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ABSTRACT. The decomposition theory of matroids initiated by Paul Seymour in the 1980’s has had
an enormous impact on research in matroid theory. This theory, when applied to matrices over the
binary field, yields a powerful decomposition theory for binary linear codes. In this paper, we give
an overview of this code decomposition theory, and discuss some of its implications in the context of
the recently discovered formulation of maximum-likelihood (ML) decodingof a binary linear code
over a binary-input discrete memoryless channel as a linear programming problem. We translate
matroid-theoretic results of Grötschel and Truemper from the combinatorial optimization literature
to give examples of non-trivial families of codes for which the ML decoding problem can be solved
in time polynomial in the length of the code. One such family is that consisting ofcodesC for which
the codeword polytope is identical to the Koetter-Vontobel fundamental polytope derived from the
entire dual codeC⊥. However, we also show that such families of codes are not good in a coding-
theoretic sense — either their dimension or their minimum distance must grow sub-linearly with
codelength. As a consequence, we have that decoding by linear programming, when applied to good
codes, cannot avoid failing occasionally due to the presence of pseudocodewords.

1. INTRODUCTION

Historically, the theory of error-correcting codes has benefited greatlyfrom the use of techniques
from algebra and algebraic geometry. Combinatorial and graph-theoreticmethods have also proven
to be useful in the construction and analysis of codes, especially within the last ten years since
the re-discovery of low-density parity-check codes. However, one area of mathematics that has,
surprisingly, only played a relatively minor role in the development of codingtheory is the field of
matroid theory. The reason this is surprising is that, as anyone with even a basic understanding of
the two fields would realize, coding theory and matroid theory are very closely related. The former
deals with matrices over a finite fieldF, and these objects are also of fundamental importance in the
latter, where they go under the name ofF-representable matroids.

The connection with matroid theory has not gone unnoticed among coding theorists. Indeed, as
far back as 1976, Greene [1] noticed that the Tutte polynomial of a matroid,when specialized to
a linear codeC, was equivalent (in a certain sense) to the homogeneous weight-enumerator poly-
nomialWC(x, y) =

∑
iAix

iyn−i, whereAi is the number of words of weighti in C, andn is the
length ofC. The MacWilliams identities are then a special case of a known identity for the Tutte
polynomial [2, Chapter 4]. The connection with matroids was also exploited by Barg [3] to derive
MacWilliams-type identities for generalized-Hamming-weight enumerators of a code.

However, aside from such use of tools from matroid theory to re-deriveresults in coding theory
that had already been proved by other means, each field seems to have had little impact on the
other. Matroid theory has derived its inspiration largely from graph theory, and its most successful
applications have traditionally been in the areas of combinatorial optimization andnetwork flows.
Very recently, matroid theory has found new applications in the rapidly evolving field of network
coding [4].
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On the other hand, coding theory (by which we mean the theory of error-correcting codes, in
contrast to the theory of network coding) has been largely unconcerned with developments in com-
binatorial optimization, as the fundamental problems in the former seemed to be ofa different
nature from those in the latter. However, the recent re-formulation of the maximum-likelihood
(ML) decoding problem, for a binary linear code over a binary-input discrete memoryless channel,
as a linear programming problem [5] has opened a channel through whichmatroid-theoretic results
in combinatorial optimization can be applied to coding theory. The key tool in these results is the
use of the decomposition theory of matroids initiated by Seymour [6], [7]. Based on Seymour’s
seminal work, Gr̈otschel and Truemper [8] showed that the minimization of a linear functional
over the cycle polytope of a binary matroid could be solved in polynomial time forcertain classes
of matroids. This immediately implies that for the corresponding families of codes,the ML de-
coding problem can be solved in time polynomial in the length of the code. Giventhe fact that
the ML decoding problem is known to be NP-hard in general [9], the existence of “non-trivial”
classes of codes for which ML decoding can be implemented in polynomial time, isobviously a
significant result. However, as we will show in this paper, for a code familyto which the Gr̈otschel-
Truemper result applies, either the dimension or minimum distance of the codes inthe family grows
sub-linearly with codelength. Thus, such code families are not good froma coding-theoretic per-
spective. However, they do illustrate the important point that polynomial-time MLdecoding is
possible. Moreover, the matroid-theoretic arguments used by Grötschel and Truemper do not rule
out the possibility that there may exist other code families for which polynomial-time ML decoding
algorithms exist, which are also good in terms of rate and minimum distance.

The primary goal of this paper is to provide an exposition of the ideas needed to understand
and apply the work of Gr̈otschel and Truemper. As mentioned earlier, their work relies upon the
machinery provided by Seymour’s matroid decomposition theory, and so we will first present that
theory in a coding-theoretic setting. Our presentation of this decomposition theory will be of a
tutorial nature. We have attempted to keep the presentation self-contained to the extent possible;
we do not provide complete proofs of some of the difficult theorems that form the basis of the
theory.

We provide the relevant definitions and background from matroid theory inSection 2 of this
paper. As explained in that section, binary matroids and binary linear codes are essentially the same
objects. So, techniques applicable to binary matroids are directly applicable tobinary linear codes
as well. In particular, matroid decomposition techniques can be specialized to codes.

Of central importance in matroid theory is the notion of matroid minors. In the context of codes,
a minor of a codeC is any code that can be obtained fromC by a sequence of shortening and
puncturing operations. Minors have received little (if any) attention in coding theory, and this
seems to be a remarkable oversight given the fact that they sometimes capture important structural
properties of a code. For example, the presence or absence of certainminors (as stated precisely
in Theorem 2.1) decides whether or not a code is graphic,i.e., has a parity-check matrix that is
the vertex-edge incidence matrix of some graph. Graphic codes have been studied previously in
the information theory literature [10],[11], but the excluded-minor characterization of these codes
appears to have been overlooked in these studies.

In Section 3, we introduce a notion ofk-connectedness for codes, which is again a specialization
of the corresponding notion for matroids. This is closely related tok-connectedness in graphs, and
interestingly enough, is also related to the trellis complexity of a code [12]. We do not explore the
latter relationship in any detail in this paper, instead referring the reader to [13], [14], where matroid
methods are used to study the structure of codes with low trellis complexity.

The notion ofk-connectedness plays an important role in Seymour’s decomposition theory. An
idea of why this is so can be obtained from the simple case of 2-connectedness: it follows from
the relevant definitions that a code is not 2-connected if and only if it is the direct sum of smaller
codes. Similar statements can be made for codes that are not 3- or 4-connected (or more precisely,
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not internally 4-connected — see Definition 4.4) via the code-composition operations of 2-sum and
3-sum introduced by Seymour [6]. These operations, as well as the3-sum which is in a sense the
dual operation to the 3-sum, are explained in detail in Section 4.

The operations of 2-, 3- and3-sum have the non-trivial property that when two codesC1 andC2

are composed using one of these sums to form a codeC, thenC1 andC2 are (up to code equivalence)
minors ofC. The relationship betweenk-connectedness and these sums can then be summarized
as follows: a binary linear code is 2-connected but not 3-connected (resp. 3-connected, but not
internally 4-connected) iff it can be expressed as the 2-sum (resp. 3-or 3-sum) of codesC1 and
C2, both of which are equivalent to minors ofC. It follows immediately from the above facts
that any binary linear code is either 3-connected and internally 4-connected, or can be constructed
from 3-connected, internally 4-connected minors of it by a sequence ofoperations of coordinate
permutation, direct sum, 2-sum, 3-sum and3-sum. In fact, given any code, such a decomposition
of the code can be obtained in time polynomial in the length of the code.

This code decomposition theory has immediate applications to families of codes thatare minor-
closed in the sense that for each codeC in such a familyC, any code equivalent to a minor ofC
is also inC. Indeed, a codeC is in a minor-closed familyC only if the indecomposable (i.e., 3-
connected, internally 4-connected) pieces obtained in the aforementioneddecomposition ofC are
in C. The above necessary condition is also sufficient if the code familyC is additionally closed
under the operations of direct sum, 2-sum, 3-sum and3-sum. Thus, membership of an arbitrary
code in such a familyC can be decided in polynomial time iff the membership inC of 3-connected,
internally 4-connected codes can be decided in polynomial time. A formal statement of these and
other related facts can be found in Section 5 of our paper.

As an illustrative example, we also outline in Section 5 one of the major applicationsof Sey-
mour’s decomposition theory. This concerns the family of regular codes which are codes that do
not contain as a minor any code equivalent to the[7, 4] Hamming code or its dual. Regular codes
are also characterized by the property that given any parity-check matrix H of such a code, the 1’s
in H can be replaced by±1’s in such a way that the resulting0/ ± 1 matrix is totally unimodular.
A totally unimodular matrix is a real matrix all of whose square submatrices have determinants in
{0, 1,−1}. These matrices are of fundamental importance in integer linear programming problems
[15]. Seymour [6] proved that a binary linear code is regular iff it can be decomposed into codes
that are either graphic, or duals of graphic codes, or equivalent to a special[10, 5, 4] code he called
R10.

The application of the decomposition theory to linear programming, and in particular to ML
decoding, is the subject of Section 6. Feldmanet al. showed that the ML decoding problem for a
length-n binary linear codeC over a binary-input discrete memoryless channel can be formulated
as a minimization problemmin

∑
i γici, whereγ = (γ1, . . . , γn) ∈ R

n is a certain cost vector
derived from the received word and the channel transition probabilites, and the minimum is taken
over all codewordsc = (c1, . . . , cn) in C. Now, if C is a graphic code, then standard graph-
theoretic techniques from combinatorial optimization can be used to find the minimizing codeword
in time polynomial inn; a sketch of such an algorithm can be found in Appendix B. Grötschel and
Truemper [8] additionally showed that this minimization could also be performed inpolynomial
time for certain minor-closed code families that are “almost-graphic” in a certainsense. Such a
code familyC is characterized by the property that there exists afinite list of codesD such that each
C ∈ C can be decomposed in polynomial time in such a way that at each step of the decomposition,
one of the pieces is either graphic or inD.

Grötschel and Truemper gave a polynomial-time algorithm that takes as input a length-n code
C from an almost-graphic familyC and a cost vectorγ ∈ R

n, and constructs a codewordc ∈ C
achievingmin

∑
i γici by solving related minimization problems over the pieces of the decomposi-

tion that are graphic or inD. This algorithm is also outlined in Appendix B. Thus, the ML decoding
problem can be solved in polynomial time for almost-graphic codes.
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Grötschel and Truemper also gave several examples of almost-graphic families. Interestingly
enough, one of these families is that consisting of codesC for which the codeword polytope (i.e.,
the convex hull inRn of the codewords in the length-n codeC) is identical to the Koetter-Vontobel
fundamental polytope [16] derived from the entire dual codeC⊥.

Unfortunately, the one truly original result in this paper is a negative result. We show that for
codes in an almost-graphic family, either their dimension or their minimum distance grows sub-
linearly with codelength. One important implication of this is that decoding by linearprogram-
ming, when applied to any good error-correcting code, must inevitably hit upon the occasional
pseudocodeword, thus resulting in decoding failure.

We make some concluding remarks in Section 7. Some of the lengthier or more technical proofs
of results from Sections 4 and 6 are given in appendices to preserve theflow of the presentation.

2. MATROIDS AND CODES

We shall assume familiarity with coding theory; for relevant definitions, see [17]. We will mainly
concern ourselves with binary linear codes, and use standard coding-theoretic notation throughout
this paper. In particular, unless explicitly specified otherwise, we will the unqualified term “code”
to mean “binary linear code”. Thus, an[n, k] code is a binary linear code of lengthn and dimension
k, and an[n, k, d] code is an[n, k] code that has minimum distanced. Given a codeC, dim(C)
denotes the dimension ofC, andC⊥ denotes the dual code ofC.

The main purpose of this section is to introduce concepts from matroid theory that are applicable
to coding theory. We will largely follow the definitions and notation of Oxley [18]. We begin with
a definition of matroids.

Definition 2.1. A matroidM is an ordered pair(E, I) consisting of a finite setE and a collection
I of subsets ofE satisfying the following three conditions:

(i) ∅ ∈ I;
(ii) if I ∈ I andJ ⊂ I, thenJ ∈ I; and

(iii) if I1, I2 are inI and|I1| < |I2|, then there exists1 e ∈ I2 − I1 such thatI1 ∪ {e} ∈ I.

The setE above is called theground setof the matroidM , and the members ofI are the
independent setsof M . A maximal independent set,i.e., a setB ∈ I such thatB ∪ {e} /∈ I for
anye ∈ E − B, is called abasisof M . It is a simple consequence of (iii) in Definition 2.1 that all
bases ofM have the same cardinality. The cardinality of any basis ofM is defined to be therank
of M , denoted byr(M).

A subset ofE that is not inI is called adependent set. Minimal dependent sets,i.e.,dependent
sets all of whose proper subsets are inI, are calledcircuits. It easily follows from the definitions
that a subset ofE is a dependent set if and only if it contains a circuit. A dependent set thatcan be
expressed as a disjoint union of circuits is called acycle.

The above definitions of independent and dependent sets, bases andrank simply try to abstract
the notion of independence and dependence, bases and dimension, respectively, in a vector space
over a field. Indeed, the most important class of matroids for our purposes is the class of binary
matroids, which are simply vector spaces over the binary field, or to put it another way, binary linear
codes.

Let H be a binarym × n matrix, and letv1,v2, . . . ,vn denote the column vectors ofH. Set
E = {1, 2, . . . , n} and takeI to be the collection of subsetsI = {i1, i2, . . . , is} ⊂ E such that
the sequence of vectorsvi1 ,vi2 , . . . ,vis is linearly independent over the binary fieldF2. It follows
from elementary linear algebra that(E, I) satisfies the definition of a matroid given above, and thus
defines a matroid which we shall denote byM [H]. Note thatr(M [H]) equals the rank (overF2) of
the matrixH.

1In this paper, we will useA−B to denote the set differenceA∩Bc. The more usual notationA \B has been reserved
for the matroid operation of “deletion”.
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A matroidM = (E, I) is calledbinary if it is isomorphic toM [H] for some binary matrix
H. Here, we say that two matroidsM = (E, I) andM ′ = (E′, I ′) are isomorphic, denoted by
M ∼= M ′, if there is a bijectionψ : E → E′ such that for allJ ⊂ E, it is the case thatJ ∈ I if and
only if ψ(J) ∈ I ′.

A binary matrixH is also the parity-check matrix of some binary linear codeC. Note that
r(M [H]) = n−dim(C). The codeC and the binary matroidM [H] are very closely related. Recall
from coding theory that a codewordc = (c1c2 . . . cn) ∈ C, c 6= 0, is calledminimal if its support
supp(c) = {i : ci = 1} does not contain as a subset the support of any other nonzero codeword
in C. It is easily seen thatc is a minimal codeword ofC iff its support is a circuit ofM [H]. It
follows from this that for anyc ∈ {0, 1}n, c 6= 0, we havec ∈ C iff supp(c) is a cycle ofM [H].
Furthermore, a routine verification shows that for binary matricesH andH ′, M [H] = M [H ′] iff
H andH ′ are parity-check matrices of the same codeC. This allows us to associate a unique binary
matroid with each binary linear codeC, and vice versa.

Thus, binary matroids and binary linear codes are essentially the same objects. In particular, two
codes are equivalent2 if and only if their associated binary matroids are isomorphic. This association
between codes and binary matroids allows us to use tools from matroid theory tostudy binary linear
codes.

While many of the tools used to study matroids have their roots in linear algebra, there is another
source that matroid theory draws from, namely, graph theory. Indeed, Whitney’s founding paper on
matroid theory [19] was an attempt to capture the fundamental properties of independence that are
common to graphs and matrices.

Let G be a finite undirected graph (henceforth simply “graph”) with edge setE. Definecyc to
be the collection of edge sets of cycles (i.e., closed walks) inG. DefineI ⊂ E to be independent if
I does not contain any member ofcyc as a subset. Equivalently,I is independent if the subgraph
of G induced byI is a forest. SettingI to be the collection of independent subsets ofE, it turns
out that(E, I) is a matroid [18, Proposition 1.1.7]. This matroid is called thecycle matroidof G,
and is denoted byM(G). A matroid that is isomorphic to the cycle matroid of some graph is called
graphic.

Clearly, the circuits ofM(G) are the edge sets of simple cycles (i.e., closed walks in which no
intermediate vertex is visited twice) inG. The nomenclature “cycle” for the disjoint union of circuits
in a matroid actually stems from its use in the context of graphs. The bases ofM(G) are the unions
of edge sets of spanning trees of the connected components ofG. Hence,r(M(G)) = |V (G)| − t,
whereV (G) is the set of vertices ofG, andt is the number of connected components ofG.

It is not hard to show that a graphic matroid is binary. Indeed, letA be the vertex-edge incidence
matrix of G. This is the matrix[ai,j ] whose rows and columns are indexed by the vertices and
edges, respectively, ofG, whereai,j = 1 if the jth edge is incident with theith vertex, andai,j = 0
otherwise. It may be verified thatM(G) ∼= M [A] (see,e.g., [18, Proposition 5.1.2]).

