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Abstract—In terabit-density magnetic recording, several bits
of data can be replaced by the values of their neighbors in the
storage medium. As a result, errors in the medium are dependent
on each other and also on the data written. In an earlier paper
we studied a simple one-dimensional model of this situation. In
our model binary data is sequentially written on the medium and
a bit can erroneously change to the immediately preceding value.
Here we define a probabilistic finite-state channel model of the
storage medium and derive estimates of its capacity. To derive a
lower bound we consider a uniform input distribution, and find
an exact expression of thesymmetric capacity of the channel. An
upper bound is found by showing that the original channel is a
stochastic degradation of another, related channel model whose
capacity we compute explicitly.

I. I NTRODUCTION

General magnetic recording media are composed of fun-
damental magnetizable units, called “grains”, that do not
have a fixed size or shape. Each grain can be magnetized
to take on exactly one of the two magnetic polarities. Thus,
each grain is in principle capable of storing at most one bit
of information. At the same time, in conventional magnetic
recording technologies, data is generally stored by dividing
the magnetic medium into regularly-spaced bit cells, and
writing one bit of data into each of these bit cells. Recently,
Wood et al. [5] proposed a new write mechanism, that can
magnetize areas commensurate to the size of individual grains.
With such a write mechanism and a corresponding readback
mechanism in place, the remaining bottleneck to achieving
magnetic recording densities as high as 10 Terabits per square
inch is that the write and readback mechanisms do not have
precise knowledge of the grain boundaries.

In [1] we studied a simple one-dimensional version of a
model of errors in binary data that arises as a consequence
of reading/writing across the grain boundaries. Restricting
ourselves to the one-dimensional case, we defined a combi-
natorial error model that corresponds to the granular medium
described above. Our model of the medium comprisesn bit
cells, indexed by the integers from 1 ton. The granular
structure is described by an increasing sequence of positive
integers,1 = j1 < j2 < · · · < js ≤ n, whereji denotes the
index of the bit cell at which theith grain begins. Note that the
length of theith grain isℓi = ji+1−ji (we setjs+1 = n+1 to

be consistent). For notational ease, our model assumes thatit
is thefirst bit to be written within a grain that sets the polarity
of the grain. Thus, for indicesj within the ith grain, i.e., for
ji ≤ j < ji+1, we haveyj = xji

. This means that theith
grain introduces an error in the recorded data (i.e., a situation
whereyj 6= xj) precisely whenxj 6= xji

for somej satisfying
ji < j < ji+1.

In [1], we considered a medium with grains of length at
most2. (Grains of length 1 do not introduce any errors.) We
presented upper and lower bounds on the size of codes capable
of correcting a given number of length-2 grains. Most results
in [1] can be extended to the case where the maximum length
of a grain is an arbitrary constant.

In this paper we consider a probabilistic channel model that
corresponds to the one-dimensional combinatorial model of
errors discussed above, calling it the “grains channel”. We
again confine ourselves to length-2 grains. Our objective is
to calculate the capacity of the channel. For the lower bound
we restrict our attention to uniformly distributed, independent
input letters which corresponds to the case ofsymmetric
information rate(symmetric capacity) of the channel. We are
able to find an exact expression for the SIR as an infinite
series which gives a lower bound on the capacity. Computing
this expression is one of the main results of this paper (see
Thm. 8 below). To estimate capacity from above, we relate the
grains channel to an erasure channel in which erasures never
occur in adjacent symbols, and are otherwise independent. An
expression for its capacity that we find yields an upper bound
on the capacity of the grains channel.

We would like to acknowledge a concurrent independent
paper by Iyengar, Siegel, and Wolf [4]. The authors of [4]
consider a slightly more general channel model that includes
the grains channel as a particular case. Paper [4] contains
our Prop. 2 and Theorem 4, but not the calculation of the
symmetric information rate of the channel of Sect. II-D.

II. CAPACITY OF THE GRAINS CHANNEL

In this section, we define a probabilistic model for the grains
channel with grains of length at most 2. This is a binary-
input binary-output channel that can make an error only at
positions where a length-2 grain ends. In fact, error eventsare



data-dependent: an error occurs at a position where a length-2
grain ends if and only if the channel input at that position
differs from the previous channel input. Let us now formally
define the channel.

Supposex = x1x2.. . . . andy = y1y2.. . . . denote the input
and output sequence respectively, withxi, yi ∈ {0, 1} for all i.
We further define the sequenceu = u1u2.. . . ., whereui = 1
(resp.ui = 0) indicates that a length-2 grain ends (resp. does
not end) at positioni. We takeu to be a first-order Markov
chain, independent of the channel inputx, having transition
probabilitiesP (ui|ui−1) as tabulated below (for somep ∈
[0, 1]):

ui = 0 ui = 1
ui−1 = 0 1 − p p
ui−1 = 1 1 0

. (1)

The grains channel makes an error at positioni (i.e., xi 6= yi)
if and only if ui = 1 andxi 6= xi−1. To be precise,

yi = xi + ui(xi + xi−1), (2)

the additions and multiplications above being performed mod-
ulo 2. Equivalently,

yi =

{

xi if ui = 0

xi−1 if ui = 1.
(3)

We will find it useful to define the error sequencez =
z1, z2, z3, . . ., wherezi = xi + yi, the addition again being
modulo-2. Thus,

zi = ui(xi + xi−1). (4)

The casei = 1 is not covered by the above definitions. We
will include it once we define a finite-state model of the grains
channel.

