. In (9), the order of evaluation of the functionf is according to the index setI = [0, 2m − 1]. This
is called the standard bit order.

We will denote the treewidth and trelliswidth of RM(r, m) by κ(r, m) andτ(r, m), respectively.

5.1 Trelliswidth of RM(r,m)

Let C be the Reed-Muller code RM(r, m) in the standard bit order, so thatI = [0, 2m − 1]. In this
section, we derive an exact expression for the trelliswidth ofC.

Let P be the path onn = 2m nodes, withv0, v1, . . . , vn−1 being the nodes ofP , listed in order
from one leaf to the other. For anyπ : I → V (P ), we obtain from (4), in a manner analogous to the
derivation of (6),

κvi
≥ k(r, m) − Ui(C) − Un−1−i(C),

for i = 0, 1, . . . , n − 1. Thus,

κ(C; P, π) ≥ k(r, m) − min
0≤i≤n−1

(Ui(C) + Un−1−i(C)). (10)

Note that the right-hand-side is independent ofπ, so that by (3),

τ(C) ≥ k(r, m) − min
0≤i≤n−1

(Ui(C) + Un−1−i(C)). (11)

It is shown in [9] that for RM(r, m) in the standard bit order, we have fori = 0, 1, . . . , n − 1,

dim(C[0,i])) = Ui+1(C) and dim(C[i,n−1]) = Un−i(C). (12)

It follows that whenπ simply mapsi to vi for all i ∈ I, then we have equality in (10), and hence, in (11).
To put this another way, the branch complexity of the minimal trellis representation of RM(r, m) in the
standard bit order attains the lower bound on, and thus equals, the trelliswidth of the code. Techniques
from [2] allow us to compute, with very little effort, the branch complexity of this trellis representation.
We give the details of this computation in Appendix A. From this, we obtain the following result.
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Proposition 6. The trelliswidth of the Reed-Muller code RM(r, m) is given by

τ(r, m) =

{

∑r
j=0

(

m−2j−1
r−j

)

if m ≥ 2r + 1,

1 +
∑m−r−1

j=0

(

m−2j−1
r−j

)

if m < 2r + 1.

Recall that the dimension of the code RM(r, m) is given byk(r, m) =
∑r

j=0

(

m
j

)

. We will find

it convenient to definek(r′, m′) to be
∑r′

j=0

(

m′

j

)

for all non-negative integersr′, m′, including when

r′ > m′. with the usual conventions that
(

0
0

)

= 1 and
(

m′

j

)

= 0 for j > m′. Thus, forr′ ≥ m′ ≥ 0,

k(r′, m′) = 2m′
. Following these conventions, we give an expression for the difference k(r, m) −

τ(r, m).

Proposition 7. For the Reed-Muller code RM(r, m), we have

k(r, m) − τ(r, m) =

min{2(r−1),m−1}
∑

i=0

k(r − 1 − ⌈i/2⌉, m − 1 − i).

We present the algebraic manipulations required to prove this proposition in Appendix A.

It is instructive to explicitly write out some of the terms of the summation in the last proposition.
Whenm ≥ 2r, we have

k(r, m) − τ(r, m) = k(r − 1, m − 1) + k(r − 2, m − 2) + k(r − 2, m − 3)

+ k(r − 3, m − 4) + k(r − 3, m − 5)

+ · · · + k(0, m − 2r + 2) + k(0, m − 2r + 1), (13)

and whenm ≤ 2r − 1, we have

k(r, m) − τ(r, m) = k(r − 1, m − 1) + k(r − 2, m − 2) + k(r − 2, m − 3)

+ k(r − 3, m − 4) + k(r − 3, m − 5)

+ · · · + k(r − 1 − ⌈m−2
2 ⌉, 1) + k(r − 1 − ⌈m−1

2 ⌉, 0). (14)

5.2 Treewidth of RM(r,m)

We state below our main result showing that the treewidth of a Reed-Muller code equals its trelliswidth.

Theorem 8. The treewidth of the Reed-Muller code RM(r, m) is given by

κ(r, m) = τ(r, m) =

{

∑r
j=0

(

m−2j−1
r−j

)

if m ≥ 2r + 1,

1 +
∑m−r−1

j=0

(

m−2j−1
r−j

)

if m < 2r + 1.

