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Abstract

One approach to designing structured low-density parity-check (LDPC) codes with large girth
is to shorten codes with small girth in such a manner that the deleted columns of the parity-check
matrix contain all the variables involved in short cycles. This approach is especially effective if the
parity-check matrix of a code is a matrix composed of blocks of circulant permutation matrices, as is
the case for the class of codes known as array codes. We show how to shorten array codes by deleting
certain columns of their parity-check matrices so as to increase their girth. The shortening approach
is based on the observation that for array codes, and in fact for a slightly more general class of LDPC
codes, the cycles in the corresponding Tanner graph are governed by certain homogeneous linear
equations with integer coefficients. Consequently, we can obtain a code with larger girth by only
retaining those columns from the parity-check matrix of the original code that are indexed by integer
sequences that do not contain solutions to cycle-governing equations. We provide Ramsey-theoretic
estimates for the maximum number of columns that can be retained from the original parity-check
matrix with the property that the sequence of their indices avoid solutions to various types of
cycle-governing equations. Simulation results show that for the codes considered, shortening them
to increase the girth can lead to significant gains in signal-to-noise ratio in the case of communication
over an additive white Gaussian noise channel.

1 Introduction

Despite their excellent error-correcting properties, low-density parity-check (LDPC) codes with random-
like structure [8],[17, pp. 556 572] have several shortcomings. The most important of these is the lack
of mathematical structure in the parity-check matrices of such codes, which leads to increased encod-
ing complexity and prohibitively large storage requirements. These issues can usually be resolved by
using structured LDPC codes, but at the cost of some performance loss. This performance loss may
be attributed to the fact that algebraic code design techniques introduce various constraints on the
set of code parameters influencing the performance of belief propagation decoding, so that it is hard
to optimize the overall structure of the code.

One parameter that is usually targeted for optimization in the process of designing structured
LDPC codes is the girth of the underlying Tanner graph. Several classes of structured LDPC codes
with moderate and large values of girth and good performance under iterative decoding are known,
examples of which can be found in [10, 12, 13, 14, 19, 22, 26, 29]. In this paper, we focus our attention
on a class of LDPC codes termed array codes [5] (or equivalently, lattice codes [29]). These codes
are quasi-cyclic, and have parity-check matrices that are composed of circulant permutation matrices.
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General forms of such parity-check matrices were investigated in [6] and [27], and codes of girth eight,
ten and twelve were obtained primarily through extensive computer search.

Fossorier [6] considered a family of quasi-cyclic LDPC codes closely related to array codes, and
derived simple necessary and sufficient conditions for such codes to have girth larger than six or eight.
Subsequently, codes with large girth were constructed with the aid of computer search strategies which
rely on randomly generating integers until the conditions of the theorem are met.

We generalize and extend the array code design methods in a slightly different direction, and
provide a less computation-intensive approach to constructing codes with large girth (including values
exceeding eight). Our approach is based on the observation that the existence of cycles in the Tanner
graph of an array code is governed by certain homogeneous linear equations. We show that it is
possible to exhaustively list all the equations governing cycles of length six, eight and ten in an array
code having a parity-check matrix with a small number of ones in each column. As a result, codes
of girth eight to twelve can be obtained by shortening an array code in such a way as to only retain
those columns of its parity-check matrix whose indices form a sequence that avoids solutions to these
“cycle-governing” equations. One special form of an array code of girth eight and column-weight three
was first described in [29] and [30], where a good choice for the set of columns to be retained from the
original parity-check matrix was determined using geometrical arguments.

Using techniques from graph theory and Ramsey theory, we provide analytical estimates of the code
rates achievable by shortening an array code to improve girth, and present some useful algorithms for
identifying large sets of column-indices that avoid solutions to cycle-governing equations. Simulation
results show that eliminating short cycles using this technique leads to significant signal-to-noise ratio
(SNR) gains, over the additive white Gaussian nose (AWGN) channel. These codes also compare
favorably with other classes of structured LDPC codes in the literature, and in fact show marked
improvement in performance in some cases.

The remainder of the paper is organized as follows. Section 2 describes a generalization of the array
code construction and provides some definitions needed for the subsequent exposition. In Section 3, we
explicitly show how cycles in the Tanner graphs of these codes are governed by certain homogeneous
linear equations with integer coefficients. We then go on to list the equations governing cycles of
length six, eight and ten in array codes with parity-check matrices of small column-weight. Section 4
contains bounds on the size of the maximal sequence of column indices that contains no solutions to
certain homogeneous linear equations. A greedy algorithm for constructing such sequences, as well as
some simple extensions thereof, are discussed in Section 5. Simulation results are given in Section 6,
with some concluding remarks presented in Section 7. The proofs of some of the results of Section 4
are provided in the Appendix.

2 Array Codes

Array codes [5] are structured LDPC codes with good performance under iterative message-passing
decoding. Their parity-check matrix has the form

I I ... I
q—1
L I 0
7 pr-1 ... pr-=1)(g-1)

where ¢ is an odd prime, r is an integer! in [1,q], I is the ¢ x ¢ identity matrix, and P is a ¢ x ¢
circulant permutation matrix distinct from I. Recall that a permutation matrix is a square matrix
composed of 0’s and 1’s, with a single 1 in each row and column. A circulant permutation matrix is a
permutation matrix that is also circulant, ¢.e., the ith row of the matrix can be obtained by cyclically

'Tn this paper, we will use the notation [a,b] to denote the set {x € Z : a < x < b}.



shifting the (i — 1)th row by one position to the right. Typically, the matrix P in (1) is chosen to be
the matrix

01 0 0
0 1 0 0
pP= oo : : : :
0 0 ... 0 0 1
10 0 ... 0 O

An LDPC code described by such a parity-check matrix is regular, with length ¢? and co-dimension
r¢q. The row and column weights of such a code are g and r, respectively. Consequently, the rate R
of such codes is at least 1 —r/q.

We will consider the following more general form for a parity-check matrix:

Pao0 Pao-l L. Pao-(qfl)
a1-0 ar-l a1-(q—1)
- P P P (2)
par-1:0  par—11 . par-1-(¢—1)
where ag, aq,... ,a,—1 is some sequence of r distinct integers from [0, ¢ — 1]. Each such parity-check
matrix defines a code. If the sequence ag,ay,...,a,—1 forms an arithmetic progression (A.P.), i.e.,
if there exists an integer a # 0 such that a;41 —a; = a for ¢ = 0,1,2,... ,r — 2, then we call the

corresponding code a proper array code (PAC). Note that if ap = 0, then the PAC is simply an array
code with parity-check matrix H,,, as in (1), since the parity-check matrix in (2) has the same form
as H,., as can be seen by replacing P in H,,, by P®. If the sequence ag, a1,... ,a,—1 does not form
an A.P., then the corresponding code will be referred to as an improper array code (IAC). The term
array code without further qualification will henceforth be used to mean an IAC or a PAC.
Throughout the remainder of the paper, we will use the following definitions/terminology:

e The odd prime g used in defining the parity-check matrix of an array code will be referred to as
the modulus of the code.

e A block-column (block-row) of a parity-check matrix, H, of an array code is the submatrix formed
by a column (row) of permutation matrices from H. The ¢ block-columns of H are indexed by
the integers from 0 to ¢ — 1, and the r block-rows are indexed by the integers from 0 to r — 1.
For example, the jth block-column of H is the matrix [P%J pavi pezd = por—1d]T,

e The term block-row labels will be used to denote the integers in the sequence ag, a1, ... ,a,—1
that define the matrix H in (2).

o A block-column-shortened array code, or simply a shortened array code, is a code whose parity-
check matrix is obtained by deleting a prescribed set of block-columns from the parity-check
matrix of an array code.

e The labels of the block-columns retained in the parity-check matrix of the shortened code are
simply their indices in the parent code. For the parent code itself, the terms “label” and “index”
for a block-column can be used interchangeably.

e A closed path of length 2k in any parity-check matrix of the form in (2) is a sequence of block-row
and block-column index pairs (i1, j1), (i1, j2), (12, 2), (12,73)s - - s (K, Jk)s (K, J1), with g # 41,
Je #j@-i—lv for £=1,2,... k-1, and i 7&7:17 Jk 7&]1

The significance of closed paths arises from the following simple but important result from [5] (see
also [6, Theorem 2.1]):



Theorem 2.1. A cycle of length 2k exists in the Tanner graph of an array code with parity-check
matriz H and block-row labels ag, a1, ... ,ar—1 if and only if there exists a closed path (i1, j1), (i1, j2),

(i27j2): (i23j3)7 ey (lka]k)ﬂ (Zkajl) in H such that

Py it (Pail -jz)—l Pigi2 (pai2~j3)—1 . o. Pk (Paz'k'h)—l - I

In fact, since P is a ¢ X ¢ circulant permutation matrix, P # I, and ¢ is prime, we can have P" = [
if and only if n =0 (mod g). So, the condition in the theorem is equivalent to

ai, (1 — j2) + aiy(j2 — j3) + -+ +ai,(jx — 71) =0 (mod q), (3)
which can also be written as
Ji(ai, —aq,) + ja(ai, —ai) + - + jrla;, —a;, ) =0 (mod g). (4)

Based on Theorem 2.1, it is easily seen [5] that array codes are free of cycles of length four. This
is because a cycle of length four exists if and ounly if there exist indices i1, 42, j1, j2, i1 # i2, j1 # j2
such that

(ai;, —aiy)(Jj1 —Jj2) =0 (mod q).

which is clearly impossible since i1 # io and j; # jo.