The grains channel as we have defined above is a special
case of a somewhat more general “write channel” model
considered in [4].

A. Discrete Finite-State Channels

For easy reference, we record here some important facts
about discrete finite-state channels. The material in this section
is substantially based upon [2, Section 4.6].

A stationary discrete finite-state channel (DFSC)has an
input sequencex = x1, x2, x3, . . ., an output sequencey =
y1, y2, y3, . . ., and a state sequences = s1, s2, s3, . . .. Each
xn is a symbol from a finite input alphabetX , eachyn is
a symbol from a finite output alphabetY, and each statesn

takes values in a finite set of statesS. The channel is described
statistically by specifying a conditional probability assignment
P (yn, sn|xn, sn−1), which is independent ofn. It is assumed
that, conditional onxn andsn−1, the pairyn, sn is statistically
independent of all inputsxj , j < n, outputsyj , j < n, and
statessj , j < n−1. To complete the description of the channel,
an initial states0, also taking values inS, must be specified.

For a DFSC, we define thelower (or pessimistic) capacity
C = limn→∞ Cn, and upper (or optimistic) capacity C =

limn→∞ Cn, where

Cn = n−1 max
Qn(xn)

min
s0∈S

I(xn;yn | s0)

Cn = n−1 max
Qn(xn)

max
s0∈S

I(xn;yn | s0).

In the above expressions,I(xn;yn | s0) is the mutual
information between the length-n input xn = (x1, . . . , xn)
and the length-n outputyn = (y1, . . . , yn), given the value of
the initial states0, and the maximum is taken over probability
distributionsQn(xn) on the inputxn. The limits in the above
definitions ofC andC are known to exist. Clearly,Cn ≤ Cn

for all n, and thus,C ≤ C. The capacitiesC andC have an
operational meaning in the usual Shannon-theoretic sense —
see Theorems 4.6.2 and 5.9.2 in [2].

The upper and lower capacities coincide for a large class
of channels known asindecomposablechannels. Roughly, an
indecomposable DFSC is a DFSC in which the effect of the
initial states0 dies away with time. Formally, letq(sn | xn, s0)
denote the conditional probability that thenth state issn,
given the input sequencexn = (x1, . . . , xn) and initial state
s0. Evidently, q(sn | xn, s0) is computable from the channel
statistics. A DFSC is indecomposable if, for anyǫ > 0, there
exists ann0 such that for alln ≥ n0, we have

|q(sn | xn, s0) − q(sn | xn, s′0)| ≤ ǫ

for all sn, xn, s0 ands′0. Theorem 4.6.3 of [2] gives an easy-
to-check necessary and sufficient condition for a DFSC to be
indecomposable: for some fixedn and eachxn, there exists a
choice forsn (which may depend onxn) such that

min
s0

q(sn | xn, s0) > 0. (5)

We note here that the channels we consider in the subsequent
sections are indecomposable except in very special cases. For
these special cases, it can still be shown thatC = C holds.

We make a few comments about DFSCs for whichC = C
holds. We denote byC the common value ofC andC. ThisC,
which we refer to simply as thecapacityof the DFSC, can be
expressed alternatively. If we assign a probability distribution
to the initial state, so thats0 becomes a random variable, then
C = limn→∞ Cn, where

Cn =
1

n
max

Qn(xn)
I(xn;yn | s0). (6)

Clearly,Cn ≤ Cn ≤ Cn for all n, so thatC, as defined above,
is indeed the common value ofC and C. Note that this is
independent of the choice of the probability distribution on
s0.

A further simplification to the expression for capacity is
possible. Since|I(xn;yn) − I(xn;yn | s0)| ≤ log2 |S| (see,
for example, [2, Appendix 4A, Lemma 1]), we in fact have

C = lim
n→∞

1

n
max

Qn(xn)
I(xn;yn). (7)

The capacity of a DFSC is difficult to compute in general.
A useful lower bound that is sometimes easier to compute (or



at least estimate) is the so-calledsymmetric information rate
(SIR) of the DFSC:

R = lim
n→∞

1

n
I(xn;yn), (8)

where the input sequencex is an i.i.d. Bernoulli(1/2) random
sequence.

B. First results

It is easy to see that the grains channel is a DFSC, where
the nth statesn is the pair(un, xn), which takes values in
the finite setS = {(0, 0), (0, 1), (1, 0), (1, 1)}. Again, for
completeness, we assume an initial states0 that takes values
in S.1

Proposition 1: The grains channel is indecomposable for
p < 1.