The rest of this section is devoted to a proof of the above result, which follows the strategy outlined
in Section 3. Some of the technical details of the proof are presented in Appendices B and C.

Let RM(r, m) be given. Ifm ≤ 2, or r = m, then RM(r, m) is an MDS code, which has been dealt
with in Section 4. Henceforth, we will assumem ≥ 3 andr ≤ m − 1.

Let T be a cubic tree withn = 2m leaves,m ≥ 3, and letW = {v ∈ V (T ) : ne3(v),v ∈
[n/2, 2n/3]}. By Proposition 3,W is non-empty. Letv∗ ∈ W be a node that achievesmax{ne3(v),v :
v ∈ W}. Write n∗

i = nei(v∗),v∗ , i = 1, 2, 3.

Lemma 9. We haven/6 < n∗
2 < n/3.
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...

. . .

...

...

v∗ v

n∗
1

n∗
2

n∗
3

Figure 1: Forv, we haven3 = n∗
1 + n∗

3.

Proof. If n∗
2 < n/6, then from the fact thatn∗

1 ≤ n∗
2, we obtainn∗

1 + n∗
2 < n/3, so thatn∗

3 > 2n/3, a
contradiction. So,n2 ≥ n/6. However,n/6 is not an integer forn = 2m, and so,n∗

2 > n/6.
If n∗

2 ≥ n/3, thenn∗
1 + n∗

3 ≤ 2n/3. Let v be the neighbour ofv∗ incident with edgee2(v
∗). Then,

settingn3 = ne3(v),v, we see thatn3 = n∗
1 + n∗

3; see Figure 1. But this means thatn∗
3 < n3 ≤ 2n/3,

which contradicts our choice ofv∗.

We will show that
∑3

i=1 Un∗
i
≤ k(r, m)− τ(r, m), which will prove Theorem 8 by virtue of Propo-

sition 1. Here, and in all that follows, we useUh as shorthand forUh(RM(r, m)),
Denote byα(m) andβ(m) the largest integers in[0, 2n/3] and[0, n/3], respectively. Explicitly,

α(m) =

{

2
3 · 2m − 1

3 if m is odd,
2
3 · 2m − 2

3 if m is even,
(15)

and

β(m) =

{

1
3 · 2m − 2

3 if m is odd,
1
3 · 2m − 1

3 if m is even.
(16)

Equivalently, in binary form,

b(α(m)) =

{

(1, 0, 1, 0, 1, · · · , 0, 1) if m is odd,

(0, 1, 0, 1, · · · , 0, 1) if m is even,
(17)

and

b(β(m)) =

{

(0, 1, 0, 1, 0, · · · , 1, 0) if m is odd,

(1, 0, 1, 0, · · · , 1, 0) if m is even.
(18)

When there is no ambiguity, we will drop the superscripts fromα(m) andβ(m) for notational ease.
Now, what we know is thatn∗

3 ∈ [2m−1, α] andn∗
2 ∈ [⌈1

6 2m⌉, β]. In fact, it can be directly verified
from the expression forα that ⌈1

6 2m⌉ = α − 2m−1 + 1. We wish to show that
∑

Un∗
i
≤ k(r, m) −

τ(r, m). We will do this in two steps: first, we show in Lemma 10 below that
∑

Un∗
i
≤ Uα + Uβ + U1,

and then, we prove in Lemma 11 thatUα + Uβ + U1 = k(r, m) − τ(r, m).
Write n∗

3 = α− i andn∗
2 = β−j, so thatn∗

1 = 2m−(n∗
3 +n∗

2) = i+j +1, wherei ∈ [0, α−2m−1]
andj ∈ [0, β − (α − 2m−1 + 1)]. The following lemma shows that

∑

Un∗
i
≤ Uα + Uβ + U1.
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Lemma 10. For i ∈ [0, α − 2m−1], andj ∈ [0, β − (α − 2m−1 + 1)], we have

(Uα − Uα−i) + (Uβ − Uβ−j) ≥ Ui+j+1 − U1.

Proof. See Appendix B.

Lemma 11. Uα + Uβ + U1 = k(r, m) − τ(r, m).

