A DECOMPOSITION THEORY FOR BINARY LINEAR CODES

NAVIN KASHYAP

ABSTRACT. The decomposition theory of matroids initiated by Paul Seymour in the’d &8 had
an enormous impact on research in matroid theory. This theory, wheglfed to matrices over the
binary field, yields a powerful decomposition theory for binary lineades In this paper, we give
an overview of this code decomposition theory, and discuss some of iigatipns in the context of
the recently discovered formulation of maximum-likelihood (ML) decodifig binary linear code
over a binary-input discrete memoryless channel as a linear progiragnproblem. We translate
matroid-theoretic results of @tschel and Truemper from the combinatorial optimization literature
to give examples of non-trivial families of codes for which the ML déngdoroblem can be solved
in time polynomial in the length of the code. One such family is that consistiegad<C for which
the codeword polytope is identical to the Koetter-Vontobel fundamentgtque derived from the
entire dual cod€. However, we also show that such families of codes are not good idiago
theoretic sense — either their dimension or their minimum distance must grovirearly with
codelength. As a consequence, we have that decoding by lineaapmogng, when applied to good
codes, cannot avoid failing occasionally due to the presence of psedeloords.

1. INTRODUCTION

Historically, the theory of error-correcting codes has benefited gréatty the use of techniques
from algebra and algebraic geometry. Combinatorial and graph-theoretitods have also proven
to be useful in the construction and analysis of codes, especially within $héela years since
the re-discovery of low-density parity-check codes. However, ara af mathematics that has,
surprisingly, only played a relatively minor role in the development of codlegry is the field of
matroid theory. The reason this is surprising is that, as anyone with evesiauralerstanding of
the two fields would realize, coding theory and matroid theory are verylgloskated. The former
deals with matrices over a finite fiel and these objects are also of fundamental importance in the
latter, where they go under the namelafepresentable matroids.

The connection with matroid theory has not gone unnoticed among codingstisedndeed, as
far back as 1976, Greene [1] noticed that the Tutte polynomial of a matsbien specialized to
a linear code”, was equivalent (in a certain sense) to the homogeneous weight-etonperky-
nomial We(z,y) = >, Aiz'y™t, whereA; is the number of words of weiglitin C, andn is the
length ofC. The MacWilliams identities are then a special case of a known identity for ttie Tu
polynomial [2, Chapter 4]. The connection with matroids was also exploitedany B] to derive
MacWilliams-type identities for generalized-Hamming-weight enumerators ofla.c

However, aside from such use of tools from matroid theory to re-degselts in coding theory
that had already been proved by other means, each field seems to loblitldvdmpact on the
other. Matroid theory has derived its inspiration largely from graph thesord its most successful
applications have traditionally been in the areas of combinatorial optimizationetmebrk flows.
Very recently, matroid theory has found new applications in the rapidly ewplfield of network
coding [4].
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On the other hand, coding theory (by which we mean the theory of eomeating codes, in
contrast to the theory of network coding) has been largely uncongdevitke developments in com-
binatorial optimization, as the fundamental problems in the former seemed to daitierent
nature from those in the latter. However, the recent re-formulation of thanmen-likelihood
(ML) decoding problem, for a binary linear code over a binary-inputidite memoryless channel,
as a linear programming problem [5] has opened a channel through wiaitbid-theoretic results
in combinatorial optimization can be applied to coding theory. The key tool iretresults is the
use of the decomposition theory of matroids initiated by Seymour [6], [7].eBas Seymour's
seminal work, Gotschel and Truemper [8] showed that the minimization of a linear functional
over the cycle polytope of a binary matroid could be solved in polynomial timeddgin classes
of matroids. This immediately implies that for the corresponding families of catiesML de-
coding problem can be solved in time polynomial in the length of the code. Gheffact that
the ML decoding problem is known to be NP-hard in general [9], the exgst®f “non-trivial”
classes of codes for which ML decoding can be implemented in polynomial tinebyvisusly a
significant result. However, as we will show in this paper, for a code fatoilyhich the Gétschel-
Truemper result applies, either the dimension or minimum distance of the coithesfamily grows
sub-linearly with codelength. Thus, such code families are not good &cwding-theoretic per-
spective. However, they do illustrate the important point that polynomial-timeddétoding is
possible. Moreover, the matroid-theoretic arguments used bys@rel and Truemper do not rule
out the possibility that there may exist other code families for which polynomial-timnel&toding
algorithms exist, which are also good in terms of rate and minimum distance.

The primary goal of this paper is to provide an exposition of the ideas dedenderstand
and apply the work of Gitschel and Truemper. As mentioned earlier, their work relies upon the
machinery provided by Seymour’'s matroid decomposition theory, and soilviirst present that
theory in a coding-theoretic setting. Our presentation of this decompositionyteéll be of a
tutorial nature. We have attempted to keep the presentation self-containexldrtéimt possible;
we do not provide complete proofs of some of the difficult theorems that the basis of the
theory.

We provide the relevant definitions and background from matroid theoSeiction 2 of this
paper. As explained in that section, binary matroids and binary lineas@réeessentially the same
objects. So, techniques applicable to binary matroids are directly applicabileaxy linear codes
as well. In particular, matroid decomposition techniques can be specializedés.c

Of central importance in matroid theory is the notion of matroid minors. In the gboteodes,

a minor of a code’ is any code that can be obtained frahby a sequence of shortening and
puncturing operations. Minors have received little (if any) attention in apdireory, and this
seems to be a remarkable oversight given the fact that they sometimesedagtortant structural
properties of a code. For example, the presence or absence of caitairs (as stated precisely
in Theorem 2.1) decides whether or not a code is grapldg,has a parity-check matrix that is
the vertex-edge incidence matrix of some graph. Graphic codes hameshatied previously in
the information theory literature [10],[11], but the excluded-minor chiardation of these codes
appears to have been overlooked in these studies.

In Section 3, we introduce a notion bfconnectedness for codes, which is again a specialization
of the corresponding notion for matroids. This is closely relatek-tmnnectedness in graphs, and
interestingly enough, is also related to the trellis complexity of a code [12]. M@t explore the
latter relationship in any detail in this paper, instead referring the read&8io[ 4], where matroid
methods are used to study the structure of codes with low trellis complexity.

The notion ofk-connectedness plays an important role in Seymour’s decomposition thgory
idea of why this is so can be obtained from the simple case of 2-connesgedhéollows from
the relevant definitions that a code is not 2-connected if and only if it is ileetdsum of smaller
codes. Similar statements can be made for codes that are not 3- or &t=wh(er more precisely,
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not internally 4-connected — see Definition 4.4) via the code-compositiomtipes of 2-sum and
3-sum introduced by Seymour [6]. These operations, as well a%-suen which is in a sense the
dual operation to the 3-sum, are explained in detail in Section 4.

The operations of 2-, 3- ariésum have the non-trivial property that when two codesindC,
are composed using one of these sums to form a €ptteenC; andC,, are (up to code equivalence)
minors ofC. The relationship betweekrconnectedness and these sums can then be summarized
as follows: a binary linear code is 2-connected but not 3-connecesp.(B-connected, but not
internally 4-connected) iff it can be expressed as the 2-sum (resw. 3sum) of code<’; and
Cs, both of which are equivalent to minors 6f It follows immediately from the above facts
that any binary linear code is either 3-connected and internally 4-ctethear can be constructed
from 3-connected, internally 4-connected minors of it by a sequencperations of coordinate
permutation, direct sum, 2-sum, 3-sum a@dum. In fact, given any code, such a decomposition
of the code can be obtained in time polynomial in the length of the code.

This code decomposition theory has immediate applications to families of codesdhatnor-
closed in the sense that for each cata such a family€, any code equivalent to a minor 6f
is also in¢. Indeed, a cod€ is in a minor-closed family only if the indecomposablé.¢., 3-
connected, internally 4-connected) pieces obtained in the aforementiececposition of are
in €. The above necessary condition is also sufficient if the code fatnifyadditionally closed
under the operations of direct sum, 2-sum, 3-sum &sdm. Thus, membership of an arbitrary
code in such a familg can be decided in polynomial time iff the membershigiof 3-connected,
internally 4-connected codes can be decided in polynomial time. A formahstateof these and
other related facts can be found in Section 5 of our paper.

As an illustrative example, we also outline in Section 5 one of the major applicatfoBey-
mour’s decomposition theory. This concerns the family of regular codeéshwdre codes that do
not contain as a minor any code equivalent to[theé] Hamming code or its dual. Regular codes
are also characterized by the property that given any parity-checlxnfatof such a code, the 1's
in H can be replaced by1's in such a way that the resultirtly + 1 matrix is totally unimodular.

A totally unimodular matrix is a real matrix all of whose square submatrices hetegrdinants in
{0,1,—1}. These matrices are of fundamental importance in integer linear programnobigms
[15]. Seymour [6] proved that a binary linear code is regular iff it cendecomposed into codes
that are either graphic, or duals of graphic codes, or equivalentpgecad|10, 5, 4] code he called
RlO-

The application of the decomposition theory to linear programming, and in plantit ML
decoding, is the subject of Section 6. Feldnedral. showed that the ML decoding problem for a
length+« binary linear cod& over a binary-input discrete memoryless channel can be formulated
as a minimization problemmin ), v;¢;, wherey = (vy1,...,7v,) € R" is a certain cost vector
derived from the received word and the channel transition probabiétes the minimum is taken
over all codewordss = (ci1,...,¢,) in C. Now, if C is a graphic code, then standard graph-
theoretic techniques from combinatorial optimization can be used to find the mingwadeword
in time polynomial inn; a sketch of such an algorithm can be found in Appendix Bit&hel and
Truemper [8] additionally showed that this minimization could also be performgublynomial
time for certain minor-closed code families that are “almost-graphic” in a ces@mse. Such a
code family€ is characterized by the property that there exidinite list of codes® such that each
C € ¢ can be decomposed in polynomial time in such a way that at each step of tmeptesition,
one of the pieces is either graphic orgn

Grotschel and Truemper gave a polynomial-time algorithm that takes as inpugthdercode
C from an almost-graphic famil¢ and a cost vecto € R", and constructs a codewotde C
achievingmin ) . v;c; by solving related minimization problems over the pieces of the decomposi-
tion that are graphic or i®. This algorithm is also outlined in Appendix B. Thus, the ML decoding
problem can be solved in polynomial time for almost-graphic codes.
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Grotschel and Truemper also gave several examples of almost-graphic famiigrestingly
enough, one of these families is that consisting of catiés which the codeword polytope.é.,
the convex hull inR™ of the codewords in the length-codeC) is identical to the Koetter-Vontobel
fundamental polytope [16] derived from the entire dual cGde

Unfortunately, the one truly original result in this paper is a negativeltre¥de show that for
codes in an almost-graphic family, either their dimension or their minimum distammvesgub-
linearly with codelength. One important implication of this is that decoding by lipeagram-
ming, when applied to any good error-correcting code, must inevitablygaohuhe occasional
pseudocodeword, thus resulting in decoding failure.

We make some concluding remarks in Section 7. Some of the lengthier or monéicedgiroofs
of results from Sections 4 and 6 are given in appendices to preserflewhef the presentation.

2. MATROIDS AND CODES

We shall assume familiarity with coding theory; for relevant definitions, $&g We will mainly
concern ourselves with binary linear codes, and use standard cthdingetic notation throughout
this paper. In particular, unless explicitly specified otherwise, we will thguafified term “code”
to mean “binary linear code”. Thus, &n, k] code is a binary linear code of lengtrand dimension
k, and an[n, k, d] code is ann, k] code that has minimum distande Given a code’, dim(C)
denotes the dimension 6f andC+ denotes the dual code 6f

The main purpose of this section is to introduce concepts from matroid theairgrinapplicable
to coding theory. We will largely follow the definitions and notation of Oxley][\8/e begin with
a definition of matroids.

Definition 2.1. A matroid M is an ordered paif( £, Z) consisting of a finite sef’ and a collection
7 of subsets oF satisfying the following three conditions:
(i) 0eT;
(i) if e ZandJ C I,thenJ € Z; and
(i) if I;, I, are inZ and|I;| < |I»], then there exists: € I, — I; such thatl; U {e} € Z.

The setE above is called thground setof the matroidM, and the members df are the
independent setsf M. A maximal independent sete., a setB € 7 such thatB U {e} ¢ Z for
anye € E — B, is called aasisof M. Itis a simple consequence of (iii) in Definition 2.1 that all
bases of\f have the same cardinality. The cardinality of any basid/ofs defined to be theank
of M, denoted by-(1M).

A subset ofE that is not inZ is called adependent seMinimal dependent setge., dependent
sets all of whose proper subsets ar€jrare calleccircuits. It easily follows from the definitions
that a subset of’ is a dependent set if and only if it contains a circuit. A dependent setémabe
expressed as a disjoint union of circuits is called/ele

The above definitions of independent and dependent sets, basem&rgimply try to abstract
the notion of independence and dependence, bases and dimengiectivesy, in a vector space
over a field. Indeed, the most important class of matroids for our puspssthe class of binary
matroids, which are simply vector spaces over the binary field, or to pubihenway, binary linear
codes.

Let H be a binarym x n matrix, and letvy, vo, ..., v, denote the column vectors éf. Set
E = {1,2,...,n} and takeZ to be the collection of subsefs= {i;,i2,...,is} C E such that
the sequence of vectoys, , v;,, . . ., v;, IS linearly independent over the binary fidld. It follows
from elementary linear algebra thdf, 7) satisfies the definition of a matroid given above, and thus
defines a matroid which we shall denotefj H]. Note that-(M [H]) equals the rank (ovéfs;) of
the matrixH.

Lin this paper, we will usel — B to denote the set differencén B°. The more usual notatioA \ B has been reserved
for the matroid operation of “deletion”.
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A matroid M = (E,Z) is calledbinary if it is isomorphic to M [H] for some binary matrix
H. Here, we say that two matroidd = (E,Z) andM’' = (E’,Z’) areisomorphic denoted by
M = M, if there is a bijection) : E — E’ such that for all/ C E, itis the case thaf € 7 if and
only if ¢(J) € Z'.

A binary matrix H is also the parity-check matrix of some binary linear c@te Note that
r(M[H]) = n—dim(C). The code& and the binary matroid/[H| are very closely related. Recall
from coding theory that a codeword= (cicz...¢,) € C, ¢ # 0, is calledminimalif its support
supp(c) = {i : ¢; = 1} does not contain as a subset the support of any other nonzero @atew
in C. Itis easily seen that is a minimal codeword of iff its support is a circuit of M [H]. It
follows from this that for any € {0,1}", ¢ # 0, we havec € C iff supp(c) is a cycle ofM[H].
Furthermore, a routine verification shows that for binary matrileand H', M[H| = M[H'] iff
H andH' are parity-check matrices of the same c@dd his allows us to associate a unique binary
matroid with each binary linear codk and vice versa.

Thus, binary matroids and binary linear codes are essentially the samésoljguarticular, two
codes are equivaletif and only if their associated binary matroids are isomorphic. This association
between codes and binary matroids allows us to use tools from matroid thestagitobinary linear
codes.

While many of the tools used to study matroids have their roots in linear algebra,ithanother
source that matroid theory draws from, namely, graph theory. Indeadn®y’s founding paper on
matroid theory [19] was an attempt to capture the fundamental propertiedegendence that are
common to graphs and matrices.

