CONSTRAINT COMPLEXITY OF REALIZATIONS OF LINEAR CODES
ON ARBITRARY GRAPHS

NAVIN KASHYAP

ABSTRACT. A graphical realization of a linear codg consists of an assignment of the coordi-
nates ofC to the vertices of a graph, along with a specification of linear state spaceknaar
“local constraint” codes to be associated with the edges and verticpsctiegly, of the graph. The
rk-complexity of a graphical realization is defined to be the largest dimerafi@my of its local
constraint codesk-complexity is a reasonable measure of the computational complexitywha s
product decoding algorithm specified by a graphical realization. Tha foaus of this paper is on
the following problem: given a linear codeand a graplg;, how small can the-complexity of a real-
ization ofC on G be? As useful tools for attacking this problem, we introduce the VerteodBGund,
and the notion of “vc-treewidth” for a graph, which is closely related to thed-known graph-
theoretic notion of treewidth. Using these tools, we derive tight lower beamdthex-complexity
of any realization of onG. Our bounds enable us to conclude that good error-correcting oaates
have low-complexity realizations only on graphs with large vc-treewidth.nglthe way, we also
prove the interesting result that the ratio of thheomplexity of the best conventional trellis realiza-
tion of a lengthr code(C to the k-complexity of the best cycle-free realization ®fgrows at most
logarithmically with codelength. Such a logarithmic growth rate is, in fact, achievable.

1. INTRODUCTION

The study of graphical models of codes and the associated messaggguEeoding algorithms
is a major focus of current research in coding theory. This is attributablleetdact that coding
schemes using graph-based iterative decoding strategiegttrbo codes and low-density parity
check (LDPC) codes — have low implementation complexity, while their perfoce@close to
the optimum predicted by theory. A unified treatment of graphical models @mwabstociated decod-
ing algorithms began with the work of Wiberg, Loeliger and Koetter [18],[59d has since been
abstracted and refined under the framework of the generalized distedatv [1], factor graphs
[12], and normal realizations [6],[7]. In fact, the study of cycle-fggaphical models of codei€.,
models in which the underlying graphs are cycle-free) can be tracédtbaioe introduction of the
Viterbi decoding algorithm in the 1960’s, which led to the study of trellis repreations of codes.
A comprehensive account of the history and development of trellis septations can be found in
[17].

In this work, we will follow the approach of Forney [6],[7], and Halfoeshd Chugg [8] in
studying the general “extractive” problem of constructing low-complegitggphical models for
a given linear code. Roughly speaking, a low-complexity graphical modmhésthat implies a
low-complexity decoding algorithm. In particular, in this paper, we investigaetiestion of how
small the complexity of an arbitrary graphical model for a given code ean b

We briefly introduce graphical models here; a detailed description caoupelfin Section 2. A
graph decomposition of a codds a mapping of the set of coordinates’ab the set of vertices of a
graph. A graph decomposition may be viewed as an assignment of symiadilearto the vertices
of the graph. A graph decomposition can be extended to a graphical mbiteh additionally

Date May 14, 2008.
This work was supported by a Discovery Grant from the Natural Seieaod Engineering Research Council (NSERC),
Canada.
The author is with the Department of Mathematics and Statistics, Queerversity, Kingston, ON K7L 3N6, Canada.
Email: nkashyap@rast . queensu. ca.

1

2 N. KASHYAP

assigns state variables to the edges of the graph, and specifies a lmatehicd code at each vertex
of the graph. The full behavior of the model is the set of all configuratioinsymbol and state
variables that satisfy all the local constraints. Such a model is called higahpealization ot if
the restriction of the full behavior to the set of symbol variables is preci@elyhe realization is
said to be cycle-free if the underlying graph in the model has no cyclesllfstrepresentation of
a code can be viewed as a cycle-free realization in which the underlyamings a simple path. In
contrast, dailbiting trellis representation [13],[14] is a graphical realization in which the ugoher
graph consists of a single cycle.