Oun the other hand, an array code with a parity-check matrix of the form in (1), with ¢ > 5,
has cycles of length six. An example is the closed path described by the coordinates (1,1), (1,2),
(2, q—JQF?’), (0, %3), (0, 1), which satisfies (3), since a; = 7 in this case, and

23
:2),

3 3
1(1f2)+2(2f%)+0(%—1) g=0 (mod gq).
In general, a closed path of length six in the parity-check matrix of an array code must pass through
three different block-rows, indexed by 71,79, 73, and three different block-columns, indexed by 1, j, k.
In the case of a PAC, the block-row labels ag,a1,...,a,_1 form an A.P. with common difference a,

0 < |a| < g, and hence (4) reduces to
ali(ri —r3) +j(ro—r1) + k(rs —r2)] =0 (mod q).

Thus, a PAC has a cycle of length six if and only if there exist distinct block-row indices 71,79, 73 and
distinct block-column indices ¢, j, k such that

i(r1 —rg) +j(ra—r1) +k(rs—re2) =0 (mod gq). (5)

Therefore, by shortening the PAC so as to only retain block-columns with labels such that (5) is never
satisfied, we eliminate all cycles of length six, obtaining a code of girth at least eight.

It is naturally of interest to extend this kind of analysis to cover the case of cycles of length larger
than six, and utilize it to appropriately shorten an array code to increase its girth. The next section
deals with the subject of identifying sequences of block-column labels leading to codes with large girth.

3 Array Codes of Girth Eight, Ten, and Twelve

For clarity of exposition, in all subsequent derivations we will focus only on the two special cases of array
codes with column weight three and four. The results presented can be extended in a straightforward,
albeit tedious, manner to codes with larger column weights.



Theorem 3.1. Let C be a PAC with modulus q whose parity-check matriz, H, has column weight r.
If r =4, then C contains a cycle of length sixz if and only if there exist three distinct block columns in
H whose labels i, 7,k satisfy at least one of the following two congruences:

—2i4+j4+k=0 (mod q), (6)
—3i+j+2k=0 (mod q).

If 1 = 3, then C contains a cycle of length siz if and only if there exist three distinct block columns
whose labels i, j, k satisfy the first of the two equalities.

Proof: The claim for r = 4 follows immediately from (5) once we note that any three block-row

indices r1, 72,73 € {0,1,2,3}, r1 < 7o < 73, must satisfy one of the following: (i) 1 —r3 = —2, r3—79 =
1, (i) r1 —r3=—=3, r3 —ro =1, or (iii) 1y —r3 = =3, r3 —ro = 2.

The proof for the r = 3 case similarly follows from the fact that the only possible choice for the
set of three distinct block-row labels in this case is {0, 1,2}. =

A useful consequence of the above result is Corollary 3.2 below, to state which it is convenient to
introduce the following definition. Here, and in the rest of the paper, the set of positive integers is
denoted by Z*, and given an N € Z™, the ring of integers modulo N is denoted by Zy.

Definition 3.1. A sequence of distinct non-negative integers mi,no,ns,... is defined to be a non-
averaging sequence if it contains no term that is the average of two others, i.e., n; +n; = 2n;, only if
i = j = k. Similarly, given an N € Z*, a sequence of distinct integers ni,na,ng,... in [0, N — 1] is

non-averaging over Zy if n; + n; = 2ny, (mod N) implies that i = j = k.

It is clear from the definition that a sequence is non-averaging if and only if it contains no non-
constant three-term A.P. The following result is a simple consequence of Theorem 3.1 and Defini-
tion 3.1.

Corollary 3.2. Let H be the parity-check matriz of a PAC with modulus q, consisting of three block-
rows, and let A be the 3q x mq matriz obtained by deleting some g — m block-columns from H. The
shortened array code with parity-check matriz A has girth at least eight if and only if the sequence of
labels of the block-columns in A forms a non-averaging sequence over Z,.

To extend the above result to PAC’s with four block-rows, we require the following generalization
of Definition 3.1.

Definition 3.2. Let ¢ be a fixed positive integer. A sequence of distinct non-negative integers
ni,ng, ns,... is defined to be a c-non-averaging sequence if n;+cnj = (c+1)ny, implies that i = j = k.
We extend this definition as before to sequences over Zy, for an arbitrary N € Z*.

Note that a sequence is c-non-averaging if and only if it does not contain three elements of the
form n,n +t,n + (c+ 1)t, for some integers n, ¢, with ¢ > 0. We can now state the following corollary
to Theorem 3.1.

Corollary 3.3. Let H be the parity-check matriz of a PAC with modulus q, consisting of four block-
rows, and let A be the 4q x mq matriz obtained by deleting some g — m block-columns from H. The
shortened array code with parity-check matriz A has girth at least eight if and only if the sequence of
block-column labels in A is non-averaging and 2-non-averaging over Z,.

We next consider the case of cycles of length eight. By the reasoning used to derive (5), it follows
from Theorem 2.1 that a PAC contains a cycle of length eight if and only if its parity-check matrix
contains a closed path of the form (rq,14), (r1,7), (re,j), (re, k), (r3, k), (r3,1), (r4,1), (r4,4) such that

i(r1 —7ra) +j(ro —71) + k(rs —7r2) +1(ra —73) =0 (mod q) (7)



Note that closed paths of length eight may pass through two, three or four different block-columns of
the parity-check matrix of the PAC.

Let us first consider the situation where a closed path passes through exactly two different block-
columns. Let ¢ and j be the labels of these block-columns. This closed path forms a cycle of length
eight if and only if (7) is satisfied with £ =i and [ = j. A re-grouping of terms results in the equation

(i—j)(ri+rg—ro—rsy) =0 (mod q)
which, for ¢ # j, is satisfied if and only if
ri+r3—rao—ry =0 (mod gq). (8)

Now, observe that for a PAC with column-weight » > 3, the above equation is always satisfied by
taking 11 = 0, ro = 1, r3 = 2 and r4 = 1. This shows that in a PAC with column-weight r > 3, any
pair of block-columns is involved in a cycle of length eight. Hence, shortening will never be able to
eliminate cycles of length eight from such a PAC (except obviously in the trivial case where we delete
all but one block-column), implying that shortened PAC’s can have girth at most eight. We record
this fact in the lemma below.

Lemma 3.4. A shortened PAC of column-weight at least three has girth at most eight.

The following theorem provides the constraining equations that govern cycles of length eight in-
volving three of four different block-columns in a PAC with row-weight ¢ and column-weight three or
four. The proof is along the lines of that of Theorem 3.1, and is omitted.

Theorem 3.5. In a PAC with modulus g and column-weight r = 3, the constraining equations, over
the ring Zq, for the block-column labels 1, j, k,1 specifying cycles of length eight involving three or four
different block-columns are

i—j—k+1=0, 2i—j—2k+1=0 ©)
2i+j—3k=0 2—j—k=0

For PAC’s with modulus q and column-weight v = 4, the set of constraining equations, over Zq, for
the labels i, j, k,l that describe cycles of length eight involving three or four different block-columns is

Ji—j—k—1=0, 3i—2j—2k+1=0, 20—2j+k—1=0
3i—3j+k—1=0, 3i—3j4+2k—20=0, i+j—k—1=0 (10)
% —j— k=0, 4i — 35—k =0, 3i—2j—k=0

Figure 1 shows the structures of some cycles of lengths six and eight, and provides the modulo-g
equation governing each such cycle. The generic variables a, b, c and i, j, k,[ represent the block-row
and block-column labels, respectively. The equations governing all such cycles are also summarized in
Tables 2 and 3.

It should be abundantly clear by now that we can eliminate a large number of cycles of length eight
from a PAC by selectively deleting some of its block-columns, retaining only those block-columns the
set of whose labels does not contain solutions to some or all of the equations listed in Theorem 3.5.
Note also that the equations listed in (6), upon relabeling the variables if necessary, form a subset of
the equations listed in (9), as well as of those in (10). Hence, if we shorten a PAC in such a way as
to retain only those block-columns whose labels form a non-averaging and 2-non-averaging sequence,
not only does the resultant shortened code have no cycles of length six, but it also has fewer cycles of
length eight than the original code.

