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Abstract—In terabit-density magnetic recording, several bits be consistent). For notational ease, our model assumeg that
of data can be replaced by the values of their neighbors in the s thefirst bit to be written within a grain that sets the polarity

storage medium. As a result, errors in the medium are dependent ¢ tha grain. Thus, for indiceg within the ith grain, i.e., for
on each other and also on the data written. In an earlier paper < i . h . Thi that theth
we studied a simple one-dimensional model of this situation. In Ji = J < Ji+1, W€ havey; = ;. [hisS means tha

our model binary data is sequentially written on the medium and ~ grain introduces an error in the recorded dat, (a situation
a bit can erroneously change to the immediately preceding value. wherey; # x;) precisely whenc; # «;, for some; satisfying
Here we define a probabilistic finite-state channel model of the j, < j < Jit1-
storage medium and derive estimates of its capacity. To derive a = |, [1], we considered a medium with grains of length at
lower bound we consider a uniform input distribution, and find . .
an exact expression of thesymmetric capacity of the channel. An most2. (Grains of length 1 do not |ntr0duc_e any errors.) We
upper bound is found by showing that the original channel is a Presented upper and lower bounds on the size of codes capable
stochastic degradation of another, related channel model whes of correcting a given number of lengthgrains. Most results
capacity we compute explicitly. in [1] can be extended to the case where the maximum length
of a grain is an arbitrary constant.

In this paper we consider a probabilistic channel model that

General magnetic recording media are composed of furerresponds to the one-dimensional combinatorial model of
damental magnetizable units, called “grains”, that do netrors discussed above, calling it the “grains channel”. We
have a fixed size or shape. Each grain can be magnetizgrhin confine ourselves to length-2 grains. Our objective is
to take on exactly one of the two magnetic polarities. Thu calculate the capacity of the channel. For the lower bound
each grain is in principle capable of storing at most one hite restrict our attention to uniformly distributed, indepgent
of information. At the same time, in conventional magnetimput letters which corresponds to the case syfnmetric
recording technologies, data is generally stored by digdi information rate(symmetric capacity) of the channel. We are
the magnetic medium into regularly-spaced bit cells, arable to find an exact expression for the SIR as an infinite
writing one bit of data into each of these bit cells. Recentlgeries which gives a lower bound on the capacity. Computing
Wood et al. [5] proposed a new write mechanism, that cahis expression is one of the main results of this paper (see
magnetize areas commensurate to the size of individuaigraiThm. 8 below). To estimate capacity from above, we relate the
With such a write mechanism and a corresponding readbagiains channel to an erasure channel in which erasures never
mechanism in place, the remaining bottleneck to achievimgcur in adjacent symbols, and are otherwise independent. A
magnetic recording densities as high as 10 Terabits perequexpression for its capacity that we find yields an upper bound
inch is that the write and readback mechanisms do not hawe the capacity of the grains channel.
precise knowledge of the grain boundaries. We would like to acknowledge a concurrent independent

In [1] we studied a simple one-dimensional version of paper by lyengar, Siegel, and Wolf [4]. The authors of [4]
model of errors in binary data that arises as a consequeroasider a slightly more general channel model that incdude
of reading/writing across the grain boundaries. Resivicti the grains channel as a particular case. Paper [4] contains
ourselves to the one-dimensional case, we defined a comtaw Prop. 2 and Theorem 4, but not the calculation of the
natorial error model that corresponds to the granular nmeditsymmetric information rate of the channel of Sect. II-D.
described above. Our model of the medium comprisdst
cells, indexed by the integers from 1 to. The granular
structure is described by an increasing sequence of pesitiv In this section, we define a probabilistic model for the gsain
integers,1 = j; < j» < --- < js < n, wherej; denotes the channel with grains of length at most 2. This is a binary-
index of the bit cell at which thé&h grain begins. Note that theinput binary-output channel that can make an error only at
length of theith grain is¢; = j; 11 —j; (we setjs11 = n+1to positions where a length-2 grain ends. In fact, error evargs

I. INTRODUCTION

II. CAPACITY OF THE GRAINS CHANNEL



data-dependent: an error occurs at a position where a khgthim,,_,., C,,, where
grain ends if and only if the channel input at that position 1

differs from the previous channel input. Let us now formally Cp=n Q" o) i?é%l(w iy" | s0)
define the channel. Cn=n' max maxI(z"y" | s0).