Proof: We must check that the condition in (5) holds. We
take n = 1 and s1 = (0, x1). Then,mins0

q(s1 | x1, s0) =
minj∈{0,1} P (u1 = 0 | u0 = j) = 1 − p > 0.
Because of this proposition the capacity of the grains channel
for the casep < 1 is defined via (6). In fact, as the next
proposition shows, the equalityC = C also holds for the
grains channel whenp = 1.

Proposition 2: For the grains channel withp = 1, we have
C = C = 1

2 .
Proof: We have, with probability 1,

u = u1, u2, u3, u4, u5, u6, . . .

=

{

0, 1, 0, 1, 0, 1, . . . if u0 = 1

1, 0, 1, 0, 1, 0, . . . if u0 = 0.

Thus, once the initial states0 = (u0, x0) is fixed, the output
y of the grains channel is a deterministic function of the input
x:

y = y1, y2, y3, y4, y5, y6, . . .

=

{

x1, x1, x3, x3, x5, x5, . . . if s0 = (1, x0)

x0, x2, x2, x4, x4, x6, . . . if s0 = (0, x0).

Therefore, for any fixeds ∈ S, we haveH(yn | xn, s0 =
s) = 0, and hence,I(xn;yn | s0 = s) = H(yn | s0 = s). If
xn is a sequence of i.i.d. Bernoulli(1/2) random variables, then
mins∈S H(yn | s0 = s) = H(yn | s0 = (0, x0)) = ⌊n/2⌋.
It follows that Cn ≥ ⌊n/2⌋

n , so thatC ≥ 1/2. On the other
hand, for any input distributionQn(xn), and anys ∈ S, we
haveH(yn | s0 = s) ≤ ⌈n/2⌉. Consequently,Cn ≤ ⌈n/2⌉

n ,
and hence,C ≤ 1/2. We conclude thatC = C = 1/2.
In view of this discussion, the capacity of the grains channel
is defined by (7). From here onward we denote this capacity
by C = C (p) and useRg(p) to refer to the SIR of the grains
channel.

1To be strictly faithful to the granular medium we are modeling,we should
restricts0 to take values only in{(1, 0), (1, 1)}, so thatu0 = 1. This would
imply u1 = 0, meaning that no length-2 grain ends at the first bit cell of the
medium, corresponding to physical reality. But this makes no difference to
the asymptotics of the channel, and in particular, to the channel capacity.

C. Upper Bound: BINAEras

Consider a binary-input channel similar to the binary era-
sure channel, except that erasures in consecutive positions
are not allowed. Formally, this is a channel with a binary
input sequencex = x1, x2, x3, . . ., with xi ∈ {0, 1} for all
i, and a ternary output sequencey = y1, y2, y3, . . ., with
yi ∈ {0, 1, ε} for all i, where ε is an erasure symbol. The
input-output relationship is determined by a binary sequence
u = u1, u2, u3, . . ., which is a first-order Markov chain, inde-
pendent of the input sequencex, with transition probabilities
P (ui|ui−1) as in (1). We then have

yi =

{

xi if ui = 0

ε if ui = 1
(9)

SinceP (ui = 1 | ui−1 = 1) = 0, adjacent erasures do not
occur, so we term this channel the binary-input no-adjacent-
erasures (BINAEras) channel. To describe the channel com-
pletely, we define an initial statez0 taking values in{0, ε}.

The BINAEras channel is a DFSC for whichC = C holds,
and its capacity, which we denote byCε(p), can be computed
explicitly.

Theorem 3:For the BINAEras channel with parameterp ∈
[0, 1], we haveC = C = Cε(p) , 1

1+p .

Intuitively, the average erasure probability of a symbol equals
p̃ = p

1+p , and the capacityCε(p) equals1− p̃. A formal proof
is given in Appendix A.

We claim that the grains channel is a stochastically degraded
BINAEras channel. Indeed, the grains channel is obtained by
cascading the BINAEras channel with a ternary-input channel
defined as follows: the input sequencey = y1, y2, y3, . . .,
yi ∈ {0, 1, ε}, is transformed to the output sequencey′ =
y′
1, y

′
2, y

′
3, . . . according to the rule

y′
i =

{

yi if yi 6= ε

yi−1 if yi = ε
(10)

To cover the case wheny1 = ε, we sety′
1 equal to some

arbitrary y0 ∈ {0, 1}. It is straightforward to verify, via (9),
(10) and the fact thatP (ui = 1 | ui−1 = 1) = 0, that the
cascade of the BINAEras channel with the above channel
has an input-output mappingxi 7→ y′

i given by (3). This
immediately leads to the following theorem.

Theorem 4:For p ∈ [0, 1], we haveC (p) ≤ Cε(p) = 1
1+p .

Remark 1.We remark that any code that correctst nonadjacent
substitution errors (bit flips) also correctst grain errors. It is
therefore tempting to bound the capacity of the grains channel
by the capacity of the binary channel withnonadjacent errors.
Such a channel is defined similarly to the BINAEras channel:
the channel noise is controlled by a first-order Markov channel
u (1), andyi = xi + ui for all i ≥ 1. The capacity of this
channel is computed as in the BINAEras case and equals1−
h(p)/(1+p), whereh(p) denotes the binary entropy function.
However, a closer examination convinces one that this quantity
does not provide a valid lower bound forC .