As observed earlier, shortened PAC’s cannot have girth larger than eight. This is a direct con-
sequence of the fact that the block-row labels of a shortened PAC with column-weight at least three
always contain a solution to (8), and hence any such code always contains cycles of length eight that



i i k [ [ j k [
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(a—c)i + (b-a)j + (c-b)k = 0
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(a-b)i + (2b-a—c)j + (c-b)k = 0 i—j+k-1=0

Figure 1: Some cycles of lengths six and eight, and their governing equations.

pass through pairs of distinct block-columns. On the other hand, IAC’s can be constructed in such a
way as to avoid cycles of length eight that involve only two different block-columns. Analogous to (8),
the equation governing such cycles in an TAC is

ar, + pg —ap, —ap, =0 (mod g).

(11)

Thus, if the block-row labels of the IAC are chosen so that they do not contain solutions to (11), then
such eight-cycles cannot arise. Examples of such sets of block-row labels are {0, 1,3} for an IAC with
three block-rows, and {0,1,3,7} for an IAC with four block-rows. Such IAC’s can be shortened to
yield codes with girth ten or twelve, provided that the block-column labels retained in the shortened
code avoid a set of constraining equations analogous to (6), (9) and (10). The equations governing
cycles of lengths six, eight and ten for IAC’s with three block-rows (r = 3) and label set {0, 1,3} are
listed in Table 4. Similarly, Table 5 lists the twenty-eight equations governing cycles of lengths six
and eight in TAC’s with four block-rows (r = 4) and label set {0,1,3,7}. There are more than fifty
equations governing cycles of length ten in IAC’s with » = 4. These equations were obtained via an
exhaustive computer-aided analysis of all the possible structures that cycles can have in these codes.

It is worth pointing out that Tables 2-5 need not only be used to construct codes with a prescribed
girth, but can also be used to design codes with a pre-specified set of cycles. This can help in studying
the effects of various cycle classes on the performance of a code.

The structure of the parity-check matrix in an array code allows us to use existing results in the
literature to obtain upper and lower bounds on the minimum distance, d, of such codes. A lower
bound on d for regular LDPC codes was derived in [28]:

. DO L2 (p — 1)0=D/4, g/2 odd
> p =12/t

r—2 ’

12
g/2 even 12)



Table 1: Bounds on the minimum distance, d, of array codes for various values of column-weight, 7,

and girth, g.
r=3 r=3 r=4 r=4
Girth g | Lower bound on d | Upper bound on d | Lower bound on d | Upper bound on d
8 6 24 8 120
10 10 24 14 120
12 14 24 26 120

where g is the girth of the code and r is the column-weight of the parity-check matrix (i.e., the degree
of any variable node). This bound can be improved slightly in some cases by noting that the minimum
distance of an array code must be even, since the code can have even-weight codewords only. This is a
consequence of the fact that within any block-row, [P%0 pal pai2 — pai(a=1)] of the parity check
matrix of an array code, the rows sum to [1 1 1 ... 1], and hence the dual of an array code always
contains the all-ones codeword.

For bounding d from above, we make use of a particularly elegant result due to MacKay and Davey
[18], which shows that parity-check matrices containing an r X (r + 1) grid of permutation matrices
P; j that commute (i.e., for which P; jP,; = Py ;P; ;) must have minimum distance at most (r 4 1)!.
Table 1 lists the lower and upper bounds on minimum distance for array codes with column-weight
r € {3,4} and girth g € {8,10,12}.

3.1 The Code Mask

Array codes, as well as the general class of quasi-cyclic LDPC codes with parity-check matrices con-
sisting of blocks of circulant permutation matrices, cannot have girth exceeding twelve [6]. This is
most easily seen by examining the example in Figure 2. There, a sub-matrix of a parity check matrix
consisting of circulant permutation blocks P;, i = 1,2,...,6, is shown, along with a directed closed
path labeled abede fghijkl that traverses the blocks. Setting P; = P% for some circulant permutation
matrix P and exponents b;, we see that the condition in Theorem 2.1 is satisfied, since

by —bys+bs —ba+ b3 —bg+by — by + by — b5+ bg — b3 =0. (13)
Thus, length-12 cycles are guaranteed to exist in any quasi-cyclic LDPC code with parity-check matrix
consisting of blocks of circulant permutation matrices.

Nevertheless, using a masking approach, array codes can be modified so that their girth exceeds
twelve. Masks were introduced in [20] for the purpose of increasing the girth of codes as well as for
constructing irregular LDPC codes. As an illustrative example, consider the matrix M in (14) below.
It consists of g X g zero matrices 0 and ¢ X ¢ circulant permutation blocks P; = P%, for some integers
b;. One can view M as arising from a parity-check matrix of an array code, or more generally, a quasi-
cyclic code with circulant permutations blocks, from which some blocks are “zeroed out” according
to a given mask. The matrix M does not contain a submatrix of the form depicted in Figure 2.
Consequently, there exist no length-12 cycles that traverse exactly six permutation matrix blocks. Of
course, this is achieved at the expense of increased code length (for the given example, the length has
to be doubled). Other kinds of length-12 cycles may still exist, but these are governed by non-trivial
homogeneous linear equations similar in form to those governing shorter cycles, and can be eliminated
by a judicious choice of the exponents b;.
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Figure 2: Cycle of length twelve in an array code.

P P, P O 0O O P O
O 0 O P P P 0 PR
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M= 0 0 P3 0 0 Py P P (14)
0 P7 Pig Py 0 Py 0 O
Py 0 0 0 Pn 0 P3 Py
4 Avoiding Solutions to Cycle-Governing Equations
Cycle-governing equations, such as those listed in Tables 2-5, are always of the following type:
m
Zciui =0 (mod gq), (15)
i=1

the integer m being the number of distinct block-columns through which the cycle passes, the u;’s
being variables? that denote the labels of those m block-columns, and the ¢;’s being fixed nonzero
integers (independent of ¢) such that )", ¢; = 0. This is because all such equations arise as special
cases of an equation of the form (4), and clearly, (a;, —a;, ) + (@i, —a;,) +-- -+ (@i, —ai,_,) = 0. Any
solution u = (u1,ug, ... ,un) to (15), with u; € [0,¢—1], and such that u; # u; when ¢ # j, represents
a cycle passing through the m block-columns whose labels form the solution vector u.

To avoid potential ambiguity, we establish some terminology that we will use consistently in the
rest of the paper. Given a homogeneous linear equation of the form " cju; = 0, we refer to a

vector (uy,us, ... ,uy) € [0,g — 1™ as a solution over Z4 to the equation if > ", cju; = 0 (mod g).
If u=(ur,ug,...,uy) € Z™ is such that > ", c;u; = 0, then u is referred to as an integer solution
to the equation. In both cases, a solution u = (uy,us,... , uy) to (15), with all the u;’s distinct, will

be referred to as a proper solution.

The design of a shortened array code typically involves determining the smallest prime g for which
there exists a sequence of integers S C [0,q — 1] of some desired cardinality s, such that there is no
proper solution with entries in S to any equation within a certain set of cycle-governing equations.
This choice of ¢ would guarantee the smallest possible code length, equal to ¢ s, for a PAC or an IAC
with prescribed girth, column-weight r and code rate R = 1 — r/s. For example, if we seek an IAC
with » = 3, rate R = 1/2 and girth ten, then we need the smallest ¢ that guarantees the existence
of a set S of cardinality at least six that does not contain a proper solution to any of the equations
listed in Table 4. It is therefore useful to estimate, as a function of ¢, the size of the largest subset
of [0,q — 1] that avoids proper solutions to certain linear equations of the form given in (15). In this
section, we provide a number of results that bound the size of such a largest subset.

2To avoid the sloppiness of using u; to denote both a variable and a value it can take, we will make typographical
distinctions between the two whenever necessary.