Let G be a finite undirected graph (henceforth simply “graph”) with edgefseDefinecyc to
be the collection of edge sets of cyclég( closed walks) irG. Definel C F to be independent if
1 does not contain any member @fc as a subset. Equivalently,is independent if the subgraph
of G induced bylI is a forest. Setting@ to be the collection of independent subsetsfit turns
out that(E, Z) is a matroid [18, Proposition 1.1.7]. This matroid is called ¢igele matroidof G,
and is denoted b}/ (G). A matroid that is isomorphic to the cycle matroid of some graph is called
graphic

Clearly, the circuits ofV/(G) are the edge sets of simple cyclég.( closed walks in which no
intermediate vertex is visited twice) (h The nomenclature “cycle” for the disjoint union of circuits
in a matroid actually stems from its use in the context of graphs. The badé$®f are the unions
of edge sets of spanning trees of the connected componegtstténce (M (G)) = |V (G)| — ¢,
whereV (G) is the set of vertices af, andt is the number of connected componentg;of

It is not hard to show that a graphic matroid is binary. IndeedAlbe the vertex-edge incidence
matrix of G. This is the matrixa; ;| whose rows and columns are indexed by the vertices and
edges, respectively, of, wherea; ; = 1 if the jth edge is incident with théth vertex, andz; ; = 0
otherwise. It may be verified that/ (G) = M|[A] (seee.g, [18, Proposition 5.1.2]).

Given a graphg, we will denote byC(G) the code associated (or identified) with the binary
matroid M (G). In other wordsC(G) is the binary linear code that has the vertex-edge incidence
matrix of G as a parity-check matrix. We will refer to such codesgeaphic codesand denote
by I' the set of all graphic codes. Graphic codes have made their appegrsewously in the
information theory literature [20, 10] (also see [11] and the referetiwgin).

The repetition code of length is a graphic code; it is the code obtained from theycle C,,,
the graph consisting of a single cycle nivertices. However, not all binary codes are graphic. For
example, it can be shown that the [7,4] Hamming code is not graphic. It sipp@so give a precise
characterization of the codes that are graphic in terms of excluded manoogion we need to first
define.

2In coding theory, two binary linear codes are defined toegeivalentif one can be obtained from the other by a
permutation of coordinates. In this paper, we will use the notati@) to denote the code obtained by applying the
coordinate permutation to the codeC.
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There are two well-known ways of obtaining codes of shorter length faagiven parent code.
One is via the operation gfuncturing in which one or more columns are deleted from a generator
matrix of the parent code [17, p. 28]. The second method is calledtening and involves one or
more columns being deleted from a parity-check matrix of the parent c@de[29]. Given a code
C of lengthn with generator matrixG, and a subsef C {1,2,...,n}, we will denote byC/.J the
code obtained by puncturing the columngdWith indices inJ, and byC \ J the code obtained by
shortening at the columns 6f with indices inJ. Note thatC/.J is simply the restriction of the code

C onto the coordinates not in, andC \J = (CL/J)l. The notation, though potentially confusing,
has been retained from matroid theory, where the analogues of purgcamiishortening are called
contractionanddeletion respectively.

Definition 2.2. A minor of a codeC is any code obtained froii via a (possibly empty) sequence
of shortening and puncturing operations.

It may easily be verified that the precise order in which the shortening amctyring operations
are performed is irrelevant. Hence, any minocahay be unambiguously specified using notation
of the formC/X \'Y (or equivalently,C \ Y/X) for disjoint subsetsX,Y C {1,2,...,n}; this
notation indicates that has been punctured at the coordinates indexed tand shortened at the
coordinates indexed by .

The above definition allows a code to be a minor of itself. A mino€dhat is notC itself is
called aproper minorof C. Minors have not received much attention in classical coding theory, but
they play a central role in matroid theory. We will not touch upon the subjeetimors of general
matroids, leaving the reader to refer to [18, Chapter 3] instead. Hoyweeewill briefly mention
how the matroid operations of deletion and contraction specialize to the cycleidsanf graphs.

Let G be some graph, with edge skt Givene € E, define the graply \ e to be the graph
obtained by deleting the edgealong with any vertices that get isolated as a result of deleting
Also, defineG /e to be the graph obtained by contracting.e., deletinge and identifying the two
vertices incident witle. The process of obtaining/e from G is callededge contractionand that of
obtaininggG \ e from G is of course calle@dge deletionThese operations are inductively extended
to defineG \ J andG/J for anyJ C E. A minor of a graphg is any graph obtained froig via a
(possibly empty) sequence of edge deletions and contractions.

The operations of edge deletion and contraction are the graphic anslofeede shortening and
puncturing, respectively. A mathematically precise statement of this is as follpwen a grapld
with edge sef, and anyJ C FE, we have [18, Equation 3.1.2 and Proposition 3.2.1]

C(G)/J =C(G/J) and C(G)\J =C(G\J).

It follows that any minor of a graphic code is graphic.
Returning to the question of determining which codes are graphic, the anawée succinctly
given in terms of a list of forbidden minors by the following result of Tutte][21

Theorem 2.1([21]). A code is graphic if and only if it does not contain as a minor any code
equivalent to the [7,4] Hamming code or its dual, or one of the catidé;) andC (K3 3)*.

In the statement of the above theorelfy, is the complete graph on five vertices, whitg 3 is
the complete bipartite graph with three vertices on each sidé(s)" is the[10, 4, 4] code with
generator matrix

1000111000
0100100110
0010010101}
0001001011
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while C(K3 3)* is the[9, 5, 3] code with generator matrix

100001 1O00O0
010000110
0010O0O0O011
000101001
000011111

A proof of the theorem can be found in [18, Section 13.3]. On a relatéd, rs@veral authors
have given algorithms for deciding whether or not a given code is gud@R, 23, 24, 25], [26,
Section 10.6]. These algorithms run in time polynomial in the size of the input, wd@inhbe a
parity-check matrix for the code. We will use this fact later in the paper.

3. CONNECTEDNESS

As mentioned previously, matroid theory draws upon ideas from grapth&dkey concept in
graph theory is the notion df-connectedness for graphs [27, Section I11.2]. Given a g@aphe
will let V(G) denote the set of its vertices. A graphcsnnectedf any pair of its vertices can be
joined by a path; otherwise, it disconnectedA maximal connected subgraph @fis aconnected
componentor simplycomponentof G. LetG — W denote the graph obtained frathby deleting
the vertices if?” and all incident edges. § is connected and, for some subBétc V(G),G—W
is disconnected, then we say thdtis avertex cuf G, or thatWW separates. If G is a connected
graph that has at least one pair of distinct non-adjacent verticesptimectivitys (G ) of G is defined
to be the smallest integgrfor which G has a vertex cutV” with || = j. If G is connected, but
has no pair of distinct non-adjacent verticesg) is defined to bgV'(G)| — 1. Finally, if G is
disconnected, then we setG) = 0. For an integek > 0, G is said to be:-connectedf «(G) > k.
Thus, a graplyy with |V (G)| > 2 is connected if and only if it is 1-connected.

The notion ofk-connectedness of graphs can be extended to matroids, but it has tmée d
carefully. One of the problems encountered when attempting to do so is twatrkctedness of
graphs does not extend directly to matroids. The reason for this is thahjodisconnected graph
g1, there is a connected gragh such thatM (G,) = M (Gs) [18, Proposition 1.2.8]. So, the link
betweenk-connectedness in graphs and that defined below for matroids beginbheithseé: = 2.

The definition we present df-connectedness for matroids was formulated by Tutte [28]. We
will once again restrict our attention to the case of binary matrdids ¢odes) only. LetC be a
binary linear code of length. We will hereafter usén| to denote the set of intege{s, 2,...,n},
and forJ C [n], we setJ¢ = {i € [n] : i ¢ J}. To further alleviate notational confusion, for
J C [n], we will defineC| ; to be the restriction af onto its coordinates indexed by Equivalently,
C|; = C/J¢, the latter being the code obtained fréhby puncturing the coordinates not.ih

Definition 3.1. For a positive integek, a partition (J, J¢) of [n] is called ak-separation o€ if
min{|.J|, |J¢[} > & (1)
and
dim(C|s) 4+ dim(C|je) — dim(C) < k — 1. 2
If C has ak-separation, thei is said to bek-separated

When equality occurs in (1),/, J¢) is called aminimal k-separation When equality occurs in
(2), (J,J¢) is called arexactk-separation Note that the expression on the left-hand side of (2)
is always non-negative, sindém(C|;) + dim(C|jc) > dim(C) for any J C [n]. This fact easily
yields the following result.

Lemma 3.1. C is 1-separated iff it is the direct sum of non-empty codes.
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Proof. Sincedim(C|;) + dim(C|;c) > dim(C) for any J C [n], we see from Definition 3.1 that
(J,J¢) is a 1-separation @ iff .J, J¢ are non-empty, andim(C| ;) +dim(C| ;<) = dim(C). Hence,
(J,J€) is a 1-separation af iff .J, J¢ are non-empty, and is the direct sum of|; andC|;.. O

We now give the definition ok-connectedness of codes. Note that this definition starts with
k=2.

Definition 3.2. For k > 2, a codeC is defined to bé-connectedf it has nok’-separation for any
kE < k.

Example 3.1. LetC be the [7,3,4] simplex code with generator matrix

1000111
G=|1010101T1]/|.

0011101

SettingJ = {1,2,3,7}, we see thatJ, J¢) forms a 3-separation of. Indeed, the rank of the
submatrix ofG formed by the columns indexed ys 3, while the rank of the submatrix formed by
the columns indexed b¥f is 2. In other wordsdim(C| ;) = 3 anddim(C|;c) = 2. Thus, both (1)
and (2) are satisfied with equality, which maKés.J¢) a minimal as well as an exact separation.

It may be verified (for example, by exhaustive search) that therealfe or 2- separations for
C, and all 3-separations are minimal and exact. In particuldrjs 2- and 3-connected, but not
4-connected.

The quantitydim(C| ;) + dim(C|se) — dim(C), appearing on the left-hand side of (2) in Def-
inition 3.1 also arises as part of the definition of the state-complexity profileroinamal trellis
representation of a code [29],[12],[30],[31],[32]. To be precisegiya lengthn codeC, thestate-
complexity profilef a code [31, Equation (1)] is defined to be the vestd) = (so(C),. .., sn(C)),
wheres;(C) = dim(C|s) + dim(C| ) — dim(C) for J = [i] C [n]. Here,[0] is defined to be the
null setf. It is known [12] thats(C) = s(C*), or equivalently, for any/ C [n],

dim(C| ;) 4+ dim(C| ) — dim(C) = dim(C*|;) + dim(C*| ) — dim(Ch).

As a result, we obtain the interesting and useful fact, stated in the propobitiow, thatk-
connectedness is a property that is invariant under the operation of teddte duals.

Proposition 3.2. LetC be a binary linear code of length. For anyk > 1, a partition (.J, J¢) of
[n] is a k-separation of iff it is a k-separation o’+. Therefore, for any: > 2, C is k-connected
iff C is k-connected.

Consider again the simplex code of length 7 from Example 3.1. By Propositibalibve, its
dual — the[7, 4] Hamming code — is also 2- and 3-connected, but not 4-connected.

The link between graph and coéleconnectedness is strong, but they are not equivalent notions.
The closest relation between the two occurs wkea: 2. If G is a loopless graph without iso-
lated vertices an¢V (G)| > 3, thenC(G) is 2-connected iffj is a 2-connected graph [18, Proposi-
tion 4.1.8]. To describe the relation between graph and code connessddmgeneral, we define the
connectivity A\(C), of a codeC to be the least positive integkrfor which there is &-separation of
C, if somek-separation exists faf; A(C) is defined to bex otherwise. Note that is k-connected
iff A\(C) > k, and by Proposition 3.2,(C) = A(C1). It can be shown [18, Corollary 8.2.7] that for
a connected grapfi # K3 having at least three vertices,

A(C(9)) = min{r(G),9(9)},

whereg(G) denotes the girth (length of shortest cycle)of

Now, our reason for presenting a notion of connectedness for dedest just that it extends
an idea from graph theory. Certain methods of code composition havedeeeloped in matroid
theory that relate to 2- and 3-separations. These code composition metrode considered to
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be generalizations of direct sums, and they allow the result of Lemma 3.1 tddreded in a non-

trivial manner, paving the way for the powerful decomposition theoryioaty matroids initiated

by Paul Seymour [6]. This decomposition theory allows one to decompdsamy tinear code into

smaller codes in a reversible manner, in such a way that the smaller codeuaralent to minors

of the original code. As we shall describe in detail in the next section, dosfilch a decomposition
of a code, we need to find 1-, 2- or 3-separations in the code, if spetratens exist.

For any fixed positive integet, there are polynomial-time algorithms known (see [26, Section
8.4]) that, given a binary linear codg either find ak-separation o, or conclude that no such
separation exists. Here, by “polynomial-time algorithm,” we mean an algorithtruha in time
polynomial in the length of. For instance, the problem of deciding the existence of 1-separations
in a codeC is almost trivial. To do so, one takes a matrxthat is either a generator matrix or
a parity-check matrix o€, brings A to reduced row-echelon form (rref), removes all-zero rows if
they exist, and finally constructs a certain bipartite grdpi(A). For anm x n matrix A, the
graph BG(A) is defined as follow’ the vertex set oBG(A) consists of a set of left vertices
{l1,...,1l,} and a set ofn right vertices{r, ...,y }; an edge connects the verticgsandr;
iff the (4, j)th entry of A is 1. The code is 2-connectedife. has no 1-separation) ifBG(A)
is connected [26, Lemma 3.3.19]. dfis not 2-connected, the connected component8@Gf A)
induce the required 1-separation.

In general, for fixed integerk, [ with [ > k, the problem of finding &-separatior(./, J¢) of a
code, withmin{|J|, |J¢|} > [, if it exists, can be solved in time polynomial in the length of the
code, by an algorithm due to Cunningham and Edmonds (in [33]). Welske¢cidea here. The
algorithm is based on the fact that the following problem can be solved in tilgagraial inn: for
codesC; andC, each of length, find a partition offn] that achieves

min{dim(Ci |y, ) + dim(Ca|z,) = (J1,J2) is a partition of[n]}. (3)

The above problem is solved using tatroid intersection algorithr{B4], [26, Section 5.3], which
we do not describe here.

The k-separation problem of interest to us is equivalent to the following prolitena fixed
integer! > k: given a code& of lengthn, find a partition ofjn| that achieves

min{dim(C|z, ) + dim(C|z,) : (J1, J2) is a partition of[n], min{|J1|, |J2|} > [}. 4)

Indeed, ak-separation(|.J|,|J¢|) of C, with min{|J|, |J¢|} > [, exists iff the minimum in (4) is
at mostdim(C) + k& — 1. Now, the minimization in (4) can be solved by finding, for each pair of
disjoint/-element subset®, E5 C [n], the partition(.J1, J2) of [n] that achieves

min{dim(C|,) + dim(C|,) : (J1,J2) is a partition of[n], J; D E1, Ja D Es}. (5)

If (5) can be solved in time polynomial imfor each pair of disjoint-element subsets; , £ C [n],
then (4) can also be solved in time polynomiahinsince there ar®(n?) pairs(Ey, E5).