Supposet = z1xs..... andy = y1y2..... denote the input Qm(zn) s0€S
and output sequence respectively, withy; € {0,1} foralli. |5 the above expressiond,(z™;y" | so) is the mutual
We further define the sequenee= ujus....., whereu; =1  jnformation between the length-input " = (x1,. .., )
(resp.u; = 0) indicates that a lengt-grain ends (resp. doesanq the lengths outputy™ = (y1, . .., y»), given the value of

not end) at positioni. We takeu to be a first-order Markov e injtial stateso, and the maximum is taken over probability
chain, independent of the channel input having transition distributions@" (™) on the inputz™. The limits in the above

probabilities P(u;|u;—1) as tabulated below (for some €  gefinitions ofC andC are known to exist. Clearlyy', < C,

[0, 1]): for all n, and thusC < C. The capacitiex’ and C have an
‘ ui=0 u=1 operational meaning in the usual Shannon-theoretic sense —
ui-1=0 )| 1—p p : (1) see Theorems 4.6.2 and 5.9.2 in [2].

wicy =1 1 0 The upper and lower capacities coincide for a large class
The grains channel makes an error at positigne., =; # y;) of channels known amdecomposablehannels. Roughly, an
if and only if u; = 1 andx; # x;_1. To be precise, indecomposable DFSC is a DFSC in which the effect of the
initial states, dies away with time. Formally, let(s,, | ™, so)

yi =i + ui(@i + zio1), @ genote the conditional probability that theth state iss,,,
the additions and multiplications above being performed-mogiven the input sequence™ = (x1,...,z,) and initial state
ulo 2. Equivalently, so. Evidently, ¢(s,, | ™, s¢) is computable from the channel
] statistics. A DFSC is indecomposable if, for any 0, there
yi = {xi ': u; =0 ©) exists anng such that for alln > ng, we have
Ti—1 i U; = 1.

) ) ) ) |Q(Sn ‘ mn’SO) - Q(Sﬂ | xn’ 56)‘ <e
We will find it useful to define the error sequenee =
21,29, 23,. .., Wherez; = x; + y;, the addition again being
modulo-2. Thus,

for all s, ™, sp andsj,. Theorem 4.6.3 of [2] gives an easy-
to-check necessary and sufficient condition for a DFSC to be
indecomposable: for some fixedand eache”, there exists a

zi = (s + xi—1). (4) choice fors,, (which may depend ox™) such that
The casei = 1 is not covered by the above definitions. We min g(sy | ", s0) > 0. ®)
will include it once we define a finite-state model of the gsain so
channel. We note here that the channels we consider in the subsequent

The grains channel as we have defined above is a spe€Rgtions are indecomposable except in very special cases. F
case of a somewhat more general “write channel” modélese special cases, it can still be shown tfat C' holds.

considered in [4]. We make a few comments about DFSCs for whi¢h= C
holds. We denote bg' the common value of’ andC'. ThisC,
A. Discrete Finite-State Channels which we refer to simply as theapacityof the DFSC, can be

expressed alternatively. If we assign a probability disition

For easy reference, we record here some important fagfshe initial state, so that, becomes a random variable, then
about discrete finite-state channels. The material in #886n ¢ — 1im,, . C,,, where

is substantially based upon [2, Section 4.6].

1
A stationary discrete finite-state channel (DFS®gs an Cy, = - Jhax I(z™;y" | so)- (6)
input sequencer = x1,x9,x3,..., an output sequencg = @ @n)
Y1,Y2,Y3,-.., and a state sequenee= si, s2,s3,.... Each Clearly,C, < C,, < C, for all n, so thatC, as defined above,

z, is a symbol from a finite input alphabet, eachy, is is indeed the common value @ and C. Note that this is
a symbol from a finite output alphabgt, and each state, independent of the choice of the probability distributiom o
takes values in a finite set of stat8sThe channel is describeds,.
statistically by specifying a conditional probability &gsment A further simplification to the expression for capacity is
P(yn, $n|n, sn—1), which is independent af. It is assumed possible. Sincél(z";y") — I(x";y" | s0)| < log, |S| (see,
that, conditional orx,, ands,,_1, the pairy,,, s, is statistically for example, [2, Appendix 4A, Lemma 1]), we in fact have
independent of all inputs;, j < n, outputsy;, j < n, and 1
statess;, j < n—1. To complete the description of the channel, ¢ = lim — max I(z";y"). @)
an initial statesy, also taking values i, must be specified. noeen Qn(an)