Equations of the form )", cju; = 0, with )", ¢; = 0, have been extensively studied in Ramsey
theory [9, Chapter 3], [15, Chapter 9]. It is known [7, Fact 3] that any such equation that is not of the
form u; — uz = 0 (or an integer multiple of it) has a proper solution. In fact [7, Theorem 2], for any
e > 0 and sufficiently large N, if L C [1, N] is such that |L| > eN, then L contains a proper solution
to such an equation. This implies the following result:

Theorem 4.1. Let m >3, and let ¢;, i = 1,2,... ,m, be nonzero integers such thaty ;" ¢; = 0. For
an arbitrary q > 1, let s(q) be the size of the largest subset of [0,q — 1] that does not contain a proper
solution to Y ;" ¢;u; =0 (mod q). Then,

lim sla) =0.
g—o0 ¢
Proof: Let S(q) C [0,q — 1] be a set of size s(q) that does not contain any proper solution to
Yoty ciu; = 0 (mod g). Clearly, S(g) does not contain a proper solution to Y ", cju; = 0 (without
the modulo-¢ reduction) as well. Note that since (1,1,...,1) is a solution to > ", ¢iu; = 0, (u;) is a
solution iff (u; + 1) is a solution. Thus, L(q) = S(¢) +1 = {j+1:j € S(q)} is a set of cardinality
s(g) in [1, ¢] that does not contain a proper solution to > ", ¢;u; = 0. Hence, for any ¢ > 0, we must
have s(q) < eq for all sufficiently large ¢, and the desired result follows. [

We have thus established that the size of a subset of [0, ¢ — 1] containing no proper solution to any
equation from a given set of cycle-governing equations grows sub-linearly in ¢. This is a disappointing
result from the point of view of our strategy of shortening array codes to eliminate cycles. Indeed,
starting with an array code of column-weight r, length ¢® and rate 1 — r/q, if we shorten the code
so as to eliminate cycles governed by an equation of the form > ", c;u; = 0 (mod g¢), the resulting
shortened code can have rate no larger than 1 — r/s(q), where s(q) is as defined in the statement of
Theorem 4.1. Since s(g)/q goes to 0 as g increases, the rate penalty associated with shortening is severe
for large values of ¢ (or equivalently, for large values of the length of the parent code). However, from
a practical standpoint, this does not appear to be a problem, as for the moderate values of ¢ useful
in practical code constructions, the rate penalty incurred by shortening remains within reasonable
limits. Consequently, it is possible to construct, for example, rate-1/2 codes of girth eight and ten
that perform much better than the comparable codes in the existing literature, as we shall see in
Section 6.

A precise estimate of the rate at which s(gq)/q goes to zero for various types of cycle-governing
equations can be very useful for the purpose of practical code design, as this provides us with an
understanding of how the rate penalty incurred in shortening an array code changes with the modulus
q. More generally, given a collection, €2, of homogeneous linear equations over Z, of the form (15), let
5(q; §2) be the size of the largest subset of [0, ¢ — 1] that does not contain a proper solution over Z; to
any of the equations in €. From the result of Theorem 4.1, it is clear that s(q; Q) grows sub-linearly
with ¢. In the rest of this section, we provide upper and lower bounds on s(g;€2) for various choices
of €.

4.1 Upper bounds on s(g;2)

Explicit upper bounds for s(g; Q) can be obtained for any € containing an equation (over Z;) of the
form 2x —y —z =0 or x4+ y —z — u = (0. These equations have been extensively studied in other
contexts, and in such cases, there are good estimates available for the growth rate of sequences avoiding
solutions to these equations.

Recall from Definition 3.1 that sequences avoiding proper solutions to 2x —y — z = 0 are called
non-averaging sequences. Correspondingly, sequences avoiding proper solutions to the equation x +
y —z —u =0 are called Sidon sequences (see e.g. [23]), as made precise by the definition below.



Definition 4.1. A Sidon sequence is a sequence of distinct integers ni,no, ns,... with the property
that for all 4, j, k, [ such that i # j, k # [, n; + n; = n, + ny if and only if {3, j} = {k,{}. Similarly,
given an N € Z*, a Sidon sequence over Zy is a sequence of distinct integers ny,ng, ns, ... in [0, N —1]
such that for all 4, j,k,l with ¢ # j, k # [, n; + nj = ny +n; (mod N) if and only if {7, j} = {k,[}.

Upper bounds on the sizes of non-averaging sequences and Sidon sequences over Zy are given in
the next lemma. Observe that for any N € Z*, a non-averaging sequence over Zy is automatically
a non-averaging sequence (over Z1). The result of part (a) of the lemma is thus a straightforward
application of the classical upper bound, due to Roth [9, Section 4.3, Theorem 8|, on the cardinality
of the largest non-averaging sequence in [0, N — 1].

Lemma 4.2. (a) (Roth’s theorem) The cardinality of any non-averaging sequence over Zy is bounded
from above by coN/loglog N, for some fized constant cy > 0.

(b) For any odd integer N > 0, the cardinality of a Sidon sequence over Zy is bounded from above
by /N —3/4+1/2.

We defer the proof of part (b) of the above lemma to the Appendix. In terms of the quantity
s(q; ), the lemma can be re-stated as:

(a) If Q contains the equation 2x —y — z = 0 (mod q), then s(¢; Q) < ¢ ¢/ loglog g, for some fixed
constant ¢y > 0.

(b) If © contains the equation x+y —z —u =0 (mod q), then s(¢; Q) < /g —3/4+1/2.

In a PAC with modulus ¢ and column-weight » > 3, the equation 2x —y —z = 0 (mod ¢) always
governs six-cycles, as can be seen by setting 11 = 0, 7o = 1 and ro = 2 in (5). So, if a shortened PAC
has girth eight, then its sequence of block-column labels must not contain solutions to 2x —y —z =0
(mod g), i.e., must be non-averaging over Z,. Hence by Lemma 4.2(a), the number of block-columns
in the parity-check matrix of the shortened PAC cannot exceed ¢g ¢/ loglogg.

Similarly, in an array code with modulus ¢, the equation x+y —z—u =0 (mod ¢) always governs
eight-cycles that pass through any two distinct block-rows and four distinct block-columns (see, for
example, the cycles on the bottom-right of Figure 1). So, if an array code is shortened to obtain girth
ten, then the sequence of block-column labels retained in the shortened code must be a Sidon sequence
over Zg, and therefore, Lemma 4.2(b) applies. We have thus proved the following theorem.

Theorem 4.3. (a) The number of block-columns in the parity-check matriz of a shortened PAC with
modulus q, column-weight r > 3 and girth eight cannot exceed cq q/loglog q.
(b) The number of block-columns in the parity-check matriz of a shortened array code with modulus

q, column-weight r > 2 and girth ten is at most \/q — 3/4+ 1/2.

Roughly speaking, the above theorem says that the rate of a shortened PAC with modulus g,
column-weight r > 3 and girth eight cannot be more than 1 — logc!]%r. Similarly, the rate of a
shortened array code with modulus ¢, column-weight » > 2 and girth ten is, as a rough estimate,
bounded from above by 1 — ﬁ.

It is natural to want to compare the bounds of Theorem 4.3 to those obtained from the application
of the Moore bound to the Tanner graphs of array codes. The Moore bound? for a bipartite graph
[11] bounds the number of vertices in the graph in terms of the girth and the average left and right
degrees. Consider a bipartite graph with ny left vertices, np right vertices, m edges and girth g. Let

dr, = % be the average left degree, dp = % the average right degree. Then,

3To be correct, this should be called a Moore-type bound, as the original Moore bound (see [3, p. 180]) only applies
to regular graphs.



g9/2—1

np > Y (dg— DI (g — )L/ (16)
1=0
g9/2—1
ng > Y (dp— DI (dg — 1L/ (17)
1=0

The above bounds are easily proved for bi-regular bipartite graphs, i.e., graphs in which each left
(resp. right) vertex has degree dp, (resp. dR).

Now, the Tanner graph of an array code of modulus ¢, column-weight r and having s block-columns
is bi-regular with ny, = ¢s, ng = qr, dr, = r and dg = s. So, for such a Tanner graph of girth eight,
the bound in (16) becomes

gs>1+(s—1)+(s—1)(r— 1)+ (s = )% —1) = s[1+ (s = 1)(r — 1],
which yields the bound

qg—1
<1 . 18
s < +r—1 (18)

The bound in (17) also gives exactly the same result. Note that this bound is, asymptotically in g,
looser than the bound in Theorem 4.3(a). But for practical purposes, this is a more useful bound than
that of the theorem because the ¢ in the theorem is not explicitly specified.

On the other hand, applying (16) to the Tanner graph of an array code of girth ten, we get

gs 2 s[1+(s—1)(r =1+ (s = 1)*(r = 1)%
which upon re-arrangement becomes
r(ir—1)s* = [r(2r —3) +qls+ (r—1)2<0.

Solving for s now yields

<4 +r2r —3)++/(¢g+r2r—3))2—4r(r — 1)3
- 2r(r — 1) '

S

(19)

For ¢ >> 72, this upper bound is roughly T(T;’A). It is clear that in most cases of interest, this is not as
good a bound as that of Theorem 4.3(b). We would like to remark that another upper bound can be
obtained via (17), but this turns out to be looser than the bound in (19).

We summarize the above bounds in the following theorem.