D. Lower Bound: The Symmetric Information Rate

According to the definition of SIR of the grains channel (8),
assume thatx is an i.i.d. Bernoulli(1/2) random sequence. With
this assumption, the state sequences is a first-order Markov
chain. Also, each output symbolyn is easily verified to be a
Bernoulli(1/2) random variable (butyn is not independent of
yn−1).

We also assume that the initial states0 is a random
variable distributed according to the stationary distribution
of the Markov chain, so that the sequences is a station-
ary Markov chain. It follows that the output sequencey

is a stationary random sequence, so that the entropy rate
H(Y ) := limn→∞

1
n H(yn) exists. It is also worth noting here

that the initial distribution assumed ons0 causes the Markov
chain u to be stationary as well. In particular, the random
variablesui, i ≥ 0, all have the stationary distribution given
by P (ui = 0) = 1

1+p andP (ui = 1) = p
1+p .

We have

Rg = lim
n→∞

1

n
I(xn;yn) (11)

I(xn;yn) = H(yn) − H(yn|xn) = H(yn) − H(zn|xn)
(12)

As noted above,H(Y ) = limn→∞
1
n H(yn) exists. We also

have the following lemma.
Lemma 5:Let x be an i.i.d. uniform Bernoulli sequence,

then

lim
n→∞

1

n
H(zn | xn) =

∞
∑

j=2

H(uj | u1)
(1

2

)j

.

Proof: We write

H(zn | xn) =

n
∑

i=1

H(zi | z1, . . . , zi−1,x
n).

From (4), it is evident thatzi is independent ofxj for j > i.
Hence,

H(zn | xn) =

n
∑

i=1

H(zi | z1, . . . , zi−1,x
i).

As a result, by the Cesàro mean theorem,

lim
n→∞

1

n
H(zn | xn) = lim

i→∞
H(zi | z1, . . . , zi−1,x

i),

provided the latter limit exists.
To evaluateH(zi | z1, . . . , zi−1,x

i), we define the events
A0 = {xi : xi = xi−1},

Aj = {xi : xi 6= xi−1 = · · · = xi−j 6= xi−j−1}, 1 ≤ j ≤ i−2,

and Ai−1 = {xi : xi 6= xi−1 = · · · = x1}. These
events partition the space{0, 1}i to which xi belongs. Note
that Pr[xi ∈ Aj ] = (1

2 )j+1 for 0 ≤ j ≤ i − 2, and
Pr[xi ∈ Ai−1] = (1

2 )i−1.
Now, if xi ∈ A0, then by (4), we havezi = 0. Consequently,

H(zi | z1, . . . , zi−1,x
i ∈ A0) = 0.

If xi ∈ Aj for somej ∈ [1, i − 2], then we havezi = ui,
zi−1 = · · · = zi−j+1 = 0, andzi−j = ui−j . Thus,

H(zi | z1, . . . , zi−1,x
i ∈ Aj)

= H(ui | z1, . . . , zi−j−1, ui−j ,x
i ∈ Aj)

(a)
= H(ui | ui−j)

(b)
= H(uj+1 | u1).

Equality (a) above is due to the fact thatu is a first-
order Markov chain independent ofx, while equality (b)
is a consequence of the stationarity ofu (which is itself a
consequence of the stationarity of the state sequences).

Finally, if xi ∈ Ai−1, thenzi = ui andzi−1 = · · · = z2 =
0. Thus,

H(zi | z1, . . . , zi−1,x
i ∈ Ai−1) = H(ui | z1).

Therefore,

H(zi | z1, . . . , zi−1,x
i)

=

i−1
∑

j=0

H(zi | z1, . . . , zi−1,x
i ∈ Aj) Pr[xi ∈ Aj ]

=

i−2
∑

j=1

H(uj+1 | u1)
(1

2

)j+1

+ H(ui | z1)
(1

2

)i−1

.

Letting i → ∞, the lemma follows.
The infinite series in Lemma 5 can be expressed in a form

more useful for explicit computation.
Lemma 6:
∞
∑

j=2

(1

2

)j

H(uj |u1) =
1 + p/2

1 + p

∞
∑

j=2

(1

2

)j

h
(1 − (−p)j

1 + p

)

.

(13)

Proof: Note first thatH(uj | u1) = H(uj | u1 =
0)Pr[u1 = 0] + H(uj | u1 = 1)Pr[u1 = 1]. Furthermore,
sinceu1 = 1 implies u2 = 0 with probability 1, we have, for
all j ≥ 2,

H(uj | u1 = 1) = H(uj | u2 = 0) = H(uj−1 | u1 = 0),

the last equality following from the stationarity ofu. Hence,
∑∞

j=2 H(uj | u1 = 1)(1
2 )j =

∑∞
j=2 H(uj−1 | u1 = 0)(1

2 )j =

( 1
2 )

∑∞
j=2 H(uj | u1 = 0)(1

2 )j , sinceH(u1 | u1 = 0) = 0.
Putting it all together, we find that

∞
∑

j=2

H(uj | u1)
(1

2

)j

= (Pr[u1 = 0] +
(1

2

)

Pr[u1 = 1])

×

∞
∑

j=2

H(uj | u1 = 0)
(1

2

)j

=
1 + p/2

1 + p

∞
∑

j=2

H(uj | u1 = 0)
(1

2

)j

.