Given a graphG, we will denote byC(G) the code associated (or identified) with the binary
matroidM(G). In other words,C(G) is the binary linear code that has the vertex-edge incidence
matrix of G as a parity-check matrix. We will refer to such codes asgraphic codes, and denote
by Γ the set of all graphic codes. Graphic codes have made their appearance previously in the
information theory literature [20, 10] (also see [11] and the referencestherein).

The repetition code of lengthn is a graphic code; it is the code obtained from then-cycleCn,
the graph consisting of a single cycle onn vertices. However, not all binary codes are graphic. For
example, it can be shown that the [7,4] Hamming code is not graphic. It is possible to give a precise
characterization of the codes that are graphic in terms of excluded minors,a notion we need to first
define.

2In coding theory, two binary linear codes are defined to beequivalentif one can be obtained from the other by a
permutation of coordinates. In this paper, we will use the notationπ(C) to denote the code obtained by applying the
coordinate permutationπ to the codeC.
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There are two well-known ways of obtaining codes of shorter length froma given parent code.
One is via the operation ofpuncturing, in which one or more columns are deleted from a generator
matrix of the parent code [17, p. 28]. The second method is calledshortening, and involves one or
more columns being deleted from a parity-check matrix of the parent code [17, p. 29]. Given a code
C of lengthn with generator matrixG, and a subsetJ ⊂ {1, 2, . . . , n}, we will denote byC/J the
code obtained by puncturing the columns ofG with indices inJ , and byC \J the code obtained by
shortening at the columns ofG with indices inJ . Note thatC/J is simply the restriction of the code

C onto the coordinates not inJ , andC \J = (C⊥/J)
⊥

. The notation, though potentially confusing,
has been retained from matroid theory, where the analogues of puncturing and shortening are called
contractionanddeletion, respectively.

Definition 2.2. A minor of a codeC is any code obtained fromC via a (possibly empty) sequence
of shortening and puncturing operations.

It may easily be verified that the precise order in which the shortening and puncturing operations
are performed is irrelevant. Hence, any minor ofC may be unambiguously specified using notation
of the formC/X \Y (or equivalently,C \Y/X) for disjoint subsetsX,Y ⊂ {1, 2, . . . , n}; this
notation indicates thatC has been punctured at the coordinates indexed byX and shortened at the
coordinates indexed byY .

The above definition allows a code to be a minor of itself. A minor ofC that is notC itself is
called aproper minorof C. Minors have not received much attention in classical coding theory, but
they play a central role in matroid theory. We will not touch upon the subject of minors of general
matroids, leaving the reader to refer to [18, Chapter 3] instead. However, we will briefly mention
how the matroid operations of deletion and contraction specialize to the cycle matroids of graphs.

Let G be some graph, with edge setE. Given e ∈ E, define the graphG \e to be the graph
obtained by deleting the edgee along with any vertices that get isolated as a result of deletinge.
Also, defineG/e to be the graph obtained by contractinge, i.e., deletinge and identifying the two
vertices incident withe. The process of obtainingG/e fromG is callededge contraction, and that of
obtainingG \e from G is of course callededge deletion. These operations are inductively extended
to defineG \J andG/J for anyJ ⊂ E. A minor of a graphG is any graph obtained fromG via a
(possibly empty) sequence of edge deletions and contractions.

The operations of edge deletion and contraction are the graphic analogues of code shortening and
puncturing, respectively. A mathematically precise statement of this is as follows: given a graphG
with edge setE, and anyJ ⊂ E, we have [18, Equation 3.1.2 and Proposition 3.2.1]

C(G)/J = C(G/J) and C(G) \J = C(G \J).

It follows that any minor of a graphic code is graphic.
Returning to the question of determining which codes are graphic, the answer can be succinctly

given in terms of a list of forbidden minors by the following result of Tutte [21].

Theorem 2.1 ([21]). A code is graphic if and only if it does not contain as a minor any code
equivalent to the [7,4] Hamming code or its dual, or one of the codesC(K5)

⊥ andC(K3,3)
⊥.

In the statement of the above theorem,K5 is the complete graph on five vertices, whileK3,3 is
the complete bipartite graph with three vertices on each side.C(K5)

⊥ is the [10, 4, 4] code with
generator matrix




1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1


 ,
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while C(K3,3)
⊥ is the[9, 5, 3] code with generator matrix




1 0 0 0 0 1 1 0 0
0 1 0 0 0 0 1 1 0
0 0 1 0 0 0 0 1 1
0 0 0 1 0 1 0 0 1
0 0 0 0 1 1 1 1 1



.

A proof of the theorem can be found in [18, Section 13.3]. On a related note, several authors
have given algorithms for deciding whether or not a given code is graphic [22, 23, 24, 25], [26,
Section 10.6]. These algorithms run in time polynomial in the size of the input, whichcan be a
parity-check matrix for the code. We will use this fact later in the paper.

3. CONNECTEDNESS

As mentioned previously, matroid theory draws upon ideas from graph theory. A key concept in
graph theory is the notion ofk-connectedness for graphs [27, Section III.2]. Given a graphG, we
will let V (G) denote the set of its vertices. A graph isconnectedif any pair of its vertices can be
joined by a path; otherwise, it isdisconnected. A maximal connected subgraph ofG is aconnected
component, or simplycomponent, of G. Let G −W denote the graph obtained fromG by deleting
the vertices inW and all incident edges. IfG is connected and, for some subsetW ⊂ V (G), G−W
is disconnected, then we say thatW is avertex cutof G, or thatW separatesG. If G is a connected
graph that has at least one pair of distinct non-adjacent vertices, theconnectivityκ(G) of G is defined
to be the smallest integerj for which G has a vertex cutW with |W | = j. If G is connected, but
has no pair of distinct non-adjacent vertices,κ(G) is defined to be|V (G)| − 1. Finally, if G is
disconnected, then we setκ(G) = 0. For an integerk > 0, G is said to bek-connectedif κ(G) ≥ k.
Thus, a graphG with |V (G)| ≥ 2 is connected if and only if it is 1-connected.

The notion ofk-connectedness of graphs can be extended to matroids, but it has to be done
carefully. One of the problems encountered when attempting to do so is that 1-connectedness of
graphs does not extend directly to matroids. The reason for this is that forany disconnected graph
G1, there is a connected graphG2 such thatM(G1) ∼= M(G2) [18, Proposition 1.2.8]. So, the link
betweenk-connectedness in graphs and that defined below for matroids begins withthe casek = 2.

The definition we present ofk-connectedness for matroids was formulated by Tutte [28]. We
will once again restrict our attention to the case of binary matroids (i.e., codes) only. LetC be a
binary linear code of lengthn. We will hereafter use[n] to denote the set of integers{1, 2, . . . , n},
and forJ ⊂ [n], we setJc = {i ∈ [n] : i /∈ J}. To further alleviate notational confusion, for
J ⊂ [n], we will defineC|J to be the restriction ofC onto its coordinates indexed byJ . Equivalently,
C|J = C/Jc, the latter being the code obtained fromC by puncturing the coordinates not inJ .

Definition 3.1. For a positive integerk, a partition(J, Jc) of [n] is called ak-separation ofC if

min{|J |, |Jc|} ≥ k (1)

and

dim(C|J) + dim(C|Jc) − dim(C) ≤ k − 1. (2)

If C has ak-separation, thenC is said to bek-separated.

When equality occurs in (1),(J, Jc) is called aminimalk-separation. When equality occurs in
(2), (J, Jc) is called anexactk-separation. Note that the expression on the left-hand side of (2)
is always non-negative, sincedim(C|J) + dim(C|Jc) ≥ dim(C) for anyJ ⊂ [n]. This fact easily
yields the following result.

Lemma 3.1. C is 1-separated iff it is the direct sum of non-empty codes.
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Proof. Sincedim(C|J) + dim(C|Jc) ≥ dim(C) for anyJ ⊂ [n], we see from Definition 3.1 that
(J, Jc) is a 1-separation ofC iff J, Jc are non-empty, anddim(C|J)+dim(C|Jc) = dim(C). Hence,
(J, Jc) is a 1-separation ofC iff J, Jc are non-empty, andC is the direct sum ofC|J andC|Jc . �

We now give the definition ofk-connectedness of codes. Note that this definition starts with
k = 2.

Definition 3.2. For k ≥ 2, a codeC is defined to bek-connectedif it has nok′-separation for any
k′ < k.

Example 3.1. LetC be the [7,3,4] simplex code with generator matrix

G =




1 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 1 1 1 0 1


 .

SettingJ = {1, 2, 3, 7}, we see that(J, Jc) forms a 3-separation ofC. Indeed, the rank of the
submatrix ofG formed by the columns indexed byJ is 3, while the rank of the submatrix formed by
the columns indexed byJc is 2. In other words,dim(C|J) = 3 anddim(C|Jc) = 2. Thus, both (1)
and (2) are satisfied with equality, which makes(J, Jc) a minimal as well as an exact separation.

It may be verified (for example, by exhaustive search) that there are no 1- or 2- separations for
C, and all 3-separations are minimal and exact. In particular,C is 2- and 3-connected, but not
4-connected.

The quantity,dim(C|J) + dim(C|Jc) − dim(C), appearing on the left-hand side of (2) in Def-
inition 3.1 also arises as part of the definition of the state-complexity profile of aminimal trellis
representation of a code [29],[12],[30],[31],[32]. To be precise, given a length-n codeC, thestate-
complexity profileof a code [31, Equation (1)] is defined to be the vectors(C) = (s0(C), . . . , sn(C)),
wheresi(C) = dim(C|J) + dim(C|Jc) − dim(C) for J = [i] ⊂ [n]. Here,[0] is defined to be the
null set∅. It is known [12] thats(C) = s(C⊥), or equivalently, for anyJ ⊂ [n],

dim(C|J) + dim(C|Jc) − dim(C) = dim(C⊥|J) + dim(C⊥|Jc) − dim(C⊥).

As a result, we obtain the interesting and useful fact, stated in the propositionbelow, thatk-
connectedness is a property that is invariant under the operation of taking code duals.

Proposition 3.2. Let C be a binary linear code of lengthn. For anyk ≥ 1, a partition (J, Jc) of
[n] is ak-separation ofC iff it is a k-separation ofC⊥. Therefore, for anyk ≥ 2, C is k-connected
iff C⊥ is k-connected.

Consider again the simplex code of length 7 from Example 3.1. By Proposition 3.2 above, its
dual — the[7, 4] Hamming code — is also 2- and 3-connected, but not 4-connected.

The link between graph and codek-connectedness is strong, but they are not equivalent notions.
The closest relation between the two occurs whenk = 2. If G is a loopless graph without iso-
lated vertices and|V (G)| ≥ 3, thenC(G) is 2-connected iffG is a 2-connected graph [18, Proposi-
tion 4.1.8]. To describe the relation between graph and code connectedness in general, we define the
connectivity, λ(C), of a codeC to be the least positive integerk for which there is ak-separation of
C, if somek-separation exists forC; λ(C) is defined to be∞ otherwise. Note thatC is k-connected
iff λ(C) ≥ k, and by Proposition 3.2,λ(C) = λ(C⊥). It can be shown [18, Corollary 8.2.7] that for
a connected graphG 6= K3 having at least three vertices,

λ(C(G)) = min{κ(G), g(G)},

whereg(G) denotes the girth (length of shortest cycle) ofG.
Now, our reason for presenting a notion of connectedness for codesis not just that it extends

an idea from graph theory. Certain methods of code composition have beendeveloped in matroid
theory that relate to 2- and 3-separations. These code composition methods can be considered to
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be generalizations of direct sums, and they allow the result of Lemma 3.1 to be extended in a non-
trivial manner, paving the way for the powerful decomposition theory of binary matroids initiated
by Paul Seymour [6]. This decomposition theory allows one to decompose a binary linear code into
smaller codes in a reversible manner, in such a way that the smaller codes areequivalent to minors
of the original code. As we shall describe in detail in the next section, to find such a decomposition
of a code, we need to find 1-, 2- or 3-separations in the code, if such separations exist.

For any fixed positive integerk, there are polynomial-time algorithms known (see [26, Section
8.4]) that, given a binary linear codeC, either find ak-separation ofC, or conclude that no such
separation exists. Here, by “polynomial-time algorithm,” we mean an algorithm that runs in time
polynomial in the length ofC. For instance, the problem of deciding the existence of 1-separations
in a codeC is almost trivial. To do so, one takes a matrixA that is either a generator matrix or
a parity-check matrix ofC, bringsA to reduced row-echelon form (rref), removes all-zero rows if
they exist, and finally constructs a certain bipartite graphBG(A). For anm × n matrix A, the
graphBG(A) is defined as follows3: the vertex set ofBG(A) consists of a set ofn left vertices
{l1, . . . , ln} and a set ofm right vertices{r1, . . . , rm}; an edge connects the verticeslj and ri
iff the (i, j)th entry ofA is 1. The codeC is 2-connected (i.e., has no 1-separation) iffBG(A)
is connected [26, Lemma 3.3.19]. IfC is not 2-connected, the connected components ofBG(A)
induce the required 1-separation.

In general, for fixed integersk, l with l ≥ k, the problem of finding ak-separation(J, Jc) of a
code, withmin{|J |, |Jc|} ≥ l, if it exists, can be solved in time polynomial in the length of the
code, by an algorithm due to Cunningham and Edmonds (in [33]). We sketch the idea here. The
algorithm is based on the fact that the following problem can be solved in time polynomial inn: for
codesC1 andC2 each of lengthn, find a partition of[n] that achieves

min{dim(C1|J1) + dim(C2|J2) : (J1, J2) is a partition of[n]}. (3)

The above problem is solved using thematroid intersection algorithm[34], [26, Section 5.3], which
we do not describe here.

The k-separation problem of interest to us is equivalent to the following problemfor a fixed
integerl ≥ k: given a codeC of lengthn, find a partition of[n] that achieves

min{dim(C|J1) + dim(C|J2) : (J1, J2) is a partition of[n], min{|J1|, |J2|} ≥ l}. (4)

Indeed, ak-separation(|J |, |Jc|) of C, with min{|J |, |Jc|} ≥ l, exists iff the minimum in (4) is
at mostdim(C) + k − 1. Now, the minimization in (4) can be solved by finding, for each pair of
disjoint l-element subsetsE1, E2 ⊂ [n], the partition(J1, J2) of [n] that achieves

min{dim(C|J1) + dim(C|J2) : (J1, J2) is a partition of[n], J1 ⊃ E1, J2 ⊃ E2}. (5)

If (5) can be solved in time polynomial inn for each pair of disjointl-element subsetsE1, E2 ⊂ [n],
then (4) can also be solved in time polynomial inn, since there areO(n2l) pairs(E1, E2).

It turns out that (5) can be solved in time polynomial inn by converting it to a minimization of
the form in (3), which, as mentioned above, can be solved in polynomial time. The trick is to set
C1 = C/E2 \E1 andC2 = C/E1 \E2, which are both codes of lengthn− |E1 ∪E2|. For notational
convenience, we will let the coordinates ofC1 andC2 retain their indices fromC, i.e., the set of
coordinate indices forC1, as well as forC2, is [n] − (E1 ∪ E2). It may easily be verified that for
J ⊂ [n]−(E1∪E2), dim(Ci|J) = dim(C|J∪Ei

)−dim(C|Ei
), i = 1, 2. Therefore, for any partition

(J1, J2) of [n] − (E1 ∪ E2), settingJi = Ji ∪ Ei, i = 1, 2, we have

dim(C1|J1) + dim(C2|J2) = dim(C|J1
) + dim(C|J2

) − dim(C|E1) − dim(C|E2), (6)

and(J1, J2) is a partition of[n]. Conversely, for any partition(J1, J2) of [n], settingJi = Ji −Ei,
i = 1, 2, we see that(J1, J2) forms a partition of[n] − (E1 ∪ E2), and (6) is once again satisfied.

3If A is a parity-check matrix of the code, thenBG(A) is simply the corresponding Tanner graph.
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Thus, we see that for a fixed pair of disjointl-element subsetsE1, E2 ⊂ [n], given a codeC of
lengthn, if we setC1 = C/E2 \E1 andC2 = C/E1 \E2, then the minimum in (5) is equal to

min{dim(C1|J1)+dim(C2|J2) : (J1, J2) is a partition of[n]−(E1∪E2)}+dim(C|E1)+dim(C|E2).

Therefore, for a givenC and(E1, E2), the minimization problem

min{dim(C1|J1) + dim(C2|J2) : (J1, J2) is a partition of[n] − (E1 ∪ E2)},

which is just an instance of (3), is equivalent to (5), as the two minima only differ by a constant.
We conclude that since (3) can be solved in time polynomial inn, so can (5).

