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Abstract—A code polytope is defined to be the convex hull in
R

n of the points in {0, 1}n corresponding to the codewords of
a binary linear code. This paper contains a collection of results
concerning the structure of such code polytopes. A survey of
known results on the dimension and the minimal polyhedral
representation of a code polytope is first presented. We show
how these results can be extended to obtain the complete facial
structure of the polytope determined by the[n, n−1] even-weight
code. We then give a result classifying the types of 3-faces a
general code polytope can have, which shows that the faces of
such a polytope cannot be completely arbitrary. Finally, we show
how geometrical arguments lead to a simple lower bound on the
number of minimal codewords of a code, and characterize the
codes for which this bound is attained with equality. This also
yields an interesting intermediate result that classifies simple code
polytopes. The motivation for our study of code polytopes comes
from the formulation by Feldman, Wainwright and Karger of
maximum-likelihood decoding as a linear programming problem
over the code polytope.

I. I NTRODUCTION

The recent work of Feldman, Wainwright and Karger [6]
shows that maximum likelihood (ML) decoding of a binary
linear codeC over a discrete memoryless channel can be
formulated as a linear programming problem. Recall that the
ML decoding problem is: given a received wordy at the
channel output, find a codewordx ∈ C that maximizes the
probability, Pr[y|x], of receivingy conditioned on the event
thatx was transmitted. As observed by Feldmanet al., under
the assumption of a discrete memoryless channel, given a
received wordy = y1y2 . . . yn, the problem of determining
arg max

x∈C Pr[y|x] is equivalent to the problem of finding
arg min

x∈C〈γ,x〉, whereγ = (γ1, γ2, . . . , γn) is given by

γi = log

(

Pr[yi|xi = 0]

Pr[yi|xi = 1]

)

and 〈·〉 is the standard inner product onRn. Here, for
the inner product〈γ,x〉 to make sense, a binary codeword
x = x1x2 . . . xn ∈ C is identified with the real vector
(x1, x2, . . . , xn) ∈ {0, 1}n ⊂ R

n.
The above formulation shows ML decoding to be equivalent

to the minimization of a linear function over a finite set
C ⊂ {0, 1}n. Let P (C) be thecode polytopeof C, i.e., the
convex hull in R

n of the finite setC. It can be shown that
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the set of vertices ofP (C) coincides withC. The key point
now is that over a polytopeP , a linear functionφ attains
its minimum valueφmin = min{φ(x) : x ∈ P} at a vertex
of P . In particular,arg min

x∈P (C)〈γ,x〉 = arg min
x∈C〈γ,x〉.

Thus, ML decoding is in fact equivalent to the minimization
of a linear function over a polytope. This, as noted in [6],
is a classic linear program (LP) since a polytope can always
be represented as a polyhedron, which by definition, is the
solution set to a finite system of linear inequalities.

An LP is simply the minimization of a linear cost function
over a polyhedron. The degree of difficulty involved in solving
an LP is directly related to the number of variables in the
problem and the number of inequalities defining the polyhe-
dron. Since it is possible for two distinct systems of linear
inequalities to have the same solution set, a given polyhedron
may in general have many different representations in terms
of linear inequalities. Thus, with a view towards reducing the
complexity of an LP over a given polyhedron, it is clearly
important to find aminimal representation of the polyhedron
that involves the least number of inequalities among all its
representations via linear inequalities. In particular, an efficient
implementation of the ML decoding problem for a codeC as
an LP would require a minimal polyhedral representation of
the code polytopeP (C).

The work of Barahona and Grötschel [1] is the obvious
starting point in any study of code polytopes. The results in
that work are couched in the language of binary matroids, and
translations of those results into the language of coding theory
can be found scattered throughout our paper. Section III of our
paper describes one of the main theorems of [1], which gives
a minimal polyhedral representation ofP (C) for nearly any
codeC, and also precisely characterizes the exceptional codes
not covered by this representation.

However, ML decoding of an arbitrary code is known to
be NP-hard. So, in general, no polyhedral representation of
the code polytope can make linear programming over the
polytope an attractive, or even feasible, option. A strategy
often followed in such a situation is to “relax” the problem.
The idea is to look for a polytope that contains the code as a
subset of its vertex set, but has a more manageable polyhedral
representation; the cost function is then minimized over this
“relaxed” polytope.