The lemma now follows by observing thatH(uj | u1 = 0) =

h
(

1−(−p)j

1+p

)

, as it can be shown (for example, by induction)



that P (uj = 0 | u1 = 0) = 1−(−p)j

1+p for all j ≥ 1.

The quantityH(Y ) can also be expressed as an infinite
series.

Proposition 7: The entropy rate of the output process of the
grains channel is given by

H(Y ) =
1

2(1 + p)

∞
∑

j=2

h(βj)

j−1
∏

k=2

(1 − βk), (14)

where

βj := Pr[yj+1 = 1 | yj = yj−1 = · · · = y2 = 0, y1 = 1]

is given by the following recursion:β2 = 1
2 (1 − p), and for

j ≥ 3,

βj =
1

2

(

1 − (1 + p)βj−1

1 − βj−1

)

. (15)

The proof is given in Appendix B.

Remark:An explicit expression forβj is as follows:

βj =
2(ϑj

− − ϑj
+)

(3 + B + p)ϑj
− − (3 − B + p)ϑj

+

, j = 2, 3, . . . ,

whereϑ± = 1 − 1∓B
p andB =

√

p2 + 6p + 1.

Together, Eq. (12), Lemmas 5–6, and Proposition 7 provide
an exact expressionfor the SIR of the grains channel, and
hence a lower bound on the capacityC .

Theorem 8:The capacityC (p) ≥ max(1/2, Rg(p)), where
Rg is the SIR of the grains channel and is given by the
following expression:

Rg(p) =
1

2(1 + p)

∞
∑

j=2

{

h(βj)

j−1
∏

k=2

(1 − βk)

−
2 + p

2j
h

(1 − (−p)j

1 + p

)

}

.

In the following we derive bounds onH(Y ) that can provide
easier-to-compute bounds onC .

Lemma 9:

p

1 + p
+

1

1 + p
h

(1 + p

2

)

≤ H(Y )

≤
1

2(1 + p)
h

(1 − p

2

)

+
1 + 2p

2(1 + p)
h

( 1 + p

2(1 + 2p)

)

(16)

Proof: We will prove the lower bound because it is
directly relevant to our main problem of boundingC , and
omit the proof of the upper bound.

We havelimn→∞
1
n H(yn | s0) = limn→∞

1
n

∑n
i=1 H(yi |

yi−1, s0) = limi→∞ H(yi | yi−1, s0). Since conditioning
reduces entropy, we haveH(yi | yi−1) ≥ H(yi | yi−1, ui−1).
Now, (2) implies that yi is conditionally independent of
y1, . . . , yi−2 given ui−1. Hence,

H(yi | yi−1, ui−1) = H(yi | yi−1, ui−1).

We will show that

H(yi | yi−1, ui−1) =
p

1 + p
+

1

1 + p
h

(

1 + p

2

)

,

which will prove the lemma. This is just a somewhat tedious
computation.

We start with the identity

H(yi |yi−1, ui−1) =
∑

(a,b)∈{0,1}2

H(yi | yi−1 = a, ui−1 = b)

× Pr[yi−1 = a, ui−1 = b]. (17)

Given ui−1 = 1, we have (with probability 1)ui = 0, so that
yi = xi. Thus,

H(yi | yi−1 = a, ui−1 = 1) = H(xi | yi−1 = a, ui−1 = 1)

= H(xi) = 1.

Next, givenui−1 = 0, we haveyi−1 = xi−1, so that

H(yi | yi−1 = a, ui−1 = 0) = H(yi | xi−1 = a, ui−1 = 0),

and furthermore,

Pr[yi−1 = a, ui−1 = 0]

= Pr[ui−1 = 0]Pr[yi−1 = a | ui−1 = 0]

= Pr[ui−1 = 0]Pr[xi−1 = a | ui−1 = 0]

=
1

2
Pr[ui−1 = 0].

Thus, the right-hand side of (17) simplifies to

Pr[ui−1 = 1] +
1

2
Pr[ui−1 = 0]

×
∑

a∈{0,1}

H(yi | xi−1 = a, ui−1 = 0). (18)

To evaluateH(yi|xi−1 = 0, ui−1 = 0), we compute

Pr[yi =0|xi−1 = 0, ui−1 = 0]

=
∑

j∈{0,1}

Pr[yi = 0|xi−1 = 0, ui−1 = 0, ui = j]

× Pr[ui = j|ui−1 = 0].

Note that, givenui = 0, we haveyi = xi, and hence

Pr[yi =0 | xi−1 = 0, ui−1 = 0, ui = 0]

= Pr[xi = 0 | xi−1 = 0, ui−1 = 0, ui = 0]

= Pr[xi = 0] = 1/2.