Theorem 4.4. (a) The number of block-columns in the parity-check matriz of a shortened array code
with modulus q, column-weight v and girth eight cannot exceed 1+ (¢ —1)/(r — 1).

(b) The number of block-columns in the parity-check matriz of a shortened array code with modulus
q, column-weight v and girth ten is at most

q+7(2r —3)+/(g+r(2r—3)2—dr(r —1)3
2r(r —1) ’




4.2 Lower bounds on s(g; ()

We next consider the converse problem of finding lower bounds on the size of integer sequences avoiding
solutions to a collection of cycle-governing equations. The problem of constructing long sequences of
integers that do not contain solutions to certain kinds of homogeneous linear equations has a long
history. For example, large non-averaging subsets of [1, N] were described or constructed by Behrend
[1], Moser [21] and Rankin [25], using geometrical arguments. We will generalize some of these results
to cover certain classes of equations of the form given in (15).

We start with a lower bound on the maximum length of sequences that are ¢;-non-averaging over
Zyg, for ¢ distinct integers ¢; € [2, ¢ — 2]. The proof of this bound is provided in the Appendix.

Theorem 4.5. Let £ > 1, and let Q be the collection of equations
x+ey=(c+1)z i=1,2,...¢,

for some constants ¢; € [1,q — 2] such that ¢; # ¢j fori # j. Then,
3q2 1/3
ooz ()"
(&9) (g —1)

The lower bound derived in the theorem above is quite loose. For example, for ¢ = 241, a greedy
algorithm (to be described in Section 5) produces a sequence of 15 integers that is simultaneously
non-averaging and 2-non-averaging over Z,. However, the theorem applied with ¢ = 2, ¢; = 1 and
co = 2 gives a lower bound of 8 for the cardinality of such a sequence.

A more general lower bound can be derived by extending a result of Behrend [1] derived origi-
nally for non-averaging sequences. Consider the following system, €2, of ¢ equations in the variables
up,ug,... ,Upm, V:

>ty crguj =biv
Q . (20)
Dot ceguj = bev,

where the coeflicients ¢; ;, b; are non-negative integers such that for each i € [1,¢], at least two of the
¢i,j’s are nonzero, and E;n:l cij = b; > 0.

Theorem 4.6. Given a system, Q, as in (20), let D = maxi<;<¢ b;. Then, for ¢ > D?,

5(4;2) 2 1 g e VIR ERET (14 (1))

where log denotes the natural logarithm, v1 = D%/%logD, v2 = 2y/2log D, and o(1) denotes a

correction factor that vanishes as ¢ — oo.

We postpone the proof of the theorem to the Appendix. The above result can be compared directly
to the result of Theorem 4.5 since the system of equations x + ¢;y = (¢; + 1)z, i = 1,2,... , ¢, is of the
form given in (20). Therefore, the result of Theorem 4.6 applies to this system of equations €2, with
D =1+ max; ¢;. It is easily seen that by the bound of Theorem 4.6,

s(q; Q)

lim T =0
g—oo gle

for any € > 0. Since € can be chosen to be arbitrarily small, this is much stronger, asymptotically in
q, than the result of Theorem 4.5, which only shows that s(q; Q) > C ¢'/3 for some constant C' > 0
independent of q. However, for small values of ¢, particularly for the values of the modulus g typically



Table 2: Cycle-governing equations over Z, for PAC’s with modulus ¢ and column-weight » = 3, and
greedy sequences avoiding solutions over Zq213 to them.

Six-cycle equation Greedy sequences avoiding the six-cycle equation
0,1,3,4,9,10,12,13, 27,28, 30, 38, . ..
2%—j—k=0 0,2,3,5,9,11,12,14,27,29, 30, 39, . ..

0,3,4,7,9,12,13,16, 27, 30, 35, 36, . . .
Eight-cycle equations | Greedy sequences avoiding all six- and eight-cycle equations
2i+j—k—21 = 0

0,1,4,11,27, 39,48, 84, 134, 163, 223, 284, 333, ...

Z;]_*li;]i - 8 0,2,5,13,20,37, 58,91, 135, 160, 220, 292, 354, . ..
. jjik ~ 0,3, 4,13, 25,32, 65,92, 139, 174, 225, 318, 341, . ..

used in practical array code design, the bound of Theorem 4.5 is better than that of Theorem 4.6. For
instance, when applied to the system, 2, consisting of the pair of equations x+y = 2z and x4 2y = 3z,
the bound of Theorem 4.6, for ¢ = 241, evaluates to 0.66, which just shows that s(q;€2) > 1. As stated
earlier, the bound of Theorem 4.5 yields s(g;€2) > 8 in this case.

To conclude this section, we remark that while the problem of precisely estimating the growth
rate of s(q;€2) with ¢ is one of considerable interest and value, finding provably good estimates is a
notoriously difficult problem. For example, the current best lower bound for the growth rate of the
cardinality of non-averaging sequences is that due to Behrend (Theorem 4.6 for the special case of 2
consisting of the single equation x +y = 2z), but it is still not known whether this is the best possible
such bound.

5 Construction Methods

The simplest and computationally least expensive methods for generating integer sequences satisfy-
ing a given set of constraints are greedy search strategies and variations thereof. A typical greedy
search algorithm starts with an initial seed sequence that trivially satisfies the given constraints, and
progressively extends the sequence by adding new terms that continue to maintain the constraints.
For example, to construct a non-negative integer sequence that contains no solutions to any equation
within a system, , of cycle-governing equations of the form (15), we start with a seed sequence of
m — 1 non-negative integers, n1 < no < ... < Ny,—1, where m is the least number of variables among
any of the equations in 2. For each j > m, we take n; to be the least integer greater than n;_; such
that {n1,n9,...,n;} contains no solutions to any equation in Q. The rate of growth of elements in a
sequence generated by such a greedy search procedure is influenced by the choice of the seed sequence
[24]. Tables 2-5 list the output of the greedy search procedure, initialized by different seed sequences,
for finding sequences that avoid solutions to various cycle-governing equations in PAC’s and [AC’s.
The first two terms of each sequence listed in the tables form the seed sequence for the greedy search
algorithm.

There is an alternative procedure that often generates sequences with more terms than a simple
greedy search routine. The idea is to start with some construction of a dense sequence avoiding solu-
tions to some subset of the cycle-governing equations in the set €2, and then to sequentially expurgate
elements of that sequence that violate any of the remaining constraints. After the expurgation pro-
cedure is completed, additional elements may be added to the sequence as long as they jointly avoid
solutions to all cycle-governing equations in §2.

A good sequence with which to start this alternative procedure can be constructed according to
a method outlined by Bosznay [4]. The construction proceeds through the following steps. First, a



Table 3: Cycle-governing equations over Z, for PAC’s with modulus ¢ and column-weight » = 4, and
greedy sequences avoiding solutions over Zgi; to them.

Six-cycle equations Greedy sequences avoiding all six-cycle equations
. 0,1,4,5,11,19,20,...
351_].9_2’; _ 8 0,2,5,7,13,18,20, ...
0,3,4,7,16,17,20,...
Eight-cycle equations Greedy sequences avoiding all six- and eight-cycle equations
Ji—j—k—-1 =0
3i—2—-2k+1 = 0
20—-2j—k+1 = 0
3@3—1 3g3i Jkk_}ﬁ _ 8 0,1,5,18, 25,62, 95, 148, 207, . . .
iti—k—1 = 0 0,2,7,20,45,68, 123,160, 216, . ..
S 0,3,7,22,39,68, 123,154,244, ...
20—j—k = 0
4i—-3j—k = 0
3i—2j—k = 0
5 —3j—2k = 0

prime ¢ is chosen, and along with it the smallest integer ¢ such that ¢ < t*. Let

1
nj :jt3—|—j(]T+), j=1,2,...,t—1,
and let 8" = {n1,n9,...,ns_1} N[0,q — 1]. It can be shown that the sequence S’ does not contain

proper solutions over Z, to any equation of the form

m
E C; u; = bv
i=1

where c¢1,¢2,... ,¢pn,b are positive integers such that Y ;" ¢; = b. Next, one uses a simple greedy
algorithm to find the largest subset S C S’ that does not contain proper solutions to cycle-governing
equations in 2 that are not of the above form. The last step in the procedure is to check whether
there exist integers in [0, ¢ — 1] that can be added to S without creating a proper solution within S to
some cycle-governing equation. If such integers exist, they are sequentially added to the set S.