It turns out that (5) can be solved in time polynomiakioy converting it to a minimization of
the form in (3), which, as mentioned above, can be solved in polynomial tirhe.trick is to set
C1 = C/E, \E; andC, = C/E; \ E,, which are both codes of length— | E; U E»|. For notational
convenience, we will let the coordinates @f andC; retain their indices fronC, i.e., the set of
coordinate indices fo€;, as well as folCy, is [n] — (E1 U E»). It may easily be verified that for
J C [n]—(E1UEy),dim(C;|y) = dim(C|juE,) —dim(C|g,), i = 1, 2. Therefore, for any partition
(Jl, JQ) of [TL] — (E1 U Ez), settingji =J;UE;,i=1,2,we have

dim(C1, ) + dim(Ca|z,) = dim(C|3,) + dim(C|5,) — dim(C|g, ) — dim(C|g, ), (6)

and(Jy, Jo) is a partition of{n]. Conversely, for any partitiof/;, J3) of [n], settingJ; = J; — E;,
i = 1,2, we see that.Ji, J2) forms a partition ofn] — (E; U E»), and (6) is once again satisfied.

3f Aisa parity-check matrix of the code, thé&hG(A) is simply the corresponding Tanner graph.
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Thus, we see that for a fixed pair of disjoirélement subset&, F> C [n], given a code& of
lengthn, if we setC; = C/Ey \ E1 andCy = C/E1 \ E2, then the minimum in (5) is equal to

min{dim(Cy |, )+dim(Ca|,) : (J1,J2) is a partition ofin]|—(E1UE>) }+dim(C| g, ) +dim(C| g, ).
Therefore, for a give® and(F;, E2), the minimization problem
min{dim(Cy|s, ) + dim(Ca| ) : (J1,J2) is a partition ofjn] — (E1 U E2)},

which is just an instance of (3), is equivalent to (5), as the two minima onlgrdify a constant.
We conclude that since (3) can be solved in time polynomial, iso can (5).

The above sketch does indeed give a polynomial-time algorithm for deternfirgegparations
(J,J¢) with min{|.J|, |.J¢|} > I, but the complexity of the algorithm i8(n?+) for some constant
oy that arises from the matroid intersection algorithm. Clearly, this is not vergtiped even for
[ = 3 or 4, and as we shall see in the next section, these valuesoafie up in the implementation
of Seymour’'s decomposition theory. A more efficient, albeit more involvieghrithm for finding
2- and 3-separations is described in [26, Section 8.4].

As a final remark in this section, we mention that the fact that there existithigar for solving
the minimization problems (3)—(5) that run in time polynomiakimeither contradicts nor sheds
any further light on the NP-completeness results for the closely relatétgons considered in [31].

4. CoDE COMPOSITION ANDDECOMPOSITION

The code composition/decomposition methods described in this section wetegV by Sey-
mour in close analogy with a method of composing/decomposing graphs chtied-sum In a
cliqgue-sum, two graphs, each containingasubgraph k-clique), are glued together by first pick-
ing a k-clique from each graph, sticking the two cliques together so as to formgéesirclique
in the composite graph, and then deleting some or all of the edges from thig.clidormal
description of clique-sum can be found in [6] or in [18, p. 420].

Our exposition of these code composition/decomposition techniques is bagsymour’s pa-
per [6]. LetC andC’ be binary linear codes of lengthandn’, respectively, and let: be an integer
satisfying0d < 2m < min{n,n’}. We first define a codé ||, C’ as follows: ifG = [g1 g2 ... &x)
andG’ = [g] g5 ... g,] are generator matrices 6fandC’, respectively, theg ||,,, C’ is the code
with generator matrix

g1 .-+ Bn-m 8Bn-m+l1 --- 8Bn 0 0
o ... 0 g} RN (- A T -

Thus,C |, C"is a binary linear code of length + »’ — m. This code is almost like a direct sum
of C and(C’ except that the two component codes overlapipositions. Indeed, whem = 0,
C |lm C' is the direct sum of and(’.

Codewords o€ ||,,, ¢’ are of the fornx ||,,, ¢/, forc = cica...,¢, € Candc’ = did, ..., ¢
C', wherec ||, ¢/ = é1¢2. .. énip—m is defined to be

x
G foril<i<n-—-m
& = Ci+C§_n+m forn—-m+1<i<n
c forn+1<i<n4+n —-m

i—n—+m

In other wordsc ||,, ¢ is the binary word of length. + n’ — m composed as follows: the first
n —m symbols ofc ||,,, ¢’ are equal to the first — m symbols ofc, the nextn symbols ofc ||,,, ¢’
are equal to the coordinatewise modulo-2 sum of therfasymbols ofc and the firstm symbols
of ¢/, and the last’ — m symbols ofc ||,,, ¢’ are equal to the last’ — m symbols ofc’.

FromC ||, C', we derive a new code, which we temporarily denoteShy(C,C’), by shortening
at them positions wher€ andC’ are made to overlap. To be precise,Jet {n —m+1,n—m+
2,...,n},andset,,(C,C") = (C ||m C")\J. Thus,S,,(C,C’) is a code of length+n'—2m which,
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FIGURE 1. The minimal trellis of the codé @, C of Example 4.1.

by choicé of m, is greater tham andn’. Once again, note tha,(C,C’) =C ||o C' = C & C',
whered denotes direct sum.

We will actually only be interested in two instances of the above constructiber(¢than the
direct-sum case ofr = 0), one of which is presented next, and the other is introduced later in
Section 4.2.

4.1. 2-Sums. The S,,(C, C’) construction withn = 1 is called a 2-sum in certain special cases.

Definition 4.1. LetC, C’ be codes of length at least three, such that
(P1) 0...01 is not a codeword of or C*;
(P2) 10...0 is not a codeword of’ or C'*.

Then,S;(C,C") is called the2-sumof C and(’, and is denoted bg§ &2 C'.

Note that 2-sums are only defined for codes having the properties @1)P2) listed in Defini-
tion 4.1. These properties can be equivalently stated as follows:

(PT) 0...01is not a codeword of, and the last coordinate 6fis not identically zero;

(P2) 10...0is not a codeword of’, and the first coordinate @f is not identically zero.
As we shall see below, (Pland (P2) are more directly relevant to an analysis of the 2-sum con-
struction.

Example 4.1. LetC be the[7, 3, 4] simplex code with the generator matrix given in Example 3.1.
As this code satisfies both (P1) and (P2) in Definition 4.1, we can défimeC. Carrying out the
2-sum construction yields thé2, 5, 4] codeC @2 C with generator matrix

100011000T1T11
01 01 0100O0T1T171
G=|001110000T1T11
0000O0ODO0ODT1O0T1HQ0T1:1
0000O0ODO0OOT1T1T1FQ0:1

The minimal trellis for this code is shown in Figure 1. It is easily seen (from tidte-£omplexity
profile of the minimal trellis, for example) that, with= {1,2,3,4, 5,6}, (J, J¢) is a 2-separation
of C @, C. It may further be verified that @, C has no 1-separation, meaning that it is 2-connected.
Finally, we note that by shortening®- C at the 7th and 8th coordinates, and puncturing the 9th,
11th and 12th coordinates, we obtain the simplex c@dgain. In other wordsC is a minor of

C @9 C. These observations are not mere coincidences, as we shall s&e belo

The dimension and minimum distance of a 2-sim, C’ can be related to the corresponding
parameters of the component codeandC’. Given a binary wordk, we will usew(x) to denote
its Hamming weight, and for a codg we will let d(C) denote the minimum distance 6f

“4The construction o8, (C,C’) would also work if we only required that < m < min{n,n’}, and not0 < 2m <
min{n,n’}. The stronger condition is imposed so that&g(C,C’) construction yields a code of length strictly greater
than the lengths of the component codeandC’.
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Proposition 4.1. LetC andC’ be codes for whiclf &, C’ can be defined.

(@) dim(C @2 C") = dim(C) + dim(C’) — 1.

(b) If dim(C) > 1, thend(C @2 C') < d(C \ {n}), wheren is the length ofC. Similarly, if
dim(C’) > 1, thend(C®2C") < d(C'\{1}). Otherwise, iflim(C) = dim(C’) = 1, thend(C®2C’) =
d(C)+d(C") — 2.

Proof. Throughout this proofp andrn’ denote the lengths @f andC’, respectively. Also, we shall
letx || x" denote the concatenation of binary wosdandx’.

(a) By definition,C ®2C" = (C ||1 C")\{n}, and so, the 2-sum is isomorphic to the subcédef
C |1 C’ consisting of those codewordsés . . . ¢,4,,v—1 such that,, = 0. Since the last coordinate
of C is not identically zero¢ is a proper subcode ¢f ||; ', and hencedim(C §2C’) = dim(€) =
dim(C ||; ') — 1.

We claim that the direct sui® & C’ is in fact isomorphic (as a vector space o¥fg) to C ||; C’.
Indeed, consider the map: C ® C' — C ||; C' defined viag(c || ¢/) = c |1 ¢/, forc € C and
¢’ € C'. This is a homomorphism onto [|; C’, but sinced...01 ¢ C and10...0 ¢ C', we have
ker(¢) = {0}, which shows that is in fact an isomorphism.

Thereforedim(C @2 C') = dim(C |1 ¢') — 1 = dim(C & C’) — 1, which proves the result.

(b) If dim(C) > 1, thendim(C \{n}) > 1. So, there exists a nonzero codewordiR{n}. Let
¢ be a non-zero codeword of least weightdn {n}. Sincec0 € C, we have, by construction of
C®aC', ¢ 0€eCayC, where0 has lengthh’ — 1. Thus,d(C &2 C') < w(¢) = d(C \{n}). A
similar argument shows thatdfim(C’) > 1, thend(C @2 C") < d(C" \{1}).

Suppose thadim(C) = dim(C’) = 1, so that, by part (a) aboveim(C &, C') = 1 as well. Let

c=(c1,...,cn)andc’ = (c}, ..., c,) be the unique nonzero codeword<imndC’, respectively.
By (PY) and (P2), we must have,, = ¢| = 1, and furthermored(C) = w(c) andd(C’) = w(c’).
By construction of ¢, C’, the unique non-zero codeword@ng, C'is (c1, . . ., cn—1, 5, . .., Ch),
which has weight equal te(c) + w(c’) — 2. O

An interesting property of 2-sums is that they behave just like direct suaerihne operation of
taking code duals. Note that by virtue of (P1) and (P2) in Definition 4.1, then2 ofC andC’ can
be defined if and only if the 2-sum of their duals; andC’L, can be defined.

Proposition 4.2([18], Proposition 7.1.20)LetC andC’ be codes for whiclf &5 C’ can be defined.
Then,

CaC)-=cta,ct.

This result can be trivially derived from Theorem 7.3 in [35], but fompleteness, we give a
simple algebraic proof in Appendix A. As an example, the above result implashk matrixG
given in Example 4.1 is the parity-check matrix of the 2-sum of two copies @4 Hamming
code.

While the properties of 2-sums presented above are interesting, thénessfof 2-sums actually
stems from the following theorem of Seymour [6], which is a result analsgollemma 3.1.

Theorem 4.3([6], Theorem 2.6) If C; andC, are codes of length; andns, respectively, such that
C = C1 @2 Co, then(J, J¢) is an exact 2-separation ¢f, for J = {1,2,...,ny — 1}. Furthermore,
Cy, andC, are equivalent to minors daf.

Conversely, if(J, J¢) is an exact 2-separation of a code then there are code$; and(C, of
length|.J| + 1 and|.J¢| + 1, respectively, such th&tis equivalent t&’; & Co.

The following corollary is a more concise statement of the above theoremisandre in the
spirit of Lemma 3.1.
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Corollary 4.4. A codeC has an exact 2-separation iff there exist codesndC», both equivalent
to proper minors of’, such that is equivalent t&; &5 Co.

Another corollary [18, Theorem 8.3.1], stated next, is a consequeites dact that ifC is a
2-connected code, then any 2-separatioi® ohust be exact; if not, the 2-separation would be a
1-separation as well, which is impossible(as 2-connected.

Corollary 4.5. A 2-connected codgis not 3-connected iff there exist codisand(C,, both equiv-
alent to proper minors of, such thatC is equivalent ta’; - Cs.

We will not prove Theorem 4.3 in its entirety, referring the reader inste&ktonour’s original
proof, or the proof given in Oxley [18, Section 8.3]. However, we wikdribe an efficient con-
struction of the components of the 2-sum when an exact 2-sepafatidfi) of C is given, as it is
a useful tool in code decomposition. This construction effectively akie converse part of the
theorem. Our description is based on the construction given in [26, SecHpn 8

Let C be a code of lengthh and dimensiork, specified by & x n generator matrixG, and
let (J, J¢) be an exact 2-separation 6f By permuting coordinates if necessary, we may assume
thatJ = {1,2,...,m} for somem < n. Let G|; andG| ;. denote the restrictions af to the
columns indexed by and J¢, respectively; thusG = [G|; G|jc]. Letrank(G|;) = k; and
rank(G|je) = ko; since(J, J¢) is an exact 2-separation 6f we havek; + k2 = k + 1. Bring
G into reduced row-echelon form (rref) ovls. Permuting coordinates withisi and within J¢ if
necessaryyref(G) may be assumed to be of the form

~ [, A O B
“=10 0 Iy, C]’ %

wherel;, for j = ki, ko — 1, denotes thg x j identity matrix,A is ak; x (|J| — ki) matrix, B is a
k1 x (|J¢] — k2 + 1) matrix,C'is a(ke — 1) x (|J¢| — k2 4+ 1) matrix, and theD’s denote all-zeros
matrices of appropriate sizes. As a concrete example, consider the Gagiben in Example 4.1,
which is indeed of the above form, with| = |.J¢| = 6, k1 = ks = 3,

0 11 0111
A=]11 01|, B=]|0111 andC:[}?éi}
1 10 0111
!l O B .
The fact that the submatri I C must have rank equal t@nk(G|jc) = ko implies
2—1

that B must have rank 1. Henc® is actually a matrix with at least one nonzero row, cab,iiand
at least one nonzero column, callit Also, each row ofB is either0 or identical tob, andb is
the lengthk; column vector whoséth component is a 1 if théth row of B is equal tob, and is O
otherwise. In other wordd3 is the product of the column vectbrwith the row vectorb.

Now, define

Gi =[Ix, A b
and .
1 0 b | '
G2 = |: 0 Ik:z—l C :| - [Ikz C]?
where0 denotes an all-zeros column-vector, arfd= g

It is not hard to show that i€; andC, are the codes generated by and G4, respectively,
thenC; @, Cs is the code generated by the matéixin (7). Indeed, carefully going through the
construction, it may be verified that all the rows@fare inC; @, C2. Hence,dim(C; @2 Co) >
rank(G) = ki + ko — 1. However, by Proposition 4.1(a), we have that (C; ©2Cs) = dim(Cy) +
dim(Ce) —1 = k1 + ko — 1. Hencedim(C; @2 C2) = rank(G), implying thatG must be a generator
matrix forC; @- Cs.
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Example 4.2. For the matrixG in Example 4.1, we find the matricé§ andG5 to be

1000111 1000111
Gi=|0101011]|, andGo=|0101011],
0011101 0011101

which are indeed the generator matrices of the two simplex codes whasm & represented by
G.

