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Abstract—A code polytope is defined to be the convex hull in the set of vertices oP(C) coincides withC. The key point

R™ of the points in {0, 1}" corresponding to the codewords of now is that over a polytope?, a linear function¢ attains
a binary linear code. This paper contains a collection of results its minimum valuegmi, = min{¢(x) : x € P} at a vertex

concerning the structure of such code polytopes. A survey of FP ticul . _ .
known results on the dimension and the minimal polyhedral ©O' £ N particu ararg minye p(c) (7, X) = argminyee(7y, x).

representation of a code polytope is first presented. We show Thus, ML decoding is in fact equivalent to the minimization
how these results can be extended to obtain the complete facialof a linear function over a polytope. This, as noted in [6],

structure of the polytope determined by the[rn, n—1] even-weight s a classic linear program (LP) since a polytope can always

code. We then give a result classifying the types of 3-faces a repr n Ivhedron. which finition. is th
general code polytope can have, which shows that the faces ofbe epresented as a polyhedron, ch by definition, is the

such a polytope cannot be completely arbitrary. Finally, we show solution set t_o a finite Sy_St_em Of_ linear m_equa“t'es' .
how geometrical arguments lead to a simple lower bound on the ~ An LP is simply the minimization of a linear cost function
number of minimal codewords of a code, and characterize the over a polyhedron. The degree of difficulty involved in solyi

codes for which this bound is attained with equality. This also an LP is directly related to the number of variables in the

yields an interesting intermediate result that classifies simple code problem and the number of inequalities defining the polyhe-
polytopes. The motivation for our study of code polytopes comes . o . o .

from the formulation by Feldman, Wainwright and Karger of Fjron. S_mce it is possible for two _dlStIﬂCt Sys_tems of linear
maximum-likelihood decoding as a linear programming problem inequalities to have the same solution set, a given polyiredr

over the code polytope. may in general have many different representations in terms
of linear inequalities. Thus, with a view towards reducihg t
. INTRODUCTION complexity of an LP over a given polyhedron, it is clearly
The recent work of Feldman, Wainwright and Karger [6jmportant to find aminimal representation of the polyhedron
shows that maximum likelihood (ML) decoding of a binanjhat involves the least number of inequalities among all its
linear codeC over a discrete memoryless channel can Bepresentations via linear inequalities. In particularetiicient
formulated as a linear programming problem. Recall that tfi@plementation of the ML decoding problem for a cadas
ML decoding problem is: given a received wosd at the an LP would require a minimal polyhedral representation of
channel output, find a codeword € C that maximizes the the code polytopeP(C).
probability, Pr[y|x], of receivingy conditioned on the event The work of Barahona and Gtschel [1] is the obvious
thatx was transmitted. As observed by Feldnetral, under Starting point in any study of code polytopes. The results in
the assumption of a discrete memoryless channel, giverthat work are couched in the language of binary matroids, and
received wordy = y19 ...y, the problem of determining translations of those results into the language of codiegrth
arg max, .. Pr[y|x] is equivalent to the problem of findingcan be found scattered throughout our paper. Section Ilupof o

arg min, .. (7, %), wherey = (1,72, ..., 7,) IS given by paper describes one of the main theorems of [1], which gives
a minimal polyhedral representation &(C) for nearly any
Prly;|z; = 0] . . .
vi =log [ =—2——— code(C, and also precisely characterizes the exceptional codes
Prly;|zi = 1] not covered by this representation.

and (.) is the standard inner product oR™. Here, for However, ML decoding of an arbitrary code is known to
the inner producty,x) to make sense, a binary codeworde NP-hard. So, in general, no polyhedral representation of
X = zxs...2, € C is identified with the real vector the code polytope can make linear programming over the
(x1,29,...,2,) € {0,1}" C R™. polytope an attractive, or even feasible, option. A strateg
The above formulation shows ML decoding to be equivalegften followed in such a situation is to “relax” the problem.
to the minimization of a linear function over a finite seffhe idea is to look for a polytope that contains the code as a
C c {0,1}™. Let P(C) be thecode polytopeof C, i.e, the subset of its vertex set, but has a more manageable polyhedra
convex hull inR™ of the finite setC. It can be shown that representation; the cost function is then minimized ovés th
“relaxed” polytope.
This work was supported in part by a research grant from theurhla A simple way of relaxing a code polytop®(C) is to
Sciences and Engineering Research Council (NSERC) of @anad . L. .
It was presented in part at the Inaugural UC-San Diego Wagkshn C@st out some subset of the inequalities forming a polyhedra
Information Theory and its Applications, La Jolla, CA, USAlF 6-10, 2006. representation oP(C), while restricting the resulting polytope