For a DFSC, we define thiewer (or pessimistiy capacity The capacity of a DFSC is difficult to compute in general.
C = lim, . C,, and upper (or optimistid capacity C = A useful lower bound that is sometimes easier to compute (or



at least estimate) is the so-callsgmmetric information rate C. Upper Bound: BINAEras

(SIR) of the DFSC: Consider a binary-input channel similar to the binary era-
R— lim l[(mn;yn)’ @8) sure channel, except that erasures in consecutive pasition
n—oo n are not allowed. Formally, this is a channel with a binary
where the input sequeneeis an i.i.d. Bernoulli{/2) random input sequencer = z1,z2,s,..., With z; € {0,1} for all
sequence. 7, and a ternary output sequenge = yi,¥2,¥s, ..., With
y; € {0,1,¢} for all 4, wheree is an erasure symbol. The
B. First results input-output relationship is determined by a binary segaen

. ) ) u = uq,us,us, ..., Which is a first-order Markov chain, inde-
It is easy to see that the grains channel is a DFSC, Wheﬁg

_ ; ) ! ndent of the input sequenag with transition probabilities
the nth states,, is the pair(u,, z,), which takes values in P(uilu;—1) as in (1). We then have
the finite setS = {(0,0),(0,1),(1,0),(1,1)}. Again, for o

completeness, we assume an initial stafehat takes values )x ifu;=0 )
in S.1 YT e ifu=1
Proposition 1: The grains channel is indecomposable for_ )
p<l. Since P(u; = 1 | v;—1 = 1) = 0, adjacent erasures do not

Proof: We must check that the condition in (5) holds. W@Cccur, so we term this channel the binary-input no-adjacent
taken = 1 ands; = (0,z;). Then, ming, g(s; | z1,s0) = ©rasures (BINAEras) channel. To describe the channel com-
9 . L] S0 ) -

min;e o1y Plus = 0 | ug = j) = 1—p > 0. m Pletely, we define an initial state, taking values in{0, ¢}.

Because of this proposition the capacity of the grains celann 1N€ BINAEras channel is a DFSC for which = C holds,
for the casep < 1 is defined via (). In fact, as the nextnd its capacity, which we denote b (p), can be computed

proposition shows, the equalitg = C also holds for the €XPlicitly.

grains channel whep = 1. Theorem 3:For the BINAEras channel with parameter
Val A
Proposition 2: For the grains channel with = 1, we have [0; 1] we haveC = C = C*(p) £ 115 N
C=-0— % Intuitively, the average erasure probability of a symbalalg

D= ffp, and the capacit¢’¢(p) equalsl —p. A formal proof

Proof: We have, with probability 1, P = ) °
is given in Appendix A.

U = U, U2, U3, Ug, Us, UG, - - - We claim that the grains channel is a stochastically degrade
0,1,0,1,0,1,... ifug=1 BINAEr_as channel. Indeed, the gra@ns channel i_s obtained by
= . cascading the BINAEras channel with a ternary-input channe
1,0,1,0,1,0,... if ug=0. . _ .
defined as follows: the input sequenge= v1,ys,s,-. .,

Thus, once the initial statey = (ug, ) is fixed, the output y; € {0,1,¢}, is transformed to the output sequenge =
y of the grains channel is a deterministic function of the inpw}, v5, y5, . . . according to the rule

XT. .
v Tute (10)
Y = Y1,Y2, Y3, Y4, Y5, Y6 - - - ’ i1 fy;=¢

_ )@ @,25,35, 25, if 5o = (1, 20) To cover the case whep, = ¢, we sety, equal to some

To, T2, T, Ta, T4, T, ... i so = (0,20). arbitrary yo € {0,1}. It is straightforward to verify, via (9),
(10) and the fact thaP(u; = 1 | u;—1 = 1) = 0, that the
cascade of the BINAEras channel with the above channel
has an input-output mapping; — y.; given by (3). This
immediately leads to the following theorem.