A simple way of relaxing a code polytopeP (C) is to
cast out some subset of the inequalities forming a polyhedral
representation ofP (C), while restricting the resulting polytope



to remain within then-cube[0, 1]n. This relaxation procedure
ensures that the codewords inC continue to be vertices of the
relaxed polytope. The “projected polytope”Q of Feldmanet
al. [6, p. 958] and the equivalent “fundamental polytope” of
Vontobel and Koetter [11], [13], as well as the “rth relaxation”
polytope defined in [13, Definition 11], are examples of
such relaxations of the code polytope. Now, the polytopes so
obtained generally have more vertices than the original code
polytope. These additional vertices are also potential minimiz-
ers of the cost function〈γ,x〉 over the relaxed polytope, but
as they are not codewords, they are spurious solutions to the
decoding algorithm and represent decoding failure. This was
noted in [6], where the term “pseudocodeword” is used1 to
denote a vertex (or more accurately, a vertex scaled so as to
lie in the integer latticeZn) of the polytopeQ.

Thus, relaxing the code polytope to reduce the complexity of
the LP creates extra vertices that causes the LP over the relaxed
polytope to perform worse as a decoding algorithm than ML
decoding. There is thus a trade-off between complexity of the
LP and its performance as a decoding algorithm, which is
poorly understood at present. It is our thesis that in order to
understand this trade-off, it is important to gain a thorough
understanding of the structure of a code polytope. This should
help in finding sharp estimates of the number of extra vertices
in relaxations of the polytope, and may also help in finding
relaxations that introduce relatively few extra vertices.One of
the aims of this paper is to initiate a study of the complete
facial structure of a code polytope, and we present some
preliminary results in Section IV.

It turns out that the geometry of code polytopes implies
a simple lower bound on the number of minimal codewords
in a code. In Section V, we present this bound along with
a necessary and sufficient condition for the bound to be met
with equality. This derivation yields an interesting intermediate
result that characterizates code polytopes that are simple, i.e.,
polytopes in which each vertex is incident with exactlyn
edges,n being the dimension of the polytope.

II. FORMAL DEFINITIONS AND NOTATION

We establish in this section the language used to present
our results in later sections. We follow for the most part
the standard terminology of coding theory [12] and discrete
convex geometry [2]. As the average reader is expected to be
familiar with the former, we elaborate on the latter.

Given a binary linear codeC, we let d(C) denote its
minimum distance. We define thesupport of a codeword
c = c1c2 . . . cn ∈ C to be supp(c) = {i : ci = 1}, and
also definesupp(C) =

⋃

c∈C supp(c) to be the support ofC.
A codewordc ∈ C, c 6= 0, is calledminimal if its support
supp(c) does not contain as a subset the support of any other
nonzero codeword inC. The set of all minimal codewords of
C is denoted byM(C).

1The term “pseudocodeword” is used rather differently in [11], [13] where
it denotes any rational point within the fundamental polytope. However, the
authors of [14] use the term “minimal pseudocodewords” to describe the
vertices adjacent to0 in the fundamental polytope of [11], [13].

The dual code ofC will be denoted byC⊥. A codeD is
said to be aminor of C if D can be obtained fromC by a
series of puncturing and shortening operations.

A polytopein R
n is the convex hull of a finite set of points in

R
n. In this paper, we will be interested in polytopes associated

with binary linear codes. LetC be an[n, k] binary linear code.
Each codewordc1c2 . . . cn ∈ C, ci ∈ {0, 1}, can be identified
with the point(c1, c2, . . . , cn) ∈ R

n. Thus,C is identified with
a set of2k points in {0, 1}n ⊂ R

n, which we will continue
to denote byC. The code polytopeof C is defined to be the
convex hull ofC in R

n, and will be denoted byP (C). A code
polytope is thus a0/1-polytope, meaning that it is the convex
hull of some subset of{0, 1}n (cf. [16]).

The dimensionof a polytopeP ⊂ R
n, denoted bydim(P ),

is defined to be the dimension of its affine hull (which is the
smallest affine subspace inRn containingP ). Thus,dim(P ) ≤
n, with strict inequality being possible. The following result
explicitly determinesdim(P (C)) for a binary linear codeC.

Theorem 2.1 ([1], Theorem 4.1):Given a binary linear
codeC, let K be a largest subset ofsupp(C) with the property
that for all i, j ∈ K, i 6= j, there existsc1c2 . . . cn ∈ C with
ci 6= cj . Then,dim(P (C)) = |K|.

A polytope P ⊂ R
n with dim(P ) = n is said to befull-

dimensional. The following corollary to the above theorem
succinctly characterizes full-dimensional code polytopes.

Corollary 2.2: For any binary linear codeC of length n,
dim(P (C)) = n iff d(C⊥) /∈ {1, 2}.