to remain within then-cube|[0, 1]™. This relaxation procedure  The dual code of’ will be denoted byCt. A codeD is
ensures that the codewordsd@ncontinue to be vertices of the said to be aminor of C if D can be obtained fron® by a
relaxed polytope. The “projected polytop&’ of Feldmanet series of puncturing and shortening operations.
al. [6, p. 958] and the equivalent “fundamental polytope” of A polytopein R"™ is the convex hull of a finite set of points in
Vontobel and Koetter [11], [13], as well as theth relaxation” R™. In this paper, we will be interested in polytopes assodiate
polytope defined in [13, Definition 11], are examples ofvith binary linear codes. L&t be an[n, k] binary linear code.
such relaxations of the code polytope. Now, the polytopes Bach codeword;c;...c, € C, ¢; € {0,1}, can be identified
obtained generally have more vertices than the originakcodith the point(cy, ca, ..., ¢,) € R™. Thus,C is identified with
polytope. These additional vertices are also potentialmimm  a set of2* points in {0,1}* ¢ R”, which we will continue
ers of the cost functiorfy, x) over the relaxed polytope, butto denote byC. The code polytopeof C is defined to be the
as they are not codewords, they are spurious solutions to tmevex hull ofC in R™, and will be denoted by (C). A code
decoding algorithm and represent decoding failure. This wpolytope is thus &/1-polytope meaning that it is the convex
noted in [6], where the term “pseudocodeword” is Uséml hull of some subset of0, 1}" (cf. [16]).
denote a vertex (or more accurately, a vertex scaled so as tdhe dimensionof a polytopeP C R™, denoted bydim(P),
lie in the integer latticeZ™) of the polytopeQ. is defined to be the dimension of its affine hull (which is the
Thus, relaxing the code polytope to reduce the complexity sfallest affine subspaceli” containingP). Thus,dim(P) <
the LP creates extra vertices that causes the LP over thedelan, with strict inequality being possible. The following rétsu
polytope to perform worse as a decoding algorithm than Mexplicitly determineslim(P(C)) for a binary linear cod€.

decoding. There is thus a trade-off between complexity ef th Theorem 2.1 ([1], Theorem 4.1)Given a binary linear
LP and its performance as a decoding algorithm, which igdec, let K be a largest subset sfipp(C) with the property
poorly understood at present. It is our thesis that in order that for all i, j € K, i # j, there existsics ... c, € C with
understand this trade-off, it is important to gain a thofoug., -« ¢;. Then,dim(P(C)) = | K.
understanding of the structure of a code polytope. Thislshou
help in finding sharp estimates of the number of extra vesticgi
in relaxations of the polytope, and may also help in findin
relaxations that introduce relatively few extra vertic@se of
the aims of this paper is to initiate a study of the complete Corollary 2.2: For any binary linear cod€ of lengthn,
facial structure of a code polytope, and we present sofign(P(C)) = n iff d(C*) ¢ {1,2}.
preliminary results in Section IV. For the most part, in this paper, we will consider full-
It turns out that the geometry of code polytopes impliesimensional code polytopes only, as codkesvith d(Ct) €
a simple lower bound on the number of minimal codewordsl, 2} are not very interesting, and can always be punctured
in a code. In Section V, we present this bound along witie obtain a code whose polytope is full-dimensional.
a necessary and sufficient condition for the bound to be metLet (-) denote the standard inner productRfi. Givena €
with equality. This derivation yields an interesting imtexdiate R™ and 8 € R, the setH = {x € R" : (a,x) = 3} is
result that characterizates code polytopes that are sjrple called a(n affine)hyperplane and the seti< = {x € R" :
polytopes in which each vertex is incident with exactly (a,x) < (3} is called aclosed halfspaceGiven a polytope
edges,n being the dimension of the polytope. P C R"™, a (possibly empty) subsét C P is called aface
of P if there exists a hyperplan& c R™ such thatP is
contained in the closed halfspadé<, and F = PN H. A
We establish in this section the language used to pres@ite of a polytope is itself a polytope. A 0-dimensional face
our results in later sections. We follow for the most pawf a polytopeP is called avertex a 1-dimensional face is
the standard terminology of coding theory [12] and discretailled anedge and a face of dimensiodim(P) — 1 is called
convex geometry [2]. As the average reader is expected todéacet The only face of dimensiodim(P) is P itself. In
familiar with the former, we elaborate on the latter. general, ak-dimensional face is referred to askaface An
Given a binary linear code’, we let d(C) denote its inequality (a,x) < 3 is called k-face-defining(resp. vertex-
minimum distance. We define theupport of a codeword defining edge-definingfacet-defininy for P if (a,x) < 8
c =cica...cp, € Ctobesupp(c) = {i : ¢; = 1}, and holds for allx € P, and{x € P : (a,x) = 3} is a k-face
also definesupp(C) = J . Supp(c) to be the support of.  (resp. vertex, edge, facet) ét.
A codewordc € C, ¢ # 0, is calledminimal if its support The two basicn-dimensional0/1-polytopes that we will
supp(c) does not contain as a subset the support of any otluften encounter are the-cube [0,1]", which we denote
nonzero codeword i€. The set of all minimal codewords ofby [J,,, and then-simplexA,,, which is the convex hull of
C is denoted byM(C). {0,e1,...,e,} CR", wheree,,...,e, is the standard basis