Proof. The minimum distance of RM(r, m) is 2m−r. Since we have assumedr ≤ m− 1, the minimum
distance is at least 2, and hence,U1 = 0. In Appendix C, we show the following: whenm ≥ 2r,

Us =

{

∑r−1
i=0 k(r − 1 − i, m − 1 − 2i) if s = α,

∑r−1
i=1 k(r − 1 − i, m − 2i) if s = β.

(19)

Examining the above summations term-by-term, it may be verified that the alternate terms on the right-
hand side of (13), beginning withk(r − 1, m − 1), sum toUα, while the remaining terms sum toUβ.
Hence, whenm ≥ 2r, the statement of the lemma holds.

Whenm < 2r, we show in Appendix C that

Uα =







∑

m−1

2

i=0 k(r − 1 − i, m − 1 − 2i) if m is odd,
∑

m−2

2

i=0 k(r − 1 − i, m − 1 − 2i) if m is even.
(20)

and

Uβ =







∑

m−1

2

i=1 k(r − 1 − i, m − 2i) if m is odd,
∑

m
2

i=1 k(r − 1 − i, m − 2i) if m is even.
(21)

This time, it can be seen that the alternate terms on the right-hand side of (14),beginning withk(r −
1, m−1), sum toUα, while the remaining terms sum toUβ. This completes the proof of the lemma.

With this, the proof of Theorem 8 is complete.

6 Concluding Remarks

In this paper, we proved the surprising fact that for the families of MDS and Reed-Muller codes, if we
use the maximum dimension of local constraint codes to measure the complexity ofa graphical realiza-
tion, then there is no advantage to be gained in going from trellis realizations to cycle-free realizations
on more complex tree topologies. This is particularly surprising for Reed-Muller codes, given that they
have a natural binary-tree structure arising from the recursive|u|u + v| construction (see e.g. [5]). Of
course, the situation could be different if we used some other measure forthe complexity of a graphical
realization, for example, the sum of the local constraint dimensions.

It is also quite remarkable that the proof strategy outlined in Section 3 – namely,identifying in any
cubic treeT a nodev ∈ V (T ) such thatκv ≥ τ(C) for everytree decomposition of the codeC on
T — succeeds for MDS and Reed-Muller codes. As noted in that section, thisstrategy ignores the
role played by the coordinate assignmentω in determining the local constraint code dimension,κv. It
seems unlikely that this method of proof would succeed for other code families. It would of course
be interesting to devise a set of tools that could be used to compute treewidth, or simply to determine
whether or not treewidth can be strictly less than trelliswidth, for other families of algebraic codes.
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Appendix A: Proofs of Propositions 6 and 7

In this appendix, we compute the branch complexity of the minimal trellis representation of RM(r, m)
in the standard bit order, from which the expressions in Proposition 6 and7 are obtained. We refer the
reader to the survey by Vardy [14] for the necessary background on the theory of trellis representations.

Let τ(r, m) andσ(r, m) denote, respectively, the branch complexity and state complexity of the
minimal trellis representation of RM(r, m) in the standard bit order. Berger and Be’ery [1] gave an
explicit expression forσ(r, m):

σ(r, m) =

min{r,m−r−1}
∑

j=0

(

m − 2j − 1

r − j

)

.

A different derivation of the above was given by Blackmore and Norton[2]. We rely heavily on tools
from [2] to prove the following result, which is equivalent to Proposition 6.

Proposition 12.

τ(r, m) =

{

σ(r, m) if m ≥ 2r + 1,

σ(r, m) + 1 if m < 2r + 1.

We introduce some terminology and notation that will be needed in the proof of the proposition. Let
C be the code RM(r, m) in the standard bit order, and letn = 2m. LetT be the minimal trellis ofC. For
i = 0, 1, . . . , n, the dimension of the state space at depthi in T is denotedσi. Thus,σ(r, m) = maxi σi.
For i = 0, 1, . . . , n − 1, we denote byτi the dimension of the branch space between the state spaces at
depthsi andi + 1; then,τ(r, m) = maxi τi.

The following definitions were made in [2] for0 ≤ i ≤ n − 1:

(a) if dim(C[i+1,n−1]) = dim(C[i−1,n−1]) − 1, theni is called apoint of gainof C; and

(b) if dim(C[0,i]) = dim(C[0,i−1]) + 1, theni is called apoint of fallof C.