Therefore, for any fixeds € S, we haveH(y" | z",s9 =
s) =0, and hence](x";y" | so = s) = H(y" | so = ). If
" is a sequence of i.i.d. Bernoulli¢) random variables, then
minges H(y" | so = s) = H(y™ | so = (0,x0)) = [n/2].
It follows that C,, > 1%/2l so thatC > 1/2. On the other ~ Theorem 4:For p € [0, 1], we have?'(p) < C%(p) = .
hand, for any input distributiod)™ (™), and anys € S, we

have H(y" | so = s) < [n/2]. Consequently(,, < % Remark 1We remark that any code that correttsonadjacent
and hence(' < 1/2. We conclude that' = C = 1/2. m Ssubstitution errors (bit flips) also correatgrain errors. It is
In view of this discussion, the capacity of the grains channéerefore tempting to bound the capacity of the grains cenn
is defined by (7). From here onward we denote this capacly the capacity of the binary channel witonadjacent errors

by ¢ = € (p) and useR#(p) to refer to the SIR of the grains Such a channel is defined similarly to the BINAEras channel:
channel. the channel noise is controlled by a first-order Markov clegnn
u (1), andy;, = x; + u; for all 4+ > 1. The capacity of this
1To be strictly faithful to the granular medium we are modeling,should ~ channel is computed as in the BINAEras case and eduals
restrictso to take val_ues only if(1,0), (1, 1)}, so thatug = 1 Thl_s would h(p)/(l +p), Whel’eh(p) denotes the binary entropy function.
imply u; = 0, meaning that no length-2 grain ends at the first bit cell of thﬁ| | . . . hat this ¢
medium, corresponding to physical reality. But this makes riteréince to | 1OWEVET, & Closer eéxamination convinces one that this gyant

the asymptotics of the channel, and in particular, to the cblacapacity. does not provide a valid lower bound f@ft.



D. Lower Bound: The Symmetric Information Rate

According to the definition of SIR of the grains channel (8),
assume that is an i.i.d. Bernoulli{/2) random sequence. With

this assumption, the state sequencis a first-order Markov

chain. Also, each output symbg), is easily verified to be a
Bernoulli(t/2) random variable (buy,, is not independent of

ynfl)'

We also assume that the initial statg is a random
variable distributed according to the stationary distitou
of the Markov chain, so that the sequengels a station-
ary Markov chain. It follows that the output sequenge
is a stationary random sequence, so that the entropy
H(Y) :=lim,_

1 H(y™) exists. Itis also worth noting here
that the initial distribution assumed oy causes the Markov

If ' € A; for somej € [1,i — 2], then we havey; = u;,

Zi—1 = = R4l = 0, andZi,j = Uj—j-. Thus,

H(ZZ‘ | Zl,...,Zifl,iL‘i S AJ)
= H(UZ ‘ AT .,zi,j,l,ui,j7wi S A])
@ (b)
= Hui|ui—;) = H(ujpa | w).

Equality (a) above is due to the fact that is a first-
order Markov chain independent af, while equality (b)
is a consequence of the stationarity ®f(which is itself a
consequence of the stationarity of the state sequepce
Finally, if e A1, thenzi = U; and Zi—1l = =29 =
"8terhus,
H(Zi | 21y -

,Zi_l,.’Bi S Ai—l) = H(Uz' | 21).

chain u to be stationary as well. In particular, the random Therefore,
variablesu;, i > 0 all have the stationary distribution given
by P(u; =0) = (wi=1)= 4.

We have

H(Z7 | 21y - ,Zi_l,.’lli)

i—1
ZH(Zl | Zlyeeey
7=0
1

S (s ) (3 4 (s 20
j=1

1+p

Zi—1, x’ S AJ) PI‘[:IZ‘i S AJ]

)

As noted aboveH (Y) = lim, . =~ H(y") exists. We also Lettingi — oo, the lemma follows. [ |
have the following lemma. The infinite series in Lemma 5 can be expressed in a form

Lemma 5:Let = be an i.i.d. uniform Bernoulli sequence,more useful for explicit computation.

1
R& = lim — I(z™;y") (11)

n—oo N

I(z = H(y") - = H(y") - H(z"|z")

12)

"y") H(y"|z")

2

S Heuy ) (4

then
J
, 5)
j=2

1
lim — H(z" |2") =

n—oo n

Proof: We write

”L

|CC y Zi—1,T )

ZH Zi| 21y

From (4), it is evident that; is independent ok; for j > «.
Hence,

n

ZH(Zi|Zl,...,

i=1
As a result, by the Céso mean theorem,

H(z"|z™) = Zi1,x%).

1
lim — H(z" | ™) = lim H(z; | z1,...

n—oo N 11— 00

provided the latter limit exists.

y Ri—1, wi)a

To evaluateH (z; | z1,...,2i_1, "), we define the events
={z' 1z =z},
Aj={z" ;v 1= =x_jFwij 1}, 1 <j<i-2,

and A4;,_, = {.’Bl DX 7& Ti_1 = = Il}. These
events partition the spaci, 1}? to which =’ belongs. Note
that Prz’ € A;] = ()t for 0 < j < i — 2, and

PI‘[SCi S Ai—l] = (%)7_1

Now, if ! € A, then by (4), we have; = 0. Consequently,

H(Zz ‘ zl,...,zi,l,:ci GA()):O.