It can also be observed thé&t andC, are minors ofC; ©» Co. Indeed, to obtaid; as a minor
of C; @, Cy, we proceed as follows. Legtbe the index of a column af in which the submatrix
B has a nonzero column. For the matrix of Example 4.tpuld be either 10, 11 or 12. Define
J1 = {|J’—|—1, |J|—|—2, ceey |J|—|—k‘2—1}, andJy; = J¢— (J1U{j}) Then,(Cy = (Cl 692(32)\J1/J2.
To obtainC, as a minor, letj’ be the index of a row of in which the submatrix3 has a nonzero
row. For the matrix of Example 4.3/ could be either 1, 2 or 3. Thgth column ofG is of the
form [0...0 1 0...0]%, the single 1 being th¢/th entry. DefineJ; = {1,2,...,k} — {5/} and
Jy ={k1+ 1,k +2,...,|J[}. Then,Co = (C1 ®2 C2) \ J;/J5. Proofs of these statements just
involve consistency checking, so are left as an easy exercise.

In summary, the procedure described above takes as input@a generator matrixz for C, and
an exact 2-separatiqw/, J¢) of it, and produces as output a permutatioof the coordinates of,
and the generator matrices of two codgsand(C,, such thaC = 7(C; @2 C2). The codeg&’; and
C are both equivalent to proper minors @f The entire procedure can be carried outitk?n)
time, which is the run-time complexity of bringingkax n matrix to reduced row-echelon form
via elementary row operations. All other parts of the procedure can tferped inO(n) time;
for example, sincéJ, J¢) is given, it only takes)(n) time to find the permutatior; —*, that takes
rref(G) to the matrixG in (7).

A straightforward combination of Lemma 3.1 and Corollary 4.5 yields the followireprem,
which illustrates the utility of the matroid-theoretic tools presented so far.

Theorem 4.6([18], Corollary 8.3.4) Every code that is not 3-connected can be constructed from
3-connected proper minors of it by a sequence of operations oflowie permutation, direct sum
and 2-sum.

The decomposition of a code via direct sums and 2-sums implicit in the aboveth@an be
carried out in time polynomial in the length of the code. This is due to the followimmgfaets:

(a) as described in Section 3, there are polynomial-time algorithms for findiagd.2-sepa-
rations in a code, if they exist; and

(b) given an exact 2-separation of a cadethere is a polynomial-time procedure that pro-
duces code€; and(C, both equivalent to proper minors 6f and a permutatiorr of the
coordinate set of, such that = 7(C; &2 Cs).

However, direct sums and 2-sums are not enough for our purpoeesyere they enough for
Seymour’s theory of matroid decomposition. Seymour also had to extendapbk-gieoretic tech-
nique of 3-clique-sum to matroids (in fact, to binary matroids only). Thessmponding operation
on binary matroids is called 3-sum.

4.2. 3-Sums. The special case of th®;(C,C’) construction called 3-sum is somewhat more com-
plex in definition than the 2-sum. Recall that for a binary wardw(x) denotes its Hamming
weight.

Definition 4.2. LetC, C’ be codes of length at least seven, such that
(A1) no codeword of or C* is of the form0...0x, wherex is a length-3 word withu(x) €
{1.2}
(A2) no codeword of”’ or ¢t is of the formx 0 . . . 0, wherex is a length-3 word witho(x) €
{1,2}; and
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(A3) 0...0111 € Cand1110...0 € C'.
Then,S3(C,C’) is called the3-sumof C andC’, and is denoted by &3 C'.

It is perhaps worth commenting upon the use of the terms “2-sum” and “3-tudenote codes
of the form S,,,(C,C’) for m = 1 andm = 3, respectively. The nomenclature stems from the
analogy with thek-clique-sum of graphs, wherein two graphs are glued alohgligue. Note that
a 2-clique is a single edge (henee= 1) and 3-clique is a triangle of three edges (hence- 3).
This also explains why we do not consider an operation of the (@, C’).

3-sums are only defined for codes having the properties (A1l)—(A3dllistthe above definition.

It is obvious that an equivalent statement of (A1)—(A3) is the following:

(B1) 0...0111 is a minimal codeword af, andC* has no nonzero codeword supported entirely
within the last three coordinates 6f-; and

(B2) 1110...0 is a minimal codeword of’, andC’* has no nonzero codeword supported en-
tirely within the first three coordinates 6.

In fact, (B1) and (B2) above are exact translations of the matroid-¢gtiedanguage used by Sey-
mour in his definition of 3-sum [6]. Another equivalent way of expreggimese conditions is the
following:

(B1) 0...0111 is a minimal codeword af, and the restriction of onto its last three coordinates
is {0,1}3; and
(B2) 1110...0 is a minimal codeword of’, and the restriction of’ onto its first three coordi-
nates is{0, 1}3.
The equivalence of (B1) and (Bls a consequence of the easily verifiable fact thatif. 0111 €
C, thenC* has no nonzero codeword supported entirely within the last three categinfC if
and only if all possible 3-bit words appear in the last three coordinat€s dihe equivalence of
(B2) and (B2) is analogous. It follows immediately from (Bland (B2) thatC®3C’ can be defined
only if min{dim(C),dim(C")} > 3 andmax{d(C), d(C’)} < 3.

Example 4.3. LetC andC’ be the [7,4] Hamming codes given by the generator matriéesd G’
respectively, below.

1100001 1000011
G = 1010010 o — 0100101
0110100} 0010110
1111000 0001111

C and(’ satisfy the conditions in Definition 4.2, so their 3-sum can be defined. TieeCcod C’
works out to be th¢g, 4, 4] extended Hamming code with generator matrix

10010011

G_|010101001
“loo0o 110110
0000T1T1T1°]1

The minimal trellis of this code is shown in Figure 2.

With J = {1, 2,3, 4}, (J, J°) is an exact 3-separation 6f@3 C’. It may be verified that, in fact,
A(C @3 C") = 3. Furthermore, puncturing any coordinate ©fp3 C’ yields a[7, 4] Hamming code.
Thus,C andC’ are (up to code equivalence) minors; C’.

The dimension and minimum distancelaf;C’ can be related t6 andC’ in a manner analogous
to Proposition 4.1 for 2-sums.

Proposition 4.7. LetC andC’ be codes of length andr’, respectively, for whickC$3C’ can be
defined.

(@) dim(CsC’) = dim(C) + dim(C) — 4.
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FIGURE 2. The minimal trellis of the codé @3 C’ of Example 4.3.

(b) If dim(C) > 3, thend(C®sC") < d(C \{n — 2,n — 1,n}); and if dim(C") > 3, then
d(Co3C’) < d(C'\{1,2,3}).

Proof. We will only prove (a) as the proof of (b) is analogous to the relevant gfathe proof of
Proposition 4.1(b). Lex || x’ denote the concatenation of binary sequencesdx’.

We prove the proposition by first showing thitn(C ||3 C') = dim(C) + dim(C’) — 1, and then
showing thatlim(C @3 C') = dim(C ||3 C’) — 3. The first of these equalities follows directly from
the observation that the mapping

dlc]c)y=clsc, cel el

defines a homomorphism from the direct sdm C’ ontoC ||5 C’, with dim(ker(¢)) = 1; indeed,
ker(¢) consists of the two word@ and0...0111 || 1110...0.

To prove thaddim(C @3 C") = dim(C ||3 C’) — 3, we observe that @3 C’ is isomorphic to the
subcode¢, of C ||3 C’ consisting of those codewordscs . . . é,1.,/—3 such that,, _2¢é,_1¢, = 000.
Thereforedim(C @3 C') = dim(E).

Since the restriction af onto its last three coordinates{ig, 1}* (property (B1)), and the restric-
tion of C’ onto its first three coordinates {$, 1}* (property (B2)), the restriction o ||3 C’ onto
its (n — 2)th, (n — 1)th andnth coordinates is als0, 1}3. Thereforedim(€) = dim(C ||3 C’) — 3,
and hencedim(C @3 C") = dim(C ||3 C") — 3, which completes the proof of the proposition.[]

We remark that the case dfim(C) = dim(C’) = 3 has been deliberately left out from the
statement of Proposition 4.7(b). In this case, there is no useful expmessupper bound for the
minimum distance of @3 C’. Sincedim(C @3 C’) = 2 in this case, one may just as well identify
the codeword of least weight among the three nonzero codewords indiee ¢

An important difference between 2-sums and 3-sums is that the resulbpbsttion 4.2 does
not directly extend to 3-sums. The reason for this is that for cdasd(C’ satisfying (A1)—(A3)
in Definition 4.2, the 3-sung-&5C’* cannot even be defined. Indeed, while (A1) and (A2) are
invariant under the operation of taking duals, (A3) is not-8-if. 0111 € C, then0...0111 ¢ C*.

To determine the dual of a 3-sum, we need to define a “dual” operation Iynémes-sum.

Definition 4.3. LetC, C’ be codes of length at least seven, such that
(A1) no codeword of or C* is of the form0 ... 0x, wherex is a length-3 word withs(x) €

{12}

(A2') no codeword of’ or C'* is of the formx 0. .. 0, wherex is a length-3 word witho(x) €
{1,2}; and

(A3) 0...0111 € C*+ and1110...0 € C'*.

The3-sumofC and(’, denoted by @3 (’, is defined as
C®3 C’ 26@3@,
whereC =C (J(0...0111 +C) andC’ = C' |J (1110...0 +C").
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Note that (A1) and (A2) are identical to (A1) and (A2), respectively. To ensure that the @bov
definition can in fact be made, it must be verified that the 3-€um C’ can actually be defined for
code<C and(’ satisfying (A1)—(A3'). So, letC andC’ be codes satisfying (A}-(A3'). We need to
verify thatC and(’ satisfy (A1)—(A3) in Definition 4.2.

By their very definitionC and(’ satisfy (A3). Furthermore, sin@ ¢ ¢t and?’ ¢ c'*, we
see that no codeword & is of the form0...0x as in (A1), and no codeword G is of the
form x0...0 as in (A2). Finally, if0...0x € C for some length-3 worc with w(x) € {1,2},
then sincel...0x ¢ C by (Al)), it must be that)...0x isin0...0111 + C. But in this case,
0...0x € C, wherex = 111 + x. So,w(X) € {1,2} as well, which is impossible by (AL
Therefore C cannot contain any word of the form .. 0 x as in (A1). By analogous reasoning,
cannot contain any word of the form0 . .. 0 as in (A2). We have thus verified th@tandC’ satisfy
(A1)—(A3), and sa @3 C’ can be defined.

Note that (A3) impliestha)...0111 ¢ C and1110...0 ¢ C’, and hencedim(C) = dim(C)+1
anddim(C’) = dim(C’) + 1. Furthermore, letting: denote the length af, we haveC \{n —2,n —
1,n} =C\{n—2,n—1,n}andC’\{1,2,3} = C'\{1, 2, 3}. Therefore, by virtue of Proposition 4.7,
we have the following result.

Proposition 4.8. LetC and(’ be codes of length andr/, respectively, for whiclC ©3 C’ can be
defined.
(@) dim(C ®3C") = dim(C) 4 dim(C") — 2.
(b) If dim(C) > 2, thend(C®3C") < d(C \{n — 2,n — 1,n}); and if dim(C") > 2, then
d(C®sC’) <d(C'\{1,2,3}).

The3-sum is the dual operation to 3-sum, in a sense made precise by the propbsitia, the

proof of which we defer to Appendix A. This result is stated, without exippbooof, in [8, p. 316]

and [26, p. 184]; Truemper [8, 26] refers to 3-sum a@rslum asA-sum andY -sum, respectively.
The result can also be derived from Theorem 7.3 in [35].

Proposition 4.9. For codesC and(’ be codes for whiclf @3 C’ can be defined, we have
(CasC 't =cltaset,

It follows from the last result that a code that is expressible as a 3-ammlso be expressed as
a3-sum. Indeed, i = C; ®3 Cy, then by the above propositiof;- = Ci- ©3Cy . The latter, by
definition, isCi-®3Cs-, and so again taking duals and using the above proposition, we obtain

— L — L L
¢c=(ctescs) =(cf) @ (cf) .
We record this as a corollary to Proposition 4.9.

Corollary 4.10. If C;®3C, can be defined, then
— Ll L
C1®3Cy = <ClL> @3 (Ci) .

Having presented some of the simpler properties of 3-sums, we next stagbla ton-trivial
result of Seymour that illustrates how 3-sums are to be used. The statefribig @sult is the
3-sum analogue of Theorem 4.3, but there are some important difesértween the two that we
will point out after stating the result.

Theorem 4.11([6], Theorems 2.9 and 4.1)f C; andC, are codes of length; andns, respectively,
such thatC = C; @3 Ca, then(J, J¢) is an exact 3-separation df for J = {1,2,...,n; — 3}.
Furthermore, ifC is 3-connected, the@y andC, are equivalent to proper minors 6f
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FIGURE 3. The minimal trellis of the codé = C; &3 Co of Example 4.4.

Conversely, if J, J¢) is an exact 3-separation of a code with min{|.J|,|J¢|} > 4, then there
are code&’; andC, of length|.J| +3 and|.J¢| + 3, respectively, such th&tis equivalent t&; ©3Cs.

A couple of key differences between the statements of Theorems 4.3 dnthdst be stressed.
For a code to be expressible as a 2-sum, it is sufficient that there ex@shah2-separation. How-
ever, to make the analogous conclusion about 3-sums, Theorem 4.ddlyasks for the existence
of an exact 3-separatiofy, J¢), but also adds the additional hypothesis that{|.7|, |J¢|} > 4.
We will have more to say about this a little later.

There is a second major difference between the statements of the two thedreemsem 4.3
states that i€ = C; @4 Cs, thenC; and(C, are always minors of, up to coordinate permutation.
However, wherC = C; &3 Co, Theorem 4.11 imposes the condition tfate 3-connected in order
to conclude tha€; andC, are equivalent to minors d@f. If the 3-connectedness requirementor
is dropped, the conclusion does not hold in general, as the following d&aipws.

Example 4.4. TakeC; to be the[7, 4, 1] code with generator matrix

0 00 0O
1 01 00
01101
110100

and letC, be the[7, 4, 3] Hamming code with generator matrix

e

1 00 01 0
01 0 01
001 0O
(000 1 11 1|
These codes satisfy (A1)—(A3) of Definition 4.2, and their 3-srms Co, is the[8, 4, 1] codeC
generated by

O

S = O

Gy =

_ o O

Gy =

— O =

1
1
1

10000000
c_l01to100 11
00110101
00001111

The minimal trellis of this code is shown in Figure 3. Note tfia$ not 3-connected. In fact, it
is not even 2-connected — it has a 1-separatidn/¢) with J = {1}. Now,C; can be obtained
as a minor ofC by puncturingC at the last coordinate. Howevefy is not a minor ofC, since
puncturingC at any coordinate does not yielda 4, 3] code, and shortening always yields a code
of dimension less than 4.