For the most part, in this paper, we will consider full-
dimensional code polytopes only, as codesC with d(C⊥) ∈
{1, 2} are not very interesting, and can always be punctured
to obtain a code whose polytope is full-dimensional.

Let 〈·〉 denote the standard inner product inR
n. Givena ∈

R
n and β ∈ R, the setH = {x ∈ R

n : 〈a,x〉 = β} is
called a(n affine)hyperplane, and the setH≤ = {x ∈ R

n :
〈a,x〉 ≤ β} is called aclosed halfspace. Given a polytope
P ⊂ R

n, a (possibly empty) subsetF ⊂ P is called aface
of P if there exists a hyperplaneH ⊂ R

n such thatP is
contained in the closed halfspaceH≤, and F = P ∩ H. A
face of a polytope is itself a polytope. A 0-dimensional face
of a polytopeP is called avertex, a 1-dimensional face is
called anedge, and a face of dimensiondim(P )− 1 is called
a facet. The only face of dimensiondim(P ) is P itself. In
general, ak-dimensional face is referred to as ak-face. An
inequality 〈a,x〉 ≤ β is calledk-face-defining(resp.vertex-
defining, edge-defining, facet-defining) for P if 〈a,x〉 ≤ β
holds for all x ∈ P , and {x ∈ P : 〈a,x〉 = β} is a k-face
(resp. vertex, edge, facet) ofP .

The two basicn-dimensional0/1-polytopes that we will
often encounter are then-cube, [0, 1]n, which we denote
by ¤n, and then-simplex∆n, which is the convex hull of
{0, e1, . . . , en} ⊂ R

n, wheree1, . . . , en is the standard basis
of R

n. Thus, for example,∆1 is a line segment,∆2 a triangle,
and∆3 a tetrahedron.

We will need the notion of affine equivalence of polytopes:
two polytopesP ⊂ R

m and Q ⊂ R
n are affinely equivalent



if there exists an affine mapf : R
m → R

n that is a bijection
betweenP and Q. Any n-dimensional polytope withn + 1
vertices is affinely equivalent to then-simplex∆n, and so is
also usually referred to as asimplex.

A polyhedron is the intersection of finitely many closed
halfspaces inRn. By the Weyl-Minkowski Theorem [2, p. 9], a
setP ⊂ R

n is a polytope iff it is a bounded polyhedron. Thus,
a polytope has a dual representation as a polyhedron. However,
a polytope does not in general have a unique polyhedral
representation,i.e., it could be represented as an intersection
of closed halfspaces in a variety of ways. But, there is a unique
minimal polyhedral representation of a polytopeP which
requires the minimum number of halfspaces (or equivalently,
linear inequalities) among all polyhedral representations of P .
For a full-dimensional polytopeP , the minimal polyhedral
representation consists of precisely the facet-defining inequal-
ities for P .

III. M INIMAL POLYHEDRAL REPRESENTATION OFP (C)

It is a somewhat surprising fact that the minimal polyhedral
representation can be explicitly given for most code polytopes,
and we quickly summarize this result in this section. For
simplicity, we state the result only in the case whend(C⊥) /∈
{1, 2}, so thatP (C) is a full-dimensional code polytope. The
most general statements can be found in [1], and are given
there in the language of matroid theory.

The result given below is valid for a class of codes with
a certain set of excluded minors. To be precise, it holds for
binary linear codesC with the property thatC does not have
as a minor any code equivalent to one of the following:

1) the [7, 3, 4] simplex code, which we denote byF ∗
7 ;

2) the [10, 5, 4] code, denoted byR10, the columns of
whose parity check matrix are the ten words of length
5 and Hamming weight 3;

3) the [10, 4, 4] code, denoted byM∗(K5), the columns of
whose generator matrix are the ten nonzero words of
length 4 and Hamming weight at most 2.

We need one last piece of notation to state the theorem on
polyhedral representations. Recall thatM(C) denotes the set
of minimal codewords ofC. Theboundary, ∂M(C), of M(C)
is defined to be the set of allc ∈ M(C) such thatc = p⊕ q

for some p,q ∈ M(C) with |supp(p) ∩ supp(q)| = 1.
Here and hereafter,⊕ denotes modulo-2 addition. Let
M(C)

◦
= M(C) \ ∂M(C). We are now in a position

to state the rather elaborate result on minimal polyhedral
representations of code polytopes.