of R™. Thus, for example\, is a line segment)\, a triangle,
1The term “pseudocodeword” is used rather differently in][113] where and A; a tetrahedron.
it denotes any rational point within the fundamental polgtoplowever, the . . . . .
authors of [14] use the term “minimal pseudocodewords” to descthe We will need the notion of affine eql'”Va-lence of polytopes.

vertices adjacent t@ in the fundamental polytope of [11], [13]. two polytopesP ¢ R™ and@ c R”™ are affinely equivalent

A polytope P C R™ with dim(P) = n is said to befull-
mensional The following corollary to the above theorem
guccinctly characterizes full-dimensional code polytpe

II. FORMAL DEFINITIONS AND NOTATION



if there exists an affine map : R™ — R" that is a bijection is a system of facet-defining inequalities comprising tha-mi
betweenP and Q. Any n-dimensional polytope witm + 1 imal polyhedral representation &f(C) iff C does not have as
vertices is affinely equivalent to the-simplexA,,, and so is a minor any code equivalent 8}, Ry or M*(K5).

also usually referred to assamplex Thus, for a code of lengthn, with d(Ct) ¢ {1,2}, and

A polyhedronis the intersection of finitely many closed, - Ry or M*(K5) minor, the number of facets d?(C)
halfspaces ifR"™. By the Weyl-Minkowski Theorem [2, p. 9], & ¢ n ’

setP C R™ is a polytope iff it is a bounded polyhedron. Thus, 2n — |1]) + Z gwr (w)—1
a polytope has a dual representation as a polyhedron. Howeve
a polytope does not in general have a unique polyhedral
representationi.e., it could be represented as an intersectioffhere wy (u) is the Hamming weight ofu. Thus, imple-
of closed halfspaces in a variety of ways. But, there is aumigmenting ML decoding as an LP is truly an attractive option
minimal po|yhedra| representation of a po|yt0ljé which only When/\/l(Cl)O is of relatively small Size, and consists of
requires the minimum number of halfspaces (or equivalgntéyords of small Hamming weight relative to the codelength.
linear inequalities) among all polyhedral representatiohP.

For a full-dimensional polytope”, the minimal polyhedral IV. OTHER FACES OFP(C)

representation consists of precisely the facet-definiegual-  In the previous section, we saw that it is possible (with
ities for P. not insignificant effort) to characterize the facets of code

polytopes, at least when the codes have Fib, Ry or
1. MINIMAL POLYHEDRAL REPRESENTATION OFP(C) M*(K35) minor. But what information do we rﬁt\)/e about the
Itis a somewhat surprising fact that the minimal polyhedralher faces ofP(C)? It is of course obvious that the vertices
representation can be explicitly given for most code p@g&) of P(C) are precisely the codewords 6f The edges oP(C)
and we quickly summarize this result in this section. FQflso have a simple characterization.

simplicity, we state the result only in the case whid™) ¢ Theorem 4.1 ([1], Theorem 5.1)-et C be a binary linear