We mention in passing that @ = C; &3 Cs, then the fact thaf; andC, are equivalent to
minors ofC wheneverC is 3-connected is far more difficult to prove (see [6, Section 4]) than the
corresponding part of Theorem 4.3.
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We observed above that the mere existence of an exact 3-separationgsaugh for Theo-
rem 4.11 to conclude that a codeis expressible as a 3-sum; the 3-separatidn/¢) must also
satisfymin{|.J|,|.J¢|} > 4, i.e., must not be minimal It is also implicit in the statement of Theo-
rem 4.11 that the existence of a non-minimal 3-separation is a necessalitiaofor a code to be
a 3-sum. Indeed, € = C; ®3 Co, thenC; andCy must each have length at least 7, as per Defini-
tion 4.2. So, with/ = {1,2,...,n; — 3} as in the statement of Theorem 4.11, it must be true that
|J| > 4, and similarly,|.J¢| > 4.

The following definition allows for a compact statement of a corollary to Téeon4.11 along
the lines of Corollary 4.5.

Definition 4.4. A 3-connected code iaternally 4-connected all its 3-separations are minimal.

Internal 4-connectedness is a notion that lies properly between Zctaumess and 4-connectedness
— a 3-connected code that is not 4-connected can be internally 4-cedneNote that any 3-
separation in a 3-connected code must be exact, and so we can statbothimdocorollary to
Theorem 4.11.

Corollary 4.12. A 3-connected cod@is not internally 4-connected iff there exist codgsandCo,
both equivalent to proper minors 6f such that is equivalent t&; @3 Cs.

As in the case of 2-sums, we provide an efficient construction of the coeme of the 3-sum
when an exact, non-minimal 3-separatioh J¢) of C is given. This construction furnishes a proof
of the converse part of Theorem 4.11. Our description is based loosdlye constructions given
in [26, Section 8.3] and [8].

Let C be a code of length and dimensiork, specified by & x n generator matrixG, and let
(J,J¢) be an exact 3-separation 6f with |J| > 4 and|J¢| > 4. By permuting coordinates if
necessary, we may assume thiat {1,2,...,m} for somem such thatt < m < n — 4. Let
G|; andG| ;- denote the restrictions @f to the columns indexed by and.J¢, respectively; thus,
G = [G|; G|je]. Letrank(G| ) = k1 andrank(G| j) = ko; since(J, J¢) is an exact 3-separation
of C, we havek| + ko = k + 2. Note thatk; < k implies thatk + ko > ki + ko = k + 2, so that
ko > 2; similarly, k1 > 2.

Bring G into reduced row-echelon form (rref) ov@,. Permuting coordinates withid and
within J¢ if necessaryrref(G) may be assumed to be of the form

—~ [, A O B

G = O O I o C|’ ()
wherel}, for j = k1, k2 — 2, denotes thg x j identity matrix,A is ak; x (|.J| — k1) matrix, B is a
k1 x (|J¢| — k2 4+ 2) matrix,C'is a(ke — 2) x (|J¢| — k2 4+ 2) matrix, and theD’s denote all-zeros
matrices of appropriate sizes. As a concrete example, consider the @agiven in Example 4.3,
which is indeed of the above form, withi| = |J¢| = 4, k1 = ko = 3,

1 0 1 1
A=|1|,B=|10 1] adC=[1 1 1].
1 1 10
!l O B .
The fact that the submatri I c must have rank equal t@nk(G|;c) = ko implies
2—2

that B must have rank 2. Hencé has two linearly independent rows, call thenmandy, which
form a basis of the row-space &f. In particular, each row oB is either0, x, y orx +y.
Now, define thek; + 1) x (|.J| + 3) matrix

[, A D
Q_{o 0 1}

5The definition of a minimak-separation is given immediately after Definition 3.1.
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whereD is ak; x 3 matrix whoseith row is defined as

000 if throwof Bis0
. 001 if ¢th row of B is x
ithrow of D = 010 if sthrowof Bisy

100 if ithrow of Bisx +y;

and the bottom row of7;, represented b{p 0 1], is simply0...0111.
Next, define théky + 1) x (|J¢| + 3) matrix

[T 0O X
G2 - 03 Ik2_2 C :| = [Ik2+1 CH],
where _
X+y
_ /. X
X = 2’; and C" = [ C } .

A straightforward verification yields that ; andC, are the codes generated 64 and G-,
respectively, thedim(C;) = k1 + 1, dim(Cz) = k2 + 1, andCy, Co satisfy properties (A1)—(A3) in
Definition 4.2, saC; ©3C» can be defined. The construction@f andGs above is carefully crafted
to ensure that all the rows 6f are inC; @3 Co. Hencedim(Cy @3 Co) > rank(G) = ky + ko — 2.
However, by Proposition 4.7, we have thidin (C; ®3Cs) = dim(Cy) +dim(Ca) —4 = k1 + ko —2.
Hencedim(C; @3 C2) = rank(G), implying thatG must be a generator matrix {6 ©3 C2. Note
that according to Theorem 4.11 (fis 3-connected, thefy andC» are equivalent to proper minors
of C.

The procedure described above can be formalized into an algorithm kKestas input & x n
generator matr>xG for C, and an exact, non-minimal 3-separatieh J¢) of it, and produces as
output a permutation of the coordinates af, and the generator matrices of two codgsandCo,
such thaC = 7(C; @3 C2). The code€; andC, are both equivalent to proper minors ©f This
procedure can be carried out@ k%n) time for the same reasons as in the 2-sum case.

For the matrixG in Example 4.3, we find the matricés andG5 to be

1001100 1000011
01010710 01007101
Gi=lgo01 1001 @dG=10471 017109/
1111000 0001111

which are indeed generator matrices of the two Hamming codes whose 3-sepndsented by,

It must be pointed out that Theorem 4.11 also holds when the 3-sums in itestdtare replaced
by 3-sums. This is a consequence of Proposition 3.2, which shows.that) is a 3-separation of
a codec iff it is a 3-separation of the dual cod®g-. Hence, applying Theorem 4.11 @, and
dualizing via Proposition 4.9, we see that the 3-sums in the statement of Thdotd can be
replaced by3-sums. In particular, we also have the following corollary to Theorem 4.11.

Corollary 4.13. A 3-connected codgis not internally 4-connected iff there exist codgsandCo,
both equivalent to proper minors 6f such thatC is equivalent ta’; ®3 Co.

Putting together Theorem 4.6 with 4.12 and 4.13, we obtain the following theevbith sum-
marizes the code decomposition theory presented up to this point.

Theorem 4.14. A binary linear code either is 3-connected and internally 4-connectedanrbe
constructed from 3-connected, internally 4-connected proper mirfatdg a sequence of opera-
tions of coordinate permutation, direct sum, 2-sum and 3-surfi-&m).

The decomposition of Theorem 4.14 can be carried out in time polynomial in tigéhlef the
code, since
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(a) the decomposition of Theorem 4.6 can be carried out in polynomial time;

(b) as mentioned in Section 3, there are polynomial-time algorithms for findingmoimal
3-separationsi.g., 3-separation$.J, J¢) with min{|.J|, |J¢|} > 4) in a code, if they exist;
and

(c) there is a polynomial-time procedure that, given an exact, non-minimep&ration of a
3-connected codg, produces code$; andC,, both equivalent to proper minors 6f and a
permutationr of the coordinate set @f, such tha = n(C; @3 C2) or, via Corollary 4.10,
C =7(CL®3Ca).

Note that the theorem does not guarantee uniqueness of the code dsdammp

4.3. Code-Decomposition Trees A binary tree is a convenient data structure for storing a decom-
position of a code via direct sums, 2-sums, and 3-sums. Recall that ergoygull) binary tree is
a rooted tree such that every node of the tree has either zero or twoechildfe will drop the ad-
jective “proper” as proper binary trees are the only kind of binarygree are interested in. A node
without any children is called af. Each non-leaf node has two children, and we will distinguish
between the two, calling one theft child and the other theght child.

Let C be a binary linear code. Aode-decomposition trefor C is a binary treeZ defined
as follows. Each node of 7 stores a triple \.code,v.perm,v.sum), wherev.code is a binary
linear codey.perm is either NULL or a permutation of the coordinate setvafode, andv.sum
€ {®,®, D9, d3, D3 }. For each node of 7, the triple {.code,v.perm,v.sum) must adhere to
the following rules:

(R1) if v is the root node, themcode is the code itself;

(R2) v.perm = NULL iff v is a leaf;

(R3) v.sum = @ iff v is a leaf;

(R4) if vis a non-leaf node, then
() Ichild.code andrchild.code are proper minors of.code; and
(i) the permutatiornv.perm applied to the sum

(Ichild.code) v.sum (rchild.code)

yieldsv.code,
wherelchild andrchild above respectively refer to the left and right childrervof

In particular, (R4) ensures that for any nodether than the root node in the treegode is a proper
minor of C.

We will identify the leaves of any code-decomposition tree with the codes tbatstiore. The-
orem 4.14 guarantees that each cddbas a code-decomposition tree in which each leaf is 3-
connected and internally 4-connected. Such a code-decompositionilirbe walledcomplete A
complete code-decompoaosition tree bcan be constructed in time polynomial in the length of the
codeC, since the decomposition of Theorem 4.14 can be carried out in polynomialllote that
if C itself is 3-connected and internally 4-connected, then there is exactlyonlgedecomposition
tree for it, which is the tree consisting of the single ndde- or more precisely, the single node
that storegC, NULL, ®).

Finally, a code-decomposition tree is call@dhomogeneou§esp.3-homogeneoysf for each
non-leaf nodev in the tree, ifv.sum € {®, @, ®3} (resp.v.sum € {®,®2, ®3}). Thus, in a
3-homogeneous (resp-homogeneous) tree, riosums (resp. 3-sums) are used. It follows from
Corollaries 4.12 and 4.13 that if a code-decomposition tree has a nodefoftine = (C, 7, ©3 ),
with C being 3-connected, then the subtree withs a root can be replaced with a different subtree
in which the root node is’ = (C, ', ®3). Therefore, every code has a complete, 3-homogeneous
(or 3-homogeneous) code-decomposition tree, which again can be congdtiutiree polynomial
in the length of the code.
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Having described in detail Seymour’'s decomposition theory in the contéxhafy linear codes,
we now turn to some of its applications. This theory mainly derives its applicationsfamilies
of codes that are minor-closed, and such families form the subject o&ttiesection.

5. MINOR-CLOSED FAMILIES OF CODES

A family ¢ of binary linear codes is defined to b@nor-closedif for eachC € €, every code
equivalent to a minor of is also in€. Note that this definition automatically implies that a minor-
closed family,&, of codes is closed under code equivalenes,if C € &, then all codes equivalent
toC are also int.

A non-trivial example of a minor-closed family is the set of all graphic codaxe any minor
of a graphic code is graphic. We will encounter other examples of minsedidamilies (regular
codes and geometrically perfect codes) further on in this paper. We mentigassing another
interesting example of such a family — codes of bounded trellis state-compldXdgall from
Section 3 that the state-complexity profile of a lengthede(C is defined to be the vecte(C) =
(s0(C),...,sn(C)), wheres;(C) = dim(C|y) + dim(C|sc) — dim(C) for J = [i] C [n]. Define
smax(C) = max;e[y 5i(C). For a fixed integetw > 0, let T'C,, denote the family of codes such
that there exists a cod®& equivalent taC with s, (C’) < w. Then,T'C,, is minor-closed [13],
[14]. A similar statement holds for the family of codes that have a cyclerfoemal realization (cf.
[36]) whose state-complexity is bounded by

A general construction of minor-closed families is obtained by fixing a collectioof codes,
and defininge ~ to be the set of all cod&s such that no minor of is equivalent to ang’ € F.
As an example, leF = {Hy, H+,C(K5)",C(K33)"}, whereH; is the[7,4] Hamming cod®
By Theorem 2.1¢ £ in this case is precisely the family of graphic codes. It is clear thats a
minor-closed family for any fixedr. In fact, every minor-closed family can be obtained in this
manner. Indeed, let be a minor-closed family of codes. A co@eis said to be amxcluded minor
of Cif D ¢ &, but every proper minor dP is in €. Itis not hard to verify that a codé is in € iff
no minor ofC is an excluded minor of. Theorem 2.1 is an example of such ercluded-minor
characterizationand we will see more such examples (Theorems 5.3 and 6.2) further Bdiog,
taking F to be the collection of all excluded minors &f we have thatll = €. A tantalizing
conjecture of Robertson and Seymour asserts that any minor-closed #ofilyinary linear codes
has onlyfinitely manyexcluded minors [37, Conjecture 1.2].

Let € be a minor-closed family of codes. By Theorem 4.14, eveey € can be constructed from
3-connected, internally 4-connected codeg insing direct sums, 2-sums, and 3-Bsums. The
converse need not always be true,, it is not necessarily true that if a codehas a decomposition
via direct sums, 2-sums, and 3-3sums into codes i, thenC € €. Of course, the converse does
hold if ¢ is also closed under the operations of direct sum, 2-sum, 3-suri-anch. As usual¢
is defined to be closed under direct sum (resp. 2-sum, 3-8tsu) if for any pair of codes i,
their direct sum (resp. 2-sum, 3-suBasum, if it can be defined) is also & We summarize this in
the following proposition.

Proposition 5.1. Let € be a minor-closed family of codes that is also closed under the operations
of direct sum, 2-sum, 3-sum aBgsum. Then, the following are equivalent for a cdde
(i) Cisinc.
(i) The leaves of some code-decomposition tre€ fare in <.
(iii) The leaves of some complete, 3-homogeneo@shomogeneous code-decomposition tree
forC areinc.
(iv) The leaves of every code-decomposition tre€fare in €.

8From now onH- will always denote th¢7, 4] Hamming code.
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Proof. (i) implies (iv) since the leaves of any code-decomposition tre afe minors olC, and¢
is minor-closed. The implications (i (iii) and (iii) =- (ii) are trivial. (ii) implies (i) sincec is
closed under direct-sums, 2-sums, 3-sums3adms. O

Since a complete code-decomposition tree of any ¢bdan be constructed in time polynomial
in the length ofC, we have the following corollary to the above result.

Corollary 5.2. Let¢ be a minor-closed family of codes that is also closed under the operations o
direct sum, 2-sum, 3-sum afesum. Then the following are equivalent statements.

(i) It can be decided in polynomial time whether or not a given codein €.
(i) It can be decided in polynomial time whether or not a given 3-conneatéetnally 4-
connected codé is in €.

The first major application of results such as the above — the application wdaishin fact the
motivation for Seymour’s matroid decomposition theory — relates to totally unimoduddrices.
A real matrix A is said to beotally unimodularif the determinant of every square submatrix of
Aisin{0,1,—1}. In particular, each entry of a totally unimodular matrix is{i, 1, —1}. Such
matrices are of fundamental importance in combinatorial optimization and nefleariproblems,
because total unimodularity is closely related to integer linear programming [15]

A binary matrix is defined to beegular if its 1's can be replaced by1’s in such a way that the
resulting matrix is totally unimodular. Consequently, a binary linear code isatktmberegular if
it has a regular parity-check matrix. It turns out that for a regular cederyparity-check matrix is
regular [26, Corollary 9.2.11]. Furthermore, given a regular binarrimd, there is a polynomial-
time algorithm that convert® to a totally unimodular matrix by assigning signs to the 1's in
B [26, Corollary 9.2.7]. Thus, regular codes form the key to undergtgnobtal unimodularity.
The following theorem, due to Tutte [38], provides an elegant excludedimaimaracterization of
regular codes.

Theorem 5.3. A binary linear code is regular iff it does not contain as a minor any cagléwalent
to the [7,4] Hamming code or its dual.