Theorem 3.1 ([1], Theorem 4.22):Let C be a binary linear
code of lengthn, with d(C⊥) /∈ {1, 2}, and letI denote the
union of the supports of weight-3 codewords inC⊥. Then the
system of linear inequalities in the variablesx1, x2, . . . , xn

given by
(a) 0 ≤ xj ≤ 1 for eachj /∈ I, and
(b) for eachu ∈ M(C⊥)

◦
and eachK ⊂ supp(u), |K| odd,

∑

i∈K

xi −
∑

j∈supp(u)\K

xj ≤ |K| − 1,

is a system of facet-defining inequalities comprising the min-
imal polyhedral representation ofP (C) iff C does not have as
a minor any code equivalent toF ∗

7 , R10 or M∗(K5).

Thus, for a codeC of length n, with d(C⊥) /∈ {1, 2}, and
no F ∗

7 , R10 or M∗(K5) minor, the number of facets ofP (C)
is

2(n − |I|) +
∑

u∈M(C⊥)◦

2wH(u)−1

where wH(u) is the Hamming weight ofu. Thus, imple-
menting ML decoding as an LP is truly an attractive option
only whenM(C⊥)◦ is of relatively small size, and consists of
words of small Hamming weight relative to the codelength.

IV. OTHER FACES OFP (C)

In the previous section, we saw that it is possible (with
not insignificant effort) to characterize the facets of code
polytopes, at least when the codes have noF ∗

7 , R10 or
M∗(K5) minor. But what information do we have about the
other faces ofP (C)? It is of course obvious that the vertices
of P (C) are precisely the codewords ofC. The edges ofP (C)
also have a simple characterization.

Theorem 4.1 ([1], Theorem 5.1):Let C be a binary linear
code. There is an edge connecting two distinct verticesc1 and
c2 in P (C) iff c1 ⊕ c2 ∈ M(C).

There is unfortunately (or fortunately for this author) very
little known about faces ofP (C) other than vertices, edges
and facets. One might naturally ask why it is necessary to
investigate faces in general. A reason we give is that it
could help in understanding what happens when the code
polytope is relaxed by removing some facets. A beautiful result
of Figiel, Lindenstrauss and Milman [2, p. 275] states that
there is a constantδ > 0 such that any centrally symmetric
polytopeP satisfiesln |V | · ln |F | ≥ δ dim(P ), where|V | and
|F | denote the number of vertices and facets, respectively,
of P . In particular, it applies to the code polytopeP (C)
of a code C containing the all-ones word1, and any of
its relaxations obtained by throwing away facets while still
maintaining central symmetry. Thus, for instance, the number
of vertices and the number of facets in any of these polytopes
cannot both be polynomial in the codelength. A more complete
understanding of the facial structure of a code polytope and
its relaxations can only help in improving such estimates of
the number of vertices in terms of the number of facets. It
may also be useful in the search for “good” relaxations that
introduce relatively few extra vertices.

A code polytope is highly symmetric; it “looks the same”
from any of its vertices. This symmetry is formally captured
by the following statement, which essentially rephrases
Theorem 3.1 from [1].

Lemma 4.2:For any binary linear codeC, {c1, c2, . . . , cm}
is the set of vertices of ak-face of P (C) iff {0, c2 ⊕
c1, . . . , cm ⊕ c1} is the set of vertices of ak-face ofP (C).

Thus, it is enough to study the structure of faces containing
0, as an arbitrary faceF of P (C) can be transformed, via



a symmetry of then-cube ¤n, to a face F ′ containing
0. Faces ofP (C) containing0 actually have an important
structural property, which is best described in the terminology
of partially-ordered sets (posets) [5].

Any code C can be made a poset by endowing it with
the partial ordering¹ as follows: c1 ¹ c2 iff supp(ci) ⊂
supp(c2). A downsetin C is a subsetD ⊂ C with the property
that, for eachb ∈ D and c ∈ C, c ¹ b implies thatc ∈ D.
Clearly, any non-empty downset inC contains0.

Lemma 4.3:Let C be a binary linear code, and letF be a
face ofP (C) containing0. Then, the set of vertices ofF is a
downset ofC.

Proof: Let b be a vertex ofF , and let c ∈ C be such
that c ¹ b. Note that sincesupp(c) ⊂ supp(b), we have
b ⊕ c = b − c, and thus,b − c ∈ C.

Let 〈a,x〉 ≤ β be a face-defining inequality forF . Note
that β must be 0 since0 ∈ F . We thus have〈a, c〉 ≤ 0 and
〈a,b〉 = 0, and hence,〈a,b − c〉 ≥ 0. On the other hand,
since b − c ∈ C, we also have〈a,b − c〉 ≤ 0. Therefore,
〈a,b − c〉 = 0, and hence,〈a, c〉 = 0, implying thatc ∈ F .
Hence,F is a downset ofC.