{1,2}, so thatP(C) is a full-dimensional c.ode polytope. Th.ecode. There is an edge connecting two distinct vertigeand
most general statements can be found in [1], and are givén. ;
Cco IN P(C) iff ¢t Dey € M(C)

there in the language of matroid theory.
The result given below is valid for a class of codes with There is unfortunately (or fortunately for this author) yer
a certain set of excluded minors. To be precise, it holds fbitle known about faces of?(C) other than vertices, edges
binary linear code€ with the property that’ does not have and facets. One might naturally ask why it is necessary to
as a minor any code equivalent to one of the following: investigate faces in general. A reason we give is that it
1) the|7,3,4] simplex code, which we denote by;; could help in understanding what happens when the code
2) the [10,5,4] code, denoted byRy, the columns of polytope is relaxed by removing some facets. A beautifulltes
whose parity check matrix are the ten words of lengt®f Figiel, Lindenstrauss and Milman [2, p. 275] states that
5 and Hamming weight 3; there is a constanf > 0 such that any centrally symmetric
3) the[10,4,4] code, denoted by/*(K5), the columns of PolytopeP satisfiesn [V[-In || > § dim(P), where[V'| and
whose generator matrix are the ten nonzero words df| denote the number of vertices and facets, respectively,
length 4 and Hamming weight at most 2. of P. In particular, it applies to the code polytope(C)

We need one last piece of notation to state the theorem ,%fna code_C containing the aII-opes word, and any of .
polyhedral representations. Recall thiet(C) denotes the set its relaxations obtained by throwing away facets whilel stil

of minimal codewords of.. Theboundary M (C), of M(C) maintaining central symmetry. Thus, for instance, the nermb
is defined to be the set of afl € M(C) such thatc = p @ q of vertices and the number of facets in any of these polytopes

for somep,q € M(C) with |supp(p) N supp(q)| = 1. cannot both be polynomial in the codelength. A more complete
Here and 7hereafter@ denotes modulo-2 addition. Letunderstanding of the facial structure of a code polytope and
M(C)P° = M(@C)\ éM(C). We are now in a position its relaxations can only help in improving such estimates of

to state the rather elaborate result on minimal polyhedfe number of vertices in terms of th“e nur?ber of facets. It
representations of code polytopes. may also be useful in the search for “good” relaxations that

_ ) ) introduce relatively few extra vertices.
Theorem 3.1 ([l]., Theoiem 4.22) et C be a binary linear 5 -qqe polytope is highly symmetric; it “looks the same”
code of lengthn, with d(C™) ¢ {1,2}, and let/ denote the 4 any of its vertices. This symmetry is formally captured

union of the supports of weight-3 codewordsCin. Then the by the following statement, which essentially rephrases
system of linear inequalities in the variables, x-, ..., z, Theorem 3.1 from [1].

given by
(@) 0 <z; <1 foreachj ¢ I, and

ueM(C+)°

Lemma 4.2:For any binary linear codé, {cy,cs,...,cn}

140 is the set of vertices of &-face of P(C) iff {0,co ®
(b) for eachu € M(C™)" and eachi’ < supp(u), | odd, ci,...,cm @y} is the set of vertices of &-face of P(C).
Z x; — Z z; <|K| -1, Thus, it is enough to study the structure of faces containing

ieK jesupp(u)\ K 0, as an arbitrary facé” of P(C) can be transformed, via



a symmetry of then-cube OJ,, to a face F’ containing Proposition 4.5:Let C be a binary linear code, and Bt =

0. Faces ofP(C) containing0 actually have an important {0,a,b,c} C C be the vertex set of 8/1-rectangle. Then,

structural property, which is best described in the tertoigp conv(D) is a 2-face ofP(C) iff D is a downset irC.

of partially-ordered sets (posets) [5]. Proof: D = {0,a, b, c} is the vertex set of 8/1-rectangle
Any code C can be made a poset by endowing it witlonly if supp(a) Nsupp(b) = 0 andc = a+b. Therefore, we

the partial ordering=< as follows:c; = ¢ iff supp(c;) C havea < c andb < ¢, and henceg is the maximum element

supp(cz). A downsein C is a subseD C C with the property of D. The result now follows from Lemma 4.4. |
that, for eachb € D andc € C, ¢ < b implies thatc < D. The following corollary is essentially a re-statement af th
Clearly, any non-empty downset & containso. above proposition in more coding-theoretic terms.