Lemma 6:
> (5) el = 22 S () n (520

(13)

Proof: Note first thatH(u; | w) = H(y; | w1 =
0)Prju; = 0] + H(u; | w1 = 1)Prfu; = 1]. Furthermore,
sinceu; = 1 implies u; = 0 with probability 1, we have, for
all j > 2,

H(uj |uy =1) = H(u; | upg = 0) = H(uj—1 | uy = 0),

the last equality following from the stationarity of. Hence,

Z; o H(uj [ur = 1)( )! _Zj o H(uj—1 | u —0)( ) =
( )Z o H(uj | ug = 0)( Y, since H(uy | up = 0) =
Puttmg it all together, we f|nd that

>ty 1) (3)
(Prfuy = 0] + (%) Prfu; = 1])
X iH(u] | ug = 0)<%>J

:1+p/2 ZHuj\u1—0)< )

1+p =

0.

The lemma now follows by observing that(u; | u1 = 0) =

h (%) as it can be shown (for example, by induction)



that P(u; =0 | u1 =0) = 1+  for all j>1. m  We will show that

The quantity H can also be expressed as an infinite 1 1+

. q y ( ) p (yz ‘ Yi—1, Wi— 1) p + h P )
series. 1+p 1+p 2

Proposition 7: The entropy rate of the output process of thg hich will prove the lemma. This is just a somewhat tedious
grains channel is given by computation.

8

We start with the identity

o h(j3 (1— 14
() Jzz:z 1};[2 Be), (14) H(yi |yi—1,ui—1) = Z H(yi | yi-1 = a,ui1 = b)
(a:b)€{0,1}2
where x Prly;—1 = a,u;—1 = b]. (17)
Bi=Prlyjpn=1]y; =yj-1=-=y2=0,91 = 1] Givenu;_1 = 1, we have (with probability 1):;; = 0, so that
is given by the following recursions, = (1 — p), and for ¥ = 2. Thus,
J =3, a1 —1) = = o . —
g = L(L=(+pfia (15) H(yi | yi-1 = a,uiza = 1) = H(zi | yi1 = a,ui = 1)
b7 9 1- 31 =H(z;) =1
The proof is given in Appendix B. Next, givenu;, =0, we havey; , = z;1, so that

Remark:An explicit expression fop; is as follows: A(yi [ yior = asuig = 0) = Hyi | 2ica = a,ui-1 = 0),

. - and furthermore,
2007 — )

P - — = 27 37 ey ) — . —
& (3+B +p)19]_ — (3= B+ ), / Prly; 1 = a,u;—1 = 0]
= Pr[uj—1 = 0] Prly;—1 = a| u;—1 = 0]
whered, =1 —1E8 andB = /p? + 6p + 1. — Prfui g = O] Prlwi 1 = a| i1 = 0]
Together, Eq. (12), Lemmas 5-6, and Proposition 7 provide _ lPr[u' L= 0]
an exact expressiofor the SIR of the grains channel, and 2 ! '
hence a lower bound on the capacify Thus, the right-hand side of (17) simplifies to

Theorem 8:The capacity?’(p) > max(1/2, R&(p)), where
R# is the SIR of the grains channel and is given by thePrlui1 =11+ 3 Pr[uz 1=0]

following expression: X Z (yi | mio1 = a,u;—1 = 0). (18)
1 o Jj—1 ac{0,1}
Re(p) = W +p) Z{h(»@j) 108 To evaluateH (y;|z;_1 = 0,u;_, = 0), we compute
j=2 k=2
_2+p b (1 — (—p)j> Pry; =0|z;_1 = 0,u;_1 = 0]
4 1+p ' = Z Prly; = 0lz;—1 = 0,u;—1 = 0,u; = j]
j€{0,1}

In the following we derive bounds ol (Y') that can provide

. X PI’[’LLZ = j‘ui,1 = 0]
easier-to-compute bounds @h

Note that, giveru; = 0, we havey; = z;, and hence

Lemma 9:
P, 1 (1 +p) < HY) Prly; =0 | x;—1 = 0,u;—1 = 0,u; = 0]
1+p 1—|—p 2 - :PI'[(L'Z':O|{,CZ',1:O,UZ',l:O,’LLZ‘:O]

1 h(l—p>+21+2p h<2(1+p ) (16)  Prfe = 0] = 1/2.