The above sketch does indeed give a polynomial-time algorithm for determiningk-separations
(J, Jc) with min{|J |, |Jc|} ≥ l, but the complexity of the algorithm isO(n2l+αl) for some constant
αl that arises from the matroid intersection algorithm. Clearly, this is not very practical even for
l = 3 or 4, and as we shall see in the next section, these values ofl come up in the implementation
of Seymour’s decomposition theory. A more efficient, albeit more involved, algorithm for finding
2- and 3-separations is described in [26, Section 8.4].

As a final remark in this section, we mention that the fact that there exist algorithms for solving
the minimization problems (3)–(5) that run in time polynomial inn neither contradicts nor sheds
any further light on the NP-completeness results for the closely related problems considered in [31].

4. CODE COMPOSITION AND DECOMPOSITION

The code composition/decomposition methods described in this section were developed by Sey-
mour in close analogy with a method of composing/decomposing graphs calledclique-sum. In a
clique-sum, two graphs, each containing aKk subgraph (k-clique), are glued together by first pick-
ing ak-clique from each graph, sticking the two cliques together so as to form a single k-clique
in the composite graph, and then deleting some or all of the edges from this clique. A formal
description of clique-sum can be found in [6] or in [18, p. 420].

Our exposition of these code composition/decomposition techniques is based on Seymour’s pa-
per [6]. LetC andC′ be binary linear codes of lengthn andn′, respectively, and letm be an integer
satisfying0 ≤ 2m < min{n, n′}. We first define a codeC ‖m C′ as follows: ifG = [g1 g2 . . . gn]
andG′ = [g′

1 g′
2 . . . g′

n′ ] are generator matrices ofC andC′, respectively, thenC ‖m C′ is the code
with generator matrix

[
g1 . . . gn−m gn−m+1 . . . gn 0 . . . 0

0 . . . 0 g′
1 . . . g′

m g′
m+1 . . . g′

n′

]
.

Thus,C ‖m C′ is a binary linear code of lengthn + n′ −m. This code is almost like a direct sum
of C andC′ except that the two component codes overlap inm positions. Indeed, whenm = 0,
C ‖m C′ is the direct sum ofC andC′.

Codewords ofC ‖m C′ are of the formc ‖m c′, for c = c1c2 . . . , cn ∈ C andc′ = c′1c
′
2 . . . , c

′
n′ ∈

C′, wherec ‖m c′ = ĉ1ĉ2 . . . ĉn+n′−m is defined to be

ĉi =





ci for 1 ≤ i ≤ n−m
ci + c′i−n+m for n−m+ 1 ≤ i ≤ n
c′i−n+m for n+ 1 ≤ i ≤ n+ n′ −m

In other words,c ‖m c′ is the binary word of lengthn + n′ − m composed as follows: the first
n−m symbols ofc ‖m c′ are equal to the firstn−m symbols ofc, the nextm symbols ofc ‖m c′

are equal to the coordinatewise modulo-2 sum of the lastm symbols ofc and the firstm symbols
of c′, and the lastn′ −m symbols ofc ‖m c′ are equal to the lastn′ −m symbols ofc′.

FromC ‖m C′, we derive a new code, which we temporarily denote bySm(C, C′), by shortening
at them positions whereC andC′ are made to overlap. To be precise, letJ = {n−m+1, n−m+
2, . . . , n}, and setSm(C, C′) = (C ‖m C′)\J . Thus,Sm(C, C′) is a code of lengthn+n′−2mwhich,
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FIGURE 1. The minimal trellis of the codeC ⊕2 C of Example 4.1.

by choice4 of m, is greater thann andn′. Once again, note thatS0(C, C
′) = C ‖0 C′ = C ⊕ C′,

where⊕ denotes direct sum.
We will actually only be interested in two instances of the above construction (other than the

direct-sum case ofm = 0), one of which is presented next, and the other is introduced later in
Section 4.2.

4.1. 2-Sums. TheSm(C, C′) construction withm = 1 is called a 2-sum in certain special cases.

Definition 4.1. LetC, C′ be codes of length at least three, such that

(P1) 0 . . . 01 is not a codeword ofC or C⊥;
(P2) 10 . . . 0 is not a codeword ofC′ or C′⊥.

Then,S1(C, C
′) is called the2-sumof C andC′, and is denoted byC ⊕2 C

′.

Note that 2-sums are only defined for codes having the properties (P1) and (P2) listed in Defini-
tion 4.1. These properties can be equivalently stated as follows:

(P1′) 0 . . . 01 is not a codeword ofC, and the last coordinate ofC is not identically zero;
(P2′) 10 . . . 0 is not a codeword ofC′, and the first coordinate ofC′ is not identically zero.

As we shall see below, (P1′) and (P2′) are more directly relevant to an analysis of the 2-sum con-
struction.

Example 4.1. Let C be the[7, 3, 4] simplex code with the generator matrix given in Example 3.1.
As this code satisfies both (P1) and (P2) in Definition 4.1, we can defineC ⊕2 C. Carrying out the
2-sum construction yields the[12, 5, 4] codeC ⊕2 C with generator matrix

G =




1 0 0 0 1 1 0 0 0 1 1 1
0 1 0 1 0 1 0 0 0 1 1 1
0 0 1 1 1 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0 1 0 1 1
0 0 0 0 0 0 0 1 1 1 0 1



.

The minimal trellis for this code is shown in Figure 1. It is easily seen (from the state-complexity
profile of the minimal trellis, for example) that, withJ = {1, 2, 3, 4, 5, 6}, (J, Jc) is a 2-separation
of C⊕2C. It may further be verified thatC⊕2C has no 1-separation, meaning that it is 2-connected.
Finally, we note that by shorteningC ⊕2 C at the 7th and 8th coordinates, and puncturing the 9th,
11th and 12th coordinates, we obtain the simplex codeC again. In other words,C is a minor of
C ⊕2 C. These observations are not mere coincidences, as we shall see below.

The dimension and minimum distance of a 2-sumC ⊕2 C′ can be related to the corresponding
parameters of the component codesC andC′. Given a binary wordx, we will usew(x) to denote
its Hamming weight, and for a codeC, we will let d(C) denote the minimum distance ofC.

4The construction ofSm(C, C′) would also work if we only required that0 ≤ m < min{n, n′}, and not0 ≤ 2m <

min{n, n′}. The stronger condition is imposed so that theSm(C, C′) construction yields a code of length strictly greater
than the lengths of the component codesC andC′.
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Proposition 4.1. LetC andC′ be codes for whichC ⊕2 C
′ can be defined.

(a)dim(C ⊕2 C
′) = dim(C) + dim(C′) − 1.

(b) If dim(C) > 1, thend(C ⊕2 C′) ≤ d(C \ {n}), wheren is the length ofC. Similarly, if
dim(C′) > 1, thend(C⊕2C

′) ≤ d(C′\{1}). Otherwise, ifdim(C) = dim(C′) = 1, thend(C⊕2C
′) =

d(C) + d(C′) − 2.

Proof. Throughout this proof,n andn′ denote the lengths ofC andC′, respectively. Also, we shall
let x ‖ x′ denote the concatenation of binary wordsx andx′.

(a) By definition,C⊕2C
′ = (C ‖1 C′)\{n}, and so, the 2-sum is isomorphic to the subcode,E , of

C ‖1 C′ consisting of those codewordsĉ1ĉ2 . . . ĉn+n′−1 such that̂cn = 0. Since the last coordinate
of C is not identically zero,E is a proper subcode ofC ‖1 C′, and hence,dim(C ⊕2 C

′) = dim(E) =
dim(C ‖1 C′) − 1.

We claim that the direct sumC ⊕ C′ is in fact isomorphic (as a vector space overF2) to C ‖1 C′.
Indeed, consider the mapφ : C ⊕ C′ → C ‖1 C′ defined viaφ(c ‖ c′) = c ‖1 c′, for c ∈ C and
c′ ∈ C′. This is a homomorphism ontoC ‖1 C′, but since0 . . . 01 /∈ C and10 . . . 0 /∈ C′, we have
ker(φ) = {0}, which shows thatφ is in fact an isomorphism.

Therefore,dim(C ⊕2 C
′) = dim(C ‖1 C′) − 1 = dim(C ⊕ C′) − 1, which proves the result.

(b) If dim(C) > 1, thendim(C \{n}) ≥ 1. So, there exists a nonzero codeword inC \{n}. Let
ĉ be a non-zero codeword of least weight inC \{n}. Sinceĉ0 ∈ C, we have, by construction of
C ⊕2 C

′, ĉ ‖ 0 ∈ C ⊕2 C
′, where0 has lengthn′ − 1. Thus,d(C ⊕2 C

′) ≤ w(ĉ) = d(C \{n}). A
similar argument shows that ifdim(C′) > 1, thend(C ⊕2 C

′) ≤ d(C′ \{1}).
Suppose thatdim(C) = dim(C′) = 1, so that, by part (a) above,dim(C ⊕2 C

′) = 1 as well. Let
c = (c1, . . . , cn) andc′ = (c′1, . . . , c

′
n′) be the unique nonzero codewords inC andC′, respectively.

By (P1′) and (P2′), we must havecn = c′1 = 1, and furthermore,d(C) = w(c) andd(C′) = w(c′).
By construction ofC ⊕2 C

′, the unique non-zero codeword inC ⊕2 C
′ is (c1, . . . , cn−1, c

′
2, . . . , c

′
n′),

which has weight equal tow(c) + w(c′) − 2. �

An interesting property of 2-sums is that they behave just like direct sums under the operation of
taking code duals. Note that by virtue of (P1) and (P2) in Definition 4.1, the 2-sum ofC andC′ can
be defined if and only if the 2-sum of their duals,C⊥ andC′⊥, can be defined.

Proposition 4.2([18], Proposition 7.1.20). LetC andC′ be codes for whichC ⊕2 C
′ can be defined.

Then,

(C ⊕2 C
′)
⊥

= C⊥ ⊕2 C
′⊥.

This result can be trivially derived from Theorem 7.3 in [35], but for completeness, we give a
simple algebraic proof in Appendix A. As an example, the above result implies that the matrixG
given in Example 4.1 is the parity-check matrix of the 2-sum of two copies of a [7,4] Hamming
code.

While the properties of 2-sums presented above are interesting, the usefulness of 2-sums actually
stems from the following theorem of Seymour [6], which is a result analogous to Lemma 3.1.

Theorem 4.3([6],Theorem 2.6). If C1 andC2 are codes of lengthn1 andn2, respectively, such that
C = C1 ⊕2 C2, then(J, Jc) is an exact 2-separation ofC, for J = {1, 2, . . . , n1 − 1}. Furthermore,
C1 andC2 are equivalent to minors ofC.

Conversely, if(J, Jc) is an exact 2-separation of a codeC, then there are codesC1 and C2 of
length|J | + 1 and|Jc| + 1, respectively, such thatC is equivalent toC1 ⊕2 C2.

The following corollary is a more concise statement of the above theorem, andis more in the
spirit of Lemma 3.1.
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Corollary 4.4. A codeC has an exact 2-separation iff there exist codesC1 andC2, both equivalent
to proper minors ofC, such thatC is equivalent toC1 ⊕2 C2.

Another corollary [18, Theorem 8.3.1], stated next, is a consequence of the fact that ifC is a
2-connected code, then any 2-separation ofC must be exact; if not, the 2-separation would be a
1-separation as well, which is impossible asC is 2-connected.

Corollary 4.5. A 2-connected codeC is not 3-connected iff there exist codesC1 andC2, both equiv-
alent to proper minors ofC, such thatC is equivalent toC1 ⊕2 C2.

We will not prove Theorem 4.3 in its entirety, referring the reader instead toSeymour’s original
proof, or the proof given in Oxley [18, Section 8.3]. However, we will describe an efficient con-
struction of the components of the 2-sum when an exact 2-separation(J, Jc) of C is given, as it is
a useful tool in code decomposition. This construction effectively proves the converse part of the
theorem. Our description is based on the construction given in [26, Section 8.2].

Let C be a code of lengthn and dimensionk, specified by ak × n generator matrixG, and
let (J, Jc) be an exact 2-separation ofC. By permuting coordinates if necessary, we may assume
thatJ = {1, 2, . . . ,m} for somem < n. Let G|J andG|Jc denote the restrictions ofG to the
columns indexed byJ andJc, respectively; thus,G = [G|J G|Jc ]. Let rank(G|J) = k1 and
rank(G|Jc) = k2; since(J, Jc) is an exact 2-separation ofC, we havek1 + k2 = k + 1. Bring
G into reduced row-echelon form (rref) overF2. Permuting coordinates withinJ and withinJc if
necessary,rref(G) may be assumed to be of the form

G =

[
Ik1 A O B
O O Ik2−1 C

]
, (7)

whereIj , for j = k1, k2 − 1, denotes thej× j identity matrix,A is ak1 × (|J | − k1) matrix,B is a
k1 × (|Jc| − k2 + 1) matrix,C is a(k2 − 1)× (|Jc| − k2 + 1) matrix, and theO’s denote all-zeros
matrices of appropriate sizes. As a concrete example, consider the matrixG given in Example 4.1,
which is indeed of the above form, with|J | = |Jc| = 6, k1 = k2 = 3,

A =




0 1 1
1 0 1
1 1 0


 , B =




0 1 1 1
0 1 1 1
0 1 1 1


 and C =

[
1 0 1 1
1 1 0 1

]
.

The fact that the submatrix

[
O B

Ik2−1 C

]
must have rank equal torank(G|Jc) = k2 implies

thatB must have rank 1. Hence,B is actually a matrix with at least one nonzero row, call itb, and
at least one nonzero column, call itb̃. Also, each row ofB is either0 or identical tob, andb̃ is
the length-k1 column vector whoseith component is a 1 if theith row ofB is equal tob, and is 0
otherwise. In other words,B is the product of the column vector̃b with the row vectorb.

Now, define
G1 = [Ik1 A b̃]

and

G2 =

[
1 0t b

0 Ik2−1 C

]
= [Ik2 C

′],

where0 denotes an all-zeros column-vector, andC ′ =

[
b

C

]
.

It is not hard to show that ifC1 andC2 are the codes generated byG1 andG2, respectively,
thenC1 ⊕2 C2 is the code generated by the matrixG in (7). Indeed, carefully going through the
construction, it may be verified that all the rows ofG are inC1 ⊕2 C2. Hence,dim(C1 ⊕2 C2) ≥
rank(G) = k1 +k2−1. However, by Proposition 4.1(a), we have thatdim(C1⊕2 C2) = dim(C1)+
dim(C2)−1 = k1+k2−1. Hence,dim(C1⊕2C2) = rank(G), implying thatGmust be a generator
matrix forC1 ⊕2 C2.
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Example 4.2. For the matrixG in Example 4.1, we find the matricesG1 andG2 to be

G1 =




1 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 1 1 1 0 1


 , and G2 =




1 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 1 1 1 0 1


 ,

which are indeed the generator matrices of the two simplex codes whose 2-sum is represented by
G.

It can also be observed thatC1 andC2 are minors ofC1 ⊕2 C2. Indeed, to obtainC1 as a minor
of C1 ⊕2 C2, we proceed as follows. Letj be the index of a column ofG in which the submatrix
B has a nonzero column. For the matrix of Example 4.1,j could be either 10, 11 or 12. Define
J1 = {|J |+1, |J |+2, . . . , |J |+k2−1}, andJ2 = Jc−(J1∪{j}). Then,C1 = (C1⊕2C2)\J1/J2.
To obtainC2 as a minor, letj′ be the index of a row ofG in which the submatrixB has a nonzero
row. For the matrix of Example 4.1,j′ could be either 1, 2 or 3. Thej′th column ofG is of the
form [0 . . . 0 1 0 . . . 0]t, the single 1 being thej′th entry. DefineJ ′

1 = {1, 2, . . . , k1} − {j′} and
J ′

2 = {k1 + 1, k1 + 2, . . . , |J |}. Then,C2 = (C1 ⊕2 C2) \J
′
1/J

′
2. Proofs of these statements just

involve consistency checking, so are left as an easy exercise.
In summary, the procedure described above takes as input ak× n generator matrixG for C, and

an exact 2-separation(J, Jc) of it, and produces as output a permutationπ of the coordinates ofC,
and the generator matrices of two codesC1 andC2, such thatC = π(C1 ⊕2 C2). The codesC1 and
C2 are both equivalent to proper minors ofC. The entire procedure can be carried out inO(k2n)
time, which is the run-time complexity of bringing ak × n matrix to reduced row-echelon form
via elementary row operations. All other parts of the procedure can be performed inO(n) time;
for example, since(J, Jc) is given, it only takesO(n) time to find the permutation,π−1, that takes
rref(G) to the matrixG in (7).

A straightforward combination of Lemma 3.1 and Corollary 4.5 yields the followingtheorem,
which illustrates the utility of the matroid-theoretic tools presented so far.

Theorem 4.6([18], Corollary 8.3.4). Every code that is not 3-connected can be constructed from
3-connected proper minors of it by a sequence of operations of coordinate permutation, direct sum
and 2-sum.