Lemma 4.3:Let C be a binary linear code, and Iétbe a  Corollary 4.6: Let C be a binary linear code is a rectan-
face of P(C) containing0. Then, the set of vertices df is a gular 2-face ofP(C) containingo iff F = conv({0,a,b,c}),
downset ofC. wherea andb are minimal codewords with disjoint support,

Proof: Let b be a vertex off’, and letc € C be such ¢—a b, and{xcC:x <c}=1{0,a,b,c}.
that ¢ < b. Note that sincesupp(c) C supp(b), we have  Trangular 2-faces of code polytopes do not appear to
b®c=b—c, and thusb —c € C. have a similar easy characterization. Clearly, by Theorein 4

Let (a,x) < [ be a face-defining inequality foF. Note cony({0,a, b}) is a 2-face of som@(C) only if a,b,a®b €
that 5 must be 0 sincé € F. We thus havela,c) < 0 and  rq(c). We believe that the converse is not true, although we
(a,b) = 0, and hence{a,b —c) > 0. On the other hand, go not have a counterexample either.
sinceb — ¢ € C, we also have(a,b — ¢) < 0. Therefore,  pegpite this high degree of symmetry, determining the
{a,b —c¢) = 0, and hence(a, c) = 0, implying thatc € F.  complete facial structure of an arbitrary code polytope is a
Hence, F' is a downset of. o B very difficult problem, for which there is no known general

While the converse to the above lemma is, in general, ngl| tion. However, using Theorem 3.1 as a starting poiris, it

true, a partial converse does hold. Given a sulizaif C, a  f4jr)y easy to derive the facial structure in the importamecial
codewordb € D is called amaximum elemerdf D if ¢ <b 556 of the polytope of thie, n — 1] even-weight code,,, as

for all ¢ € D. The maximum element oD, if it exists, is we now show.

unique. _ _ The cases: = 1,2,3 are trivial: & = P(&;) = {0}; & =
Lemma 4.4:I__et C be a binary linear code, and m_ be {00, 11}, henceP(&) = A;: and & = {000,011, 101, 110},
a subset of” with a maximum element. Therpnv(D) is a henceP(&;) = As. The code polytopes fof,, n > 4, are

face Offl.D(C) colntamlngo if D |sha‘91gwnset.f he | much more interesting, and Theorem 4.7 below, in conjunctio
| tPDrog 'WZ only ‘?_’fcto prdO\Ileﬂt)i Ithpart 0 t € emlma. S(tjwith Lemma 4.2, gives their complete facial structure.
© € a gownset It, and le € the maximum €lement e introduce some simplifying pieces of notation.

of D. Note that for any € C, \7/1ve havec = b iff ceD. Given a positive integern, we let [n] denote the set
Let'fl:(al’@’“"a”) € R" be the vector with; = —1 {1,2,...,n}. If S is some set inR™, we let conv(S)

;or allllz¢sugp(b_?[handai Iz.to.c;;[herw'ie' Note thdﬁ’cilg% denote its convex hull. Fori = 1,2,...,n, we define

or all ¢ € C, with equality iff ¢ < b, or equivalently, i B o T B

¢ € D. Hence, (a,x) < 0 for all x € P(C), with equality if ¢ hﬂiﬁ’frp'?”eg{j = Ix GJR;) pay = 0h and L =

x € conv(D). Thus,conv(D) is a face ofP(C). Furthermore, D€ R 25 = 2 sefnl.ong ©s = O

0 € conv(D) since0 € D. u Theorem 4.7:Forn > 4, let €, denote thén,n— 1] binary
Lemmas 4.3 and 4.4 contain information sufficient to deriveven-weight code, so that!(¢,,) is the set of binary words

some interesting properties éffaces of code polytopes. WeOf lengthn and Hamming weight 2.

consider first the problem of characterizing the 2-faces qk) conv(0, c) is an edge ofP(&,,) iff c € M(E,).

an arbitrary code polytope. A 2-face of arly/1-polytope (b) F is a 2-face of P(&,) containing 0 iff F =

is a 2-dimensional0/1-polytope. Now, any 2-dimensional conv(0, a, b) for somea, b € M(E,) such thaa® b is

0/1-polytope is affinely equivalent taonv(V) < [0,1]?, also in M(&,,).