<
2 +p) 2 (1+p) L+2) On the other hand, given; = 1, we havey; = x;_1, from
Proof: We will prove the lower bound because it isyhich we obtain
directly relevant to our main problem of boundirg, and
omit the proof of the upper bound. Prly; =0 zio1 = 0,ui1 = 0,u; = 1] = 1.

We havelim,, .o = H(y" | so) =lim, 0o = > H(y; | HencePrly; =0 | z;_1 = 0,u,_1 = 0] = 1“’ . An analogous
Yt so) = limoo H(y; | y* ', s0). Since conditioning argument shows thatr[y; = 1| z;_1 = 1 uz 1 =0] = 2.
reduces entropy, we havé (y; | y'~ 1) > H(y; | y*=',u;—1). Thus, (18) evaluates to
Now, (2) implies thaty; is conditionally independent of

1+
Y1,...,Yi_2 givenu;_1. Hence, Prlu;—y = 1]+ Prfu;—1 = 0] h (?p) (19)

Hy; | yi‘l,ui,l) = H(y; | Yyi—1,ui—1). The above expression is precisely the lower bound in the



c9

16 at even coordinates remain unchanged. THug?2| bits of
information can be transmitted without error, which proves
that Ry(n) = 2 [n/2].

On the other hand, suppose that the initial statés such
o thatPru; = 1] = 0. Then, the worst-case channel realization
06 is caused by the state sequene® = 0,1,0,1,...,(1 +n
mod 2). In this case, the channel is such that the first coor-
dinate of the input sequence is always received withoutrerro

0.9

0.8

02 04 06 08 10 " at the output. A slight modification of the preceding argumen
(@) Bounds on¢. The gray area shows the gap now shows thati?y(n) = % [n/2].
between the lower and upper bounds We have thus proved the following result.
1.0f .. . . .
Proposition 10: Consider a grains channel with parameter
09F p > 0. If the initial statesy is such thafPr[u; = 1] > 0, then

Ro(n) = L [n/2]; otherwise,Ry(n) = 1 [n/2].
In any case, the zero-error capacity of the channéljis=
lim,, o Ro(n) = %

0.8

0.7

0.6

S~

/ APPENDIXA: PROOF OFTHEOREM 3
(b) SIR R&(p) (13)-(14) and bounds for it (16)

Fig. 1. Bounds o (p) and R (p) of the grains channel as functions pf Observe first that thg BINAEras channel .i_s in(_jecomposable
for p < 1. Indeed, for this channel, the condition in (5) reduces
to showing that for some fixed, there exists a choice far,

statement of the lemma. m such thatmin,,, P(u,|ug) > 0. This condition clearly holds
This lemma together with (11)-(12) and (13) gives the folowfor n = 1 and u; = 0: minjecgo,1; P(ur = 0 | uo = j) =
ing lower bound on the capacity of the grains channel: 1—p >0, providedp < 1. We deal with the indecomposable
P 1 1+p case in this appendix; when= 1, the proof forC = C = %
€ > T+p + 1+ h ( 5 ) follows, mutatis mutandisthe proof of Proposition 2.
1 4p)2 s 1= (—p) 1 When the channel is indecomposable, we hé@ve C = C.
_ Zh () (—) . We will show thatC = 1# Choose the distribution ong
1+p L+p 2 to be the stationary distribution of the Markov processso

In Figure 11-D, we plot the various upper and lower boundd1@t P(uo = 0) = 1 and P(up = 1) = 2. Consequently,
we have for¢(p) and SIRRE(p) for the grains channel. u IS a stationary process, and in particular, forialt 1, we
' have P(u; = 0) = 11 and P(u; = 1) =
E. Zero-Error Capacity Observe that

We end with a few remarks on the zero-error capacity of the
grains channel. We are interested in the maximum zero-error