As illustrative examples, we list three sequences constructed using the adaptation of Bosznay’s
method described above. The sequence 1,4, 8, 23,40, 126, 253, 352, 381, 495 constructed by this method
does not contain solutions to any of the equations listed in Table 3 that govern cycles of length six
and eight in a PAC with modulus ¢ = 911 and column-weight » = 4. In comparison, the greedy
algorithm initialized by the seed sequence 0,1 produces 0, 1,5, 18, 25,62, 95, 148,207. The sequences
6,8,165,217,435,654,1095 and 0, 1,7,29, 64, 111, 753, generated by the modified Bosznay construction
and the greedy algorithm with seed sequence 0, 1, respectively, avoid solutions to any of the equations
listed in Table 4. Finally, in the case of the equations in Table 5, the sequences produced by the
two methods are 2,4, 28,217, 255,435,654 and 0, 1,9, 20,46,51. Observe that the sequences produced
by the modified Bosznay construction contain terms that are larger in general than the terms in the
corresponding greedy sequences where almost all elements are much smaller than the prime gq.



Table 4: Cycle-governing equations over Z, for IAC’s with modulus ¢, column-weight r = 3 and
block-row labels {0, 1,3}, and greedy sequences avoiding solutions over Zja13 to them.

Six-cycle equation Greedy sequences avoiding the six-cycle equation
0,1,2,5,8,9,10,16, 18, 21, 33, 35, 37, 40, . ..
3i—2j—k=0 0,2,4,7,9,11,14,16, 18,31, 35,39, 45, ...
0,3,4,5,8,11,13, 19,20, 21, 32, 36, 40, . . .
Eight-cycle equations Greedy sequences avoiding all six- and eight-cycle equations
3i—3j—k+1l = 0
3i—35—2k+20 = 0
i+j—k—=1 = 0 0,1,5,14,25,57,88,122,198, 257, 280, . . .
2i+j—k—-2l = 0 0,2,7,18,37,65,99, 151,220, 233, 545, . ..
4i—-3j—k = 0 0,3,7,18, 31,50, 105, 145, 186, 230, 289, . ..
2i—j—k = 0
5 —3j—2k = 0
Ten-cycle equations Greedy sequences avoiding six-, eight- and ten-cycle equations
i—j+k—1—-2m = 0
3i—j—2k+2l-2m = 0
3i+j+2k—-3l—-3m = 0
Ji—j—k—1 =0
3i—-3j—k+1 = 0
3i—2j+k—-2l = 0
1—45+k+20 = 0
Ji—j—5k+3l = 0
3; - ‘;jf;“;_?; - 8 0,1,7,29, 96, 148, 324
32 +2% -3 — 0 0,2,7,29,70,178,733
Gi—j—2—3 — 0 0,3,7,26, 54,146, 237
5i—j—2k—2l = 0
4i—-35—-3k+2l = 0
3i—2j—k = 0
i—4j+3k = 0
3i+2j—5k = 0
2t—j—k = 0
6i—j—5k = 0
5i—j—4k = 0




Table 5: Cycle-governing equations over Z, for IAC’s with modulus ¢, column-weight » = 4 and
block-row labels {0,1, 3,7}, and greedy sequences avoiding solutions over Zg;; to them.

Equations (Six-cycles) Greedy sequences avoiding all six-cycle equations
Ji—j—2k = 0 0,1,2,5,10,12,19,25,27,41,42,46, 50, 60, . ..
Ti—j—6k = 0 0,2,4,9,10,17,20, 34, 36,45,55,61, 71,77, ...

TM—3j—4k = 0 0,3,4,5,8,13,20,27,37,46,47, 48,51, 66, ...
Equations (Eight-cycles) | Greedy sequences avoiding all six- and eight-cycle equations
Ti—45 —2k—1 =

0

Ti—6j —3k+2 = 0

Ti—Tj—k+1 = 0

Ti —7j + 3k — 31 0

Ti — 7] + 6k — 61 0

Ti — Tj + 4k — 4l 0

6i— 6§ —k +1 0

6i—4j—3k+1 = 0

4i — 45 — 3k + 31 0

3i—3j — 2k +21 0

3i—3j —k+1 0
2% 2 k41 0 0,1,9,20,46, 51, 280
i+j—k—1 = 0 0,2,11,19,42,83,118

0

0

0

0

0

0

0

0

0

0

0

0

9 — 75 — 2k 0,3,8,25,45, 72,142
7i — 5§ — 2k
5i—4j — k
4i—3j—k
3i—2j — k
%—j—k =
5i — 3j — 2k
8i—7j —k
6i—5j — k
13i — 7§ — 6k
10i — 75 — 3k =
11— 75— 4k =




._\
o\

~&~ PACr3g6 (n=7278, q=1213, g=6)

~~ PACr3g8 (n=7278, q=1213, g=8)

-5~ PACr3g8+ (n=7278, q=1213, g=8, few 8-cycles)
% Random-label PAC (n=7278, q=1213, g=8)

N —- Mackay-Davey (n=8000, (3,6)-regular)

i
o
T

Q
T
o
8
o
5
107k
10°F
1
\
o
107 L L 1 I I | | | L I
1 1.2 1.4 1.6 1.8 2 22 2.4 2.6 2.8 3
Eb/N0 (dB)

Figure 3: BER versus Ej/Ny (dB) for rate-1/2 PAC’s with r = 3.

6 Simulation Results

In this section, we present the bit-error-rate (BER) curves over an AWGN channel for various (short-
ened) PAC’s and TAC’s, and also provide comparisons with other codes of similar rates and lengths
from the existing literature. All array codes considered in this section were iteratively decoded using
a sum-product /belief-propagation (BP) decoder.

Figures 3 and 4 show the performance curves, after a maximum of 30 rounds of iterative decoding,
for array codes of column-weight 3 and row-weight 6; thus all these codes have rate 1/2. The prime
modulus used for the construction of these codes is ¢ = 1213, which yields codes with length 7278.
The sets of block-column labels used in the codes PACr3g6, PACr3g8 and PACr3g8+ in Figure 3
are {0,1,2,3,4,5}, {0,1,3,4,9,10} and {0, 1,4, 11,27,39}, which correspond to a PAC of girth six, a
shortened PAC of girth eight, and a shortened PAC of girth eight but without eight-cycles governed
by the equations in Table 2, respectively. The codes TACr3g8, IACr3gl0 and TACr3gl2, whose per-
formance is plotted in Figure 4, are of girth eight, ten and twelve, respectively. The respective sets of
block-column labels are {0,1,2,5,7,8}, {0,1,5,14,25,57}, and {0,1,7,29,64,111}. All the IAC’s in
the figure have block-row labels {0, 1, 3}.

Figures 5 and 6 show the results, after a maximum of 30 decoding iterations, for codes with rate
1/2 and column-weight » = 4. The array codes in Figure 5 are shortened PAC’s with modulus ¢ = 911
and length 7288. The sequences used for the block-column labels in the codes PACrdg6, PACr4g8
and PACr4g8+ are {0,1,2,3,4,5,6,7}, {0,3,4,7,16,17,20,22} and {0, 1,5, 18,25, 62,95, 148}, respec-
tively. The codes PACr4g6 and PACr4g8 are of girth six and eight, respectively, while PACr4g8+ is a
code of girth eight with no eight-cycles governed by the equations in Table 3. The codes IACr4g8 and
TACr4gl0 in Figure 6 are IAC’s of girth eight and ten, respectively, that use the set of block-row labels
{0, 1,3, 7}, but differ in the modulus and block-column labels used. The code of girth eight has mod-
ulus ¢ = 911, hence length 7288, and block-column labels {0, 1,2, 5,9, 10, 18,42}. The girth-ten code,
on the other hand, uses the modulus ¢ = 1307, so that it has length 10456, and block-column labels
{317, 344,689, 1035, 1178, 1251,1297, 1303} The reason for not choosing ¢ to be 911 in the girth-ten
code is that none of the construction methods discussed in Section 5 produces a sequence of length
eight without solutions over Zg1; to any of the equations listed in Table 5. The smallest choice for
the prime ¢ which does produce a sequence of eight block-column labels satisfying the eight-cycle
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Figure 4: BER versus Ep/Ny (dB) for rate-1/2 IAC’s with r = 3.

constraints turns out to be 1307.

For comparison purposes, each of Figures 3-6 also contains the BER curves for two other codes: a
rate-1/2, regular LDPC code of length 8000 with a random-like structure, as constructed by MacKay
and Davey in [17], and a “random-label” array code in which the block-row and block-column labels
are randomly chosen. The MacKay-Davey code in Figures 3 and 4 is a (3, 6)-regular code, while that
in Figures 4 and 6 is a (4, 8)-regular code. The random-label code in Figure 3 is a PAC with ¢ = 1213,
r = 3 and set of block-column labels {24,460, 610, 826, 1009,1012}. Among the equations in Table 2,
this label set contains solutions over Zi213 to only one equation, namely, 3i —2j — k = 0; the solution is
(1,7, k) = (826,1009,460). Thus, this PAC contains no six-cycles and relatively few eight-cycles. The
random-label code in Figure 4 is an IAC with the same choices of g, 7 and block-column labels as in
the random-label PAC above, but the block-row label set for the code is {3,4,7}. The random-label
PAC in Figure 5 and the random-label IAC in Figure 6 have ¢ = 911, r = 4 and set of block-column
labels {17,210, 415, 442,552,694, 811, 865}; the IAC has block-row labels {2,5,7,8}. The set of block-
column labels for the random-label PAC in Figure 5 supports proper solutions over Zgi1 to several of
the equations in Table 3. These equations and solutions are tabulated in Table 6. It is clear that this
array code contains many six-cycles and eight-cycles.