It follows from the theorem that the family of regular codes, which we wilhate by$R, is
minor-closed, since it is of the formiz for 7 = {H7, H+}. FurthermorefR is closed under the
taking of code duals,e., the dual of a regular code is also regular. This is because alcooietains
H- as a minor iff its duaC~+ containsH= as a minor. It can further be shown [18, p. 437] tiais
closed under the operations of direct sum, 2-sum, 3-sungaomn.

Note that by Theorem 2.¥1R contains the family of graphic codes, and hence, the family of
co-graphiccodes as well, which are codes whose duals are graphic. Using a ldndiffault
argument, Seymour [6] proved that the 3-connected, internally 4-cboethe&odes ifR are either
graphic, co-graphic, or equivalent to a particular isodual code thaliedR,(, which is neither
graphic nor co-graphic.

Theorem 5.4([18], Corollary 13.2.6) If C is a 3-connected, internally 4-connected regular code,
thenC is either graphic, co-graphic, or equivalent 19y, which is the[10, 5, 4] code with parity-
check matrix

11 001100O00O0O0
1110001000
0111000100
0011100010
1001100001

Thus, Seymour's decomposition theory shows that any regular codes(aby assignment of
signs, any totally unimodular matrix) can be constructed by piecing togethela-dinect sums,
2-sums, and 3-sums 8rsums — graphic codes, co-graphic codes, and codes equival&t to
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Also, membership in the family of regular codes can be decided in polynomial tinteed, as
mentioned at the end of Section 2, there are polynomial-time algorithms for dgaidiather or
not a given code is graphic. Given anx n parity-check matrixt{ for a code, a generator matrix
for the code can be computed using elementary row operatiods onO(m?n) time. Thus, the
dual of a code can be determined in polynomial time, and hence it can beedegigolynomial
time whether or not a given code is co-graphic. Hence, from Corollé&2yabd Theorem 5.4, it
follows that there is a polynomial-time algorithm for determining whether or navangcode is
regular. The best such algorithm known is due to Truemper [39], whiok MO ((m + n)?) time.
Truemper’s algorithm is also based on Seymour’s decomposition theaiiyjfmplements a highly
efficient procedure for carrying out the decomposition.

While the application of Seymour’s decomposition theory to regular codes ie#titeg, it is not
very useful, perhaps, from a coding-theoretic perspective. Hervavthe next section, we give an
application that should be of some interest to a coding theorist.

6. APPLICATION: ML DECODING

The recent work of Feldman, Wainwright and Karger [5] shows thatdé¢toding of a binary
linear codeC over a binary-input discrete memoryless channel can be formulated asaa firo-
gram (LP). Recall that the ML decoding problem is: given a receivediw at the channel out-
put, find a codeworck € C that maximizes the probabilitfr|y|x], of receivingy conditioned
on the event thak was transmitted. As observed by Feldmetral., under the assumption of a
binary-input discrete memoryless channel, given a received wotdy y- . . . ¥, the problem of
determiningarg max, .. Prly|x] is equivalent to the problem of finding.g min, .. (v, x), where

v = (71,72, ---,7n) is given by

Prly;|z; = 0]
i=log| 53 9
i = log <Pr[yi‘xi Y )
and(-,-) is the standard inner product @&i'. Here, for the inner produdty, x) to make sense,
a binary codeworckk = zix2...x, € C is identified with the real vectotz,zs,...,z,) €
{0,1}" C R™.

The above formulation shows ML decoding to be equivalent to the minimizatian liwfear
function over a finite se€ C {0,1}". Let P(C) be thecodeword polytopef C, i.e., the convex
hull in R™ of the finite setC. It can be shown that the set of vertices/ofC) coincides withC.
The key point now is that over a polytopgg a linear functiony attains its minimum valué,,;, =
min{¢(x) : x € P} at a vertex ofP. In particular, minyec(v,x) = mingepc)(7,%), Thus,
ML decoding is equivalent to finding a vertex of the polytadpg”) that achievesnin,c p(c) (v, x),
which is a classic LP.

However, ML decoding of an arbitrary code is known to be NP-hard$@}, in general, solving
the above LP over the codeword polytope is also NP-hard. A strategy fflewed in such a
situation is to “relax” the problem. The idea is to look for a polytope that conthiesode as a
subset of its vertex set, but which has some property that allows an Liedefver it to be solved
more easily. Such a polytope is calledetexationof the codeword polytop&(C).

A certain relaxation of the codeword polytope has received much retesmition [5],[16],[40].
This is the polytope which, given a codeof lengthn, and a subsell C C*, is defined as

QUH) = () P(*),

heH

where P(h) is the codeword polytope of the cotié = {c € F} : (h,c) =0 (mod 2)}. Note
that sinceC C h* for anyh € C*, we have thaP(C) C (,cy P(h*) = Q(H) foranyH C C*.
In particular,P(C) c Q(C*) for any codeC.



A CODE DECOMPOSITION THEORY 25

For anyH C C*, the polytopeQ(H) containsC as a subset of its vertex sét(H). This is
becaus&€ C Q(H) N{0,1}", and sincel)(H) is contained within the:-cube|0, 1], we also
have@Q(H) N {0,1}" C V(H). Thus,Q(H) is indeed a relaxation aP(C). Consequently the
LP minycq(m) (7, X), wherey is the vector defined via (9), constitutes a relaxation of the LP that
represents ML decoding.

Now, any standard LP-solving algorithm requires that the LP to be solsed s constraints
be represented via linear inequalities. The advantage of using the refaxitid) is that there
is a convenient such representation of the constsaiat Q(H). The polytopeQ)(H) can also be
expressed as (seeg.[5, Theorem 4] or [16, Lemma 26]),

Q(H) = () I(supp(h)), (10)

heH
where forS C [n], II(S) denotes the polyhedron

m(s) = {(xl,...,xn)e[o,un: T mi<J1}. (11)

Jcs jeJ 1€S\J
|.7| odd J \

The efficiency of a practical LP solver (like, say, the simplex or ellipsoiditigm) depends on the
size of the LP representation, which is proportional to the number of tegamd linear inequalities
forming the constraints. Iff above consists of the rows of a parity-check matrix of a low-density
parity-check (LDPC) code, then the representatiorQ¢¥ ) given by (10)—(11) has size linear
in the codelengtm. So, the ellipsoid algorithm, for example, would be guaranteed to solve the
LP minycq(m) (7, %) in time polynomial inn. However, as we explain next, this LP is no longer
equivalent to ML decoding in general.

Let 7(H) = V(H) N {0,1}" denote the set ohtegral vertices(i.e., vertices all of whose
coordinates are integers) 6f(H). We noted above that ¢ J(H). If H is a spanning subset
(overTFy) of Ct, so that the vectors ifif form (the rows of) a parity-check matrix @f, then we
in fact haveC = J(H). This is because ik € {0,1}" is not inC, thenx ¢ h' for some
h € H, and hencex ¢ P(ht) D Q(H). The polytopeQ(H) in this case is the “fundamental
polytope” of Vontobel and Koetter [16] (or equivalently, the “projecpadytope” @ of Feldmanet
al. [5, p. 958]). The fact thaf = 7 (H) for such a polytop&)(H ) implies that the polytope has
the following “ML certificate” property [5, Proposition 2]: if the LRinycqx) (7, x), wherey is
the vector defined via (9), attains its minimum at same 7 (H), thenx is guaranteed to be an
ML codeword. However, it is possible that the above LP attains its minimumnag smn-integral
vertexx € V(H) — J(H), in which case decoding via linear programming og¥i) fails. The
non-integral vertices of)(H ) are called “pseudocodewords”.

It is naturally of interest to know when a codehas a fundamental polytopge( H) (for some
spanning subset of C) without pseudocodewords. For such codes, ML decoding candmlgx
implemented as an LP ové)(H). Clearly, Q(H) has no pseudocodewords df = V(H), or
equivalently,P(C) = Q(H). But sinceP(C) C Q(Ct) C Q(H), this obviously implies that we
must haveP(C) = Q(C*). Conversely, ifP(C) = Q(C*), then we may simply takél = C* to
obtain a fundamental polytop@(H) without pseudocodewords. We record this observation as a
lemma.

Lemma 6.1. LetC be a binary linear code. There exists a spanning suldéetfC' such that the
polytopeQ(H) has no pseudocodewords B{C) = Q(C1).

A codeC for which P(C) = Q(C*) holds will be calledyeometrically perfe¢and we will denote
by & the family of all such codes. So the question then is: which codes are gematigiperfect?
An answer to this was provided by Barahona andt&chel [41], who showed that the relationship
P(C) = Q(C*) is equivalent to Seymour’s “sums-of-circuits” property for binary miasq7].
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FIGURE 4. The graph’s.

The following theorem is thus equivalent to Seymour’s characterizatibmafy matroids with the
sums-of-circuits property.

Theorem 6.2([41], Theorem 3.5) A binary linear code’ is geometrically perfect iff does not
contain as a minor any code equivalentig-, R or C(K5)=.

By the above theorem® is minor-closed. Moreover, since none hf% Ry or C(Kg,)L is
graphic, no graphic code can contain any of them as a minor, and suigcaples are geometrically
perfect.

Grotschel and Truemper [8, Section 4] showed t#ais closed under the operations of direct
sum, 2-sum and-sum, but is not closed under 3-sum. They also observed [8, p. 32Gjtly code
in ® can be constructed via direct sums, 2-sums&sdms from graphic codes and copies of the
codesHr, C(K33)* andC(Vg)*, whereVy is the graph in Figure 4. Indeed, this result is implied by
Theorems 6.4, 6.9 and 6.10 in [7]. Itis not hard to verify that the cGde<’ (K3 3)* andC(V3)+
are in fact in®. Putting these facts together, we obtain the following theorem.

Theorem 6.3. For a binary linear code, the following are equivalent statements.
(i) Cis geometrically perfect,e., P(C) = Q(C*).
(i) Eachleafin some complet@homogeneous code-decomposition tre€fisreither graphic,
or equivalent to one of the codes;, C(K33)* andC(Vs)*.
(iii) Eachleafin every complet&;homogeneous code-decomposition tre€fisreither graphic,
or equivalent to one of the codes;, C(K3 ;)" andC(Vz)*.

Proof. (i) implies (iii) follows directly from the fact that any code & can be constructed via
direct sums, 2-sums argdsums from graphic codes and copies (up to equivalence) of the codes
H~, C(Kg,g,)L andC(Vk)*. The implication (iii)= (ii) is trivial. Finally, (ii) = (i) holds since
graphic codes and the codefs, C(K33)" andC(Vs)* are all in®, and® is closed under direct
sum, 2-sum and-sum. O

Since a complete3-homogeneous code-decomposition tree for a code can be constructed in
polynomial time, and testing for graphicness or equivalendé+oC (K3 3)* andC(Vs)* can also
be carried out in polynomial time, we have the following corollary to the abosertm.

Corollary 6.4. It can be decided in polynomial time whether or not a given @dbdegeometrically
perfect,i.e., has the property?(C) = Q(C1).

However, this is only half the story. @ is a geometrically perfect code, the algorithm guaran-
teed by the above result will determine this to be the case, but will not peodismall” subset
H C C* such thatP(C) = Q(H). The only information we would have is that can be taken
to be theentiredual codeC. While it would then be true that the LRin, et (7, X) is equiv-

alent to ML decoding, the representation®@{C) given by (10)—(11) still has size exponential
in the codelengthn. It is thus unclear whether there is an LP-solving algorithm than can kg use
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to solve this LP efficiently in practide Fortunately, as we shall describe next, for the famiy,

of geometrically perfect codes, ML decoding can always be implemented inptiyaomial in
codelengthnot using an LP-solving algorithm, but by means of a combinatorial optimization al-
gorithm that uses code decompositions. One major feature of this combihatgdgdathm is that,

for any given codé€ (not necessarily geometrically perfect), if a suitable decomposition (asfin De
inition 6.1 below) ofC exists, that decomposition can be used to efficiently sahseinstance of
the LPmin,c p(c)(7,x). This means that the determination of a suitable code decompositin of
which only needs to be done once, can even be done “off-line”. Whisrgeometrically perfect,
such a suitable decomposition always exists, and in fact, can be determitiae ipolynomial in

the length ofC, as we explain next.

In a series of papers [42], [43], [39] (see also [26]), Truemperied out a detailed examination
of matroid decompositions, from which a particularly interesting observatimearning geomet-
rically perfect codes could be inferred. L&t be the sub-family of$ that consists of all graphic
codes and codes equivalent to onéf C(K3 3)+ andC(V3)+. As observed in the proof of Corol-
lary 6.6 in [8], Truemper’s analysis of matroid decompositions could be tesstow that a code
C € & — &, can always be composed via a 2-sum @&-sum from a cod€; € &, and a code
Cy € &, both of which may be taken to be codes equivalent to mino dh fact, a much more
precise statement may be deduced from Theorem 2.5 in [B]idfa 2-connected code i — &y,
then it follows from Theorem 2.5 in [8] that can always be decomposed into codesandCo,
both equivalent to minors @, in at least one of the following ways:

(a) C is equivalent taC; @9 Co, for some code&; € & with dim(C;) > 2, and some 2-
connected codé; € &; or

(b) C is equivalent taC; @3 Ca, for some code&l; € &, with dim(C;) > 3, and some 2-
connected codé; € &.

The decomposition df into C; and(C,, along with the coordinate permutation that takesp, Co
or C1 @3 Co (as the case may be) o can be determined in polynomial time. These facts have some
significant consequences, one of which is that any codgigML-decodable in polynomial time.
However, rather than state these results just for the class of geometriedigcipcodes, we will
state and prove them more generally for codes that are “almost graphitg isense that they can
be composed from graphic codes and finitely many other codes.

Recall thafl" denotes the family of graphic codes.

Definition 6.1. A minor-closed family of code® is defined to balmost-graphidf there exists a
finite sub-family® C ¢ with the following property:
for any 2-connected codge ¢, eitherC € T'U D, or there are code§; and(C», along with a
permutationr of the coordinate set @f, such that

(a) C; andCq are equivalent to minors df;

(b) C, is 2-connected; and

(c) either (i) C = m(C1 @2 Ca), WithCy € T U D, dim(Cy) > 2, or (i) C = 7(Cy ©3Cq), with
Ci eT'UD,dim(Cy) > 3.

If there exists a constarit> 0 such that for any length-codeC € ¢ — (I' U ®), the components
(1, C2 and of the above decomposition can be determined in ljmd), then the family of codes
¢ is said to bepolynomially almost-graphic (PAG)

Note that the 3-sum is conspicuous by its absence from the above definitlemwill give an
explanation of this at the end of this section.

/It has been shown in [8] that for geometrically perfect codes, theddteding LP can in fact be solved in polynomial
time by the ellipsoid algorithm. It has also been noted there that the ellipsoidthigds — in a straightforward
implementation — of “doubtful practical relevance.”
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Definition 6.1 clearly implies that any code in an almost-graphic faihas a3-homogeneous
code-decomposition tree. The definition in fact implies that a 2-connectilin@ has a decom-
position tree with the property that each leaf idit ®, and for each non-leaf nodein the tree,
Ichild.code is a leaf (and hence, is i U ®), wherelchild is the left child ofv. Such a code-
decomposition tree will be called” U ©)-unary. If € is PAG, a3-homogeneougI’ U D)-unary
decomposition tree can be constructed for any 2-connectedad€ in time polynomial in the
length ofC.