We will focus our attention on the case of realizations of linear codeanectedyraphs only.
Indeed, there is no loss of generality in doing so, since a linear €ddes a realization on a graph
G that is not connected if and only @ can be expressed as the direct sum of codes that may
be individually realized on the connected component§ ¢]. In this context, we will refer to
cycle-free graphical realizations simply as tree realizations, as thelyimgegraph is a connected,
cycle-free graphi.e., a tree.

It is by now well known that any graphical realization of a code specifieanonical iterative
message-passing decoding algorithm, namely, the sum-product algoritlihe onderlying graph
[1],[6],[12],[18]. When the underlying graph is a tree, the sum-prodilgorithm provides an exact
implementation of maximume-likelihood (ML) decoding. Even when the underlyiaglyicontains
cycles, empirical evidence suggests that, in many cases, the sum-patgrithm continues to be
a good approximation to ML decoding.

The computational complexity of the sum-product algorithm associated witaghigal real-
ization of a code is largely determined by the sizes of the local constraiesdadhe realization.
In Section 3 of this paper, we define various measures of “constramplexity” of a graphical
realization that can be used as estimates of the computational complexity ofsdoejdecoding.
These complexity measures may be viewed as generalizations of previoogtspd measures of
trellis complexity [17],[14], and tree complexity [7],[8]. However, for the shpart, we focus on
the k-complexityof a graphical realization, which we define to be the maximum of the dimensions
of the local constraint codes in the realization.

In the restricted context of tree realizations, it has previously beenlis$iadh that certain “min-
imal” tree realizations can be canonically defined. Let the teem decompositiodenote a graph
decomposition in which the graph is a tree. It is known that among all tree a&als of a code
C that extend a given tree decomposition, there is one that minimizes the dimehsiensate
space at each edge of the underlying tree, and this minimal tree realizatiaigiseey6]. It has
further been shown [11] that this unique minimal tree realization also minimizesr(g@ all tree
realizations extending the given tree decompositions) the dimension of thetotstraint code at
each vertex of the tree. In particular, it has the leasbmplexity among all such tree realizations.

In contrast, there is very little known about the general case of realizatba code on an
arbitrary (not necessarily cycle-free) graph. For instance, thgvear to be no “canonical” minimal
realizations that can be defined in this situation. The only systematic study inrégs@h remains
that of Koetter and Vardy [13],[14], who studied minimal tailbiting trellis reprgstions of codes,
which, as already mentioned, are graphical realizations in which the lyitdpgraph consists of
exactly one cycle. Beyond this basic (though by no means easy) casejthigle of interest in
the literature on the complexity of realizations of codes on arbitrary grapbsjotable exception
to this being the work of Halford and Chugg [8].

In their work, Halford and Chugg lay the foundations for a systematic stfidypmplexity of
graphical realizations. Their main result is the “Forest-Inducing CutB®eind”, which gives a
lower bound on the constraint complexity of a graphical realization in termts ohinimal tree
complexity. However, this bound does not appear be user-friendlyeictipe. The main limitation
of their approach is that they rely on the Edge-Cut Bound of Wile¢r. [18],[19] to derive their

CONSTRAINT COMPLEXITY OF GRAPHICAL REALIZATIONS 3

results. While the Edge-Cut Bound has been put to good use in the sttshatef complexity” of
graphical realizations [5],[6], it is of limited value in the analysis of constraomplexity.

The main aim of our paper is to present useful and tight lower bounds ocoti&raint com-
plexity of a graphical realization. Our bounds also provide considerabight into the problem of
finding low-complexity graphical realizations. The fundamental tool in malysis is the Vertex-
Cut Bound, which we state and prove in Section 4. The Vertex-Cut Baiachatural analogue
of the Edge-Cut Bound, but as we shall see, it is more suitable for use sniysis of constraint
complexity.

In Section 5, we define a data structure calledtex-cut tre¢hat stores the information necessary
about a graph to effectively apply the Vertex-Cut Bound. Vertextags are similar in structure to
the junction trees associated with belief propagation algorithms [10],[1] vE&veidthof a vertex-
cut tree is a measure of the size of the vertex-cut tree, andatheeewidthof a graph is the least
vc-width among all its vertex-cut trees. The vc-treewidth of a graph ig glersely related to the
notion of treewidth of graphs much studied in graph theory [16],[3].