The decomposition of a code via direct sums and 2-sums implicit in the above theorem can be
carried out in time polynomial in the length of the code. This is due to the following two facts:

(a) as described in Section 3, there are polynomial-time algorithms for finding 1- and 2-sepa-
rations in a code, if they exist; and

(b) given an exact 2-separation of a codeC, there is a polynomial-time procedure that pro-
duces codesC1 andC2, both equivalent to proper minors ofC, and a permutationπ of the
coordinate set ofC, such thatC = π(C1 ⊕2 C2).

However, direct sums and 2-sums are not enough for our purposes,nor were they enough for
Seymour’s theory of matroid decomposition. Seymour also had to extend the graph-theoretic tech-
nique of 3-clique-sum to matroids (in fact, to binary matroids only). The corresponding operation
on binary matroids is called 3-sum.

4.2. 3-Sums. The special case of theS3(C, C
′) construction called 3-sum is somewhat more com-

plex in definition than the 2-sum. Recall that for a binary wordx, w(x) denotes its Hamming
weight.

Definition 4.2. LetC, C′ be codes of length at least seven, such that

(A1) no codeword ofC or C⊥ is of the form0 . . . 0x, wherex is a length-3 word withw(x) ∈
{1, 2};

(A2) no codeword ofC′ or C′⊥ is of the formx 0 . . . 0, wherex is a length-3 word withw(x) ∈
{1, 2}; and
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(A3) 0 . . . 0111 ∈ C and1110 . . . 0 ∈ C′.

Then,S3(C, C
′) is called the3-sumof C andC′, and is denoted byC ⊕3 C

′.

It is perhaps worth commenting upon the use of the terms “2-sum” and “3-sum”to denote codes
of the formSm(C, C′) for m = 1 andm = 3, respectively. The nomenclature stems from the
analogy with thek-clique-sum of graphs, wherein two graphs are glued along ak-clique. Note that
a 2-clique is a single edge (hencem = 1) and 3-clique is a triangle of three edges (hencem = 3).
This also explains why we do not consider an operation of the formS2(C, C

′).
3-sums are only defined for codes having the properties (A1)–(A3) listed in the above definition.

It is obvious that an equivalent statement of (A1)–(A3) is the following:

(B1) 0 . . . 0111 is a minimal codeword ofC, andC⊥ has no nonzero codeword supported entirely
within the last three coordinates ofC⊥; and

(B2) 1110 . . . 0 is a minimal codeword ofC′, andC′⊥ has no nonzero codeword supported en-
tirely within the first three coordinates ofC′⊥.

In fact, (B1) and (B2) above are exact translations of the matroid-theoretic language used by Sey-
mour in his definition of 3-sum [6]. Another equivalent way of expressing these conditions is the
following:

(B1′) 0 . . . 0111 is a minimal codeword ofC, and the restriction ofC onto its last three coordinates
is {0, 1}3; and

(B2′) 1110 . . . 0 is a minimal codeword ofC′, and the restriction ofC′ onto its first three coordi-
nates is{0, 1}3.

The equivalence of (B1) and (B1′) is a consequence of the easily verifiable fact that if0 . . . 0111 ∈
C, thenC⊥ has no nonzero codeword supported entirely within the last three coordinates ofC⊥ if
and only if all possible 3-bit words appear in the last three coordinates ofC. The equivalence of
(B2) and (B2′) is analogous. It follows immediately from (B1′) and (B2′) thatC⊕3C

′ can be defined
only if min{dim(C),dim(C′)} ≥ 3 andmax{d(C), d(C′)} ≤ 3.

Example 4.3. LetC andC′ be the [7,4] Hamming codes given by the generator matricesG andG′,
respectively, below.

G =




1 1 0 0 0 0 1
1 0 1 0 0 1 0
0 1 1 0 1 0 0
1 1 1 1 0 0 0


 , G′ =




1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1


 .

C andC′ satisfy the conditions in Definition 4.2, so their 3-sum can be defined. The code C ⊕3 C
′

works out to be the[8, 4, 4] extended Hamming code with generator matrix

G =




1 0 0 1 0 0 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 1 1 0
0 0 0 0 1 1 1 1


 .

The minimal trellis of this code is shown in Figure 2.
WithJ = {1, 2, 3, 4}, (J, Jc) is an exact 3-separation ofC ⊕3 C

′. It may be verified that, in fact,
λ(C ⊕3 C

′) = 3. Furthermore, puncturing any coordinate ofC ⊕3 C
′ yields a[7, 4] Hamming code.

Thus,C andC′ are (up to code equivalence) minors ofC ⊕3 C
′.

The dimension and minimum distance ofC⊕3C
′ can be related toC andC′ in a manner analogous

to Proposition 4.1 for 2-sums.

Proposition 4.7. Let C andC′ be codes of lengthn andn′, respectively, for whichC⊕3C
′ can be

defined.

(a) dim(C⊕3C
′) = dim(C) + dim(C′) − 4.
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FIGURE 2. The minimal trellis of the codeC ⊕3 C
′ of Example 4.3.

(b) If dim(C) > 3, thend(C⊕3C
′) ≤ d(C \{n − 2, n − 1, n}); and if dim(C′) > 3, then

d(C⊕3C
′) ≤ d(C′ \{1, 2, 3}).

Proof. We will only prove (a) as the proof of (b) is analogous to the relevant part of the proof of
Proposition 4.1(b). Letx ‖ x′ denote the concatenation of binary sequencesx andx′.

We prove the proposition by first showing thatdim(C ‖3 C′) = dim(C) + dim(C′)− 1, and then
showing thatdim(C ⊕3 C

′) = dim(C ‖3 C′) − 3. The first of these equalities follows directly from
the observation that the mapping

φ(c ‖ c′) = c ‖3 c′, c ∈ C, c′ ∈ C′,

defines a homomorphism from the direct sumC ⊕ C′ ontoC ‖3 C′, with dim(ker(φ)) = 1; indeed,
ker(φ) consists of the two words0 and0 . . . 0111 ‖ 1110 . . . 0.

To prove thatdim(C ⊕3 C
′) = dim(C ‖3 C′) − 3, we observe thatC ⊕3 C

′ is isomorphic to the
subcode,E , of C ‖3 C′ consisting of those codewordsĉ1ĉ2 . . . ĉn+n′−3 such that̂cn−2ĉn−1ĉn = 000.
Therefore,dim(C ⊕3 C

′) = dim(E).
Since the restriction ofC onto its last three coordinates is{0, 1}3 (property (B1′)), and the restric-

tion of C′ onto its first three coordinates is{0, 1}3 (property (B2′)), the restriction ofC ‖3 C′ onto
its (n−2)th, (n−1)th andnth coordinates is also{0, 1}3. Therefore,dim(E) = dim(C ‖3 C′)−3,
and hence,dim(C ⊕3 C

′) = dim(C ‖3 C′) − 3, which completes the proof of the proposition.�

We remark that the case ofdim(C) = dim(C′) = 3 has been deliberately left out from the
statement of Proposition 4.7(b). In this case, there is no useful expression or upper bound for the
minimum distance ofC ⊕3 C

′. Sincedim(C ⊕3 C
′) = 2 in this case, one may just as well identify

the codeword of least weight among the three nonzero codewords in the code.
An important difference between 2-sums and 3-sums is that the result of Proposition 4.2 does

not directly extend to 3-sums. The reason for this is that for codesC andC′ satisfying (A1)–(A3)
in Definition 4.2, the 3-sumC⊥⊕3C

′⊥ cannot even be defined. Indeed, while (A1) and (A2) are
invariant under the operation of taking duals, (A3) is not — if0 . . . 0111 ∈ C, then0 . . . 0111 /∈ C⊥.
To determine the dual of a 3-sum, we need to define a “dual” operation, namely the3-sum.

Definition 4.3. LetC, C′ be codes of length at least seven, such that

(A1′) no codeword ofC or C⊥ is of the form0 . . . 0x, wherex is a length-3 word withw(x) ∈
{1, 2};

(A2′) no codeword ofC′ or C′⊥ is of the formx 0 . . . 0, wherex is a length-3 word withw(x) ∈
{1, 2}; and

(A3′) 0 . . . 0111 ∈ C⊥ and1110 . . . 0 ∈ C′⊥.

The3-sumof C andC′, denoted byC ⊕3 C
′, is defined as

C ⊕3 C
′ = C ⊕3 C′,

whereC = C
⋃

(0 . . . 0111 + C) andC′ = C′
⋃

(1110 . . . 0 + C′).
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Note that (A1′) and (A2′) are identical to (A1) and (A2), respectively. To ensure that the above
definition can in fact be made, it must be verified that the 3-sumC ⊕3 C′ can actually be defined for
codesC andC′ satisfying (A1′)–(A3′). So, letC andC′ be codes satisfying (A1′)–(A3′). We need to
verify thatC andC′ satisfy (A1)–(A3) in Definition 4.2.

By their very definition,C andC′ satisfy (A3). Furthermore, sinceC
⊥
⊂ C⊥ andC′⊥ ⊂ C′⊥, we

see that no codeword ofC
⊥

is of the form0 . . . 0x as in (A1), and no codeword ofC′⊥ is of the
form x 0 . . . 0 as in (A2). Finally, if0 . . . 0x ∈ C for some length-3 wordx with w(x) ∈ {1, 2},
then since0 . . . 0x /∈ C by (A1′), it must be that0 . . . 0x is in 0 . . . 0111 + C. But in this case,
0 . . . 0x ∈ C, wherex = 111 + x. So,w(x) ∈ {1, 2} as well, which is impossible by (A1′).
Therefore,C cannot contain any word of the form0 . . . 0x as in (A1). By analogous reasoning,C′

cannot contain any word of the formx 0 . . . 0 as in (A2). We have thus verified thatC andC′ satisfy
(A1)–(A3), and soC ⊕3 C′ can be defined.

Note that (A3′) implies that0 . . . 0111 /∈ C and1110 . . . 0 /∈ C′, and hence,dim(C) = dim(C)+1
anddim(C′) = dim(C′)+1. Furthermore, lettingn denote the length ofC, we haveC \{n− 2, n−
1, n} = C\{n−2, n−1, n} andC′\{1, 2, 3} = C′\{1, 2, 3}. Therefore, by virtue of Proposition 4.7,
we have the following result.

Proposition 4.8. Let C andC′ be codes of lengthn andn′, respectively, for whichC ⊕3 C
′ can be

defined.

(a) dim(C ⊕3 C
′) = dim(C) + dim(C′) − 2.

(b) If dim(C) > 2, thend(C ⊕3 C
′) ≤ d(C \{n − 2, n − 1, n}); and if dim(C′) > 2, then

d(C ⊕3 C
′) ≤ d(C′ \{1, 2, 3}).

The3-sum is the dual operation to 3-sum, in a sense made precise by the proposition below, the
proof of which we defer to Appendix A. This result is stated, without explicit proof, in [8, p. 316]
and [26, p. 184]; Truemper [8, 26] refers to 3-sum and3-sum as∆-sum andY -sum, respectively.
The result can also be derived from Theorem 7.3 in [35].

Proposition 4.9. For codesC andC′ be codes for whichC ⊕3 C
′ can be defined, we have

(C⊕3C
′)
⊥

= C⊥⊕3 C
′⊥.

It follows from the last result that a code that is expressible as a 3-sum can also be expressed as
a 3-sum. Indeed, ifC = C1 ⊕3 C2, then by the above proposition,C⊥ = C⊥

1 ⊕3 C
⊥
2 . The latter, by

definition, isC⊥
1 ⊕3C⊥

2 , and so again taking duals and using the above proposition, we obtain

C =
(
C⊥

1 ⊕3C⊥
2

)⊥
=

(
C⊥

1

)⊥
⊕3

(
C⊥

2

)⊥
.

We record this as a corollary to Proposition 4.9.

Corollary 4.10. If C1⊕3C2 can be defined, then

C1⊕3C2 =
(
C⊥

1

)⊥
⊕3

(
C⊥

2

)⊥
.

Having presented some of the simpler properties of 3-sums, we next state a highly non-trivial
result of Seymour that illustrates how 3-sums are to be used. The statement of this result is the
3-sum analogue of Theorem 4.3, but there are some important differences between the two that we
will point out after stating the result.

Theorem 4.11([6],Theorems 2.9 and 4.1). If C1 andC2 are codes of lengthn1 andn2, respectively,
such thatC = C1 ⊕3 C2, then(J, Jc) is an exact 3-separation ofC for J = {1, 2, . . . , n1 − 3}.
Furthermore, ifC is 3-connected, thenC1 andC2 are equivalent to proper minors ofC.
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FIGURE 3. The minimal trellis of the codeC = C1 ⊕3 C2 of Example 4.4.

Conversely, if(J, Jc) is an exact 3-separation of a codeC, with min{|J |, |Jc|} ≥ 4, then there
are codesC1 andC2 of length|J |+3 and|Jc|+3, respectively, such thatC is equivalent toC1⊕3C2.

A couple of key differences between the statements of Theorems 4.3 and 4.11 must be stressed.
For a code to be expressible as a 2-sum, it is sufficient that there exist anexact 2-separation. How-
ever, to make the analogous conclusion about 3-sums, Theorem 4.11 notonly asks for the existence
of an exact 3-separation(J, Jc), but also adds the additional hypothesis thatmin{|J |, |Jc|} ≥ 4.
We will have more to say about this a little later.

There is a second major difference between the statements of the two theorems. Theorem 4.3
states that ifC = C1 ⊕2 C2, thenC1 andC2 are always minors ofC, up to coordinate permutation.
However, whenC = C1 ⊕3 C2, Theorem 4.11 imposes the condition thatC be 3-connected in order
to conclude thatC1 andC2 are equivalent to minors ofC. If the 3-connectedness requirement forC
is dropped, the conclusion does not hold in general, as the following example shows.

Example 4.4. TakeC1 to be the[7, 4, 1] code with generator matrix

G1 =




1 0 0 0 0 0 0
0 1 0 1 0 0 1
0 0 1 1 0 1 0
1 1 1 0 1 0 0


 ,

and letC2 be the[7, 4, 3] Hamming code with generator matrix

G2 =




1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1


 .

These codes satisfy (A1)–(A3) of Definition 4.2, and their 3-sum,C1 ⊕3 C2, is the[8, 4, 1] codeC
generated by

G =




1 0 0 0 0 0 0 0
0 1 0 1 0 0 1 1
0 0 1 1 0 1 0 1
0 0 0 0 1 1 1 1


 .

The minimal trellis of this code is shown in Figure 3. Note thatC is not 3-connected. In fact, it
is not even 2-connected — it has a 1-separation(J, Jc) with J = {1}. Now,C1 can be obtained
as a minor ofC by puncturingC at the last coordinate. However,C2 is not a minor ofC, since
puncturingC at any coordinate does not yield a[7, 4, 3] code, and shortening always yields a code
of dimension less than 4.

We mention in passing that ifC = C1 ⊕3 C2, then the fact thatC1 andC2 are equivalent to
minors ofC wheneverC is 3-connected is far more difficult to prove (see [6, Section 4]) than the
corresponding part of Theorem 4.3.
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We observed above that the mere existence of an exact 3-separation is not enough for Theo-
rem 4.11 to conclude that a codeC is expressible as a 3-sum; the 3-separation(J, Jc) must also
satisfymin{|J |, |Jc|} ≥ 4, i.e., must not be minimal5. It is also implicit in the statement of Theo-
rem 4.11 that the existence of a non-minimal 3-separation is a necessary condition for a code to be
a 3-sum. Indeed, ifC = C1 ⊕3 C2, thenC1 andC2 must each have length at least 7, as per Defini-
tion 4.2. So, withJ = {1, 2, . . . , n1 − 3} as in the statement of Theorem 4.11, it must be true that
|J | ≥ 4, and similarly,|Jc| ≥ 4.

The following definition allows for a compact statement of a corollary to Theorem 4.11 along
the lines of Corollary 4.5.

Definition 4.4. A 3-connected code isinternally 4-connectedif all its 3-separations are minimal.

Internal 4-connectedness is a notion that lies properly between 3-connectedness and 4-connectedness
— a 3-connected code that is not 4-connected can be internally 4-connected. Note that any 3-
separation in a 3-connected code must be exact, and so we can state the following corollary to
Theorem 4.11.

Corollary 4.12. A 3-connected codeC is not internally 4-connected iff there exist codesC1 andC2,
both equivalent to proper minors ofC, such thatC is equivalent toC1 ⊕3 C2.

As in the case of 2-sums, we provide an efficient construction of the components of the 3-sum
when an exact, non-minimal 3-separation(J, Jc) of C is given. This construction furnishes a proof
of the converse part of Theorem 4.11. Our description is based looselyon the constructions given
in [26, Section 8.3] and [8].