While the converse to the above lemma is, in general, not
true, a partial converse does hold. Given a subsetD of C, a
codewordb ∈ D is called amaximum elementof D if c ¹ b

for all c ∈ D. The maximum element ofD, if it exists, is
unique.

Lemma 4.4:Let C be a binary linear code, and letD be
a subset ofC with a maximum element. Then,conv(D) is a
face ofP (C) containing0 iff D is a downset.

Proof: We only have to prove the “if” part of the lemma. So,
let D be a downset inC, and letb be the maximum element
of D. Note that for anyc ∈ C, we havec ¹ b iff c ∈ D.

Let a = (a1, a2, . . . , an) ∈ R
n be the vector withai = −1

for all i /∈ supp(b) andai = 0 otherwise. Note that〈a, c〉 ≤ 0
for all c ∈ C, with equality iff c ¹ b, or equivalently, iff
c ∈ D. Hence,〈a,x〉 ≤ 0 for all x ∈ P (C), with equality iff
x ∈ conv(D). Thus,conv(D) is a face ofP (C). Furthermore,
0 ∈ conv(D) since0 ∈ D.

Lemmas 4.3 and 4.4 contain information sufficient to derive
some interesting properties ofk-faces of code polytopes. We
consider first the problem of characterizing the 2-faces of
an arbitrary code polytope. A 2-face of any0/1-polytope
is a 2-dimensional0/1-polytope. Now, any 2-dimensional
0/1-polytope is affinely equivalent toconv(V ) ⊂ [0, 1]2,
where V is either {00, 01, 10} or {0, 1}2. Hence, 2-faces
of 0/1-polytopes are either0/1-triangles or0/1-rectangles.
In fact, if Q ⊂ R

n is a 0/1-rectangle containing0, the
affine map takingQ bijectively to {0, 1}2 may be taken to
be linear, and so the vertices ofQ must be{0,a,b,a + b}
for somea,b ∈ {0, 1}n. Furthermore,a,b,a + b can all
be in {0, 1}n only if supp(a) ∩ supp(b) = ∅. Thus, to
summarize, ifQ is a 0/1-rectangle inR

n containing0, then
Q = conv({0,a,b,a+b}) for somea,b ∈ {0, 1}n such that
supp(a)∩supp(b) = ∅. The converse is also easily seen to be
true. We can now prove the following simple characterization
of the rectangular 2-faces in a code polytope.

Proposition 4.5:Let C be a binary linear code, and letD =
{0,a,b, c} ⊂ C be the vertex set of a0/1-rectangle. Then,
conv(D) is a 2-face ofP (C) iff D is a downset inC.

Proof: D = {0,a,b, c} is the vertex set of a0/1-rectangle
only if supp(a)∩supp(b) = ∅ andc = a+b. Therefore, we
havea ¹ c andb ¹ c, and hence,c is the maximum element
of D. The result now follows from Lemma 4.4.

The following corollary is essentially a re-statement of the
above proposition in more coding-theoretic terms.

Corollary 4.6: Let C be a binary linear code.F is a rectan-
gular 2-face ofP (C) containing0 iff F = conv({0,a,b, c}),
wherea andb are minimal codewords with disjoint support,
c = a + b, and{x ∈ C : x ¹ c} = {0,a,b, c}.

Triangular 2-faces of code polytopes do not appear to
have a similar easy characterization. Clearly, by Theorem 4.1,
conv({0,a,b}) is a 2-face of someP (C) only if a,b,a⊕b ∈
M(C). We believe that the converse is not true, although we
do not have a counterexample either.

Despite this high degree of symmetry, determining the
complete facial structure of an arbitrary code polytope is a
very difficult problem, for which there is no known general
solution. However, using Theorem 3.1 as a starting point, itis
fairly easy to derive the facial structure in the important special
case of the polytope of the[n, n− 1] even-weight codeEn, as
we now show.

The casesn = 1, 2, 3 are trivial: E1 = P (E1) = {0}; E2 =
{00, 11}, henceP (E2) = ∆1; andE3 = {000, 011, 101, 110},
henceP (E3) = ∆3. The code polytopes forEn, n ≥ 4, are
much more interesting, and Theorem 4.7 below, in conjunction
with Lemma 4.2, gives their complete facial structure.