Using the Vertex-Cut Bound and the notion of vertex-cut trees, wevelein Section 6, a suite
of lower bounds on the-complexity of graphical realizations of a linear codeWe state one of
these bounds here as an illustrative example.«yg4(C) be the least-complexity among all tree
realizations of. Consider an arbitrary gragh and letsycwed G) denote its ve-treewidth. Then, the
r-complexity of any realization af on G is bounded from below by the ratiqree(C) /Fvc-tred G) -

We further apply our methods to answer certain questions raised in [bijoBing terminology
from [17], for a codeC, let b(C) denote the least edge-complexity of any trellis representatich of
or any of its coordinate permutations. In the language of our paf@y,is the least-complexity
of any conventional trellis realization 6 We show that for any linear code of lengthwe have
b(C)/kwee(C) = O(logy n), and that this is the best possible estimate of the ratio, up to the constant
implicit in the O-notation. This is used to extend a known lower bound [15}(@}) in terms of the
lengthn, dimensionk and minimum distancé of C, to a lower bound ORee(C).

Our lower bound orkyee(C) has an important implication. It shows thatdifis a code family
with the property that, for eacll € €, kyee(C) is bounded from above by a fixed constant, then
either the dimension or the minimum distance of the cod€sgrows sub-linearly with codelength.
Thus, such code families are not good from a coding-theoretic pergped/e also prove a slightly
more general result, which can be roughly interpreted as saying thaichegmor-correcting code
cannot have a low-complexity realization on a graph with small vc-treewidihfd8 good codes,
if low-complexity graphical realizations exist, then they must necessarily exigraphs with large
vc-treewidth.

Some concluding remarks are made in Section 7, and an example in suppcstaiément in
Section 3 is given in an appendix.

2. BACKGROUND AND NOTATION

In this section, we provide the necessary background, and defineothgtom we use in the
paper. We tak& to be an arbitrary finite field. Given a finite index detwe have the vector space
F! = {x = (z; € F, i € I)}. Forx € Fl andJ C I, the notationx| ; will denote theprojection
(x;, i € J). Also, for J C I, we will find it convenient to reserve the use.bfto denote the set
{iel: i¢J}.

2.1. Codes. A linear codeover[F, defined on the index sét is a subspacé C F!. In this paper,
the terms “code” and “linear code” will be used interchangeably to mean arlicede over an
arbitrary finite fieldIF, unless explicitly specified otherwise. The dimension, dveof C will be
denoted bylim(C). An [n, k] code is a code of length and dimensiork. If, additionally, the code
has minimum distancé, then the code is ajm, &, d] code.

4 N. KASHYAP

1 2 3 4 5 6 7 8 9 10 11

FIGURE 1. A graph decomposition df = {1,2,3,...,11}.

Let J be a subset of the index sét The projectionof C onto J is the codeC|; = {c|; :

c € C}, which is a subspace @. We will useC; to denote theross-sectiorof C consisting of
all projectionsc|; of codewordsc € C that satisfyc|> = 0. To be preciseC; = {c|; : ¢ €
C,c|7 = 0}. Note thatC; C C|;. Also, sinceC; is isomorphic to the kernel of the projection
mapr : C — C|5 defined byr(c) = c|7, we have thatlim(C;) = dim(C) — dim(C|5). As a
consequence, we see that/iiC K C I, thendim(C;) < dim(Ck).

If C; andC, are codes oveF defined on mutually disjoint index sefsandl,, respectively, then
theirdirect sumis the code® = C; & C2 defined on the index sét U I, such that;, = C|I1 =C
andCy, = C|;, = Cq. This definition naturally extends to multiple codes (or subspaggsyhere
« is a code identifier that takes values in someAefgain, it must be assumed that the codgs
are defined on mutually disjoint index sdts, « € A. The direct sum in this situation is denoted

by @aeA CO"

2.2. Graphs. In this paper, we are primarily interested in graphs that are connecteahysaon-
qualifed use of the term “graph” should be taken to mean “connectet’grhpt G = (V, E) be a
graph, wherd” and E' denote its vertex and edge sets, respectively. To resolve ambiguity, we will
sometimes denote the vertex and edge setlof V(G) and E(G), respectively. Givena € V,
the set of edges incident withwill be denoted byE (v).