Let C be a code of lengthn and dimensionk, specified by ak × n generator matrixG, and let
(J, Jc) be an exact 3-separation ofC, with |J | ≥ 4 and |Jc| ≥ 4. By permuting coordinates if
necessary, we may assume thatJ = {1, 2, . . . ,m} for somem such that4 ≤ m ≤ n − 4. Let
G|J andG|Jc denote the restrictions ofG to the columns indexed byJ andJc, respectively; thus,
G = [G|J G|Jc ]. Let rank(G|J) = k1 andrank(G|Jc) = k2; since(J, Jc) is an exact 3-separation
of C, we havek1 + k2 = k + 2. Note thatk1 ≤ k implies thatk + k2 ≥ k1 + k2 = k + 2, so that
k2 ≥ 2; similarly, k1 ≥ 2.

Bring G into reduced row-echelon form (rref) overF2. Permuting coordinates withinJ and
within Jc if necessary,rref(G) may be assumed to be of the form

G =

[
Ik1 A O B
O O Ik2−2 C

]
, (8)

whereIj , for j = k1, k2 − 2, denotes thej× j identity matrix,A is ak1 × (|J | − k1) matrix,B is a
k1 × (|Jc| − k2 + 2) matrix,C is a(k2 − 2)× (|Jc| − k2 + 2) matrix, and theO’s denote all-zeros
matrices of appropriate sizes. As a concrete example, consider the matrixG given in Example 4.3,
which is indeed of the above form, with|J | = |Jc| = 4, k1 = k2 = 3,

A =




1
1
1


 , B =




0 1 1
1 0 1
1 1 0


 and C =

[
1 1 1

]
.

The fact that the submatrix

[
O B

Ik2−2 C

]
must have rank equal torank(G|Jc) = k2 implies

thatB must have rank 2. Hence,B has two linearly independent rows, call themx andy, which
form a basis of the row-space ofB. In particular, each row ofB is either0, x, y or x + y.

Now, define the(k1 + 1) × (|J | + 3) matrix

G1 =

[
Ik1 A D
0 0 1

]
,

5The definition of a minimalk-separation is given immediately after Definition 3.1.
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whereD is ak1 × 3 matrix whoseith row is defined as

ith row ofD =





000 if ith row ofB is 0

001 if ith row ofB is x

010 if ith row ofB is y

100 if ith row ofB is x + y;

and the bottom row ofG1, represented by[0 0 1], is simply0 . . . 0111.
Next, define the(k2 + 1) × (|Jc| + 3) matrix

G2 =

[
I3 O X
O Ik2−2 C

]
= [Ik2+1 C

′′],

where

X =




x + y

y

x


 and C ′′ =

[
X
C

]
.

A straightforward verification yields that ifC1 andC2 are the codes generated byG1 andG2,
respectively, thendim(C1) = k1 + 1, dim(C2) = k2 + 1, andC1, C2 satisfy properties (A1)–(A3) in
Definition 4.2, soC1⊕3C2 can be defined. The construction ofG1 andG2 above is carefully crafted
to ensure that all the rows ofG are inC1 ⊕3 C2. Hence,dim(C1 ⊕3 C2) ≥ rank(G) = k1 + k2 − 2.
However, by Proposition 4.7, we have thatdim(C1⊕3 C2) = dim(C1)+dim(C2)−4 = k1 +k2−2.
Hence,dim(C1 ⊕3 C2) = rank(G), implying thatG must be a generator matrix forC1 ⊕3 C2. Note
that according to Theorem 4.11, ifC is 3-connected, thenC1 andC2 are equivalent to proper minors
of C.

The procedure described above can be formalized into an algorithm that takes as input ak × n
generator matrixG for C, and an exact, non-minimal 3-separation(J, Jc) of it, and produces as
output a permutationπ of the coordinates ofC, and the generator matrices of two codesC1 andC2,
such thatC = π(C1 ⊕3 C2). The codesC1 andC2 are both equivalent to proper minors ofC. This
procedure can be carried out inO(k2n) time for the same reasons as in the 2-sum case.

For the matrixG in Example 4.3, we find the matricesG1 andG2 to be

G1 =




1 0 0 1 1 0 0
0 1 0 1 0 1 0
0 0 1 1 0 0 1
1 1 1 1 0 0 0


 , and G2 =




1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1


 ,

which are indeed generator matrices of the two Hamming codes whose 3-sum isrepresented byG.
It must be pointed out that Theorem 4.11 also holds when the 3-sums in its statement are replaced

by 3-sums. This is a consequence of Proposition 3.2, which shows that(J, Jc) is a 3-separation of
a codeC iff it is a 3-separation of the dual codeC⊥. Hence, applying Theorem 4.11 toC⊥, and
dualizing via Proposition 4.9, we see that the 3-sums in the statement of Theorem 4.11 can be
replaced by3-sums. In particular, we also have the following corollary to Theorem 4.11.

Corollary 4.13. A 3-connected codeC is not internally 4-connected iff there exist codesC1 andC2,
both equivalent to proper minors ofC, such thatC is equivalent toC1 ⊕3 C2.

Putting together Theorem 4.6 with 4.12 and 4.13, we obtain the following theorem,which sum-
marizes the code decomposition theory presented up to this point.

Theorem 4.14. A binary linear code either is 3-connected and internally 4-connected, orcan be
constructed from 3-connected, internally 4-connected proper minors of it by a sequence of opera-
tions of coordinate permutation, direct sum, 2-sum and 3-sum (or3-sum).

The decomposition of Theorem 4.14 can be carried out in time polynomial in the length of the
code, since
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(a) the decomposition of Theorem 4.6 can be carried out in polynomial time;
(b) as mentioned in Section 3, there are polynomial-time algorithms for finding non-minimal

3-separations (i.e., 3-separations(J, Jc) with min{|J |, |Jc|} ≥ 4) in a code, if they exist;
and

(c) there is a polynomial-time procedure that, given an exact, non-minimal 3-separation of a
3-connected codeC, produces codesC1 andC2, both equivalent to proper minors ofC, and a
permutationπ of the coordinate set ofC, such thatC = π(C1 ⊕3 C2) or, via Corollary 4.10,
C = π(C1 ⊕3 C2).

Note that the theorem does not guarantee uniqueness of the code decomposition.

4.3. Code-Decomposition Trees.A binary tree is a convenient data structure for storing a decom-
position of a code via direct sums, 2-sums, and 3-sums. Recall that a proper (or full) binary tree is
a rooted tree such that every node of the tree has either zero or two children. We will drop the ad-
jective “proper” as proper binary trees are the only kind of binary trees we are interested in. A node
without any children is called aleaf. Each non-leaf node has two children, and we will distinguish
between the two, calling one theleft child and the other theright child.

Let C be a binary linear code. Acode-decomposition treefor C is a binary treeT defined
as follows. Each nodev of T stores a triple (v.code,v.perm,v.sum), wherev.code is a binary
linear code,v.perm is either NULL or a permutation of the coordinate set ofv.code, andv.sum
∈ {⊙,⊕,⊕2,⊕3, ⊕3 }. For each nodev of T , the triple (v.code,v.perm,v.sum) must adhere to
the following rules:

(R1) if v is the root node, thenv.code is the codeC itself;
(R2) v.perm = NULL iff v is a leaf;
(R3) v.sum = ⊙ iff v is a leaf;
(R4) if v is a non-leaf node, then

(i) lchild.code andrchild.code are proper minors ofv.code; and
(ii) the permutationv.perm applied to the sum

(lchild.code) v.sum (rchild.code)

yieldsv.code,
wherelchild andrchild above respectively refer to the left and right children ofv.

In particular, (R4) ensures that for any nodev other than the root node in the tree,v.code is a proper
minor ofC.

We will identify the leaves of any code-decomposition tree with the codes that they store. The-
orem 4.14 guarantees that each codeC has a code-decomposition tree in which each leaf is 3-
connected and internally 4-connected. Such a code-decomposition tree will be calledcomplete. A
complete code-decomposition tree forC can be constructed in time polynomial in the length of the
codeC, since the decomposition of Theorem 4.14 can be carried out in polynomial time. Note that
if C itself is 3-connected and internally 4-connected, then there is exactly one code-decomposition
tree for it, which is the tree consisting of the single nodeC — or more precisely, the single node
that stores(C,NULL ,⊙).

Finally, a code-decomposition tree is called3-homogeneous(resp.3-homogeneous) if for each
non-leaf nodev in the tree, ifv.sum ∈ {⊕,⊕2,⊕3} (resp.v.sum ∈ {⊕,⊕2, ⊕3 }). Thus, in a
3-homogeneous (resp.3-homogeneous) tree, no3-sums (resp. 3-sums) are used. It follows from
Corollaries 4.12 and 4.13 that if a code-decomposition tree has a node of theform v = (C, π, ⊕3 ),
with C being 3-connected, then the subtree withv as a root can be replaced with a different subtree
in which the root node isv’ = (C, π′,⊕3). Therefore, every code has a complete, 3-homogeneous
(or 3-homogeneous) code-decomposition tree, which again can be constructed in time polynomial
in the length of the code.
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Having described in detail Seymour’s decomposition theory in the context ofbinary linear codes,
we now turn to some of its applications. This theory mainly derives its applicationsfrom families
of codes that are minor-closed, and such families form the subject of the next section.

5. MINOR-CLOSED FAMILIES OF CODES

A family C of binary linear codes is defined to beminor-closedif for eachC ∈ C, every code
equivalent to a minor ofC is also inC. Note that this definition automatically implies that a minor-
closed family,C, of codes is closed under code equivalence,i.e., if C ∈ C, then all codes equivalent
to C are also inC.

A non-trivial example of a minor-closed family is the set of all graphic codes, since any minor
of a graphic code is graphic. We will encounter other examples of minor-closed families (regular
codes and geometrically perfect codes) further on in this paper. We mention in passing another
interesting example of such a family — codes of bounded trellis state-complexity.Recall from
Section 3 that the state-complexity profile of a length-n codeC is defined to be the vectors(C) =
(s0(C), . . . , sn(C)), wheresi(C) = dim(C|J) + dim(C|Jc) − dim(C) for J = [i] ⊂ [n]. Define
smax(C) = maxi∈[n] si(C). For a fixed integerw > 0, let TCw denote the family of codesC such
that there exists a codeC′ equivalent toC with smax(C

′) ≤ w. Then,TCw is minor-closed [13],
[14]. A similar statement holds for the family of codes that have a cycle-freenormal realization (cf.
[36]) whose state-complexity is bounded byw.

A general construction of minor-closed families is obtained by fixing a collection F of codes,
and definingCF to be the set of all codesC such that no minor ofC is equivalent to anyC′ ∈ F .
As an example, letF = {H7,H

⊥
7 , C(K5)

⊥, C(K3,3)
⊥}, whereH7 is the [7, 4] Hamming code6.

By Theorem 2.1,CF in this case is precisely the family of graphic codes. It is clear thatCF is a
minor-closed family for any fixedF . In fact, every minor-closed family can be obtained in this
manner. Indeed, letC be a minor-closed family of codes. A codeD is said to be anexcluded minor
of C if D /∈ C, but every proper minor ofD is in C. It is not hard to verify that a codeC is in C iff
no minor ofC is an excluded minor ofC. Theorem 2.1 is an example of such anexcluded-minor
characterization, and we will see more such examples (Theorems 5.3 and 6.2) further below.Thus,
takingF to be the collection of all excluded minors ofC, we have thatC = CF . A tantalizing
conjecture of Robertson and Seymour asserts that any minor-closed familyC of binary linear codes
has onlyfinitely manyexcluded minors [37, Conjecture 1.2].

Let C be a minor-closed family of codes. By Theorem 4.14, everyC ∈ C can be constructed from
3-connected, internally 4-connected codes inC using direct sums, 2-sums, and 3- or3-sums. The
converse need not always be true,i.e., it is not necessarily true that if a codeC has a decomposition
via direct sums, 2-sums, and 3- or3-sums into codes inC, thenC ∈ C. Of course, the converse does
hold if C is also closed under the operations of direct sum, 2-sum, 3-sum and3-sum. As usual,C
is defined to be closed under direct sum (resp. 2-sum, 3-sum,3-sum) if for any pair of codes inC,
their direct sum (resp. 2-sum, 3-sum,3-sum, if it can be defined) is also inC. We summarize this in
the following proposition.

Proposition 5.1. Let C be a minor-closed family of codes that is also closed under the operations
of direct sum, 2-sum, 3-sum and3-sum. Then, the following are equivalent for a codeC.

(i) C is in C.
(ii) The leaves of some code-decomposition tree forC are inC.

(iii) The leaves of some complete, 3-homogeneous or3-homogeneous code-decomposition tree
for C are inC.

(iv) The leaves of every code-decomposition tree forC are inC.

6From now on,H7 will always denote the[7, 4] Hamming code.
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Proof. (i) implies (iv) since the leaves of any code-decomposition tree ofC are minors ofC, andC

is minor-closed. The implications (iv)⇒ (iii) and (iii) ⇒ (ii) are trivial. (ii) implies (i) sinceC is
closed under direct-sums, 2-sums, 3-sums and3-sums. �

Since a complete code-decomposition tree of any codeC can be constructed in time polynomial
in the length ofC, we have the following corollary to the above result.

Corollary 5.2. LetC be a minor-closed family of codes that is also closed under the operations of
direct sum, 2-sum, 3-sum and3-sum. Then the following are equivalent statements.

(i) It can be decided in polynomial time whether or not a given codeC is in C.
(ii) It can be decided in polynomial time whether or not a given 3-connected,internally 4-

connected codeC is in C.

The first major application of results such as the above — the application whichwas in fact the
motivation for Seymour’s matroid decomposition theory — relates to totally unimodular matrices.
A real matrixA is said to betotally unimodularif the determinant of every square submatrix of
A is in {0, 1,−1}. In particular, each entry of a totally unimodular matrix is in{0, 1,−1}. Such
matrices are of fundamental importance in combinatorial optimization and networkflow problems,
because total unimodularity is closely related to integer linear programming [15].

A binary matrix is defined to beregular if its 1’s can be replaced by±1’s in such a way that the
resulting matrix is totally unimodular. Consequently, a binary linear code is defined to beregular if
it has a regular parity-check matrix. It turns out that for a regular code, everyparity-check matrix is
regular [26, Corollary 9.2.11]. Furthermore, given a regular binary matrix B, there is a polynomial-
time algorithm that convertsB to a totally unimodular matrix by assigning signs to the 1’s in
B [26, Corollary 9.2.7]. Thus, regular codes form the key to understanding total unimodularity.
The following theorem, due to Tutte [38], provides an elegant excluded-minor characterization of
regular codes.

Theorem 5.3.A binary linear code is regular iff it does not contain as a minor any code equivalent
to the [7,4] Hamming code or its dual.

It follows from the theorem that the family of regular codes, which we will denote byR, is
minor-closed, since it is of the formCF for F = {H7,H

⊥
7 }. Furthermore,R is closed under the

taking of code duals,i.e., the dual of a regular code is also regular. This is because a codeC contains
H7 as a minor iff its dualC⊥ containsH⊥

7 as a minor. It can further be shown [18, p. 437] thatR is
closed under the operations of direct sum, 2-sum, 3-sum and3-sum.

Note that by Theorem 2.1,R contains the family of graphic codes, and hence, the family of
co-graphiccodes as well, which are codes whose duals are graphic. Using a long and difficult
argument, Seymour [6] proved that the 3-connected, internally 4-connected codes inR are either
graphic, co-graphic, or equivalent to a particular isodual code that he calledR10, which is neither
graphic nor co-graphic.

Theorem 5.4([18], Corollary 13.2.6). If C is a 3-connected, internally 4-connected regular code,
thenC is either graphic, co-graphic, or equivalent toR10, which is the[10, 5, 4] code with parity-
check matrix 



1 1 0 0 1 1 0 0 0 0
1 1 1 0 0 0 1 0 0 0
0 1 1 1 0 0 0 1 0 0
0 0 1 1 1 0 0 0 1 0
1 0 0 1 1 0 0 0 0 1



.

Thus, Seymour’s decomposition theory shows that any regular code (and so by assignment of
signs, any totally unimodular matrix) can be constructed by piecing together — via direct sums,
2-sums, and 3-sums or3-sums — graphic codes, co-graphic codes, and codes equivalent toR10.
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Also, membership in the family of regular codes can be decided in polynomial time. Indeed, as
mentioned at the end of Section 2, there are polynomial-time algorithms for deciding whether or
not a given code is graphic. Given anm× n parity-check matrixH for a code, a generator matrix
for the code can be computed using elementary row operations onH in O(m2n) time. Thus, the
dual of a code can be determined in polynomial time, and hence it can be decided in polynomial
time whether or not a given code is co-graphic. Hence, from Corollary 5.2 and Theorem 5.4, it
follows that there is a polynomial-time algorithm for determining whether or not a given code is
regular. The best such algorithm known is due to Truemper [39], which runs inO((m+ n)3) time.
Truemper’s algorithm is also based on Seymour’s decomposition theory, but it implements a highly
efficient procedure for carrying out the decomposition.