The family,I", of graphic codes is trivially PAG. From the discussion prior to the abefiitdion,
the family, &, of geometrically perfect codes is also PAG. Other examples of PAG famietha
code familiest £ (cf. Section 5) forF = {H7,C(K5)*} andF = {H+,C(K5)*}, and the family
of co-graphic codes without @(K5)* minor [8, Theorem 2.5]. PAG codes inherit some of the
properties of graphic codes. For example, it is known [44],[11] thaMhealecoding problem over
a memoryless binary symmetric channel can be solved in polynomial time fonttiky faf graphic
codes using Edmonds’ matching algorithm [45],[46]. A much strongerdiagaesult can in fact
be proved for graphic codes, and more generally for PAG codes. iJtiased on the following
optimization result proved in [8], an argument for which is sketched in AppeB.

Theorem 6.5([8], Theorem 6.5) Let€ be a PAG family of codes. There exists a constand such
that given any length-codeC in € and anyy € R", a codeworct,,;, € C achievingmineec (v, c)
(or equivalentlymin,c p(c) (7, x)) can be determined i (n!) time.

It should be noted that an actual implementation of the polynomial-time algorithm imiplicit
Theorem 6.5 (and outlined in Appendix B) requires arithmetic over the ne@bers, unless the
vectory has only rational coordinates. So, in practice, finite-precision arithmedid imsany com-
puter implementation of the algorithm could only approximate the linear cost funetie) for an
arbitraryy € R".

As mentioned earlier, ML decoding over a binary-input discrete memorylessnel can be for-
mulated as a linear program [5]. Therefore, we have the following coyoitathe above theorem,
again with the caveat that a true implementation of a polynomial-time algorithm for &tbding
would require real-number arithmetic.

Corollary 6.6. The maximum-likelihood decoding problem over a binary-input discretaany-
less channel can be solved in polynomial time for a PAG family of codesarticgar, geometri-
cally perfect codes are ML-decodable in polynomial time.

Another problem that is known to be NP-hard in general is the problemetdriohining the
minimum distance of a code [47]. For graphic codes, this is equivalent tprti@em of finding
the girth of a graph, which can be solved in time polynomial in the number ofssofgle graph —
one of the earliest such algorithms published [48] run@(n3/2) time in the worst case, where
is the number of edges. As a consequence of Theorem 6.5, we alsthhgatiee minimum distance
problem for a PAG family of codes can be solved in polynomial time.

Corollary 6.7. The minimum distance of any code in a PAG family can be determined in painom
time.

Proof. Let C be a code of length containing at least one nonzero codeword. Fer1,2,...,n,
definey® = (1,...,1,—n,1,...,1), with the —n appearing in théth coordinate ofy("). Note
thatmincce (7, c) is always achieved by a codeworddrwith ith coordinate equal to 1, if such a
codeword exists. Indeed, the minimum-achieving codew?ds the codeword of least Hamming
weight among codewords ththat have a 1 in théh coordinate; if there is no codeword ¢hwith

a 1 in theith coordinate, thee” = 0. Note that ifc(’) # 0, then(y(®, c®) = w(c®) -1 — n.
Therefore, the minimum distance @fis given by

d=n+1+minmin(y®, c).
LR
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For a PAG family of code<, given any codel € ¢, each of the minimization problems
mineee (7, c) can be solved in polynomial time, and hence the minimum distancecain be
determined in polynomial time. O

We point out that in all the minimization problems that must be solved (reclysieing down
the code-decomposition tree, as explained in Appendix B) to determine the mindiistance of a
length+ code, the cost vectors have integer coefficients of magnitude atthoSb, the minimum
distance of a code from a PAG family can be determined in polynomial time usiterfirecision
arithmetic.

The downside of PAG (and more generally, almost-graphic) code familiesidhby are not
very good from a coding-theoretic perspective. Recall from codiegrinthat a code familg is
calledasymptotically goodf there exists a sequencelof;, k;, d;] code<C; € €, with lim; n; = oo,
such thalim inf; k; /n; andlim inf; d; /n; are both strictly positive.

Theorem 6.8. An almost-graphic family of codes cannot be asymptotically good.

In particular, the family of geometrically perfect codes is not asymptoticalbdgdhe theorem
is proved in Appendix C. In view of Lemma 6.1, the above result has the follpwery interesting
corollary.

Corollary 6.9. Let¢ be a family of binary linear codes with the following property: for edch ¢,
there exists a parity-check matri for C, such that the corresponding fundamental polytQgé/ )
has no non-integral vertices (pseudocodewords). Téénnot an asymptotically good code family.

Loosely speaking, this means that linear-programming decoding, whéie@fipa “good” code,
must suffer on occasion from decoding failure due to the presencseoidocodewords, evendfl
possible parity checks (dual codewords) are used in the constradjtg{1) of the LP. Given the
close relationship between linear-programming decoding and iterativaitgcosing the min-sum
algorithm [49], a similar result is likely to hold for iterative decoding as well.

We end this section with an explanation of why 3-sums were left out of Defiritib. The proof
of Theorem 6.5 given in Appendix B relies crucially on the fact thatlromogeneousI’ U D)-
unary code-decomposition tree can be constructed in polynomial time foiesficom a PAG family.
So, the result is actually true for any code family for which such trees eambstructed in polyno-
mial time. Now, if 3-sums were allowed in Definition 6.1, itis no longer obviousdbdes from the
resulting code family would still havB-homogeneougI" U ©)-unary code-decomposition trees.
There is good reason to think that this could still be true, especially in lighodbl@ry 4.10, which
states that a code has a 3-sum decomposition only if it asuan decomposition. Indeed, that
result may lead us to believe that if a ca€lidas a(T" U ©)-unary code-decomposition tree which
contains 3-sums, then replacing the 3-sums in the tree 3vithms in the manner prescribed by
Corollary 4.10 should result in 3homogeneougI" U ®)-unary code-decomposition tree. How-
ever, to show that this is the case, it would have to be verified thatsf C; ©3 Cs, with Cq, Co
satisfying (a) and (b) of Definition 6.1, then (in the notation of Corollary ¥G,GndC, also satisfy
(a) and (b). Now, it is not hard to check thatdf is graphic, then so i§;. However, unlesg is
3-connected, there is no guarantee thaandC, are equivalent to minors df, even thouglt; and
C, are given to be equivalent to minors ©f

Itis in fact quite likely to be true that i€ = C; ®3 Co, with C; andCs equivalent to minors of
C, thenC; andC, are also equivalent to minors 6f So, it is quite possible that if Definition 6.1
were to include 3-sums as well, then the resulting code families would still Béneenogeneous,
(T'u®)-unary code-decomposition trees, and hence Theorem 6.5 would cetdihold. However,
a rigorous proof of this would take us far outside the main theme of our papdrDefinition 6.1
as it stands is good enough for our purposes.
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7. CONCLUDING REMARKS

A natural question to ask upon studying the decomposition theory presentbis paper is
whether one can definesums fork > 4 that have the same attractive properties as 2-, 3- and
3-sums. Ideally, such A-sum, denoted by, would have the following property for some fixed
integer! > k:

a k-connected codé€ has ak-separation(.J, J¢) with min{|.J|, |J¢|} > [iff C =
m(C1 @y Co) for some permutation of the coordinates of, and code€; andCs
equivalent to minors of .

It is indeed possible to definfesums in such a way that we hae= 7(C; @y, Co) iff C has a
k-separatior(./, J¢) with min{|J|,|J¢|} > [. The tricky part is ensuring that the component codes
C1 andC,, are retained as minors 6f and this appears to be difficult in general. However, we have
some preliminary results that indicate that even without the last propertyissoms can be used
as the building blocks of a decomposition theory that ties in beautifully with Farieory of
cycle-free realizations of linear codes [36]. This theory would makin&srdeep connections with
matroid theory, particularly with the notions of matroid branchwidth and treewkih [51]. An
exposition of this theory will be given in a future paper.

While the decomposition theory in this paper has been presented mainly in tiestooibinary
linear codes, it is possible to extend some of it to linear codes over artfimiagy/fields as well. The
definitions of minors an&-connectedness can be obviously extended to nonbinary codes.aAlso,
2-sum operation can be defined for codes over an arbitrary finite lfielahd the entire theory
outlined in Section 4.1 does carry over. However, there is no knowmBeqeration defined for
nonbinary codes that has a property analogous to that stated in ThddrgénAgain, it seems that
if we are prepared to give up the requirement that the components-etian be retained as minors
of the composite code, then it is possible to develop a powerful decompadsigiory for nonbinary
codes just like that for binary codes.

We end with a pointer to a very interesting direction of current research froiddaheory. This
involves the resolution of two conjectures whose statements (in the contdes) we give below.
Recall from Section 5 that the notatid@h-, for some fixed collectiotf of codes, refers to the set
of all binary linear code€ such that no minor of is equivalent to ang’ € F. We extend that
notation to codes over an arbitrary finite fieddas well.

Conjecture 7.1([37], Conjecture 1.2)If ¢ is a minor-closed class of codes over a finite figld
then€ = ¢~ for some finite collection of codés.

Informally, the above conjecture states that any minor-closed class e esdharacterized by
a finite list of excluded minors.

Conjecture 7.2 ([37], Conjecture 1.3) Let M be a fixed code. Given a lengtheodeC, it is
decidable in time polynomial in whether or noC containsM as a minor.

The two conjectures together imply that the membership of a code in a minodattass can
always be decided in polynomial time. To put it another way, if a properiyodks is preserved
under the action of taking minors, then it should be decidable in polynomial tine¢hehor not a
given code has that property. It should be pointed out that both dongschave been shown to be
true in the context of graphic codes, as part of the celebrated Grapdr Mioject of Robertson and
Seymour [52],[53]. The Graph Minor Project has had a profound impaanodern graph theory
[54], and its extension tH-representable matroids (equivalently, codes @)ds bound to have a
similar influence on matroid theory and, as a consequence, on coding.theor

APPENDIXA. PROOFS OFPROPOSITIONS4.2 AND 4.9

Proof of Proposition 4.2LetC andC’ be[n, k] and[n’, k'] codes, respectively, for whiadhds C’
can be defined. We want to show ttiétdo C’)L =Ct @, Ct.
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First, observe that, by Proposition 4.1(a),
dim((C®2C)") = (n+n —2)—dim(C®2C) = (n+n' —2)—(k+k —1)
= (n—k)+@ —K)—1 = dim(C*t e, C"7).

Therefore, it is enough to show that @, '+ ¢ (C @, C')*.

Given a binary worck = x5 . . . ,, and a positive integen. < n, letx.,,, denote the length.
prefix of x, and letx,,. denote the lengths suffix of x. Also, we denote the concatenation of two
binary wordsx andx’ by x || x'.

Consider an arbitrary codewors, of C+ &, C’'*. Such a word is of the form,,_q) || x’ W11

for somex = (z1,...,2,) € Ct andx’ = (z1,...,2/, ) € C'* such thatr,, = 2. We WI|| show
thatx,_qj || X’[nqzr as above must also be {6 @, C')*.

Let € be an arbitrary codeword d¢€ 2 C’). Such a codeword is of the form).,,_; || C[nuu
for somec = (cl, coyCp) € C andc’ = (c},...,c,) € C'suchthat, = ¢|. The dot producf X
evaluates t_)", c;z; + ZZ , c;z, all addition operations being performed modulo 2. But since
c € Candx € C*+, we haved"" | c;z; = 0, from which we obtaird ;" 1 CiT; = CpXy. Similarly,
Z?;Q cxl = diz}. Henceg - X = cpay, + 2] = 0, sincec, = ¢} andz,, = z{. Ascis an

arbitrary codeword ofC @4 C’), we have shown that € (C @- C’)l.
ThereforeCt @9 ¢t c (C ®o C’)L, which completes the proof. O

The proof of Proposition 4.9 closely resembles that of Proposition 4.2esmwtinue to use the
notation introduced in the latter proof.

Proof of Proposition 4.9LetC andC’ be[n, k] and[r’, k'] codes, respectively, for whidhds C’
can be defined. Observe that, by Propositions 4.7 and 4.8, we have

dim((C®3C)") = (n+n —6)—dim(C®3C) = (n+n —6)— (k+k —4)
= (n—k) 4@ —K)—2 = dim(CtB3C").

Therefore, to prove Proposition 4.9, it is enough to showa; ¢’ c (C &3 C')".

Itis easily seen that an arbitrary codewakdpf C &3 €'+ must be of the formx.,, 3 || X/[n’—?::]

for somex = (z1,...,z,) € C+ andx’ = (@},...,2,) € C't such that(z,,—2, Tp—1, Tn) =
(x], x5, 2%5). We will show that any suck is also in(C &3 ¢ .
Letc be an arbitrary codeword ¢t @3 C’), so that it is of the forne,, 5 || ¢

(w—3; for some
c=(c1,...,cp) € Candc = (cl,..., n) EC’ suchthat(cn 2,Cn—1,¢n) = (¢}, b, c5). The dot
productc - X evaluates t&_7— ¢;z; + ZZ *, ¢;x;, all addition operations being performed modulo
2. But sincec € C andx e ct, we havez _1 ciz; = 0, from which we obtainy "~ 1 cr; =
S o cix;. Similarly, ZZ Lo =30 ¢ Cili ' Henceg-Xx =1 i+, i), which
equals O since,;,—3 = ¢, andz,,;—3 = z for i = 1,2,3. Asc is an arbitrary codeword of
(C @3 C'), we have shown tha € (C &3 C')™.

ThereforeC+ &5 ¢t c (C &3 C’)L, which completes the proof. O

APPENDIXB. SKETCH OF PROOF OFTHEOREMG6.5

We will only provide a sketch of the proof of Theorem 6.5, as it is a resuiéire in the literature
[8, Theorem 6.5]. The purpose of sketching out the proof is that it aglihe polynomial-time
algorithm that determines

Iggg(% c), (12)
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for a lengthn codeC from a PAG family, and a cost vectere R".

The proof of the theorem is by induction using the following lemma and the &gqildined
further below) that the minimization of a linear cost function can be done innpofyal time for
graphic codes.

Lemma B.1. (a) LetC = C; @2 C2. Then the minimum in (12) can be obtained by solving two
minimization problems of the formincec, (o, ¢) and one problem of the forminccc, (3, c).

(b) LetC = C; ®3C5. Then the minimum in (12) can be obtained by solving four minimization
problems of the formminccc, (o, ¢) and one problem of the forminccc, (3, c).

Proof. Let n, ny andny denote the lengths af, C; andCs, respectively. Giveny € R"”, let
M =143 |l

(@) LetC = C; @2 Co. Definea!®) = <a§0>, oy anda® = (agl), ..., i) as follows:
0 Vs t=1,....,n1—1
Q= { M  i=mn
1) Vi 1=1,...,n1—1
ai o { —M 1= niy

Forj = 0,1, determiney; = mineec, (@), c), and a minimum-achieving codeword’) =
(cgj) ...,c(]l)) € C;. By choice ofM, we have that:%ol) = 0, while c,(}l) =1.