Table 6: Solutions over Zg1; supported within the set {17,210,415,442, 552,694, 811,865} to the
cycle-governing equations in Table 3.

Equation Solutions (i, j, k) or (i,7,k,1)
%—j—k=0 (811,17, 694), (811,694, 17)
(

2 —2j —k+1=0 | (415,442,811,865), (442,415,865, 811),
(694, 865, 210, 552), (865, 694, 552, 210)

) (

3i—2j —2k+1=0 | (865,694,811,415), (865,811,694, 415)
) (
) (

3i—3j+2k—20=0| (210,552,17,415), (552,210,415,17)
3i—3j+k—1=0| (694,865,17,415), (865,694,415, 17)

bl
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Figure 5: BER versus Ej/Ny (dB) for rate-1/2 PAC’s with r = 4.
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From the simulation results presented in Figures 3-6, we can clearly observe the sharp improve-
ment in performance that can be achieved by increasing the girth of an array code, or even by partially
eliminating cycles of a certain fixed length. As girth increases, the BER curves of array codes approach
that of a random-like LDPC code of similar length and degree distribution. This provides concrete
evidence in support of the widely-held belief that the girth of a code is an important factor in deter-
mining its performance. This also appears to be borne out by the performance of the random-label
PAC’s in Figures 3 and 5. As can be seen from these figures, the degradation in performance (in
comparison with the random-like MacKay-Davey codes) of the random-label PAC of column-weight
three is significantly smaller than that of column-weight four. Recall that the random-label PAC of
column-weight three contains few short cycles, while the code of column-weight four contains many
six-cycles and eight-cycles.

The best performance among the array codes we considered for our simulations was achieved by
TIACr4gl0, for which there was no observed error for 50 million simulated blocks and 30 iterations of
message-passing, implying that at an SNR of 2.5dB, the BER achieved by the code is less than 107,
As can be seen from Figure 6, this code performs better than the random-like MacKay-Davey code of
comparable parameters.

It is worth pointing out that the PAC’s of column-weight four and the TAC of girth eight and
column-weight four significantly outperform their counterparts with column-weight three. This is the
reverse of the trend observed among LDPC codes with random-like structure, as it is known that
among such codes, (3,6)-regular codes have the best threshold properties at rates below 0.9, as can
be clearly seen from the performance plots of the random-like MacKay-Davey codes in Figures 3
and 5. We conjecture that the observed results are a consequence of the fact that the array codes
of rate 1/2, length around 8000 and column-weight four have minimum distance significantly larger
than their column-weight three counterparts, or that they have relatively few cycles of length equal
to or exceeding the girth, and probably have almost optimal structure, (i.e. they are comparable to
random-like codes). At the same time, array codes with rate 1/2 and column-weight three show a
significant gap away from the optimal performance, since for such a degree distribution it is very likely
that optimal LPDC codes can have girth much larger than twelve, and larger minimum distance than
the upper bound listed in Table 1.

Finally, we provide some data comparing the performance of shortened array codes with that of
some of the structured LDPC codes studied in the existing literature. We start with the class of LDPC
codes derived in [14] from projective and Euclidean geometries over finite fields. Most of these codes
have much higher rates than the shortened array codes with comparable codelengths. Shortened array
codes of a certain codelength tend not to achieve rates as high as those achieved by codes of the same
length derived from projective and Euclidean geometries due to the relatively small density of integer
sequences avoiding solutions to cycle-governing equations. So, to make a fair comparison, we consider,
as an example, the code of length 8190 and dimension 4095 obtained by “extending” the (4095, 3367)
Type-1 2-dimensional Euclidean geometry code via the column-splitting procedure described in [14,
Section VI|. This code has rate 1/2, and so can be compared with the rate-1/2 shortened array codes
of similar lengths. As reported in [14, Table ILI], the (8190,4095) code achieves a BER of 107 at
an SNR of 6 dB, which is 5.82 dB away from the Shannon limit of 0.18 dB. On the other hand, the
length-7288, rate-1/2 code IACr4g8 in Figure 6 achieves the same BER at an SNR of slightly less
than 2dB, which is considerably closer to the Shannon limit. In other words, the array code achieves
a 4 dB performance gain over the extended Euclidean-geometry code at a BER of 107, despite being
significantly shorter in length.

Figures 7 and 8 provide a comparison of the performance of array codes with the codes studied in
[6] and [13]. The first of these figures compares the performance of a pair of IAC’s with a pair of ran-
dom quasi-cyclic codes and a random Gallager code (cf. [6, Figure 2]). All the codes in the figure have
lengths around 4100, and are (4,9)-regular, hence have rate 5/9. Both the IAC’s plotted have length
4113, modulus g = 457, column-weight r = 4, and block-row labels {0, 1, 3, 7}. The set of block-column
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Figure 7: Comparison of array codes with some quasi-cyclic codes from [6]. All codes in the figure
have lengths around 4100, and are (4,9)-regular.

labels used in the two IAC’s are {0, 1,9, 10,22, 31, 32,172,194} and {0,1,9, 10, 24,43,88,90, 326}, re-
spectively. The first sequence avoids solutions over Zgs7 to all the three-variable cycle-governing
equations listed in Table 5, except for 7i — 3j — 4k = 0 and 10i — 7j — 3k = 0, which have four
and three solutions, respectively, within the sequence. Since 7i — 35 — 4k = 0 governs a six-cycle,
the code with block-row label sequence {0,1,9,10,22,31,32,172,194} has girth six. The sequence
{0,1,9, 10,24, 43, 88,90,326} contains no solutions over Z4s7 to any of the three-variable equations in
Table 5, except for 10 — 7j — 3k = 0 ((4,4,k) = (0,326,1) is the only solution). Thus the IAC with
this set of block-column labels has girth eight. The performance of all the codes in Figure 7 codes is
remarkably similar, but it should be noted that the plotted performance of the two IAC’s was obtained
after a maximum of 50 rounds of BP decoding, while the codes from [6] were allowed a maximum of
200 rounds of BP decoding.

In Figure 8, a pair of TAC’s is compared with several codes of similar lengths and rates taken from
[13]. The IAC’s in the plot all have length 1337, modulus ¢ = 191, column-weight r = 4 and block-row
labels {0,1,3,7}. They differ in the sequence of block-column labels used: one uses the sequence
{0,1,9,10,22,31,126}, while the other uses {0, 1,5, 6, 25,46,151}. The former sequence contains solu-
tions over Zig1 to the following three-variable cycle-governing equations from Table 5: 71 —3j—4k =0
(four solutions), 10i —7j —3k = 0 (two solutions), 9 —7j — 2k = 0 (two solutions) and 11i—7j —4k = 0
(one solution); thus, this sequence yields a girth-six code. The sequence {0, 1,5, 6, 25,46, 151} contains
solutions over Z91 to the following three-variable equations from Table 5: 5i — 45 — k = 0 (three solu-
tions), 61 — 5j — k = 0 (four solutions), 11 — 75 — 4k = 0 (three solutions) and 10i — 7j — 3k = 0 (two
solutions); the code with this label sequence has girth eight. The code LU311¢ is a structured LDPC
code based on a construction of a family of regular bipartite graphs by Lazebnik and Ustimenko [16].
The parity-check matrix of the code is a 1331 x 1331 square matrix with row-weight and column-weight
11. The code has girth eight, dimension 560 and minimum distance at least 22. [13]. The codes R3,
R4 and R5 are irregular random-like LDPC codes with parity-check matrices of column-weight 3, 4
and 5 respectively. The performance plots of the codes LU311t, R3, R4 and R5 have been obtained
from [13, Figure 5], where it is stated that a maximum of 500 iterations of BP decoding was allowed
for each of these codes. The performance of the IAC’s in the Figure was obtained after a maximum
of 50 rounds of BP decoding. As can be seen from the figure, the two IAC’s match the performance
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Figure 8: Comparison of array codes with some codes from [13]. All codes being compared have
lengths around 1330 and rates 0.42-0.43.

of the random-like column-weight-four code R4, and easily outperform the code LU311¢t.