where V' is either {00,01,10} or {0,1}*. Hence, 2-faces (c) For3 <k <n-—1, F is ak-face of P(£,) containingd

of 0/1-polytopes are eithef/1-triangles or0/1-rectangles. iff F=conv(E, NV), whereV is either

In fact, if @ C R"™ is a 0/1-rectangle containind), the : ‘ ; .

affine map takingQ bijectively to {0,1}*> may be taken to () (e, H; for someJ  [n] with |7} = n — k. or
(i) ;e H;NL; for someJ C [n] with [J| =n—k—1

be linear, and so the vertices ¢f must be{0,a,b,a + b}
for somea,b € {0,1}". Furthermore,a,b,a + b can all
be in {0,1}" only if supp(a) N supp(b) = 0. Thus, to Sketch of Proaf Part (a) is a consequence of Theorem 4.1.
summarize, ifQ is a0/1-rectangle inR™ containing0, then For part (b), we first observe that 2-dimensional 0/1-pgigt

Q@ = conv({0,a,b,a+b}) for somea,b € {0,1}" such that must either be triangles or rectangles [16, Section 1.1]. We
supp(a)nsupp(b) = (). The converse is also easily seen to bthen show that no rectangle can be a 2-faceP¢£,,), and
true. We can now prove the following simple characterizatica triangle with vertice®,a, b can be a 2-face oP(&,) iff

of the rectangular 2-faces in a code polytope. a,b,a®b e M(E,).

andi € [n] \ J.



1 00
G=(0 10
0 01

—_ o

For part (c), we note that the result for=n — 1 follows
from Theorem 3.%. For the general result, we observe first Remark As examples, the prism\, x A; occurs as a 3-
that a k-face incident withO must be contained in at leastface of the [4,3] code that is the direct sum&fand {0, 1},

n — k facets incident wittD. We then make use of the resultwhile the square pyramid occurs as a 3-face of[H8] code

for k = n— 1 to decide which intersections aef— k (or more) with generator matrix

facets yields &-face. | 0
Forn >4 and3 < k < n — 1, define ak-face of P(&,) to 1 }

be of Type A(resp.Type B if it is of the form conv(&, NV) 1 '

for someV as in Theorem 4.7(c)(i) (resp. Theorem 4.7(c)(ii)).

It is easy to see thdt-faces of Type A are affinely equivalentV. MINIMAL CODEWORDS ANDSIMPLE CODE POLYTOPES

(via projection onto the coordinates, i ¢ J) to P(€). Note  cyrigusly, Theorem 4.1 leads to a simple lower bound on

that sinceP(&3) = Ag, 3-faces of Type A are in fact affinely \he number of minimal codewords in a binary linear cae

equivalent toA;. On the other hand;-faces of Type B are \ynich appears to be new.

always affinely equivalent to th&-simplex Ay, due to the , i

following corollary to the theorem. _Lemma 5.1:For any binary linear code, |[M(C)| >
Corollary 4.8: F is a k-face of Type B iff F = dunl(P(C)). In particular, if C is a code of lengthn with

conv(0,cy,ca, ..., ci) for ci,co,...,c € M(E,) such that d(C™) ¢ {1,2}, the_n|/\/_l(C)| Z . ) _

ﬂ;_g supp(c-)‘ 1 Proof: The pro_of is _S|mply the geometric fact that in any
i=1 ! i polytope P of dimensiond, each vertex has at leagtedges
Corollary 4.9: For k < 3, all k-faces of P(E,) are affinely j,cigent with it. By Theorem 4.1, the number of edges inctden

equ!valent toA{c. For k > 3, a k-face of P(&,) is affinely with any vertex of P(C) is exactly| M(C)|. -

equivalent to either>(&,) or A, _ It is natural to ask the question of when this bound is met

The results presented so far in t_h's section are enoughv\mh equality, and the following result provides the answer
patch together a proof of the following useful result. _ ) )

) Theorem 5.2:For any binary linear codé of lengthn with

Theorem 4.10Fix an n Z 1, and Ietfk;, 0 S k S_’I’L, d(CJ_) ¢ {172}, we ha.Ve|M(C)| 2 n, W|th equality IffC iS
denott?2 the n2umber d:—face? of P(€,). We havefy, = 2771, the direct sum of simplex codes.