We introduce some simplifying pieces of notation.
Given a positive integern, we let [n] denote the set
{1, 2, . . . , n}. If S is some set inR

n, we let conv(S)
denote its convex hull. Forj = 1, 2, . . . , n, we define
the hyperplanesHj = {x ∈ R

n : xj = 0}, and Lj =
{x ∈ R

n : xj −
∑

s∈[n],s 6=j xs = 0}.

Theorem 4.7:For n ≥ 4, let En denote the[n, n−1] binary
even-weight code, so thatM(En) is the set of binary words
of lengthn and Hamming weight 2.

(a) conv(0, c) is an edge ofP (En) iff c ∈ M(En).
(b) F is a 2-face of P (En) containing 0 iff F =

conv(0,a,b) for somea,b ∈ M(En) such thata⊕b is
also inM(En).

(c) For 3 ≤ k ≤ n− 1, F is a k-face ofP (En) containing0
iff F = conv(En ∩ V ), whereV is either

(i)
⋂

j∈J Hj for someJ ⊂ [n] with |J | = n − k, or
(ii)

⋂

j∈J Hj ∩Li for someJ ⊂ [n] with |J | = n−k−1
and i ∈ [n] \ J .

Sketch of Proof: Part (a) is a consequence of Theorem 4.1.
For part (b), we first observe that 2-dimensional 0/1-polytopes
must either be triangles or rectangles [16, Section 1.1]. We
then show that no rectangle can be a 2-face ofP (En), and
a triangle with vertices0,a,b can be a 2-face ofP (En) iff
a,b,a ⊕ b ∈ M(En).



For part (c), we note that the result fork = n − 1 follows
from Theorem 3.1.2 For the general result, we observe first
that a k-face incident with0 must be contained in at least
n − k facets incident with0. We then make use of the result
for k = n−1 to decide which intersections ofn−k (or more)
facets yields ak-face.

For n ≥ 4 and3 ≤ k ≤ n− 1, define ak-face ofP (En) to
be of Type A(resp.Type B) if it is of the form conv(En ∩ V )
for someV as in Theorem 4.7(c)(i) (resp. Theorem 4.7(c)(ii)).
It is easy to see thatk-faces of Type A are affinely equivalent
(via projection onto the coordinatesxi, i /∈ J) to P (Ek). Note
that sinceP (E3) = ∆3, 3-faces of Type A are in fact affinely
equivalent to∆k. On the other hand,k-faces of Type B are
always affinely equivalent to thek-simplex ∆k, due to the
following corollary to the theorem.

Corollary 4.8: F is a k-face of Type B iff F =
conv(0, c1, c2, . . . , ck) for c1, c2, . . . , ck ∈ M(En) such that
∣

∣

∣

⋂k

i=1 supp(ci)
∣

∣

∣
= 1.

Corollary 4.9: For k ≤ 3, all k-faces ofP (En) are affinely
equivalent to∆k. For k > 3, a k-face of P (En) is affinely
equivalent to eitherP (Ek) or ∆k.

The results presented so far in this section are enough to
patch together a proof of the following useful result.

Theorem 4.10:Fix an n ≥ 1, and let fk, 0 ≤ k ≤ n,
denote the number ofk-faces ofP (En). We havef0 = 2n−1,
f1 =

(

n

2

)

2n−2, f2 =
(

n

3

)

2n−1, and

fk =

(

n

k

)

2n−k +

(

n

k + 1

)

2n−1 for 3 ≤ k ≤ n.

The vector (f0, f1, . . . , fn) is called the f-vector of the
polytopeP (En). It should be noted that f-vectors of polytopes
are in general notoriously difficult to compute.

It is interesting to note that the polytopeP (En) only
has triangular 2-faces. Code polytopes in general can have
quadrilateral 2-faces as evidenced by the 2-faces of then-
cube, which is the code polytope of{0, 1}n. Examples of code
polytopes with both kinds of 2-faces abound, one such being
the [4, 3] code obtained as the direct sum ofE3 and{0, 1}.

This raises the question of whetherany 0/1-polytope can
arise as a face of some code polytope. This would make
code polytopes a hopelessly complex class of polytopes.
Indeed, there are classes of polytopes with this property, a
celebrated example being the class of travelling salesman
polytopes [3]. Luckily, code polytopes are not as complex. Up
to affine equivalence, there are eight types of 3-dimensional
0/1-polytopes [16, Section 1.1], of which only four are
allowed to be 3-faces of code polytopes. We omit the proof.

Theorem 4.11:If F is a 3-face of some code polytope, then
up to affine equivalence,F is one of the following: (i) the 3-
cube ¤3, (ii) the prism ∆2 × ∆1, (iii) the square pyramid
conv({000, 001, 010, 011, 111}), and (iv) the 3-simplex∆3.