For X C E, we defineg \ X to be the subgraph &f obtained by deleting all the edgesin If
X consists of a single edgethen we will writeG \ e instead ofG \ {e}. If G\ X is disconnected,
then X is called aredge cubf G. Similarly, for W C V', we defineG — W to be the subgraph of
G obtained by deleting all the verticesli#i along with all incident edges. W consists of a single
vertexv, then we will writeG — v instead ofG — {v}. If G — W is disconnected, theW is called
avertex cutof G.

A tree is a connected graph without cycles. Vertices of degree one ir areecalledeaves and
all other vertices are calleidternal nodes Note that any subset of the edges of a tree constitutes
an edge cut, and any subset of internal nodes constitutes a verteitloattiee. Ife is an edge in a

treeT’, then we will denote by"(©) andT'® the two components dF \ e. If v is a vertex of degree

§ in atreeT’, then we will uséTl(”), Tz(”), . ,Té”) to denote the components Bf— v.

A pathis a tree with exactly two leaves (the end-points of the path). All internal sxode path
have degree two. Aimple cyclas a connected graph in which all vertices have degree two. An
n-cycle n > 3, is a simple cycle with vertices.

2.3. Graphical Realizations of Codes.The development in this section is based on the exposition
of Forney [6],[7]; see also [8],[11]. Lef be a finite index set. Ayraph decompositioof I is a

pair (G,w), whereG = (V, E) is a graph, and : I — V is anindex mapping For a code’, we

will usually write “graph decomposition @f” as shorthand for “graph decomposition of the index
set ofC”. We again wish to emphasize that, unless explicitly stated otherwise, we willGtake

be a connected graph. Whénis a tree,(G, w) will be called atree decompositianPictorially, a
graph decompositioy, w) is depicted as a graph with an additional feature: at each vergexh
thatw~!(v) is non-empty, we attach special “half-edges”, one for each indexi{v). Figure 1
depicts a graph decomposition b= {1,2,3,...,11}.

CONSTRAINT COMPLEXITY OF GRAPHICAL REALIZATIONS 5

For a graphy = (V, E), recall thatE'(v), v € V, denotes the set of edges incident wit G.
Consider a tuple of the forl(G, w, (S, e € E), (C,, v € V)), where
e (G,w) is a graph decomposition df
e foreache € F, S, is a vector space ovéft called astate space
e for eachv € V, C, is a subspace df* ' (*) @ (@GGE(U) Se>, called alocal constraint
code or simply, alocal constraint

Such a tuple will be called graphical model A graphical model in which the underlying gragh

is a tree will be called &ree model The elements of any state spaeare calledstates The index
sets of the state spacfs, e € F, are taken to be mutually disjoint, and are also taken to be disjoint
from the index sef corresponding to the symbol variables.

A global configurationof a graphical model as above is an assignment of values to each of the
symbol and state variables. In other words, it is a vector of the faum € F, ¢ € I),(s. €
Se, e € E)). A global configuration is said to bealid if it satisfies all the local constraints.
Thus,((z; € F, i € I),(se € Se, e € E)) is a valid global configuration if for each € V,

((zi, i € w™(v)), (se, e € E(v))) € C,. The set of all valid global configurations of a graphical
model is called théull behaviorof the model.

Note that the full behavior is a subspa®e C F/ @ (P..xS.). As usual, forJ C I, B|,
denotes the projection & onto the index sefl. For future convenience, we also define certain
other projections of8. Letb = ((z;, i € I), (se, e € E)) be a global configuration if8. At any
givenv € V, thelocal configurationof b atv is defined as

bl, = ((xi i € W™ (v)), (s, € € E(v))).

The set of all local configurations @ atv is then defined a®|, = {b|, : b € B}. By definition,
B|, € C,. Similarly, given anye € E, if b is a global configuration as above, then we define
b|, = s.; we further definés|, = {b|, : b € B}. Clearly,B|, is a subspace &..