/i (2)2 P2 (3)2 and We give a proof of Theorem 5.2 that is essentially ge-

f = (n> on—k 4 ( n )2711 for 3 <k <n. ome_tric, aIthOL_Jgh it would be interesting to find a purely
k kE+1 coding-theoretic proof. In what follows, we 1€t be a code
of lengthn with d(Ct) ¢ {1,2}, so thatdim(P(C)) = n. By

The vector (fo, f1,..., f.) is called thef-vector of the Theorem 4.1|M(C)| = n iff each vertex of P(C) belongs to
polytope P(&,). It should be noted that f-vectors of polytopesxactlyn edges.
are in general notoriously difficult to compute. A polytope of dimensiom: is calledsimpleif each vertex

It is interesting to note that the polytop£(&,) only of the polytope is incident with exactly. edges’ Thus,
has triangular 2-faces. Code polytopes in general can harm(c)\ = n iff P(C) is simple. So, Theorem 5.2 is proved
quadrilateral 2-faces as evidenced by the 2-faces ofnthe once we show the following lemma to be true.
cube, Wh'Ch.'S the codg polytope {0, 1}". Examples of code. Lemma 5.3:P(C) is simple iff C is the direct sum of
polytopes with both kinds of 2-faces abound, one such be@ﬁnplex codes
the [4, 3] code obtained as the direct sum&fand {0, 1}. '

This raises the question of whethany 0/1-polytope can A result of Kaibel and Wolff [9, Theorem 1] states that
arise as a face of some code polytope. This would maRed/1-polytope is simple iff it is the (Cartesian) product of
code polytopes a hopelessly complex class of polytopés.1-simplices (.e., simplices whose vertices are {ﬂ,l}l for
Indeed, there are classes of polytopes with this propertys@mel > 0). Therefore, the proof of Lemma 5.3, and hence
celebrated example being the class of travelling salesmi#at of Theorem 5.2, relies strongly on the next result.
polytopes [3]. Luckily, code polytopes are not as compleg. U | emma 5.4:P(C) is a simplex iffC is a simplex code.
to affine equivalence, there are eight types of 3-dimensionapyoof: The result is trivial wherct = {0}, as the code
0/1-polytopes [16, Section 1.1], of which only four arg — 1o 11n is the direct sum of. copies of{0, 1}, which is
allowed to be 3-faces of code polytopes. We omit the proofjegenerately a simplex code. So, assume db@t) > 3.

Theorem 4.111f F is a 3-face of some code polytope, then If C is a[2* — 1, k] simplex code, therP(C) is a @~ — 1)-
up to affine equivalencet is one of the following: (i) the 3- dimensional polytope witi2* vertices, which is a simplex.
cube [, (ii) the prism A, x A4, (iii) the square pyramid Conversely, if P(C) is a simplex of dimensiom, it has
conv({000,001,010,011,111}), and (iv) the 3-simplexAs.  n + 1 vertices. Hencep + 1 = |C| = 2* for somek, and

3A simple polytope is usually defined as andimensional polytope in

2Actually, this representation of the facets&f can be found in the earlier which each vertex is in exactly facets. The two definitions are equivalent
work of Jeroslow [7]. [15, p. 66].



so,n = 2 — 1. Let G be ak x (2% — 1) generator matrix [5]
for C. Sinced(C*) > 3, the columns ofG are nonzero and

distinct. Therefore, the* — 1 columns of G are the2k — 1
distinct nonzero binary words of length which means that
G generates th@* — 1, k] simplex code. m [

We can now provide a proof of Lemma 5.3, whichg
completes the proof of Theorem 5.2.
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Proof of Lemma 5:3Let C be the direct sum of some )
simplex code<’;, i = 1,2,...,r. Trivially, P(C) = P(C;) x [10]
- x P(C,), and eachP(C;) is a simplex by Lemma 5.4. [11]

Hence, by the Kaibel-Wolff result [9]P(C) is simple.
Conversely, if P(C) is simple, then again by the Kaibel-
Wolff result, P(C) = AM x --- x A for some simplices %
AWM A Letting C; denote the vertex set adk(¥), i = [13]

1,...,r, we observe thaf = C; x---xC,. SinceC is a linear
code, it readily follows that eacB; is a linear code. Thug;

is actually the direct sum of thé;’s. It remains to show that [14]
each(; is a simplex code.