On the other hand, givenui = 1, we haveyi = xi−1, from
which we obtain

Pr[yi = 0 | xi−1 = 0, ui−1 = 0, ui = 1] = 1.

Hence,Pr[yi = 0 | xi−1 = 0, ui−1 = 0] = 1+p
2 . An analogous

argument shows thatPr[yi = 1 | xi−1 = 1, ui−1 = 0] = 1+p
2 .

Thus, (18) evaluates to

Pr[ui−1 = 1] + Pr[ui−1 = 0] h
(1 + p

2

)

. (19)

The above expression is precisely the lower bound in the
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Fig. 1. Bounds onC (p) andRg(p) of the grains channel as functions ofp.

statement of the lemma.
This lemma together with (11)-(12) and (13) gives the follow-
ing lower bound on the capacity of the grains channel:

C ≥
p

1 + p
+

1

1 + p
h

(1 + p

2

)

−
1 + p/2

1 + p

∞
∑

j=2

h

(

1 − (−p)j

1 + p

)

(1

2

)j

.

In Figure II-D, we plot the various upper and lower bounds
we have forC (p) and SIRRg(p) for the grains channel.

E. Zero-Error Capacity

We end with a few remarks on the zero-error capacity of the
grains channel. We are interested in the maximum zero-error
information rate,R0(n), achievable over the grains channel
with parameterp ∈ [0, 1] and inputxn. The case whenp = 0
is trivial (the channel introduces no errors), so we consider
p > 0.

The zero-error analysis depends on the initial states0 of the
channel. Suppose thats0 is such thatPr[u1 = 1] > 0. Then,
the state sequenceun = 1, 0, 1, 0, . . . , (n mod 2) is realized
with some positive probability. Corresponding to this state
sequence, we haveyn = x0, x2, x2, x4, . . . , x2⌊n/2⌋. Thus, at
most ⌊n/2⌋ bits can be transmitted without error across this
realization of the channel. Hence,R0(n) ≤ 1

n ⌊n/2⌋. This
zero-error information rate can actually be achieved. Consider
the binary length-n code

Rn = {(x1, x2, . . . , xn) : xi−1 = xi for all even indicesi},

which has2⌊n/2⌋ codewords. When a codeword fromRn

is sent acrossany realization of the grains channel, the bits

at even coordinates remain unchanged. Thus,⌊n/2⌋ bits of
information can be transmitted without error, which proves
that R0(n) = 1

n ⌊n/2⌋.

On the other hand, suppose that the initial states0 is such
that Pr[u1 = 1] = 0. Then, the worst-case channel realization
is caused by the state sequenceun = 0, 1, 0, 1, . . . , (1 + n
mod 2). In this case, the channel is such that the first coor-
dinate of the input sequence is always received without error
at the output. A slight modification of the preceding argument
now shows thatR0(n) = 1

n ⌈n/2⌉.

We have thus proved the following result.

Proposition 10: Consider a grains channel with parameter
p > 0. If the initial states0 is such thatPr[u1 = 1] > 0, then
R0(n) = 1

n ⌊n/2⌋; otherwise,R0(n) = 1
n ⌈n/2⌉.

In any case, the zero-error capacity of the channel isC0 =
limn→∞ R0(n) = 1

2 .
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Observe first that the BINAEras channel is indecomposable
for p < 1. Indeed, for this channel, the condition in (5) reduces
to showing that for some fixedn, there exists a choice forun

such thatminu0
P (un|u0) > 0. This condition clearly holds

for n = 1 and u1 = 0: minj∈{0,1} P (u1 = 0 | u0 = j) =
1− p > 0, providedp < 1. We deal with the indecomposable
case in this appendix; whenp = 1, the proof forC = C = 1

2
follows, mutatis mutandis, the proof of Proposition 2.

When the channel is indecomposable, we haveC = C = C.
We will show thatC = 1

1+p . Choose the distribution onu0

to be the stationary distribution of the Markov processu, so
that P (u0 = 0) = 1

1+p andP (u0 = 1) = p
1+p . Consequently,

u is a stationary process, and in particular, for alli ≥ 1, we
haveP (ui = 0) = 1

1+p andP (ui = 1) = p
1+p .