D
1+p*

I(®";y" [ uo) = H(y" | uo) — H(y" | &", uo)

information rate,Ry(n), achievable over the grains channel (@) H(y" | uo) — H(u" | ", uo)

with parametep € [0, 1] and inputz™. The case whep =0 )

is trivial (the channel introduces no errors), so we conside = H(y" | uo) — H(u" | uo),

p>0. with equality (a) above due to the fact that, givefi, the

The zero-error analysis depends on the initial statef the

) sequencegy™ and u" uniquely determine each other, and
channel. Suppose thag is such thatPr[u; = 1] > 0. Then, . ke y quety

equality (b) becauses™ is independent ofe™. Furthermore,

the state sequence” = 1,0,1,0,..., (n mod 2) is realized 00,/ iq 5 stationary first-order Markov process, we have
with some positive probability. Corresponding to this stat n o« _ _ _h(p)
o H(u" [uo) =3,y H(un | up—1) =nH(u1 | uo) = nyt.
sequence, we havg" = xg, 2, 72,24, ..., T2|n/2). THUS, at Hence p
most |n/2| bits can be transmitted without error across this ' L
L 1 )

realization of the channel. Henc&o(n) < % |n/2]. This Co =0~ max H(y" | up) — () 20)

zero-error information rate can actually be achieved. @ans Qm(x™) 1+p

the binary length: code ; . ;
yens Now, H(y" | uo) = 57, H(yi | y'~*,up). Sincey'?

Ry = {(x1,22,...,2,) : ;1 = x; for all even indices}, completely determines’~!, we have by the data processing

which has2!”/2) codewords. When a codeword frof,, inequality [3, Theorem 2.8.1],

is sent acrossny realization of the grains channel, the bits H(ys |y o) < H(y | w1 ug)



We further have record two facts abouB;. First,

H (yz | ui 17u0) < H (yz | uifl) Pr[yi S B]] = PI‘[(yZ-7yi Tyeeor Yiej 1) = O-j 1 ]
=H ui—1 =0 =+ = —_— II[(y' Yj—1y--- y1)—0j711] (22)
i i — H i G— 1 7 Jdy—1 ’ )

) ] ] ) ] the last equality stemming from the fact thatis stationary.
Givenu; 1 = 1, y, is a binary random variable (sineg¢ =0 ggcong by the following lemma

with probability 1), and thusH (y; | u;—1 = 1) < 1. On the . 4

other hand, we havé®(y; = ¢ | u;_y = 0) = P(u; = 1 | H(yit1 |y =b) =h(Prlyip1 =1|y" =) (23)
u;—1 = 0) = p, and so the conditional entrop¥ (y; | u;—1 =
0) is maximized whenP(y; =0 | u;—1 = 0) = P(y; = 1
ui-y = 0) = (1 —p)/2. This yieldsH(y; | ui-1 = 1) < | emma 11:Forb € B;, Pr[y;11 = 1 | y* = b] equals
h(p) + 1 —p. Putting all the inequalities together, we find that1

§Pr[uj =0 (Yj-1,Yj-2,---¥2) = V72, (ug, 1) = (0,0)].

is invariant overB;.

Hy" | w) = H(y: |y~ uo)

I

Il
-

K2

P 1 Proof: The proof relies upon the following claim :
<n({2 + () +1-p) )

1+p 1+p Suppose thayy—1 = b; then, with probability 1, we
_ n<1 + h(p)) havey, = b if and only if s; := (ug, zx) = (0,b).
1+p

Indeed, even without the assumption @n 1, the “if” part
It is not difficult to check that the above in fact holds witholds trivially. For the “only if” part, assume that_; = b and

equality when the input sequena¢ is an i.i.d. sequence of y, — 5. Note that ifu;, = 1, then with probability 1, we have

Bernoulli(t/2) random variables. Thus, up_1 = 0. Hence, by way of (3), we havg, = z_1 = ys_1.
g Ao - LML e o o e it =
Qn(zn) 1+p k ks k
Plugging this into (20), we obtain that, = ﬁ for all n, Consider anyp € B;. From the claim, we have
and hencec’ = 5. " Prly =10y =b = Prl(urzin) = (0.1) |y =0

1 A
= 5 Prui =01y =b],
APPENDIXB: PROOF OFPROPOSITION7 where we have used the fact that,; is independent of)’.
Note that, in the eveny’ = b, we havey;_;;» = 0 and
To prove Propositon 7, we need to show thag;,—;+1 =1, so that by the claim again,
lim; oo H(yi+1 | y') equals the expression in the stateme _ T _ i _
of the proposition. We will work with the identity rgr[ul“ =0y =b]=Prluips =0]y" =bsijs2 = (0,0)].
i i i Now, given the channel state;_; > = (0,0), the ran-
Hyiv | y') = Z ’_ H(yir1|y" = b)Prly" = b]. dom variablesu; 1, yi, Yi_1,---,Yi_j+2 are conditionally
be{0.1} independent of the past outpyt—*!. Furthermore, given
From the channel input-output relationship given by (3) ang_;,, = (0,0), the random variabley;_;.» is uniquely
the fact that thelinpuﬁc is an i..i.d. ?ernoulli@ sequence, it determinedy;_;» = 0. Hence,
is clear thatPr[y* = b] = Prly* = b], whereb = b+ 1" is
the sequence obtained by flipping each bitbinit then also 4
follows that H(y; 1 | y* = b) = H(yiy1 | y* = b), since Priuisr =0 (yi, .- yimjrs) = 0772, 540 =0).
Prlyit1 =1]|y" = b] = Pr[y;41 = 0| y* = b]. Hence,