2Actually, this representation of the facets ofEn can be found in the earlier
work of Jeroslow [7].

Remark: As examples, the prism∆2 × ∆1 occurs as a 3-
face of the [4,3] code that is the direct sum ofE3 and{0, 1},
while the square pyramid occurs as a 3-face of the[5, 3] code
with generator matrix

G =





1 0 0 1 0
0 1 0 0 1
0 0 1 1 1



 .

V. M INIMAL CODEWORDS ANDSIMPLE CODE POLYTOPES

Curiously, Theorem 4.1 leads to a simple lower bound on
the number of minimal codewords in a binary linear codeC,
which appears to be new.

Lemma 5.1:For any binary linear codeC, |M(C)| ≥
dim(P (C)). In particular, if C is a code of lengthn with
d(C⊥) /∈ {1, 2}, then |M(C)| ≥ n.
Proof: The proof is simply the geometric fact that in any
polytopeP of dimensiond, each vertex has at leastd edges
incident with it. By Theorem 4.1, the number of edges incident
with any vertex ofP (C) is exactly|M(C)|.

It is natural to ask the question of when this bound is met
with equality, and the following result provides the answer.

Theorem 5.2:For any binary linear codeC of lengthn with
d(C⊥) /∈ {1, 2}, we have|M(C)| ≥ n, with equality iff C is
the direct sum of simplex codes.

We give a proof of Theorem 5.2 that is essentially ge-
ometric, although it would be interesting to find a purely
coding-theoretic proof. In what follows, we letC be a code
of lengthn with d(C⊥) /∈ {1, 2}, so thatdim(P (C)) = n. By
Theorem 4.1,|M(C)| = n iff each vertex ofP (C) belongs to
exactlyn edges.

A polytope of dimensionn is calledsimple if each vertex
of the polytope is incident with exactlyn edges.3 Thus,
|M(C)| = n iff P (C) is simple. So, Theorem 5.2 is proved
once we show the following lemma to be true.

Lemma 5.3:P (C) is simple iff C is the direct sum of
simplex codes.

A result of Kaibel and Wolff [9, Theorem 1] states that
a 0/1-polytope is simple iff it is the (Cartesian) product of
0/1-simplices (i.e., simplices whose vertices are in{0, 1}l for
somel > 0). Therefore, the proof of Lemma 5.3, and hence
that of Theorem 5.2, relies strongly on the next result.

Lemma 5.4:P (C) is a simplex iffC is a simplex code.
Proof: The result is trivial whenC⊥ = {0}, as the code

C = {0, 1}n is the direct sum ofn copies of{0, 1}, which is
degenerately a simplex code. So, assume thatd(C⊥) ≥ 3.

If C is a [2k − 1, k] simplex code, thenP (C) is a (2k − 1)-
dimensional polytope with2k vertices, which is a simplex.

Conversely, ifP (C) is a simplex of dimensionn, it has
n + 1 vertices. Hence,n + 1 = |C| = 2k for somek, and

3A simple polytope is usually defined as ann-dimensional polytope in
which each vertex is in exactlyn facets. The two definitions are equivalent
[15, p. 66].



so, n = 2k − 1. Let G be ak × (2k − 1) generator matrix
for C. Sinced(C⊥) ≥ 3, the columns ofG are nonzero and
distinct. Therefore, the2k − 1 columns ofG are the2k − 1
distinct nonzero binary words of lengthk, which means that
G generates the[2k − 1, k] simplex code.

We can now provide a proof of Lemma 5.3, which
completes the proof of Theorem 5.2.

Proof of Lemma 5.3: Let C be the direct sum of some
simplex codesCi, i = 1, 2, . . . , r. Trivially, P (C) = P (C1) ×
· · · × P (Cr), and eachP (Ci) is a simplex by Lemma 5.4.
Hence, by the Kaibel-Wolff result [9],P (C) is simple.

Conversely, ifP (C) is simple, then again by the Kaibel-
Wolff result, P (C) = ∆(1) × · · · × ∆(r) for some simplices
∆(1), . . . ,∆(r). Letting Ci denote the vertex set of∆(i), i =
1, . . . , r, we observe thatC = C1×· · ·×Cr. SinceC is a linear
code, it readily follows that eachCi is a linear code. Thus,C
is actually the direct sum of theCi’s. It remains to show that
eachCi is a simplex code.