Observe that

I(xn;yn | u0) = H(yn | u0) − H(yn | xn, u0)

(a)
= H(yn | u0) − H(un | xn, u0)

(b)
= H(yn | u0) − H(un | u0),

with equality (a) above due to the fact that, givenxn, the
sequencesyn and un uniquely determine each other, and
equality (b) becauseun is independent ofxn. Furthermore,
since u is a stationary first-order Markov process, we have
H(un | u0) =

∑n
n=1 H(un | un−1) = nH(u1 | u0) = nh(p)

1+p .
Hence,

Cn = n−1 max
Qn(xn)

H(yn | u0) −
h(p)

1 + p
. (20)

Now, H(yn | u0) =
∑n

i=1 H(yi | yi−1, u0). Sinceyi−1

completely determinesui−1, we have by the data processing
inequality [3, Theorem 2.8.1],

H(yi | yi−1, u0) ≤ H(yi | ui−1, u0)



We further have

H(yi | ui−1, u0) ≤ H(yi | ui−1)

= H(yi | ui−1 = 0)
p

1 + p
+ H(yi | ui−1 = 1)

1

1 + p

Givenui−1 = 1, yi is a binary random variable (sinceui = 0
with probability 1), and thus,H(yi | ui−1 = 1) ≤ 1. On the
other hand, we haveP (yi = ε | ui−1 = 0) = P (ui = 1 |
ui−1 = 0) = p, and so the conditional entropyH(yi | ui−1 =
0) is maximized whenP (yi = 0 | ui−1 = 0) = P (yi = 1 |
ui−1 = 0) = (1 − p)/2. This yieldsH(yi | ui−1 = 1) ≤
h(p)+1− p. Putting all the inequalities together, we find that

H(yn | u0) =

n
∑

i=1

H(yi | yi−1, u0)

≤ n
( p

1 + p
+ (h(p) + 1 − p)

1

1 + p

)

= n
(1 + h(p)

1 + p

)

It is not difficult to check that the above in fact holds with
equality when the input sequencexn is an i.i.d. sequence of
Bernoulli(1/2) random variables. Thus,

n−1 max
Qn(xn)

H(yn | u0) =
1 + h(p)

1 + p
.

Plugging this into (20), we obtain thatCn = 1
1+p for all n,

and hence,C = 1
1+p .
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To prove Proposition 7, we need to show that
limi→∞ H(yi+1 | yi) equals the expression in the statement
of the proposition. We will work with the identity

H(yi+1 | yi) =
∑

b∈{0,1}i

H(yi+1 | yi = b) Pr[yi = b].

From the channel input-output relationship given by (3) and
the fact that the inputx is an i.i.d. Bernoulli(12 ) sequence, it
is clear thatPr[yi = b] = Pr[yi = b̄], whereb̄ = b + 1n is
the sequence obtained by flipping each bit inb. It then also
follows that H(yi+1 | yi = b) = H(yi+1 | yi = b̄), since
Pr[yi+1 = 1 | yi = b] = Pr[yi+1 = 0 | yi = b̄]. Hence,

H(yi+1 | yi) = 2
∑

b∈B

H(yi+1 | yi = b) Pr[yi = b], (21)

where B = {(bi, . . . , b1) ∈ {0, 1}i : bi = 0} is the set of
all binary length-i sequences that have a 0 in the leftmost
coordinate.

Fix i ≥ 2. Define, for2 ≤ j ≤ i, the events

Bj = {yi : (yi, yi−1, . . . , yi−j+1) = 0j−11},

which, together with the event{yi = 0i}, form a partition of
B. Here,0j−11 is shorthand for thej-tuple (0, . . . , 0, 1). We

record two facts aboutBj . First,

Pr[yi ∈ Bj ] = Pr[(yi, yi−1, . . . , yi−j+1) = 0j−11]

= Pr[(yj , yj−1, . . . , y1) = 0j−11], (22)

the last equality stemming from the fact thaty is stationary.
Second, by the following lemma,

H(yi+1 | yi = b) = h(Pr[yi+1 = 1 | yi = b]) (23)

is invariant overBj .

Lemma 11:For b ∈ Bj , Pr[yi+1 = 1 | yi = b] equals

1

2
Pr[uj = 0 | (yj−1, yj−2, . . . , y2) = 0j−2, (u1, x1) = (0, 0)].

Proof: The proof relies upon the following claim :

Suppose thatyk−1 = b; then, with probability 1, we
haveyk = b̄ if and only if sk := (uk, xk) = (0, b̄).

Indeed, even without the assumption onyk−1, the “if” part
holds trivially. For the “only if” part, assume thatyk−1 = b and
yk = b̄. Note that ifuk = 1, then with probability 1, we have
uk−1 = 0. Hence, by way of (3), we haveyk = xk−1 = yk−1.
However,yk−1 6= yk by assumption; so we must haveuk = 0.
Consequently,yk = xk, so thatxk = b̄.

Consider anyb ∈ Bj . From the claim, we have

Pr[yi+1 = 1 | yi = b] = Pr[(ui+1, xi+1) = (0, 1) | yi = b]

=
1

2
Pr[ui+1 = 0 | yi = b],

where we have used the fact thatxi+1 is independent ofyi.
Note that, in the eventyi = b, we haveyi−j+2 = 0 and
yi−j+1 = 1, so that by the claim again,

Pr[ui+1 = 0 | yi = b] = Pr[ui+1 = 0 | yi = b, si−j+2 = (0, 0)].

Now, given the channel statesi−j+2 = (0, 0), the ran-
dom variablesui+1, yi, yi−1, . . . , yi−j+2 are conditionally
independent of the past outputyi−j+1. Furthermore, given
si−j+2 = (0, 0), the random variableyi−j+2 is uniquely
determined:yi−j+2 = 0. Hence,

Pr[ui+1 = 0 | yi = b, si−j+2 = 0] =

Pr[ui+1 = 0 | (yi, . . . , yi−j+3) = 0j−2, si−j+2 = 0].