As per our notation from Section 5,b(i) denotes them-bit binary representation ofi, 0 ≤ i ≤ n−1.
Let |b(i)|0 and|b(i)|1 denote the number of0s and1s, respectively, inb(i).

Lemma 13 ([2], Proposition 2.2). For 0 ≤ i ≤ n − 1,

(a) i is a point of gain ofC iff |b(i)|1 ≤ r;

(b) i is a point of fall ofC iff |b(i)|0 ≤ r.

Proof of Proposition 12. It is a fact that for any minimal trellis representation, branch complexity
either is equal to the state complexity or is exactly one more than the state complexity.In particular,
σ(r, m) ≤ τ(r, m) ≤ σ(r, m) + 1. So, to prove Proposition 12, it suffices to show that

τ(r, m) = σ(r, m) + 1 iff m ≤ 2r. (22)

Suppose thatτ(r, m) = τi for somei ∈ [0, n − 1]. From the local behaviour ofT described in [2,
p. 44], it follows that we can haveτi = σ(r, m) + 1 iff σi = σ(r, m) andi + 1 is a point of gain as well
as a point of fall ofC.

Thus, ifτi = σ(r, m) + 1, then by Lemma 13,m = |b(i + 1)|1 + |b(i + 1)|0 ≤ 2r. This proves the
“only if” direction of (22).

Conversely, supposem ≤ 2r. The proposition is clearly true ifm = r, since RM(m, m) =
{0, 1}2m

, and we haveσ(m, m) = 0 andτ(m, m) = 1. So, we may assumem ≥ r + 1. Takei to be

10



such thatb(i) = (0, 0 . . . , 0, 1, 0, 1, 0, . . . , 1, 0), with |b(i)|1 = m − r − 1. Then, by Theorem 2.11 in
[2], σi = σ(r, m). Also,b(i + 1) = (1, 0, . . . , 0, 1, 0, 1, 0, . . . , 1, 0), with |b(i + 1)|1 = m− r ≤ r and
|b(i + 1)|0 = m− (m− r) = r. Hence, by Lemma 13,i + 1 is a point of gain as well as a point of fall
of C. Hence,τi = σ(r, m) + 1, which completes the proof of (22), and hence, of Proposition 12.

We next present the algebraic manipulations needed to prove Proposition 7.

Proof of Proposition 7. We divide the proof into three cases.
Case 1:m ≥ 2r + 1. We have

k(r, m) − τ(r, m) =
r

∑

j=0

(

m

j

)

−
r

∑

j=0

(

m − 2j − 1

r − j

)

=
r

∑

j=0

(

m

j

)

−
r

∑

j=0

(

m − 2(r − j) − 1

j

)

=
r

∑

j=1

[(

m

j

)

−

(

m − 2(r − j) − 1

j

)]

(a)
=

r
∑

j=1

2(r−j)
∑

i=0

(

m − 1 − i

j − 1

)

(b)
=

2(r−1)
∑

i=0

r−⌈i/2⌉
∑

j=1

(

m − 1 − i

j − 1

)

=

2(r−1)
∑

i=0

k(r − 1 − ⌈i/2⌉, m − 1 − i).

In the above chain of equalities, equality (a) uses the fact that for integers a < b and j ≥ 1, we
have

(

b
j

)

−
(

a
j

)

=
∑b−1

q=a

(

q
j−1

)

; this is just repeated application of the identity
(

b
j

)

=
(

b−1
j−1

)

+
(

b−1
j

)

.
Equality (b) is obtained by exchanging the order of the summations ini andj.