Now, C* is the direct sum of the code-, and so, the
conditiond(C+) ¢ {1,2} implies thatd(Ci) ¢ {1,2} for each [15]
i. By definition, P(C;) = conv(C;). But, conv(C;) = A®), [16]
sinceA™ is the convex hull of its vertex set. So, Lemma 5.4
shows that eacli; is a simplex code. |

From a geometer’s point of view, Lemma 5.3 is interesting
by itself, as it provides a complete characterization of-ful
dimensional code polytopes that are simple. Another geomet
rically important class of polytopes is the classsiinplicial
polytopes, which are polytopes in which every facet is a
simplex. The question of which code polytopes are simglicia
remains open. A non-trivial example of such a polytope is the
polytope of the[6, 3] code generated by the matrix

1001 01
G=|01 0111
0 01 011

As a final remark, we would like to mention that simple
polytopes play a crucial role in the performance analysis of
simplex algorithms in linear programming [10]. A simplex
algorithm is a method to solve an LP over a polyhedion
by repeatedly moving from one vertex & to an adjacent
vertex so that in each step the value of the objective functio
is decreased. Such an algorithm is not just easily described
but is also an efficient general tool for solving LP’s, and is
the most promising candidate for a strongly polynomialetim
linear programming algorithm [8]. Our results on simple €od
polytopes could be useful in analyzing the performance of
simplex algorithms for decoding by linear programming.

REFERENCES

[1] F. Barahona and M. @Gtschel, “On the cycle polytope of a binary
matroid,” J. Comb. Theory Ser.,Bo0l. 40, pp. 40-62, 1986.

[2] A. Barvinok, A Course in ConvexityGraduate Studies in Mathematics
vol. 54, Providence, RI: AMS Publications, 2002.

[3] L. Billeraand A. Sarangarajan, “All 0-1 polytopes araveling salesman
polytopes,”Combinatorica vol. 16, no. 2, pp. 175-188, 1996.

[4] A. Bonisoli, “Every equidistant linear code is a sequencf dual
Hamming codes,Ars Combinatoriavol. 18, pp. 181-186, 1984.

B.A. Davey and H.A. Priestley|ntroduction to Lattices and Order
Cambridge, UK: Cambridge Univ. Press, 1990.

J. Feldman, M.J. Wainwright and D.R. Karger, “Using lingeogram-
ming to decode binary linear codesEE Trans. Inform. Theorwol.
51, no. 3, pp. 954-972, 2005.

R.G. Jeroslow, “On defining sets of vertices of the hypeee by linear
inequalities,”Discr. Math, vol. 11, pp. 119-124, 1975.

V. Kaibel, R. Mechtel, M. Sharir and G. Ziegler, “The sineglalgorithm
in dimension three,5IAM J. Comput.vol. 34, no. 2, pp. 475-497, 2005.
V. Kaibel and M. Wolff, “Simple 0/1-polytopes,Europ. J. Comb.vol.
21, no. 326, pp. 139-144, 2000.

G. Kalai, “Linear programming, the simplex algorithm anungle
polytopes,”Math. Programming Ser. Bvol. 79, pp. 217-233, 1997.

R. Koetter, W.-C.W. Li, P.O. Vontobel and J.L. Walker H@r-
acterizations of pseudo-codewords of LDPC codes,” ArXipriet
€s.1T/0508049.

F.J. MacWilliams and N.J.A. Sloandhe Theory of Error-Correcting
Codes Amsterdam: North-Holland, 1977.

P.O. Vontobel and R. Koetter, “Graph-cover decoding &nite-length
analysis of message-passing iterative decoding of LDPCsgopieprint
submitted to IEEE Trans. Inform. Theory, Dec. 2005. ArXiv @pr
€s.IT/0512078.

P.O. Vontobel, R. Smarandache, N. Kiyavash, J. Teutschlz Vuko-
bratovic, “On the minimal pseudo-codewords of codes from dinit
geometries,”"Proc. 2005 IEEE Int. Symp. Inform. Theory, Adelaide,
Australia, pp. 980-984, September 4-9, 2005.

G. Ziegler,Lectures on PolytopedNew York: Springer, 1994.

G. Ziegler, “Lectures on 0/1-Polytopes,” Polytopes — Combinatorics
and Computation(G. Kalai and G.M. Ziegler, eds.), DMV Seminars
Series, Basel: Birkdwser, 2000. ArXiv e-print math.CO/9909177.