While the application of Seymour’s decomposition theory to regular codes is interesting, it is not
very useful, perhaps, from a coding-theoretic perspective. However, in the next section, we give an
application that should be of some interest to a coding theorist.

6. APPLICATION: ML D ECODING

The recent work of Feldman, Wainwright and Karger [5] shows that MLdecoding of a binary
linear codeC over a binary-input discrete memoryless channel can be formulated as a linear pro-
gram (LP). Recall that the ML decoding problem is: given a received word y at the channel out-
put, find a codewordx ∈ C that maximizes the probability,Pr[y|x], of receivingy conditioned
on the event thatx was transmitted. As observed by Feldmanet al., under the assumption of a
binary-input discrete memoryless channel, given a received wordy = y1y2 . . . yn, the problem of
determiningarg maxx∈C Pr[y|x] is equivalent to the problem of findingarg minx∈C〈γ,x〉, where
γ = (γ1, γ2, . . . , γn) is given by

γi = log

(
Pr[yi|xi = 0]

Pr[yi|xi = 1]

)
(9)

and〈· , ·〉 is the standard inner product onRn. Here, for the inner product〈γ,x〉 to make sense,
a binary codewordx = x1x2 . . . xn ∈ C is identified with the real vector(x1, x2, . . . , xn) ∈
{0, 1}n ⊂ R

n.
The above formulation shows ML decoding to be equivalent to the minimization ofa linear

function over a finite setC ⊂ {0, 1}n. Let P (C) be thecodeword polytopeof C, i.e., the convex
hull in R

n of the finite setC. It can be shown that the set of vertices ofP (C) coincides withC.
The key point now is that over a polytopeP , a linear functionφ attains its minimum valueφmin =
min{φ(x) : x ∈ P} at a vertex ofP . In particular,minx∈C〈γ,x〉 = minx∈P (C)〈γ,x〉, Thus,
ML decoding is equivalent to finding a vertex of the polytopeP (C) that achievesminx∈P (C)〈γ,x〉,
which is a classic LP.

However, ML decoding of an arbitrary code is known to be NP-hard [9]. So, in general, solving
the above LP over the codeword polytope is also NP-hard. A strategy often followed in such a
situation is to “relax” the problem. The idea is to look for a polytope that containsthe code as a
subset of its vertex set, but which has some property that allows an LP defined over it to be solved
more easily. Such a polytope is called arelaxationof the codeword polytopeP (C).

A certain relaxation of the codeword polytope has received much recentattention [5],[16],[40].
This is the polytope which, given a codeC of lengthn, and a subsetH ⊂ C⊥, is defined as

Q(H) =
⋂

h∈H

P (h⊥),

whereP (h⊥) is the codeword polytope of the codeh⊥ = {c ∈ F
n
2 : 〈h, c〉 ≡ 0 (mod 2)}. Note

that sinceC ⊂ h⊥ for anyh ∈ C⊥, we have thatP (C) ⊂
⋂

h∈H P (h⊥) = Q(H) for anyH ⊂ C⊥.
In particular,P (C) ⊂ Q(C⊥) for any codeC.
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For anyH ⊂ C⊥, the polytopeQ(H) containsC as a subset of its vertex set,V(H). This is
becauseC ⊂ Q(H) ∩ {0, 1}n, and sinceQ(H) is contained within then-cube[0, 1]n, we also
haveQ(H) ∩ {0, 1}n ⊂ V(H). Thus,Q(H) is indeed a relaxation ofP (C). Consequently the
LP minx∈Q(H)〈γ,x〉, whereγ is the vector defined via (9), constitutes a relaxation of the LP that
represents ML decoding.

Now, any standard LP-solving algorithm requires that the LP to be solved have its constraints
be represented via linear inequalities. The advantage of using the relaxation Q(H) is that there
is a convenient such representation of the constraintx ∈ Q(H). The polytopeQ(H) can also be
expressed as (seee.g.[5, Theorem 4] or [16, Lemma 26]),

Q(H) =
⋂

h∈H

Π(supp(h)), (10)

where forS ⊂ [n], Π(S) denotes the polyhedron

Π(S) =
⋂

J⊂S

|J| odd



(x1, . . . , xn) ∈ [0, 1]n :

∑

j∈J

xj −
∑

i∈S\J

xi ≤ |J | − 1



 . (11)

The efficiency of a practical LP solver (like, say, the simplex or ellipsoid algorithm) depends on the
size of the LP representation, which is proportional to the number of variables and linear inequalities
forming the constraints. IfH above consists of the rows of a parity-check matrix of a low-density
parity-check (LDPC) code, then the representation ofQ(H) given by (10)–(11) has size linear
in the codelengthn. So, the ellipsoid algorithm, for example, would be guaranteed to solve the
LP minx∈Q(H)〈γ,x〉 in time polynomial inn. However, as we explain next, this LP is no longer
equivalent to ML decoding in general.

Let J (H) = V(H) ∩ {0, 1}n denote the set ofintegral vertices(i.e., vertices all of whose
coordinates are integers) ofQ(H). We noted above thatC ⊂ J (H). If H is a spanning subset
(over F2) of C⊥, so that the vectors inH form (the rows of) a parity-check matrix ofC, then we
in fact haveC = J (H). This is because ifx ∈ {0, 1}n is not in C, thenx /∈ h⊥ for some
h ∈ H, and hence,x /∈ P (h⊥) ⊃ Q(H). The polytopeQ(H) in this case is the “fundamental
polytope” of Vontobel and Koetter [16] (or equivalently, the “projectedpolytope”Q of Feldmanet
al. [5, p. 958]). The fact thatC = J (H) for such a polytopeQ(H) implies that the polytope has
the following “ML certificate” property [5, Proposition 2]: if the LPminx∈Q(H)〈γ,x〉, whereγ is
the vector defined via (9), attains its minimum at somex ∈ J (H), thenx is guaranteed to be an
ML codeword. However, it is possible that the above LP attains its minimum at some non-integral
vertexx ∈ V(H) − J (H), in which case decoding via linear programming overQ(H) fails. The
non-integral vertices ofQ(H) are called “pseudocodewords”.

It is naturally of interest to know when a codeC has a fundamental polytopeQ(H) (for some
spanning subsetH of C⊥) without pseudocodewords. For such codes, ML decoding can be exactly
implemented as an LP overQ(H). Clearly,Q(H) has no pseudocodewords iffC = V(H), or
equivalently,P (C) = Q(H). But sinceP (C) ⊂ Q(C⊥) ⊂ Q(H), this obviously implies that we
must haveP (C) = Q(C⊥). Conversely, ifP (C) = Q(C⊥), then we may simply takeH = C⊥ to
obtain a fundamental polytopeQ(H) without pseudocodewords. We record this observation as a
lemma.

Lemma 6.1. LetC be a binary linear code. There exists a spanning subset,H, of C⊥ such that the
polytopeQ(H) has no pseudocodewords iffP (C) = Q(C⊥).

A codeC for whichP (C) = Q(C⊥) holds will be calledgeometrically perfect, and we will denote
by G the family of all such codes. So the question then is: which codes are geometrically perfect?
An answer to this was provided by Barahona and Grötschel [41], who showed that the relationship
P (C) = Q(C⊥) is equivalent to Seymour’s “sums-of-circuits” property for binary matroids [7].
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FIGURE 4. The graphV8.

The following theorem is thus equivalent to Seymour’s characterization ofbinary matroids with the
sums-of-circuits property.

Theorem 6.2([41], Theorem 3.5). A binary linear codeC is geometrically perfect iffC does not
contain as a minor any code equivalent toH⊥

7 ,R10 or C(K5)
⊥.

By the above theorem,G is minor-closed. Moreover, since none ofH⊥
7 , R10 or C(K5)

⊥ is
graphic, no graphic code can contain any of them as a minor, and so graphic codes are geometrically
perfect.

Grötschel and Truemper [8, Section 4] showed thatG is closed under the operations of direct
sum, 2-sum and3-sum, but is not closed under 3-sum. They also observed [8, p. 326] that any code
in G can be constructed via direct sums, 2-sums and3-sums from graphic codes and copies of the
codesH7, C(K3,3)

⊥ andC(V8)
⊥, whereV8 is the graph in Figure 4. Indeed, this result is implied by

Theorems 6.4, 6.9 and 6.10 in [7]. It is not hard to verify that the codesH7, C(K3,3)
⊥ andC(V8)

⊥

are in fact inG. Putting these facts together, we obtain the following theorem.

Theorem 6.3. For a binary linear codeC, the following are equivalent statements.

(i) C is geometrically perfect,i.e., P (C) = Q(C⊥).
(ii) Each leaf in some complete,3-homogeneous code-decomposition tree forC is either graphic,

or equivalent to one of the codesH7, C(K3,3)
⊥ andC(V8)

⊥.
(iii) Each leaf in every complete,3-homogeneous code-decomposition tree forC is either graphic,

or equivalent to one of the codesH7, C(K3,3)
⊥ andC(V8)

⊥.

Proof. (i) implies (iii) follows directly from the fact that any code inG can be constructed via
direct sums, 2-sums and3-sums from graphic codes and copies (up to equivalence) of the codes
H7, C(K3,3)

⊥ andC(V8)
⊥. The implication (iii)⇒ (ii) is trivial. Finally, (ii) ⇒ (i) holds since

graphic codes and the codesH7, C(K3,3)
⊥ andC(V8)

⊥ are all inG, andG is closed under direct
sum, 2-sum and3-sum. �

Since a complete,3-homogeneous code-decomposition tree for a code can be constructed in
polynomial time, and testing for graphicness or equivalence toH7, C(K3,3)

⊥ andC(V8)
⊥ can also

be carried out in polynomial time, we have the following corollary to the above theorem.

Corollary 6.4. It can be decided in polynomial time whether or not a given codeC is geometrically
perfect,i.e., has the propertyP (C) = Q(C⊥).

However, this is only half the story. IfC is a geometrically perfect code, the algorithm guaran-
teed by the above result will determine this to be the case, but will not produce a “small” subset
H ⊂ C⊥ such thatP (C) = Q(H). The only information we would have is thatH can be taken
to be theentiredual codeC⊥. While it would then be true that the LPminx∈Q(C⊥)〈γ,x〉 is equiv-
alent to ML decoding, the representation ofQ(C⊥) given by (10)–(11) still has size exponential
in the codelengthn. It is thus unclear whether there is an LP-solving algorithm than can be used



A CODE DECOMPOSITION THEORY 27

to solve this LP efficiently in practice7. Fortunately, as we shall describe next, for the family,G,
of geometrically perfect codes, ML decoding can always be implemented in timepolynomial in
codelength,not using an LP-solving algorithm, but by means of a combinatorial optimization al-
gorithm that uses code decompositions. One major feature of this combinatorial algorithm is that,
for any given codeC (not necessarily geometrically perfect), if a suitable decomposition (as in Def-
inition 6.1 below) ofC exists, that decomposition can be used to efficiently solveany instance of
the LPminx∈P (C)〈γ,x〉. This means that the determination of a suitable code decomposition ofC,
which only needs to be done once, can even be done “off-line”. WhenC is geometrically perfect,
such a suitable decomposition always exists, and in fact, can be determined intime polynomial in
the length ofC, as we explain next.

In a series of papers [42], [43], [39] (see also [26]), Truemper carried out a detailed examination
of matroid decompositions, from which a particularly interesting observation concerning geomet-
rically perfect codes could be inferred. LetG0 be the sub-family ofG that consists of all graphic
codes and codes equivalent to one ofH7, C(K3,3)

⊥ andC(V8)
⊥. As observed in the proof of Corol-

lary 6.6 in [8], Truemper’s analysis of matroid decompositions could be usedto show that a code
C ∈ G − G0 can always be composed via a 2-sum or a3-sum from a codeC1 ∈ G0, and a code
C2 ∈ G, both of which may be taken to be codes equivalent to minors ofC. In fact, a much more
precise statement may be deduced from Theorem 2.5 in [8]. IfC is a 2-connected code inG − G0,
then it follows from Theorem 2.5 in [8] thatC can always be decomposed into codesC1 andC2,
both equivalent to minors ofC, in at least one of the following ways:

(a) C is equivalent toC1 ⊕2 C2, for some codeC1 ∈ G0 with dim(C1) ≥ 2, and some 2-
connected codeC2 ∈ G; or

(b) C is equivalent toC1 ⊕3 C2, for some codeC1 ∈ G0 with dim(C1) ≥ 3, and some 2-
connected codeC2 ∈ G.

The decomposition ofC into C1 andC2, along with the coordinate permutation that takesC1 ⊕2 C2

or C1 ⊕3 C2 (as the case may be) toC, can be determined in polynomial time. These facts have some
significant consequences, one of which is that any code inG is ML-decodable in polynomial time.
However, rather than state these results just for the class of geometrically perfect codes, we will
state and prove them more generally for codes that are “almost graphic” inthe sense that they can
be composed from graphic codes and finitely many other codes.

Recall thatΓ denotes the family of graphic codes.

Definition 6.1. A minor-closed family of codesC is defined to bealmost-graphicif there exists a
finite sub-familyD ⊂ C with the following property:

for any 2-connected codeC ∈ C, eitherC ∈ Γ ∪ D, or there are codesC1 andC2, along with a
permutationπ of the coordinate set ofC, such that

(a) C1 andC2 are equivalent to minors ofC;
(b) C2 is 2-connected; and
(c) either (i) C = π(C1 ⊕2 C2), with C1 ∈ Γ ∪ D, dim(C1) ≥ 2, or (ii) C = π(C1 ⊕3 C2), with

C1 ∈ Γ ∪ D, dim(C1) ≥ 3.

If there exists a constantl > 0 such that for any length-n codeC ∈ C − (Γ ∪ D), the components
C1, C2 andπ of the above decomposition can be determined in timeO(nl), then the family of codes
C is said to bepolynomially almost-graphic (PAG).

Note that the 3-sum is conspicuous by its absence from the above definition. We will give an
explanation of this at the end of this section.

7It has been shown in [8] that for geometrically perfect codes, the ML-decoding LP can in fact be solved in polynomial
time by the ellipsoid algorithm. It has also been noted there that the ellipsoid algorithm is — in a straightforward
implementation — of “doubtful practical relevance.”
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Definition 6.1 clearly implies that any code in an almost-graphic familyC has a3-homogeneous
code-decomposition tree. The definition in fact implies that a 2-connected code inC has a decom-
position tree with the property that each leaf is inΓ ∪ D, and for each non-leaf nodev in the tree,
lchild.code is a leaf (and hence, is inΓ ∪ D), wherelchild is the left child ofv. Such a code-
decomposition tree will be called(Γ ∪ D)-unary. If C is PAG, a3-homogeneous,(Γ ∪ D)-unary
decomposition tree can be constructed for any 2-connected codeC ∈ C in time polynomial in the
length ofC.

The family,Γ, of graphic codes is trivially PAG. From the discussion prior to the above definition,
the family,G, of geometrically perfect codes is also PAG. Other examples of PAG families are the
code familiesCF (cf. Section 5) forF = {H7, C(K5)

⊥} andF = {H⊥
7 , C(K5)

⊥}, and the family
of co-graphic codes without aC(K5)

⊥ minor [8, Theorem 2.5]. PAG codes inherit some of the
properties of graphic codes. For example, it is known [44],[11] that theML decoding problem over
a memoryless binary symmetric channel can be solved in polynomial time for the family of graphic
codes using Edmonds’ matching algorithm [45],[46]. A much stronger decoding result can in fact
be proved for graphic codes, and more generally for PAG codes. Thisis based on the following
optimization result proved in [8], an argument for which is sketched in Appendix B.

Theorem 6.5([8], Theorem 6.5). LetC be a PAG family of codes. There exists a constantl > 0 such
that given any length-n codeC in C and anyγ ∈ R

n, a codewordcmin ∈ C achievingminc∈C〈γ, c〉
(or equivalently,minx∈P (C)〈γ,x〉) can be determined inO(nl) time.

It should be noted that an actual implementation of the polynomial-time algorithm implicitin
Theorem 6.5 (and outlined in Appendix B) requires arithmetic over the real numbers, unless the
vectorγ has only rational coordinates. So, in practice, finite-precision arithmetic used in any com-
puter implementation of the algorithm could only approximate the linear cost function 〈γ, c〉 for an
arbitraryγ ∈ R

n.
As mentioned earlier, ML decoding over a binary-input discrete memoryless channel can be for-

mulated as a linear program [5]. Therefore, we have the following corollary to the above theorem,
again with the caveat that a true implementation of a polynomial-time algorithm for ML decoding
would require real-number arithmetic.

Corollary 6.6. The maximum-likelihood decoding problem over a binary-input discrete memory-
less channel can be solved in polynomial time for a PAG family of codes. In particular, geometri-
cally perfect codes are ML-decodable in polynomial time.