Case 2:m = 2r. Here,

k(r, m) − τ(r, m) =
r

∑

j=0

(

m

j

)

− 1 −
r−1
∑

j=0

(

m − 2j − 1

r − j

)

=
r

∑

j=1

(

m

j

)

−
r

∑

j=1

(

m − 2(r − j) − 1

j

)

=
r

∑

j=1

[(

m

j

)

−

(

m − 2(r − j) − 1

j

)]

,

and now we carry on from equality (a) of Case 1.
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Case 3:m ≤ 2r − 1. This is the most tedious case. We start with

k(r, m) − τ(r, m) =
r

∑

j=0

(

m

j

)

− 1 −
m−r−1
∑

j=0

(

m − 2j − 1

r − j

)

=
r

∑

j=1

(

m

j

)

−
r

∑

j=2r−m+1

(

m − 2(r − j) − 1

j

)

=
2r−m
∑

j=1

(

m

j

)

+
r

∑

j=2r−m+1

[(

m

j

)

−

(

m − 2(r − j) − 1

j

)]

=
2r−m
∑

j=1

(

m

j

)

+
r

∑

j=2r−m+1

2(r−j)
∑

i=0

(

m − 1 − i

j − 1

)

=
2r−m
∑

j=1

(

m

j

)

+

2(m−r−1)
∑

i=0

r−⌈i/2⌉
∑

j=2r−m+1

(

m − 1 − i

j − 1

)

. (23)

Now, for j ≥ 1, write
(

m
j

)

=
(

m
j

)

−
(

0
j

)

=
∑m−1

i=0

(

m−1−i
j−1

)

. Hence,

2r−m
∑

j=1

(

m

j

)

=

m−1
∑

i=0

2r−m
∑

j=1

(

m − 1 − i

j − 1

)

. (24)

Also,
2(m−r−1)

∑

i=0

r−⌈i/2⌉
∑

j=2r−m+1

(

m − 1 − i

j − 1

)

=
m−1
∑

i=0

r−⌈i/2⌉
∑

j=2r−m+1

(

m − 1 − i

j − 1

)

, (25)

as wheni ≥ 2(m− r− 1) + 1, we haver−⌈i/2⌉ ≤ 2r−m, so that the inner summation
∑r−⌈i/2⌉

j=2r−m+1

is empty. Plugging (24) and (25) into (23), we find that

k(r, m) − τ(r, m) =

m−1
∑

i=0

r−⌈i/2⌉
∑

j=1

(

m − 1 − i

j − 1

)

=

m−1
∑

i=0

k(r − 1 − ⌈i/2⌉, m − 1 − i).

This completes the proof of Proposition 7.

Appendix B: Proof of Lemma 10

We recast the statement of Lemma 10 into an equivalent statement about binary representations of
integers. From (12) and the notion of points of fall from [2] (see Appendix A), we see that for1 ≤
s ≤ 2m, Us is equal to the number of points of fall of RM(r, m) within the interval[0, s − 1]. Thus, by
Lemma 13,Us is equal to the number of integers in[0, s − 1] whosem-bit binary representations have
at leastm − r 1s.

For an integerj ∈ [0, 2m − 1], let wt(j) denote the Hamming weight of (i.e., the number of 1s in)
the binary representationb(j). For a subsetS ⊆ [0, 2m − 1], let wi(S) denote the number of integers
j ∈ S with wt(j) ≥ i. We setwi(∅) = 0. Then, Lemma 10 is equivalent to the following assertion: for
i ∈ [0, α − 2m−1] andj ∈ [0, β − (α − 2m−1 + 1)], we have

wm−r([α − i, α − 1]) + wm−r([β − j, β − 1]) ≥ wm−r([1, i + j]). (26)

Since Lemma 10 needs to be shown for any RM(r, m) with 0 ≤ r ≤ m − 1, we see that (26) must be
shown for anym − r ∈ {1, 2, . . . , m}. With this in mind, we define forS ⊆ [0, 2m − 1],

w
(m)(S) = [w1(S) w2(S) · · · wm(S)].
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As usual, we will drop the superscript(m) when it can be gleaned unambiguously from the context.

Proposition 14. For m ≥ 2 and0 ≤ i, j ≤ α(m) − 2m−1, we have

w
(m)([α(m) − i, α(m) − 1]) + w

(m)([β(m) − j, β(m) − 1]) ≥ w
(m)([1, i + j]), (27)

with the inequality above holding componentwise.