Finally, by the joint stationarity ofy and u, the right-hand
side above is equal to

Pr[uj = 0 | (yj−1, yj−2, . . . , y2) = 0j−2, s1 = 0],

which is what we needed to show.

In the statement of Proposition 7, we definedβj =
Pr[yj+1 = 1 | (yj , yj−1, . . . , y1) = 0j−11]. Note that if we
set i = j in Lemma 11, we get

βj =
1

2
Pr[uj = 0 | (yj−1, . . . , y2) = 0j−2, (u1, x1) = (0, 0)].

(24)



From (21)–(24), and Lemma 11, we have

H(yi+1 | yi) = 2

i
∑

j=2

h(βj) Pr[(yj , . . . , y1) = 0j−11]

+ 2H(yi+1 | yi = 0i) Pr[yi = 0i].

Letting i → ∞, it is easy to verify that the term at the end
of the above expression vanishes, so that

H(Y ) = 2
∞
∑

j=2

h(βj) Pr[(yj , yj−1, . . . , y1) = 0j−11]. (25)

The proof of Proposition 7 will be complete once we prove
the next two lemmas.

Lemma 12:For j ≥ 2, we have

Pr[(yj , yj−1, . . . , y1) = 0j−11] =
1

4(1 + p)

j−1
∏

k=2

(1 − βk)

Proof: From the definition ofβj , we readily obtain

Pr[(yj , . . . , y1) = 0j−11] =
[

j−1
∏

k=2

(1 − βk)

]

· Pr[(y2, y1) = (0, 1)].

We must show thatPr[(y2, y1) = (0, 1)] = 1
4(1+p) . We skip

the details of this elementary calculation.

Lemma 13:β2 = 1
2 (1 − p), and forj ≥ 3, βj satisfies the

recursion in (15).

Proof: From (24), we have

β2 =
1

2
Pr[u2 = 0 | (u1, x1) = (0, 0)]

=
1

2
Pr[u2 = 0 | u1 = 0] =

1

2
(1 − p).

For convenience, define, forj ≥ 2, Ej =
{(yj−1, yj−2, . . . , y2) = 0j−2, (u1, x1) = (0, 0)}, so
that βj = (1

2 ) Pr[uj = 0 | Ej ] = (1
2 )(1 − γj), where

γj := Pr[uj = 0 | Ej ]. We shall show that forj ≥ 3,

γj =
p(1 − γj−1)

1 + γj−1
. (26)

which is equivalent to the recursion in (15).

So, letj ≥ 3 be fixed. We start with

γj =
∑

b∈{0,1}

Pr[uj = 1 | uj−1 = b] Pr[uj−1 = b | Ej ]

= p · Pr[uj−1 = 0 | Ej ]

= p · Pr[uj−1 = 0 | yj−1 = 0, Ej−1]

= p ·
Pr[yj−1 = 0 | uj−1 = 0, Ej−1](1 − γj−1)

Pr[yj−1 = 0 | Ej−1]

where we have usedPr[uj−1 = 0 | Ej−1] = 1− γj−1 for the
last equality.

Given uj−1 = 0, we haveyj−1 = xj−1, and sincexj−1

is independent ofuj−1 and Ej−1, the numerator in the last

expression above evaluates to1
2 (1 − γj−1). Thus,

γj = p ·
1
2 (1 − γj−1)

Pr[yj−1 = 0 | Ej−1]
(27)

Turning to the denominator, we writePr[yj−1 = 0 | Ej−1] as
∑

b∈{0,1}

Pr[yj−1 = 0 | uj−1 = b, Ej−1] Pr[uj−1 = b | Ej−1]

= 1
2 (1 − γj−1) + Pr[yj−1 = 0 | uj−1 = 1, Ej−1] · γj−1

(28)

We claim thatPr[yj−1 = 0 | uj−1 = 1, Ej−1] = 1. Indeed,
givenuj−1 = 1, we haveyj−1 = xj−2. Furthermore, we must
haveuj−2 = 0 with probability 1, so thatxj−2 = yj−2. Thus,
given uj−1 = 1, we must haveyj−1 = yj−2 with probability
1. But note that the eventEj−1 impliesyj−2 = 0: if j = 3, this
follows from (u1, x1) = (0, 0), and if j ≥ 4, this is contained
within (yj−2, . . . , y2) = 0j−3. Thus, givenuj−1 = 1 and
Ej−1, we haveyj−1 = yj−2 = 0 with probability 1.

So, carrying on from (28), we get

Pr[yj−1 = 0 | Ej−1] =
1

2
(1 − γj−1) + γj−1 =

1

2
(1 + γj−1)

Feeding this back into (27), we obtain

γj = p ·
1
2 (1 − γj−1)
1
2 (1 + γj−1)

which is the desired recursion (26).
This concludes the proof of Proposition 7.
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