Now, C⊥ is the direct sum of the codesC⊥
i , and so, the

conditiond(C⊥) /∈ {1, 2} implies thatd(C⊥
i ) /∈ {1, 2} for each

i. By definition, P (Ci) = conv(Ci). But, conv(Ci) = ∆(i),
since∆(i) is the convex hull of its vertex set. So, Lemma 5.4
shows that eachCi is a simplex code.

From a geometer’s point of view, Lemma 5.3 is interesting
by itself, as it provides a complete characterization of full-
dimensional code polytopes that are simple. Another geomet-
rically important class of polytopes is the class ofsimplicial
polytopes, which are polytopes in which every facet is a
simplex. The question of which code polytopes are simplicial
remains open. A non-trivial example of such a polytope is the
polytope of the[6, 3] code generated by the matrix

G =





1 0 0 1 0 1
0 1 0 1 1 1
0 0 1 0 1 1



 .

As a final remark, we would like to mention that simple
polytopes play a crucial role in the performance analysis of
simplex algorithms in linear programming [10]. A simplex
algorithm is a method to solve an LP over a polyhedronP
by repeatedly moving from one vertex ofP to an adjacent
vertex so that in each step the value of the objective function
is decreased. Such an algorithm is not just easily described,
but is also an efficient general tool for solving LP’s, and is
the most promising candidate for a strongly polynomial-time
linear programming algorithm [8]. Our results on simple code
polytopes could be useful in analyzing the performance of
simplex algorithms for decoding by linear programming.

REFERENCES

[1] F. Barahona and M. Grötschel, “On the cycle polytope of a binary
matroid,” J. Comb. Theory Ser. B, vol. 40, pp. 40–62, 1986.

[2] A. Barvinok, A Course in Convexity, Graduate Studies in Mathematics
vol. 54, Providence, RI: AMS Publications, 2002.

[3] L. Billera and A. Sarangarajan, “All 0-1 polytopes are traveling salesman
polytopes,”Combinatorica, vol. 16, no. 2, pp. 175–188, 1996.

[4] A. Bonisoli, “Every equidistant linear code is a sequence of dual
Hamming codes,”Ars Combinatoria, vol. 18, pp. 181–186, 1984.

[5] B.A. Davey and H.A. Priestley,Introduction to Lattices and Order,
Cambridge, UK: Cambridge Univ. Press, 1990.

[6] J. Feldman, M.J. Wainwright and D.R. Karger, “Using linear program-
ming to decode binary linear codes,”IEEE Trans. Inform. Theory, vol.
51, no. 3, pp. 954–972, 2005.

[7] R.G. Jeroslow, “On defining sets of vertices of the hypercube by linear
inequalities,”Discr. Math., vol. 11, pp. 119–124, 1975.

[8] V. Kaibel, R. Mechtel, M. Sharir and G. Ziegler, “The simplex algorithm
in dimension three,”SIAM J. Comput., vol. 34, no. 2, pp. 475–497, 2005.

[9] V. Kaibel and M. Wolff, “Simple 0/1-polytopes,”Europ. J. Comb., vol.
21, no. 326, pp. 139–144, 2000.

[10] G. Kalai, “Linear programming, the simplex algorithm and simple
polytopes,”Math. Programming Ser. B, vol. 79, pp. 217–233, 1997.

[11] R. Koetter, W.-C.W. Li, P.O. Vontobel and J.L. Walker “Char-
acterizations of pseudo-codewords of LDPC codes,” ArXiv e-print
cs.IT/0508049.

[12] F.J. MacWilliams and N.J.A. Sloane,The Theory of Error-Correcting
Codes, Amsterdam: North-Holland, 1977.

[13] P.O. Vontobel and R. Koetter, “Graph-cover decoding and finite-length
analysis of message-passing iterative decoding of LDPC codes,” preprint
submitted to IEEE Trans. Inform. Theory, Dec. 2005. ArXiv e-print
cs.IT/0512078.

[14] P.O. Vontobel, R. Smarandache, N. Kiyavash, J. Teutsch and D. Vuko-
bratovic, “On the minimal pseudo-codewords of codes from finite
geometries,”Proc. 2005 IEEE Int. Symp. Inform. Theory, Adelaide,
Australia, pp. 980–984, September 4–9, 2005.

[15] G. Ziegler,Lectures on Polytopes, New York: Springer, 1994.
[16] G. Ziegler, “Lectures on 0/1-Polytopes,” inPolytopes — Combinatorics

and Computation, (G. Kalai and G.M. Ziegler, eds.), DMV Seminars
Series, Basel: Birkḧauser, 2000. ArXiv e-print math.CO/9909177.