Observe that this proposition is slightly stronger than Lemma 10, since the latter only requires
0 ≤ j ≤ β(m)− (α(m)−2m−1 +1). It is easy to verify thatβ(m)− (α(m)−2m−1 +1) ≤ α(m)−2m−1.
The remainder of this appendix is devoted to a proof of Proposition 14. Theproof is by induction on
m, which is why we have taken care to include the superscripts onα andβ in the statement of the
proposition. The main ingredients in the inductive proof are the simple facts that for a non-negative
integerj, wt(2j) = wt(j) and wt(2j + 1) = wt(j) + 1. The rest is merely careful bookkeeping.

Let P (m)(i, j) denote the inequality in (27). The induction argument is built upon certain implica-
tions among theP (m)(i, j), as stated in the series of lemmas below. We introduce here some notation
that we will use in the proofs of these lemmas. For a set of integersS, we write2S and2S + 1 to mean
the sets{2j : j ∈ S} and{2j + 1 : j ∈ S}, respectively. By1(m)

[a,b], with 1 ≤ a ≤ b ≤ m, we mean
the vector[z1 z2 . . . zm], with zi = 1 for a ≤ i ≤ b, andzi = 0 otherwise. Again, we will drop the
superscript(m) when there is no ambiguity.

Lemma 15. For evenm, P (m)(i, j) implies P (m+1)(2i + 1, 2j). For odd m, P (m)(i, j) implies
P (m+1)(2i, 2j + 1).

Proof. For evenm, we haveα(m+1) = 2α(m) + 1, andβ(m+1) = 2β(m). SetS = [α(m) − i, α(m) − 1]
andT = [β(m) − j, β(m) − 1]. Now,P (m)(i, j) implies

w
(m+1)(2S) + w

(m+1)(2T ) ≥ w
(m+1)(2[1, i + j]) (28)

w
(m+1)(2S + 1) + w

(m+1)(2T + 1) ≥ w
(m+1)(2[1, i + j] + 1) (29)

since wt(2j) = wt(j) and wt(2j + 1) = wt(j) + 1 for any non-negative integerj. Henceforth, all the
w’s in this proof arew(m+1)’s. Combining (28) and (29), we have

w([2α(m) − 2i, 2α(m) − 1]) + w([2β(m) − 2j, 2β(m) − 1]) ≥ w([2, 2i + 2j + 1]),

which is the same as

w([α(m+1) − 2i − 1, α(m+1) − 2]) + w([β(m+1) − 2j, β(m+1) − 1]) ≥ w([2, 2i + 2j + 1]). (30)

Now,w([1, 2i + 2j + 1]) = w([2, 2i + 2j + 1]) + 1
(m+1)
[1,1] . Also,w([α(m+1) − 2i− 1, α(m+1) − 1]) =

w([α(m+1) − 2i− 1, α(m+1) − 2])+1
(m+1)
[1,m/2], since wt(α(m+1) − 1) = wt(2α(m)) = wt(α(m)) = m/2,

by (17). Therefore,

w([a(m+1) − 2i − 1, a(m+1) − 1]) + w([b(m+1) − 2j, b(m+1) − 1]) ≥ w([1, 2i + 2j + 1]), (31)

which isP (m+1)(2i + 1, 2j).
The proof for oddm is along similar lines.

Lemma 16. (a) Whenα(m) − i is even, the two inequalitiesP (m)(i, j) andP (m)(i + 2, j) together
implyP (m)(i + 1, j).

(b) Whenβ(m)−j is even, the two inequalitiesP (m)(i, j) andP (m)(i, j+2) together implyP (m)(i, j+
1).
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Proof. We only prove (a), as the proof of (b) is completely analogous. In this proof, all omitted super-
scripts are to be taken to be(m).

Letx = wt(α−i−1) andy = wt(i+j+1). We havew([α−i−1, α−1]) = w([α−i, α−1])+1[1,x],
andw([1, i + j + 1]) = w([1, i + j]) + 1[1,y]. We want to showP (m)(i + 1, j):

w([α − i, α − 1]) + 1[1,x] + w([β − j, β − 1]) ≥ w([1, i + j]) + 1[1,y]. (32)

If x ≥ y, thenP (m)(i, j) clearly implies (32). So, supposex < y. Then, (32) becomes

w([α − i, α − 1]) + w([β − j, β − 1]) ≥ w([1, i + j]) + 1[x+1,y],

or equivalently,

wl([α − i, α − 1]) + wl([β − j, β − 1]) ≥

{

wl([1, i + j]) + 1 if x + 1 ≤ l ≤ y

wl([1, i + j]) otherwise.
(33)