Now, defines = (f1,. .., Bn,) as follows:
8, = pr—po+M =1
’ Tnq+i—2 i:27"'7n2'
Solve fori = mineec, (5, ), and find a codeword = (¢4, .. ., é,,) € C2 achieving this minimum.

We claim thatminecc (v, ¢) = po + i1, and that a minimum-achieving codeworddns

VY e, b)) fl=0
Cmin = Cgl) (1

( 7"‘7Cn171’627"’7én2) Ifélzl
We will first show that for eacle € C, we have(~, c) > po + u. Pick an arbitrarye € C. There
exists a unique pair of codewords = (z1,...,2n,) € C1, Yy = (Y1,.-.,Yn,) € Ca Such that

Tny = y1, and(z1, ..., Tn,—1,Y2,...,Yn,) = €. SUppose that,,, = y; = 0. We then have

(v,¢) = (19, x) + (8,y) > po + fi.

Next, suppose that,, = y; = 1. In this case, we have

<’77 C) = <Oé(1),X> - aglll) + <ﬁ7 y> - ﬁl
= (aW,x) = (=M) + (B,y) — (1 — po + M)
> = (=M) 45— (= po+ M) = po+ [
Thus, (v, c) > uo + 1, as desired.
It is now enough to show thaty, cy,in) = 1o + . By definition ofcpy,
(remn) = | (¢ + (5,) =0
o (@, eM) — (=M) +(8,&) = (11 —po + M) if &1 =1.

In either case(~, cyin) = po + -
(b) LetC = C; @3 Cs. Note that from (AD)—(A3') in Definition 4.3, it follows that the restriction
of C; (resp.Cs) onto its last (resp. first) three coordinateg 0,011,101, 110}.
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() _

Definea® = (o7, ... a{)),j =0,1,2,3, as follows:a,;” = ~; fori =1,...,n; — 3, and
N
ag)fQ = —ozgl)fl = —aﬁ}l) = M;
T I
—ag)d = _047(1%)—1 = aﬁf’l) = M.

Forj = 0,1,2,3, determineu; = mineec, (@9, c), and a minimum-achieving codewoe) =

(..., %)y e ¢;. By choice of thex?)'s, we have that
000 if =0
GG g o ifj=1
(-2 em-1 ) = 101 ifj—2
10 ifj=3.

Now, takes = (04, ..., (Bn,) to be

—(po+m —p2—p3)/2+M  i=1
—(po — pin +po —p3)/2+ M i=2

b = —(po —p1 —p2 +p3)/2+M  i=3
Yn1+i—6 Z.:47"'77112-
Solve foru = Mincec, (B, c), and find a codeword = (¢4, .. : ,_ém) € Cy gch.ieving this minimum.
It may be verified thaminccc (7, c) = o + @1, and that a minimum-achieving codeworddris
0 0 4 N A A
(cg),...,07(1)_3,04,...,%) if (¢1,¢2,¢3) =000
1 1 ~ ~ . A A A
o (cg),...,cfl _5,Cay -0y Cny) if (¢1,¢9,¢3) =011
i 2, eD) e eny) I (61,60, 63) = 101
3 3) . . e A
(cg ), - 07(1173, Caye ey Cny) if (¢1,¢2,¢3) = 110.

The details of the verification are along the lines of that in part (a), ankbtire the reader. O

Suppose that we have a PAG code fandiyand must solve (12) for a given lengtheodeC € ¢
and cost vectoty = (71,...,7,) € R™. Note that ifC can be expressed as a direct s@mnp Co, of
codesC; andCs of lengthsn, andns, respectively, then

- — mi [CORPNEY ; 2 @
min(y, ¢) = cg)uerélw )+ nggégw ),
wherey™) = (vi,...,v,,) andy® = (4,41, - . ., 7). Therefore, to show that (12) can be solved
in time polynomial inn, it is enough to show that there is a polynomial-time algorithm in the case
when( is 2-connected.

It follows from Definition 6.1 that there exists a finite sub-family C ¢ such that each 2-
connected cod€ € ¢ has a3-homogeneoug,I' U ®)-unary code-decomposition tree, which can
be constructed in polynomial time. So, an algorithm for solving (12) for arfiected cod€ € ¢
would use Lemma B.1 to recursively go down the code-decomposition tremgtiiom the root
node, solving at most four minimization problems at each leaf of the tree lIReaizeach leaf of a
(T'u®)-unary code-decomposition tree is a cod€'in®. Since such atree for a lengtheode can
have at most leaves, the algorithm for solving (12) would run in time polynomiahirprovided
that there is a polynomial-time algorithm for solving (12) for codes I, i.e., graphic codes.

Indeed, there exists a polynomial-time algorithm for solving (12) for grapbdes. Note that
the minimization problemmin(y,c) = min) ;" ; v;c; over a graphic codé€(G) is equivalent to
the problem of finding the minimum-weight Eulerian subgraph in the g@pthose edges;,

1 =1,2,...,n, are given the weights;. An Eulerian subgraph of a graph is a subgraph in which
each vertex has even degree.
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The Eulerian subgraph problem can be solved as foflo®s/en a subsef of the vertices of,
aT-joinis a set of edges of G such that a vertex in G has odd degree with respectiaf and only
if v e T. Let N be the set of edgds; : 7; < 0}, and letl" be the subset of vertices with odd degree
wrt N. Define the graplg’ to be the grapl¢ but with edge-weights; = |v;|,7 = 1,2, ..., n. Find
a minimum-weightT-join, J, in G’. The symmetric differencd AN is the required minimum-
weight Eulerian subgraph @f. A minimum-weightT’-join can be found in polynomial time [55,
Chapter 29], and so, a minimum-weight Eulerian subgrap@ cn be determined in polynomial
time.

APPENDIXC. PROOF OFTHEOREMG6.8

We will first prove that the familyI’, of graphic codes is not asymptotically good. This is
probably a “folk” theorem, but we could not find an explicit proof in the Etteire. Our proof relies
on the fact [56] that for a grapli = (V, E) with girth g and average degrée= 2|E|/|V| > 2, the
number of vertices satisfies the so-calMdore bound

V> 14+ 5071 GE — 1) if gis odd
- 221.1/02J 'G—1) if giseven

For our purposes, the weaker boufd > 2 (5 — 1)L9/2/=1 is enough, as we then have, for> 2,

<44 210ggV|/2) <4 210g(JE|/2)7
log(d — 1) log(d — 1)

where, for the sake of concretenelsg; denotes the natural logarithm.

Since codewords iG(G) correspond to cycles i@, we see that the minimum distance®i)
equals the girtly of the graphg. Furthermore, ifG is connected, then (as mentioned in Section 2)
the rank of its vertex-edge incidence matriX¥ — 1, and hencedim(C(G)) = |E| — (|V| — 1).
Thus, the rate of(G) is1 — (|V| — 1)/|E| ~ 1 — 2/5. Consequently, if a family of graphic
codes has dimension growing linearly with codelengththen by (13) their minimum distance
grows a0 (log n), which implies that graphic codes are not asymptotically good. This argument
formalized in the proof given below.

(13)

Lemma C.1. The family of graphic codes is not asymptotically good.

Proof. We will in fact prove a stronger statement: foe (0, 1), letl’, = {C € T': C has rate> r};
then, for any cod€ € T, with lengthn > 2, we have
4logn

dC) = log(1+47)
Consider first affin, k, d] codeC € T', withn > 2/r. Without loss of generality (WLOG), we can
assume that = C(G) for some connected gragh = (V, E') [18, Proposition 1.2.8]. Therefore,
k/n=1—(|V|—-1)/|E| > r, orequivalently(|V|—1)/|E| < 1—r. Furthermore, since > 2/r,
we have thatV'|/|E| < 1 — r/2. Therefore, the average degréeof G is larger thar2/(1 — r/2),
which is in turn larger tha(1 + r/2) = 2 + r. Hence, by (13),

2log(n/2)

(14)

d<4 15
et log(1+r) (15)
We claim that fom > 2/, we havet + ﬂ‘;%g’jr/f)) < 104;(01&’;). Indeed, note that this last inequality
is equivalent tollog((%i)) > 4. A simple calculation will confirm tha% > 4 for any
€ (0,1), and hence, fon > 2/r, we havellog((%ir) > % > 4. Thus, (15) can be replaced

by the simpler inequalityl < 102101%)

8This approach to solving the Eulerian subgraph problem was conveybd tmthor by Adrian Vetta.
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Therefore, without the assumptien> 2/r, we have
41
4(C) < max {z/r, g} |

log(1+ )
However, it is straightforward to verify thgR/r) log(1 + r) < 2 for anyr > 0, from which we
obtain that fom > 2, 10‘;1(01{;) > 2/r, and (14) follows. O

Let® be a finite collection of codes, and let+ © be the set of all codes that can be expressed
asC1PoCs or C1 d3 Co, With C; € T"andCsy € ©. The following result should not be surprising.

Lemma C.2. For any finite collection of code®, the familyl’ + © is hot asymptotically good.

Proof. Definedyax (D) = max{d(C’) : C"is a minor of some code i®}. We will show that ifC
is a code i + ® with rate larger tham, then

4logn
d(C) < max {dmaX(CD), Tog(1 1) } (16)

So, letC be an[n, k] code inT" + © with k/n > r. Now, C = C1®2C2 or C = C; @3 C, for
someC; € I'andCy € D. In particular, note thaf must have length at least 4. Suppose first that
dim(Cs) < 2. Then,C, cannot contain a minor equivalent to any of the cdHesH%, C(K5)* and
C(Kg’g)J‘, since each of these codes has dimension at least 3. So, by Theotdry i2.fraphic.
Since the family of graphic codes is closed under the operations of 2-sdfrsum (seee.g.[26,
Chapter 8]), it must be that is graphic. Therefore, (16) holds by the bound in (14).

If dim(C2) > 2, then by Propositions 4.1(b) and 4.8(b), we have th{@) < d(C’) for some
minorC’ of C,. So, once again, (16) holds, this time by definitionlgf. (D). O

Given an almost-graphic code family let® be the finite sub-family of codes with the properties
guaranteed by Definition 6.1. WLOG, we may assumeh#& minor-closed.
Forr € (0, 1), defineN, to be the least positive integer such that foralb N,,
0< ! < 2
log(1+7—2/n) log(l+r)
Note that sincéim,, .o, 1/log(1 4+ r — 2/n) = 1/log(1 + r), such anV, does exist. Now, define
dmax(r,®) = max{d(C) : C € € and has length at most,, orC € ©}.

Note, in particular, that sinc® is taken to be minor-closed, we hadg.x(r,©) > dnax(D),
whered,.x (D) is as defined in the proof of Lemma C.2.

We now have the definitions needed to state the next result, which showsttes in¢ can-
not have both dimension and minimum distance growing linearly with codelengithclear that
Theorem 6.8 follows directly from this result.

Lemma C.3. Let€ be an almost-graphic family of codes. For ang (0,1), if C € €isanin, k, d|
code withk/n > r, then
8logn
d < max {dmax(ﬁ@), Tog(1 1+ 1) } a7
Proof. From the definition ofd,.x (7, ©), and the bounds in (14) and (16), it is obvious that the
statement of the lemma holds for all codeg’in ® U (I" + ©). The proof that the statement holds
for all codes in¢ is by induction on codelength for a fixede (0, 1).
So, fixanr € (0,1). If ng is the smallest length of a non-trivial codednthen a lengthz, code
in € cannot be decomposed into smaller codes, and so mustlbel {®. Therefore, the statement
of the lemma holds for the base case of lengghcodes.
Now, suppose that for some> ng, (17) holds for all code€’ € € of lengthn’ < n—1 and rate
larger thanr. LetC € € be an[n, k, d] code withk/n > r. If C = C; @ C, for some (non-empty)
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codesC; andCs in €, then at least one @f; andC, has rate larger than, and so (17) holds fof
by the induction hypothesis. We may thus assume@ha2-connected.

If Ce Tu®U(I'+9), there is nothing further to be proved; so we will henceforth assume that
this is not the case. So, eith€ér= 7(C; ®2 C2) or w(Cy &3 Cq) for Cy, Cy, m as in Definition 6.1.
WLOG, we may taker to be the identity permutation, so thatis eitherC; @ C or C1 ®3Co,
for some[ny, k1] codeC; € T'U ®, and somdna, k3] codeCy € €. Furthermore(, ¢ T, since
C ¢ U (' + D). In particular, this means thas > 3, since ifky < 2, then it would follow from
Theorem 2.1 that, is graphic.

We consider the caseé = C; @4 Cs first. In this case, Definition 6.1 gives us > 2. We
have shown above thdt > 3, and so by Proposition 4.1(b), < min{d(C}),d(C5)}, where
Ci = C1 \{n1} andCj = Cy \{1}. Note that fori = 1,2, C/ is an[n}, k/] code, where), = n; — 1
andk, = k; — 1. Thus,n = n| 4+ n), and from Proposition 4.1(a), we also hadve- k; + ks — 1 =
ki + k5 + 1.

Now, if k}/n, > r for somei € {1,2}, then the statement of the lemma holds ¢oby the
induction hypothesis. So, we are left with the situation wkgt, < r for i = 1,2. Butin this
case, sincé&/n = (k) + kb +1)/(n} +nb) > r, we must havé /n| > r — 1/n/; otherwise, we
would havek}, > (n| +nb)r — 1 —k} > (n} + nf)r — 1 — (rn} — 1) = rnl, which would mean
thatx’,/n/, > r. Note that sinc€; € I' UD, andCj is a minor ofC;, we have that] € T U D. If
C, € ®orn} < N,, thend(C}) < dmax(r,®); otherwise ] is graphic withn! > N, and so, by
(14) and the definition oiV,,

dcl) < 4logn) < 4logn} < 8logn} .
= log(1+ (r —1/n})) ~ log(1 + (r —2/n})) ~ log(1l +r)

In any cased(C]) < max {dmax(r,BD) M} < max{dmaX(T,D) 8logn } Sinced <

 log(1+4r)  log(1+7)

d(C}), we have that (17) holds fat.

Finally, we deal with the case whéh= C; ©3Cy. The approach is essentially the same as that
in the 2-sum case. This time, we defile= C; \ {n1 — 2,71 — 1,n1} andC} = C» \{1, 2, 3}.
Fori = 1,2, we now find thaC} is an[n}, k] code, wherex, = n; — 3 andk] = k; — 2. Thus,
n = n} +nl, and via Proposition 4.8(a, = k) + k% + 2. Furthermorek; > 3 (by Definition 6.1)
andky, > 3 (shown above), and so, by Proposition 4.8(b), we h&® < min{d(C}),d(C})}.
If either k] /n or kb/n} is larger thanr, then (17) holds foC by the induction hypothesis. So
suppose that;/n, < r fori = 1,2. Sincek/n = (k| + Kk} + 2)/(n} + nf) > r, we must
havek;/n| > r — 2/n/; otherwise, we would obtaik,/n, > r. If C{ € © orn} < N,, then
d(C]) < dmax(r,D); otherwise (] is graphic withn| > N,, and so, by (14) and the definition of
Ny,

4logn 8log n
d C/ S 1 S 1 .
(@) log(1+ (r —2/n})) ~ log(1+r)

’ log(1+7)
C. The proof of the lemma is now complete. O

In any cased(C}) < max {dmax(r, D) 8logn } and sincel < d(Cj), we see that (17) holds for
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