7 Conclusion

In summary, in this paper, we considered the problem of constructing new LDPC codes with large
girth based on the array code construction of [5]. Our contributions were threefold. Firstly, we
provided a simple method for relating cycles in the Tanner graph of such codes to homogeneous linear
“cycle-governing” equations with integer coefficients. Secondly, we outlined a theoretical approach
for constructing codes without various kinds of cycle structures, based on the existence of integer
sequences that avoid solutions to the cycle-governing equations. This gives a means of designing codes
with a pre-specified cycle structure, which can help in studying the effects of various classes of cycles
on the performance of LDPC codes. Finally, we showed through extensive simulations the significant
influence of relatively short cycles on the performance of LDPC codes under iterative decoding.

Appendix

We provide proofs of Lemma 4.2(b) and Theorems 4.5 and 4.6 in this Appendix.

Proof of Lemma 4.2(b): Let S be a Sidon sequence over Zy, and let P be the set {(a,b) :
a,b € S;a # b}. From the definition of a Sidon sequence and the fact that N is odd, it follows
that the mapping f : P — [I,N — 1] defined by f(a,b) = a — b mod N is injective. Therefore,
N—1>|P| =|S|(]S|—1). Solving the associated quadratic equation, we obtain |S| < /N — 3/4+1/2.

For the proof of Theorem 4.5, we recall some definitions from graph theory. A hypergraph,
H = (V,E), is an ordered pair of two finite sets: the set of vertices V, and the set of edges E,
which are arbitrary non-empty subsets of V. A hypergraph is called h-uniform if all its edges have the
same cardinality h, and is called s-regular if all its vertices belong to the same number, s, of edges.



A set of vertices of a hypergraph, H, which does not (completely) contain any edge of H is called
an independent set. The maximum cardinality of an independent set of H is called the independence
number of H, and is denoted by a(H).

Proof of Theorem 4.5: Let € be as in the statement of the theorem. Define a hypergraph H(q; ()
with vertex set [0,q — 1], and a set of edges that consists of all triples of the form

{z,z+t mod ¢, z+ (¢; + 1)t mod ¢}, i=1,2,....¢

’

for x € [0,g — 1] and ¢t € [1,¢ — 1]. In other words, the edges of H(q;S2) are precisely the proper
solutions over Z, of equations in 2. Therefore, a subset of [0,¢ — 1] contains no proper solution over
Zq to any equation in € if and only if it forms an independent set of vertices in H(g;2). Thus, any
lower bound on the independence number of H(g;2) is also a lower bound on s(g; ). We will prove
the bound of the theorem using the following lower bound [2, p.136] on the independence number of
a regular, h-uniform hypergraph, H = (V(H), E(H)):

oy > VD)

= B 21

It is easily seen that the hypergraph H(g;{2) is 3-uniform and ¢(q — 1)-regular. Indeed, for any
x€l[0,q—1],t€[l,q— 1] and ¢ € [1,q — 2|, the integers x, x + ¢t and x + (¢ + 1)t are distinct modulo
g, since ¢ is a prime. Therefore, each edge of H(q;{2) contains exactly three distinct vertices, showing
that H . is 3-uniform. To see that the graph is (g — 1)-regular, we only need to observe that for each
vertex = € [0,¢ — 1], the triples

{z, 2+t mod q, x + (¢; + 1)t mod ¢}, i=1,2,...,¢,

1 <t <qg—1, form an exhaustive set of distinct hyperedges containing the vertex x.

The number of edges in H(q;2) can be easily computed from the fact that the graph is 3-uniform
and ¢(q — 1)-regular, so that we must have 3|E(H(q;2))| = (q — 1)|V(H(q;2))|. Consequently,
|E(H (q; )| = (¢/3)q(q — 1). The theorem is proved by plugging this into the bound of (21). m

It is now only left to prove Theorem 4.6. The proof uses a technique due to F.A. Behrend (see [9,
Section 4.3, Theorem 8]), and hinges upon the following lemma.

Lemma A.1. Given a system, (2, as in (20), let D = maxi<;<¢ b;, and let g be an integer larger than
D. Pick an integer n > 0 such that nD < q, and let k = |(log ¢q)/log(nD + 1)|. Then, there exists a
set, S, of integers from [0,q — 1], of cardinality
(n+1)F2-1

k
such that S does not contain a proper solution over Z, to any of the equations in €).

S| >

Proof: Let D, q, n and k be as in the statement of the lemma, and let M = (nD + 1)k —1. For each
€ [1, M], let (zg,z1,...,Tk—1) be the (nD + 1)-ary representation of z, i.e., z = Zi:ol z; (nD + 1)
with z; € [0,nD] for i = 0,1,... ,k— 1. We will refer to (zg,z1,...,z5—1) as the coordinate vector of

z. Define
1/2
0<i<k—1

In other words, N(z) is the [2-norm of the coordinate vector (xq,1,...,ox 1). For an arbitrary
integer p > 1, define the set

In other words, R, is the set of all integers « € [1, M| that satisfy two properties:



(i) the digits xg,x1,... ,2x—1 in the (nD + 1)-ary expansion of x all lie between 0 and n; and
ii) N(x)? = p, i.e., the [?>-norm of the coordinate vector of x lies on the [?-sphere of radius ,/p.
p p

We will show that R, , cannot contain a proper solution over Z, to any equation in €. In fact, it
is enough to show that R,, cannot contain a proper integer solution to any equation in €. This is
because for any set {u1,us, ... ,Um,v} C R,,, we must have

m m k—1 k—1 k—1
> cigui <Y ci ( n(nD + 1)t> = b, ( n(nD + 1)f) <(nD) Y (nD+1)' = (nD+1)F-1,

t=0

and similarly,
biv < (nD+1)F — 1,

which together imply

m m
| Z cijuj — by < max{z cijuj, biw} < (nD+1)F -1 <q.
=1 =1

Note that, since ¢; ; < b; < D, each digit x; in the (nD+1)-ary representation of an element in R, ,,
is small enough so that there is no carry over when performing any of the sums in ). Hence, adding
numbers in R, ,, corresponds to adding their coordinate vectors. Now, suppose that the ith equation
in 2 has a solution {u1,u2, ... , U, v} C Ry, i.c., E;n:1 cijuj =byv, with N(u1)? = N(ug)? = ... =
N(upm)? = N(v)? = p. Then,

m
1
v = b_l E Ci,j Uy,
J=1

which means that the coordinate vector of v is a convex combination of the coordinate vectors of the

m integers u;j, j = 1,... ,m, and all these vectors lie on the I2-sphere of radius \/p- However, by the
strict convexity of the {>-norm, this can happen only if all these coordinate vectors are identical, or
equivalently, only if u; = up = ... = uy, =v. So, R, cannot contain a proper integer solution to any

equation in €.
At this point, the proof turns nonconstructive. Note that the union

URp,n:{:EE[I,M]: 0<z; <nVi}

p=1
contains (n + l)k — 1 points in all, since this is the number of sequences (xo, ... ,zx—1) such that 0 <
i <nfori=0,1,...,k— 1. Furthermore, for any x € Up>1 R, ., we have N(x)? = :::01 x? < kn?,
so that
kn?

U Rp7n = U R,D,TL‘

p=1 p=1
Thus, the union of the sets R,,, p =1,2,... , kn?, contains a total of (n + 1)* — 1 points. Hence, by

the pigeon-hole principle, there exists a p* € [1, kn?] such that

(n+1)kF -1 - (n+1)F2 -1

>
Bprnl 2 —9— 2 k

Finally, S = Rjpun — 1 ={u —1:u € R, 5} is the set whose existence in claimed in the statement
of the theorem. Indeed, S C [0, M — 1], and since M = (nD + 1)k —1 < g, we have S C [0,q — 1].
Moreover, as (1,1,...,1) is a solution to every equation in €, and R,., does not contain a proper



solution to any equation in €2, S cannot contain such a solution either. [

We can now give the proof of Theorem 4.6.
Proof of Theorem 4.6: Given ¢ > D?, pick an arbitrary ¢ > log D/log q. Then, choosing n = L% q°]
and applying Lemma A.1, we get the following lower bound on s(g; ):

s(g; Q) > € D> % ¢'72(1 + o(1)), (22)

where o(1) denotes a correction factor that goes to zero as ¢ — oc.
Now, it may be verified that the value of e that maximizes the function f(¢) = e DY ¢ 12 g

(1 +4/1 —|—8(logD)(logq)) /(4logq) =~ ,/%logD/logq. For ¢ > D?, g/%logD/logq > log D/logq,

so the bound in (22) applies with € = 4/ % log D/logq. Plugging this value of € into (22) and manipu-
lating the resulting expression, we obtain the bound of the theorem. m
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