Let x′ = wt(α − i − 2) andy′ = wt(i + j + 2). Sinceα − i is even, we see thatx′ + 1 = x or
x′ < x. Now, we have

w([α − i − 2, α − 1]) = w([α − i, α − 1]) + 1[1,x] + 1[1,x′] (34)

w([1, i + j + 2]) = w([1, i + j]) + 1[1,y] + 1[1,y′] (35)

Thus,P (m)(i + 2, j) is equivalent to

w([α − i, α − 1]) + 1[1,x′] + w([β − j, β − 1]) ≥ w([1, i + j]) + 1[x+1,y] + 1[1,y′]. (36)

Using the fact thatx′ < x, (36) implies that forx + 1 ≤ l ≤ y,

wl([α − i, α − 1]) + wl([β − j, β − 1]) ≥ wl([1, i + j]) + 1.

SinceP (m)(i, j) clearly implies the “otherwise” part of (33), we have shown thatP (m)(i, j) andP (m)(i+
2, j) together imply (33), i.e.,P (m)(i + 1, j).

Lemma 17. For evenm, the following implications hold:

(a) P (m)(i, j) =⇒ P (m+1)(2i + 1, 2j);

(b) P (m)(i − 1, j) ∧ P (m)(i, j) =⇒ P (m+1)(2i, 2j);

(c) P (m)(i, j) ∧ P (m)(i, j + 1) =⇒ P (m+1)(2i + 1, 2j + 1);

(d) P (m)(i − 1, j) ∧ P (m)(i, j) ∧ P (m)(i − 1, j + 1) ∧ P (m)(i, j + 1) =⇒ P (m+1)(2i, 2j + 1).

Proof. (a) follows directly from Lemma 15.
(b): If P (m)(i − 1, j) andP (m)(i, j) are true, then by Lemma 15, we haveP (m+1)(2i − 1, 2j) and

P (m+1)(2i + 1, 2j) being true. Sincem + 1 is odd,α(m+1) is odd (see (17)). It now follows from
Lemma 16(a) thatP (m+1)(2i, 2j) holds.

(c): This follows by an argument similar to part (b), except that Lemma 16(b) is applied.
(d): By part (b),P (m+1)(2i, 2j) andP (m+1)(2i, 2j+2) hold. Therefore, by Lemma 16(b),P (m+1)(2i, 2j+

1) holds.

Arguments similar to those used in the above proof show the next result.
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Lemma 18. For oddm, the following implications hold:

(a) P (m)(i, j) =⇒ P (m+1)(2i, 2j + 1);

(b) P (m)(i, j − 1) ∧ P (m)(i, j) =⇒ P (m+1)(2i, 2j);

(c) P (m)(i, j) ∧ P (m)(i + 1, j) =⇒ P (m+1)(2i + 1, 2j + 1);

(d) P (m)(i, j − 1) ∧ P (m)(i, j) ∧ P (m)(i + 1, j − 1) ∧ P (m)(i + 1, j) =⇒ P (m+1)(2i + 1, 2j).

We are now in a position to prove Proposition 14.

Proof of Proposition 14. Setℓ(m) = α(m) − 2m−1. We wish to show that form ≥ 2, P (m)(i, j) holds
for 0 ≤ i, j ≤ ℓ(m). It is easy to verify this directly form = 2 andm = 3, so we start the induction by
assuming that for some oddm ≥ 3, P (m)(i, j) holds for0 ≤ i, j ≤ ℓ(m).

For oddm, the implications in Lemma 18 are enough to show thatP (m+1)(i, j) holds for1 ≤ i ≤
2ℓ(m) and1 ≤ j ≤ 2ℓ(m) + 1. Note also that for oddm, we haveℓ(m+1) = 2ℓ(m), as can be verified
from (15). SinceP (m+1)(0, 0), P (m+1)(0, 1) andP (m+1)(1, 0) trivially hold, we have thatP (m+1)(i, j)
holds for0 ≤ i ≤ ℓ(m+1) and0 ≤ j ≤ ℓ(m+1) + 1.