Another problem that is known to be NP-hard in general is the problem of determining the
minimum distance of a code [47]. For graphic codes, this is equivalent to theproblem of finding
the girth of a graph, which can be solved in time polynomial in the number of edges of the graph —
one of the earliest such algorithms published [48] runs inO(n3/2) time in the worst case, wheren
is the number of edges. As a consequence of Theorem 6.5, we also havethat the minimum distance
problem for a PAG family of codes can be solved in polynomial time.

Corollary 6.7. The minimum distance of any code in a PAG family can be determined in polynomial
time.

Proof. Let C be a code of lengthn containing at least one nonzero codeword. Fori = 1, 2, . . . , n,
defineγ(i) = (1, . . . , 1,−n, 1, . . . , 1), with the−n appearing in theith coordinate ofγ(i). Note
thatminc∈C〈γ

(i), c〉 is always achieved by a codeword inC with ith coordinate equal to 1, if such a
codeword exists. Indeed, the minimum-achieving codewordc(i) is the codeword of least Hamming
weight among codewords inC that have a 1 in theith coordinate; if there is no codeword inC with
a 1 in theith coordinate, thenc(i) = 0. Note that ifc(i) 6= 0, then〈γ(i), c(i)〉 = w(c(i)) − 1 − n.
Therefore, the minimum distance ofC is given by

d = n+ 1 + min
i∈[n]

min
c∈C

〈γ(i), c〉.
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For a PAG family of codesC, given any codeC ∈ C, each of the minimization problems
minc∈C〈γ

(i), c〉 can be solved in polynomial time, and hence the minimum distance ofC can be
determined in polynomial time. �

We point out that in all the minimization problems that must be solved (recursively going down
the code-decomposition tree, as explained in Appendix B) to determine the minimumdistance of a
length-n code, the cost vectors have integer coefficients of magnitude at mostn2. So, the minimum
distance of a code from a PAG family can be determined in polynomial time using finite-precision
arithmetic.

The downside of PAG (and more generally, almost-graphic) code families is that they are not
very good from a coding-theoretic perspective. Recall from coding theory that a code familyC is
calledasymptotically goodif there exists a sequence of[ni, ki, di] codesCi ∈ C, with limi ni = ∞,
such thatlim infi ki/ni andlim infi di/ni are both strictly positive.

Theorem 6.8. An almost-graphic family of codes cannot be asymptotically good.

In particular, the family of geometrically perfect codes is not asymptotically good. The theorem
is proved in Appendix C. In view of Lemma 6.1, the above result has the following very interesting
corollary.

Corollary 6.9. LetC be a family of binary linear codes with the following property: for eachC ∈ C,
there exists a parity-check matrixH for C, such that the corresponding fundamental polytopeQ(H)
has no non-integral vertices (pseudocodewords). Then,C is not an asymptotically good code family.

Loosely speaking, this means that linear-programming decoding, when applied to a “good” code,
must suffer on occasion from decoding failure due to the presence of pseudocodewords, even ifall
possible parity checks (dual codewords) are used in the constraints (10)–(11) of the LP. Given the
close relationship between linear-programming decoding and iterative decoding using the min-sum
algorithm [49], a similar result is likely to hold for iterative decoding as well.

We end this section with an explanation of why 3-sums were left out of Definition 6.1. The proof
of Theorem 6.5 given in Appendix B relies crucially on the fact that a3-homogeneous,(Γ ∪ D)-
unary code-decomposition tree can be constructed in polynomial time for a code from a PAG family.
So, the result is actually true for any code family for which such trees can be constructed in polyno-
mial time. Now, if 3-sums were allowed in Definition 6.1, it is no longer obvious thatcodes from the
resulting code family would still have3-homogeneous,(Γ ∪ D)-unary code-decomposition trees.
There is good reason to think that this could still be true, especially in light of Corollary 4.10, which
states that a code has a 3-sum decomposition only if it has a3-sum decomposition. Indeed, that
result may lead us to believe that if a codeC has a(Γ ∪ D)-unary code-decomposition tree which
contains 3-sums, then replacing the 3-sums in the tree with3-sums in the manner prescribed by
Corollary 4.10 should result in a3-homogeneous,(Γ ∪ D)-unary code-decomposition tree. How-
ever, to show that this is the case, it would have to be verified that ifC = C1 ⊕3 C2, with C1, C2

satisfying (a) and (b) of Definition 6.1, then (in the notation of Corollary 4.10) C1 andC2 also satisfy
(a) and (b). Now, it is not hard to check that ifC1 is graphic, then so isC1. However, unlessC is
3-connected, there is no guarantee thatC1 andC2 are equivalent to minors ofC, even thoughC1 and
C2 are given to be equivalent to minors ofC.

It is in fact quite likely to be true that ifC = C1 ⊕3 C2, with C1 andC2 equivalent to minors of
C, thenC1 andC2 are also equivalent to minors ofC. So, it is quite possible that if Definition 6.1
were to include 3-sums as well, then the resulting code families would still have3-homogeneous,
(Γ∪D)-unary code-decomposition trees, and hence Theorem 6.5 would continue to hold. However,
a rigorous proof of this would take us far outside the main theme of our paper, and Definition 6.1
as it stands is good enough for our purposes.
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7. CONCLUDING REMARKS

A natural question to ask upon studying the decomposition theory presentedin this paper is
whether one can definek-sums fork ≥ 4 that have the same attractive properties as 2-, 3- and
3-sums. Ideally, such ak-sum, denoted by⊕k, would have the following property for some fixed
integerl ≥ k:

a k-connected codeC has ak-separation(J, Jc) with min{|J |, |Jc|} ≥ l iff C =
π(C1 ⊕k C2) for some permutationπ of the coordinates ofC, and codesC1 andC2

equivalent to minors ofC.

It is indeed possible to definek-sums in such a way that we haveC = π(C1 ⊕k C2) iff C has a
k-separation(J, Jc) with min{|J |, |Jc|} ≥ l. The tricky part is ensuring that the component codes
C1 andC2 are retained as minors ofC, and this appears to be difficult in general. However, we have
some preliminary results that indicate that even without the last property, such k-sums can be used
as the building blocks of a decomposition theory that ties in beautifully with Forney’s theory of
cycle-free realizations of linear codes [36]. This theory would make further deep connections with
matroid theory, particularly with the notions of matroid branchwidth and treewidth[50], [51]. An
exposition of this theory will be given in a future paper.

While the decomposition theory in this paper has been presented mainly in the context of binary
linear codes, it is possible to extend some of it to linear codes over arbitraryfinite fields as well. The
definitions of minors andk-connectedness can be obviously extended to nonbinary codes. Also,a
2-sum operation can be defined for codes over an arbitrary finite fieldF, and the entire theory
outlined in Section 4.1 does carry over. However, there is no known 3-sum operation defined for
nonbinary codes that has a property analogous to that stated in Theorem4.11. Again, it seems that
if we are prepared to give up the requirement that the components of ak-sum be retained as minors
of the composite code, then it is possible to develop a powerful decompositiontheory for nonbinary
codes just like that for binary codes.

We end with a pointer to a very interesting direction of current research in matroid theory. This
involves the resolution of two conjectures whose statements (in the context ofcodes) we give below.
Recall from Section 5 that the notationCF , for some fixed collectionF of codes, refers to the set
of all binary linear codesC such that no minor ofC is equivalent to anyC′ ∈ F . We extend that
notation to codes over an arbitrary finite fieldF as well.

Conjecture 7.1 ([37], Conjecture 1.2). If C is a minor-closed class of codes over a finite fieldF,
thenC = CF for some finite collection of codesF .

Informally, the above conjecture states that any minor-closed class of codes is characterized by
a finite list of excluded minors.

Conjecture 7.2 ([37], Conjecture 1.3). Let M be a fixed code. Given a length-n codeC, it is
decidable in time polynomial inn whether or notC containsM as a minor.

The two conjectures together imply that the membership of a code in a minor-closed class can
always be decided in polynomial time. To put it another way, if a property ofcodes is preserved
under the action of taking minors, then it should be decidable in polynomial time whether or not a
given code has that property. It should be pointed out that both conjectures have been shown to be
true in the context of graphic codes, as part of the celebrated Graph Minor Project of Robertson and
Seymour [52],[53]. The Graph Minor Project has had a profound impact on modern graph theory
[54], and its extension toF-representable matroids (equivalently, codes overF) is bound to have a
similar influence on matroid theory and, as a consequence, on coding theory.

APPENDIX A. PROOFS OFPROPOSITIONS4.2 AND 4.9

Proof of Proposition 4.2: Let C andC′ be[n, k] and[n′, k′] codes, respectively, for whichC ⊕2 C
′

can be defined. We want to show that(C ⊕2 C
′)⊥ = C⊥ ⊕2 C

′⊥.
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First, observe that, by Proposition 4.1(a),

dim((C ⊕2 C
′)
⊥
) = (n+ n′ − 2) − dim(C ⊕2 C

′) = (n+ n′ − 2) − (k + k′ − 1)

= (n− k) + (n′ − k′) − 1 = dim(C⊥ ⊕2 C
′⊥).

Therefore, it is enough to show thatC⊥ ⊕2 C
′⊥ ⊂ (C ⊕2 C

′)⊥.
Given a binary wordx = x1x2 . . . xn and a positive integerm ≤ n, letx:m denote the length-m

prefix ofx, and letxm: denote the length-m suffix of x. Also, we denote the concatenation of two
binary wordsx andx′ by x ‖ x′.

Consider an arbitrary codeword,x, of C⊥ ⊕2 C
′⊥. Such a word is of the formx[:n−1] ‖ x′

[n′−1:]

for somex = (x1, . . . , xn) ∈ C⊥ andx′ = (x′1, . . . , x
′
n′) ∈ C′⊥ such thatxn = x′1. We will show

thatx[:n−1] ‖ x′
[n−1:] as above must also be in(C ⊕2 C

′)⊥.
Let c be an arbitrary codeword of(C ⊕2 C

′). Such a codeword is of the formc[:n−1] ‖ c′[n′−1:]

for somec = (c1, . . . , cn) ∈ C andc′ = (c′1, . . . , c
′
n′) ∈ C′ such thatcn = c′1. The dot productc ·x

evaluates to
∑n−1

i=1 cixi +
∑n′

i=2 c
′
ix

′
i, all addition operations being performed modulo 2. But since

c ∈ C andx ∈ C⊥, we have
∑n

i=1 cixi = 0, from which we obtain
∑n−1

i=1 cixi = cnxn. Similarly,∑n′

i=2 c
′
ix

′
i = c′1x

′
1. Hence,c · x = cnxn + c′1x

′
1 = 0, sincecn = c′1 andxn = x′1. As c is an

arbitrary codeword of(C ⊕2 C
′), we have shown thatx ∈ (C ⊕2 C

′)⊥.
Therefore,C⊥ ⊕2 C

′⊥ ⊂ (C ⊕2 C
′)⊥, which completes the proof. �

The proof of Proposition 4.9 closely resembles that of Proposition 4.2, so we continue to use the
notation introduced in the latter proof.

Proof of Proposition 4.9: Let C andC′ be[n, k] and[n′, k′] codes, respectively, for whichC ⊕3 C
′

can be defined. Observe that, by Propositions 4.7 and 4.8, we have

dim((C ⊕3 C
′)
⊥
) = (n+ n′ − 6) − dim(C ⊕3 C

′) = (n+ n′ − 6) − (k + k′ − 4)

= (n− k) + (n′ − k′) − 2 = dim(C⊥⊕3 C
′⊥).

Therefore, to prove Proposition 4.9, it is enough to show thatC⊥⊕3 C
′⊥ ⊂ (C ⊕3 C

′)⊥.
It is easily seen that an arbitrary codeword,x̂, of C⊥⊕3 C

′⊥ must be of the formx[:n−3] ‖ x′
[n′−3:]

for somex = (x1, . . . , xn) ∈ C⊥ andx′ = (x′1, . . . , x
′
n′) ∈ C′⊥ such that(xn−2, xn−1, xn) =

(x′1, x
′
2, x

′
3). We will show that any sucĥx is also in(C ⊕3 C

′)⊥.
Let ĉ be an arbitrary codeword of(C ⊕3 C

′), so that it is of the formc[:n−3] ‖ c′[n′−3:] for some
c = (c1, . . . , cn) ∈ C andc′ = (c′1, . . . , c

′
n′) ∈ C′ such that(cn−2, cn−1, cn) = (c′1, c

′
2, c

′
3). The dot

product̂c · x̂ evaluates to
∑n−3

i=1 cixi +
∑n′

i=4 c
′
ix

′
i, all addition operations being performed modulo

2. But sincec ∈ C andx ∈ C⊥, we have
∑n

i=1 cixi = 0, from which we obtain
∑n−3

i=1 cixi =∑n
i=n−2 cixi. Similarly,

∑n′

i=4 c
′
ix

′
i =

∑3
i=1 c

′
ix

′
i. Hence,̂c · x̂ =

∑n
i=n−2 cixi +

∑3
i=1 c

′
ix

′
i, which

equals 0 sincecn+i−3 = c′i andxn+i−3 = x′i for i = 1, 2, 3. As ĉ is an arbitrary codeword of
(C ⊕3 C

′), we have shown that̂x ∈ (C ⊕3 C
′)⊥.

Therefore,C⊥⊕3 C
′⊥ ⊂ (C ⊕3 C

′)⊥, which completes the proof. �

APPENDIX B. SKETCH OF PROOF OFTHEOREM 6.5

We will only provide a sketch of the proof of Theorem 6.5, as it is a result extant in the literature
[8, Theorem 6.5]. The purpose of sketching out the proof is that it outlines the polynomial-time
algorithm that determines

min
c∈C

〈γ, c〉, (12)
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for a length-n codeC from a PAG family, and a cost vectorγ ∈ R
n.

The proof of the theorem is by induction using the following lemma and the fact (explained
further below) that the minimization of a linear cost function can be done in polynomial time for
graphic codes.

Lemma B.1. (a) Let C = C1 ⊕2 C2. Then the minimum in (12) can be obtained by solving two
minimization problems of the formminc∈C1〈α, c〉 and one problem of the formminc∈C2〈β, c〉.
(b) Let C = C1 ⊕3 C2. Then the minimum in (12) can be obtained by solving four minimization
problems of the formminc∈C1〈α, c〉 and one problem of the formminc∈C2〈β, c〉.

Proof. Let n, n1 andn2 denote the lengths ofC, C1 and C2, respectively. Givenγ ∈ R
n, let

M = 1 +
∑n

i=1 |γi|.

(a) LetC = C1 ⊕2 C2. Defineα(0) = (α
(0)
1 , . . . , α

(0)
n1 ) andα(1) = (α

(1)
1 , . . . , α

(1)
n1 ) as follows:

α
(0)
i =

{
γi i = 1, . . . , n1 − 1
M i = n1

α
(1)
i =

{
γi i = 1, . . . , n1 − 1

−M i = n1

For j = 0, 1, determineµj = minc∈C1〈α
(j), c〉, and a minimum-achieving codewordc(j) =

(c
(j)
1 , . . . , c

(j)
n1 ) ∈ C1. By choice ofM , we have thatc(0)n1 = 0, while c(1)n1 = 1.

Now, defineβ = (β1, . . . , βn2) as follows:

βi =

{
µ1 − µ0 +M i = 1
γn1+i−2 i = 2, . . . , n2.

Solve forµ̂ = minc∈C2〈β, c〉, and find a codeword̂c = (ĉ1, . . . , ĉn2) ∈ C2 achieving this minimum.
We claim thatminc∈C〈γ, c〉 = µ0 + µ̂, and that a minimum-achieving codeword inC is

cmin =

{
(c

(0)
1 , . . . , c

(0)
n1−1, ĉ2, . . . , ĉn2) if ĉ1 = 0

(c
(1)
1 , . . . , c

(1)
n1−1, ĉ2, . . . , ĉn2) if ĉ1 = 1.

We will first show that for eachc ∈ C, we have〈γ, c〉 ≥ µ0 + µ̂. Pick an arbitraryc ∈ C. There
exists a unique pair of codewordsx = (x1, . . . , xn1) ∈ C1, y = (y1, . . . , yn2) ∈ C2 such that
xn1 = y1, and(x1, . . . , xn1−1, y2, . . . , yn2) = c. Suppose thatxn1 = y1 = 0. We then have

〈γ, c〉 = 〈α(0),x〉 + 〈β,y〉 ≥ µ0 + µ̂.

Next, suppose thatxn1 = y1 = 1. In this case, we have

〈γ, c〉 = 〈α(1),x〉 − α(1)
n1

+ 〈β,y〉 − β1

= 〈α(1),x〉 − (−M) + 〈β,y〉 − (µ1 − µ0 +M)

≥ µ1 − (−M) + µ̂− (µ1 − µ0 +M) = µ0 + µ̂.

Thus,〈γ, c〉 ≥ µ0 + µ̂, as desired.
It is now enough to show that〈γ, cmin〉 = µ0 + µ̂. By definition ofcmin,

〈γ, cmin〉 =

{
〈α(0), c(0)〉 + 〈β, ĉ〉 if ĉ1 = 0

〈α(1), c(1)〉 − (−M) + 〈β, ĉ〉 − (µ1 − µ0 +M) if ĉ1 = 1.