Prlui1 =0]y' =b,s;i j12=0] =

Finally, by the joint stationarity ofy and u, the right-hand
H(yir |4) =2 Y Hlyinr |y =b)Prly’ =b]. (21) side above is equal to
beB

where B = {(b;,...,b1) € {0,1}" : b; = 0} is the set of

Pr[“j =0] (Z/j—layj—za co o) = 0‘772, s1 = 0],

all binary length¢ sequences that have a 0 in the Ieftmoé'i’h'Ch s what we needed to show. "
coordmate. . In the statement of Proposition 7, we defingj =
Fix ¢ > 2. Define, for2 < j <1, the events Prlyj+1 = 1| (yj,9j-1,..-,y1) = 0°711]. Note that if we

i - seti = 7 in Lemma 11, we get
Bi ={y": (i, Y1, Yimjy1) = 0771}, t=17J g

o 1 -
which, together with the ever{’ = 0'}, form a partition of 0 = 5 Priu; =0 (yj—1,...,y2) = 0772, (w1, z1) = (0,0)].
B. Here,0’~11 is shorthand for thg-tuple (0,...,0,1). We (24)



From (21)—(24), and Lemma 11, we have expression above evaluatesgol —7;—1). Thus,

. Z | 11— 1)
. A ) ) —ni-1 — . 2 J 27
H(yir1 | y") 2j§:2h(ﬁg)Pr[(yg,---,y1) 0] %P By =0 By] (27)
+ 2H (i1 | y' = 0)) Pry’ = 07]. Turning to the denominator, we writery;_, =0 | E,;_;] as

Letting i — oo, it is easy to verify that the term at the end Z Prlyj—1 = 0] uj1 = b, Ej ] Priuj1 = b| Ej]
of the above expression vanishes, so that be{0,1}
0o = %(1 — "Yj—l) + Pl“[yj_l =0 | Uj—1 = 1,Ej_1] “Yi—1
H(Y) =2 h(6;) Prl(ys,yj-1,- - ,91) = 0711 (25) (28)

= _
! We claim thatPr[y;—1 = 0 | uj—1 = 1, E;_1] = 1. Indeed,
The proof of Proposition 7 will be complete once we provgivenu,;_; = 1, we havey,_; = z;_». Furthermore, we must

the next two lemmas. haveu;_, = 0 with probability 1, so thatr;_, = y;_,. Thus,
Lemma 12:F0rj > 2, we have given Uj—1 = 1, we must haVQJj,1 =1Yj-2 with probablllty
i1 1. But note that the everlf;_, impliesy;_» = 0: if j = 3, this
i 1 follows from (uq,21) = (0,0), and if j > 4, this is contained
. . —_ni-1 - - _ 1,41 y V) i 3}
Pri(y;, yj1,---o1n) = 007 4(1+p) ,}:[2(1 fe) within (y;_2,...,y2) = 0773, Thus, givenu;_; = 1 and
o E;_1, we havey; ; = y;_» = 0 with probability 1.
Proof: From the definition of3;, we readily obtain So, carrying on from (28), we get
. — 011 = 1 1
Pr[(yj’,' N y) =0 Prlyj—1 =0 Ej_1] = 5(1 —Yj-1) V-1 = 5(1 +7j-1)
J—
[H(l - 5;9)1 - Pr(y2,y1) = (0,1)]. Feeding this back into (27), we obtain
= _ (=)
We must show thaPr[(y2,y1) = (0,1)] = 1. We skip V=P i
. . | = A(p) s(1+7j-1)
the details of this elementary calculation. [ | o ] )
which is the desired recursion (26). [ ]

Lemma 13:5; = %(1 —p), and forj > 3, 3, satisfies the

recursion in (15). This concludes the proof of Proposition 7.
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last equality.
Givenu;_; = 0, we havey;_; = z,;_1, and sincez;_;
is independent of;_; and E;_,, the numerator in the last