Now, m + 1 is even, and we have shown above thatP (m+1)(i, j) is true for0 ≤ i ≤ ℓ(m+1) and
0 ≤ j ≤ ℓ(m+1) + 1. The implications in Lemma 17 are then sufficient to show thatP (m+2)(i, j) holds
for 1 ≤ i, j ≤ 2ℓ(m+1) + 1. Again,P (m+2)(0, 0), P (m+2)(0, 1) andP (m+2)(1, 0) can be seen to hold
trivially, so P (m+2)(i, j) in fact holds for0 ≤ i, j ≤ 2ℓ(m+1) + 1. This completes the induction step,
since for evenm + 1, it follows from (15) thatℓ(m+2) = 2ℓ(m+1) + 1.

As observed earlier, Proposition 14 proves Lemma 10.

Appendix C: Computing Uα and Uβ

To derive the expressions in (19)–(21), we make use of (5) and a result of Wei [15] that explicitly
determines the generalized Hamming weight hierarchy of RM(r, m). Any non-negative integeru <
k(r, m) can be uniquely expressed as a sum

u =
ℓ

∑

i=1

k(ri, mi), (37)

wherer > r1 ≥ r2 ≥ . . . ≥ rℓ ≥ 0, m > m1 ≥ m2 ≥ . . . ≥ mℓ ≥ 0, and for alli, mi − ri =
m − r + 1 − i [15, Lemma 2]. The above representation is called the(r, m)-canonical representation
of u.

Theorem 19 ([15], Corollary 6). For 0 ≤ u < k(r, m), given the unique(r, m)-canonical representa-
tion ofu as in (37), we havedu(RM(r, m)) =

∑ℓ
i=1 2mi .

For convenience, we will henceforth writedu(RM(r, m)) simply asdu.

Assume thatm ≥ 2r. We want to show that (19) holds. We will only prove here the result for
s = α, as the result fors = β can be proved analogously. Letû be the integer given by

û =

r
∑

i=1

k(r − i, m + 1 − 2i). (38)

Note that the above is the(r, m)-canonical representation of̂u. By Theorem 19, we havedû =
∑r

i=1 2m+1−2i. In binary form,b(dû) = (0, 0, . . . , 0, 0, 1, 0, 1, . . . , 0, 1), the number of 1s inb(dû)
beingr. Comparing this with the binary form ofα given in (17), it is clear thatdû ≤ α.
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Next, writeû + 1 as

û + 1 =
r

∑

i=1

k(r − i, m + 1 − 2i) + k(0, m − 2r),

using the fact thatk(0, m − 2r) =
(

m−2r
0

)

= 1. This is again in(r, m)-canonical form, and hence by
Theorem 19, we havedû+1 =

∑r
i=1 2m+1−2i+2m−2r. In binary form, this isb(dû+1) = (0, 0, . . . , 0, 1,

1, 0, 1, . . . , 0, 1), the number of 1s here beingr + 1. Comparing with (17), we see thatα < dû+1.
Sincedû ≤ α < dû+1, we have by (5),Uα = û. Observe that̂u as given by (38) is precisely equal

to the claimed value ofUα in (19).
Now, assumem < 2r. We wish to show (20) and (21). We sketch the proof for (21) here; theproof

for (20) is similar. Set

ǔ =







∑

m−1

2

i=1 k(r − 1 − i, m − 2i) if m is odd,
∑

m
2

i=1 k(r − 1 − i, m − 2i) if m is even.

The above is the(r, m)-canonical representation ofǔ, and hence,

dǔ =







∑

m−1

2

i=1 2m−2i if m is odd,
∑

m
2

i=1 2m−2i if m is even.

Comparingb(dǔ) with b(β) given in (18), it can be seen thatdǔ ≤ β.
The(r, m)-canonical representation ofǔ + 1 is given by







∑

m−1

2

i=1 k(r − 1 − i, m − 2i) + k(r − 1 − m−1
2 , 0) if m is odd,

∑

m
2
−1

i=1 k(r − 1 − i, m − 2i) + k(r − m
2 , 1) if m is even.

Again,dǔ+1 can be obtained from Theorem 19, and the subsequent comparison of binary forms shows
thatβ < dǔ+1. Hence, by (5), we haveUβ = ǔ, which proves (21).
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