In either case,〈γ, cmin〉 = µ0 + µ̂.
(b) LetC = C1 ⊕3 C2. Note that from (A1′)–(A3′) in Definition 4.3, it follows that the restriction

of C1 (resp.C2) onto its last (resp. first) three coordinates is{000, 011, 101, 110}.
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Defineα(j) = (α
(j)
1 , . . . , α

(j)
n1 ), j = 0, 1, 2, 3, as follows:α(j)

i = γi for i = 1, . . . , n1 − 3, and

α
(0)
n1−2 = α

(0)
n1−1 = α

(0)
n1 = M ;

α
(1)
n1−2 = −α

(1)
n1−1 = −α

(1)
n1 = M ;

−α
(2)
n1−2 = α

(2)
n1−1 = −α

(2)
n1 = M ;

−α
(3)
n1−2 = −α

(3)
n1−1 = α

(3)
n1 = M.

For j = 0, 1, 2, 3, determineµj = minc∈C1〈α
(j), c〉, and a minimum-achieving codewordc(j) =

(c
(j)
1 , . . . , c

(j)
n1 ) ∈ C1. By choice of theα(j)’s, we have that

(c
(j)
n1−2, c

(j)
n1−1, c

(j)
n1

) =





000 if j = 0
011 if j = 1
101 if j = 2
110 if j = 3.

Now, takeβ = (β1, . . . , βn2) to be

βi =





−(µ0 + µ1 − µ2 − µ3)/2 +M i = 1
−(µ0 − µ1 + µ2 − µ3)/2 +M i = 2
−(µ0 − µ1 − µ2 + µ3)/2 +M i = 3

γn1+i−6 i = 4, . . . , n2.

Solve forµ̂ = minc∈C2〈β, c〉, and find a codeword̂c = (ĉ1, . . . , ĉn2) ∈ C2 achieving this minimum.
It may be verified thatminc∈C〈γ, c〉 = µ0 + µ̂, and that a minimum-achieving codeword inC is

cmin =





(c
(0)
1 , . . . , c

(0)
n1−3, ĉ4, . . . , ĉn2) if (ĉ1, ĉ2, ĉ3) = 000

(c
(1)
1 , . . . , c

(1)
n1−3, ĉ4, . . . , ĉn2) if (ĉ1, ĉ2, ĉ3) = 011

(c
(2)
1 , . . . , c

(2)
n1−3, ĉ4, . . . , ĉn2) if (ĉ1, ĉ2, ĉ3) = 101

(c
(3)
1 , . . . , c

(3)
n1−3, ĉ4, . . . , ĉn2) if (ĉ1, ĉ2, ĉ3) = 110.

The details of the verification are along the lines of that in part (a), and areleft to the reader. �

Suppose that we have a PAG code familyC, and must solve (12) for a given length-n codeC ∈ C

and cost vectorγ = (γ1, . . . , γn) ∈ R
n. Note that ifC can be expressed as a direct sum,C1 ⊕C2, of

codesC1 andC2 of lengthsn1 andn2, respectively, then

min
c∈C

〈γ, c〉 = min
c(1)∈C1

〈γ(1), c(1)〉 + min
c(2)∈C2

〈γ(2), c(2)〉,

whereγ(1) = (γ1, . . . , γn1) andγ(2) = (γn1+1, . . . , γn). Therefore, to show that (12) can be solved
in time polynomial inn, it is enough to show that there is a polynomial-time algorithm in the case
whenC is 2-connected.

It follows from Definition 6.1 that there exists a finite sub-familyD ⊂ C such that each 2-
connected codeC ∈ C has a3-homogeneous,(Γ ∪ D)-unary code-decomposition tree, which can
be constructed in polynomial time. So, an algorithm for solving (12) for a 2-connected codeC ∈ C

would use Lemma B.1 to recursively go down the code-decomposition tree starting from the root
node, solving at most four minimization problems at each leaf of the tree. Recall that each leaf of a
(Γ∪D)-unary code-decomposition tree is a code inΓ∪D. Since such a tree for a length-n code can
have at mostn leaves, the algorithm for solving (12) would run in time polynomial inn, provided
that there is a polynomial-time algorithm for solving (12) for codesC ∈ Γ, i.e., graphic codes.

Indeed, there exists a polynomial-time algorithm for solving (12) for graphiccodes. Note that
the minimization problemmin〈γ, c〉 = min

∑n
i=1 γici over a graphic codeC(G) is equivalent to

the problem of finding the minimum-weight Eulerian subgraph in the graphG whose edgesei,
i = 1, 2, . . . , n, are given the weightsγi. An Eulerian subgraph of a graph is a subgraph in which
each vertex has even degree.
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The Eulerian subgraph problem can be solved as follows8. Given a subsetT of the vertices ofG,
aT-join is a set of edgesJ of G such that a vertexv in G has odd degree with respect toJ if and only
if v ∈ T . LetN be the set of edges{ei : γi < 0}, and letT be the subset of vertices with odd degree
wrt N . Define the graphG′ to be the graphG but with edge-weightsγ′i = |γi|, i = 1, 2, . . . , n. Find
a minimum-weightT -join, J , in G′. The symmetric differenceJ∆N is the required minimum-
weight Eulerian subgraph ofG. A minimum-weightT -join can be found in polynomial time [55,
Chapter 29], and so, a minimum-weight Eulerian subgraph ofG can be determined in polynomial
time.

APPENDIX C. PROOF OFTHEOREM 6.8

We will first prove that the family,Γ, of graphic codes is not asymptotically good. This is
probably a “folk” theorem, but we could not find an explicit proof in the literature. Our proof relies
on the fact [56] that for a graphG = (V,E) with girth g and average degreeδ = 2|E|/|V | ≥ 2, the
number of vertices satisfies the so-calledMoore bound:

|V | ≥

{
1 + δ

∑⌊g/2⌋−1
i=0 (δ − 1)i if g is odd

2
∑⌊g/2⌋−1

i=0 (δ − 1)i if g is even.

For our purposes, the weaker bound|V | ≥ 2 (δ − 1)⌊g/2⌋−1 is enough, as we then have, forδ > 2,

g ≤ 4 +
2 log(|V |/2)

log(δ − 1)
≤ 4 +

2 log(|E|/2)

log(δ − 1)
, (13)

where, for the sake of concreteness,log denotes the natural logarithm.
Since codewords inC(G) correspond to cycles inG, we see that the minimum distance ofC(G)

equals the girthg of the graphG. Furthermore, ifG is connected, then (as mentioned in Section 2)
the rank of its vertex-edge incidence matrix is|V | − 1, and hence,dim(C(G)) = |E| − (|V | − 1).
Thus, the rate ofC(G) is 1 − (|V | − 1)/|E| ≈ 1 − 2/δ. Consequently, if a family of graphic
codes has dimension growing linearly with codelengthn, then by (13) their minimum distance
grows asO(logn), which implies that graphic codes are not asymptotically good. This argumentis
formalized in the proof given below.

Lemma C.1. The family of graphic codes is not asymptotically good.

Proof. We will in fact prove a stronger statement: forr ∈ (0, 1), letΓr = {C ∈ Γ : C has rate> r};
then, for any codeC ∈ Γr with lengthn ≥ 2, we have

d(C) ≤
4 log n

log(1 + r)
. (14)

Consider first an[n, k, d] codeC ∈ Γr with n > 2/r. Without loss of generality (WLOG), we can
assume thatC = C(G) for some connected graphG = (V,E) [18, Proposition 1.2.8]. Therefore,
k/n = 1− (|V |−1)/|E| > r, or equivalently,(|V |−1)/|E| < 1−r. Furthermore, sincen > 2/r,
we have that|V |/|E| < 1− r/2. Therefore, the average degree,δ, of G is larger than2/(1− r/2),
which is in turn larger than2(1 + r/2) = 2 + r. Hence, by (13),

d ≤ 4 +
2 log(n/2)

log(1 + r)
(15)

We claim that forn > 2/r, we have4 + 2 log(n/2)
log(1+r) ≤ 4 log n

log(1+r) . Indeed, note that this last inequality

is equivalent tolog(4n2)
log(1+r) ≥ 4. A simple calculation will confirm thatlog(4(2/r)2)

log(1+r) ≥ 4 for any

r ∈ (0, 1), and hence, forn > 2/r, we havelog(4n2)
log(1+r) >

log(4(2/r)2)
log(1+r) ≥ 4. Thus, (15) can be replaced

by the simpler inequalityd ≤ 4 log n
log(1+r) .

8This approach to solving the Eulerian subgraph problem was conveyed tothe author by Adrian Vetta.
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Therefore, without the assumptionn > 2/r, we have

d(C) ≤ max

{
2/r,

4 log n

log(1 + r)

}
.

However, it is straightforward to verify that(2/r) log(1 + r) ≤ 2 for any r > 0, from which we
obtain that forn ≥ 2, 4 log n

log(1+r) > 2/r, and (14) follows. �

Let D be a finite collection of codes, and letΓ + D be the set of all codes that can be expressed
asC1⊕2C2 or C1 ⊕3 C2, with C1 ∈ Γ andC2 ∈ D. The following result should not be surprising.

Lemma C.2. For any finite collection of codesD, the familyΓ + D is not asymptotically good.

Proof. Definedmax(D) = max{d(C′) : C′ is a minor of some code inD}. We will show that ifC
is a code inΓ + D with rate larger thanr, then

d(C) ≤ max

{
dmax(D),

4 log n

log(1 + r)

}
(16)

So, letC be an[n, k] code inΓ + D with k/n > r. Now, C = C1⊕2C2 or C = C1 ⊕3 C2 for
someC1 ∈ Γ andC2 ∈ D. In particular, note thatC must have length at least 4. Suppose first that
dim(C2) ≤ 2. Then,C2 cannot contain a minor equivalent to any of the codesH7, H⊥

7 , C(K5)
⊥ and

C(K3,3)
⊥, since each of these codes has dimension at least 3. So, by Theorem 2.1, C2 is graphic.

Since the family of graphic codes is closed under the operations of 2-sum and 3-sum (seee.g. [26,
Chapter 8]), it must be thatC is graphic. Therefore, (16) holds by the bound in (14).

If dim(C2) > 2, then by Propositions 4.1(b) and 4.8(b), we have thatd(C) ≤ d(C′) for some
minorC′ of C2. So, once again, (16) holds, this time by definition ofdmax(D). �

Given an almost-graphic code familyC, letD be the finite sub-family of codes with the properties
guaranteed by Definition 6.1. WLOG, we may assume thatD is minor-closed.

For r ∈ (0, 1), defineNr to be the least positive integer such that for alln > Nr,

0 <
1

log(1 + r − 2/n)
<

2

log(1 + r)
.

Note that sincelimn→∞ 1/ log(1 + r − 2/n) = 1/ log(1 + r), such anNr does exist. Now, define

dmax(r,D) = max{d(C) : C ∈ C and has length at mostNr, or C ∈ D}.

Note, in particular, that sinceD is taken to be minor-closed, we havedmax(r,D) ≥ dmax(D),
wheredmax(D) is as defined in the proof of Lemma C.2.

We now have the definitions needed to state the next result, which shows thatcodes inC can-
not have both dimension and minimum distance growing linearly with codelength. It is clear that
Theorem 6.8 follows directly from this result.

Lemma C.3. LetC be an almost-graphic family of codes. For anyr ∈ (0, 1), if C ∈ C is an[n, k, d]
code withk/n > r, then

d ≤ max

{
dmax(r,D),

8 log n

log(1 + r)

}
. (17)

Proof. From the definition ofdmax(r,D), and the bounds in (14) and (16), it is obvious that the
statement of the lemma holds for all codes inΓ ∪D ∪ (Γ + D). The proof that the statement holds
for all codes inC is by induction on codelength for a fixedr ∈ (0, 1).

So, fix anr ∈ (0, 1). If n0 is the smallest length of a non-trivial code inC, then a length-n0 code
in C cannot be decomposed into smaller codes, and so must be inΓ ∪ D. Therefore, the statement
of the lemma holds for the base case of length-n0 codes.

Now, suppose that for somen > n0, (17) holds for all codesC′ ∈ C of lengthn′ ≤ n−1 and rate
larger thanr. Let C ∈ C be an[n, k, d] code withk/n > r. If C = C1 ⊕ C2 for some (non-empty)
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codesC1 andC2 in C, then at least one ofC1 andC2 has rate larger thanr, and so (17) holds forC
by the induction hypothesis. We may thus assume thatC is 2-connected.

If C ∈ Γ∪D∪ (Γ + D), there is nothing further to be proved; so we will henceforth assume that
this is not the case. So, eitherC = π(C1 ⊕2 C2) or π(C1 ⊕3 C2) for C1, C2, π as in Definition 6.1.
WLOG, we may takeπ to be the identity permutation, so thatC is eitherC1 ⊕2 C2 or C1 ⊕3 C2,
for some[n1, k1] codeC1 ∈ Γ ∪ D, and some[n2, k2] codeC2 ∈ C. Furthermore,C2 /∈ Γ, since
C /∈ Γ ∪ (Γ + D). In particular, this means thatk2 ≥ 3, since ifk2 ≤ 2, then it would follow from
Theorem 2.1 thatC2 is graphic.

We consider the caseC = C1 ⊕2 C2 first. In this case, Definition 6.1 gives usk1 ≥ 2. We
have shown above thatk2 ≥ 3, and so by Proposition 4.1(b),d ≤ min{d(C′

1), d(C
′
2)}, where

C′
1 = C1 \{n1} andC′

2 = C2 \{1}. Note that fori = 1, 2, C′
i is an[n′i, k

′
i] code, wheren′i = ni − 1

andk′i = ki − 1. Thus,n = n′1 +n′2, and from Proposition 4.1(a), we also havek = k1 + k2 − 1 =
k′1 + k′2 + 1.

Now, if k′i/n
′
i > r for somei ∈ {1, 2}, then the statement of the lemma holds forC by the

induction hypothesis. So, we are left with the situation whenk′i/n
′
i ≤ r for i = 1, 2. But in this

case, sincek/n = (k′1 + k′2 + 1)/(n′1 + n′2) > r, we must havek′1/n
′
1 > r − 1/n′1; otherwise, we

would havek′2 > (n′1 + n′2)r − 1 − k′1 ≥ (n′1 + n′2)r − 1 − (rn′1 − 1) = rn′2, which would mean
thatk′2/n

′
2 > r. Note that sinceC1 ∈ Γ ∪ D, andC′

1 is a minor ofC1, we have thatC′
1 ∈ Γ ∪ D. If

C′
1 ∈ D or n′1 ≤ Nr, thend(C′

1) ≤ dmax(r,D); otherwise,C′
1 is graphic withn′1 > Nr, and so, by

(14) and the definition ofNr,

d(C′
1) ≤

4 log n′1
log(1 + (r − 1/n′1))

≤
4 log n′1

log(1 + (r − 2/n′1))
≤

8 log n′1
log(1 + r)

.

In any case,d(C′
1) ≤ max

{
dmax(r,D),

8 log n′
1

log(1+r)

}
≤ max

{
dmax(r,D), 8 log n

log(1+r)

}
. Sinced ≤

d(C′
1), we have that (17) holds forC.

Finally, we deal with the case whenC = C1 ⊕3 C2. The approach is essentially the same as that
in the 2-sum case. This time, we defineC′

1 = C1 \{n1 − 2, n1 − 1, n1} andC′
2 = C2 \{1, 2, 3}.

For i = 1, 2, we now find thatC′
i is an[n′i, k

′
i] code, wheren′i = ni − 3 andk′i = ki − 2. Thus,

n = n′1 +n′2, and via Proposition 4.8(a),k = k′1 + k′2 + 2. Furthermore,k1 ≥ 3 (by Definition 6.1)
andk2 ≥ 3 (shown above), and so, by Proposition 4.8(b), we haved(C) ≤ min{d(C′

1), d(C
′
2)}.

If either k′1/n
′
1 or k′2/n

′
2 is larger thanr, then (17) holds forC by the induction hypothesis. So

suppose thatk′i/n
′
i ≤ r for i = 1, 2. Sincek/n = (k′1 + k′2 + 2)/(n′1 + n′2) > r, we must

havek′1/n
′
1 > r − 2/n′1; otherwise, we would obtaink′2/n

′
2 > r. If C′

1 ∈ D or n′1 ≤ Nr, then
d(C′

1) ≤ dmax(r,D); otherwise,C′
1 is graphic withn′1 > Nr, and so, by (14) and the definition of

Nr,

d(C′
1) ≤

4 log n′1
log(1 + (r − 2/n′1))

≤
8 log n′1

log(1 + r)
.

In any case,d(C′
1) ≤ max

{
dmax(r,D), 8 log n

log(1+r)

}
, and sinced ≤ d(C′

1), we see that (17) holds for

C. The proof of the lemma is now complete. �
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