A graphical modelG,w, (S, e € E),(C,, v € V)) is defined to bessentialf 8|, = C, for
allv € VandB|, = S forall e € E. Wheng is a tree, there is some redundancy in the above
definition, as the conditiol3|, = S, for all e € E actually implies tha®s|, = C, forallv € V
[11, Lemma 2.2]. It is worth noting that, in an essential graphical model,yaedgee = {u, v},
the state spac§., may be viewed as a projection of each of the local constraint cogesdC,.
Thus, for anye € E, dim(S,) < dim(C,), wherev is any vertex incident witla.

An arbitrary graphical moddl' with full behaviorB can always be “essentialized” by simply
replacing each local constrait, in I' with the projectiort8|,, and replacing each state spate
with the projectiort|,. The resulting “essentialization” &f still has full behaviorB.

An essential graphical modé§,w, (S., e € E),(Cy, v € V)) is defined to be graphical
realizationof a codeC, or simply arealization ofC on G, if B|, = C. A graphical realization of
C in which the underlying graply is a tree, is called &ee realizationof C. Our definition of a
graphical (and tree) realization differs slightly from the prior definition§6j[7],[8],[11], in that
we require the underlying graphical model to be essential. As explairmeeabny graph model
can be essentialized, so there is no loss of generality in this definition.

A graphical (resp. tree) realizatidiy, w, (S, e € E), (Cy, v € V)) of C is said toextend or
be an extension of, the graph (resp. tree) decompodiGow) of C. We will denote byR(C; G,w)
the set of all graphical realizations 6fthat extend the graph decompositi@h w) of C.

Now, it is an easily verifiable fact that any tree decomposition of a codeleays be extended
to a tree realization of the code [7],[11]. Such an extension is not uniqueniargl, but we will
describe a canonical “minimal” extension a little later. More generally, angtgdeecomposition
of a codeC can always be extended to a graphical realizatiod,cds we now explain. Lef =

Lin referring to a tuple of the forniG, w, (Se, e € E), (Cy, v € V)), we will implicitly assume thal” and E denote
the vertex and edge sets, respectively, of the gaph

6 N. KASHYAP

(V, E) be a connected graph, and suppose (fatv) is a graph decomposition @f. TakeT to
be any spanning tree ¢f, and letE denote its edge set. The(¥,w) is a tree decomposition of
C. As noted above, this tree decomposition can be extended to a tree realiZationS., e €
Er),(Cy, v € V)) of C. We further extend this to a realization 6fon G as follows. Define the
state spaceS,, e € E, as

-~ |8 ifeecEr
“ {0} ifec E\Ep,

and for eachy € V, define the local constraiidt, = C, @ (Becrw) . {0})- It should be clear

that(G,w, (S., e € E), (Cy, v € V)) is a graphical realization .

Graphical realizations of codes in which the underlying graph is a pathsonple cycle have
received considerable prior attention in the literature. Such realizatiores va#led “conventional
state realizations” (when the underlying graph is a path) and “tail-biting stalezations” (when
the underlying graph is a simple cycle) in [6]. We will call them *“trellis realizasibnBriefly, a
trellis realizationof a codeC (defined on the index sé) is any extension of a graph decomposition
of C of the form(G, w), whereg is either a path or a simple cycle, ands a surjective map : I —
V(G). Atrellis realization in which the surjective map: I — V(G) is not injective (so thab is
not a bijection), is usually calledsectionalizedrellis realization. Aconventionatrellis realization
is one in which the underlying graghis a path. When the underlying graghis a simple cycle,
the trellis realization is said to tailbiting. The theory of conventional trellis realizations is well
established; see, for example, [17]. On the other hand, tailbiting trellis adialis are less well
understood; the principal systematic study of these remains that of Koattevaady [13],[14].
We remark that our requirement that graphical realizations have uimdgidyaph models that are
essential corresponds to the requirement in [13],[14] that “linear treflise “reduced”.

3. COMPLEXITY MEASURES FORGRAPHICAL REALIZATIONS

As observed in [6], any graphical realization of a code specifies a ofesssociated graph-based
decoding algorithms, namely, the sum-product algorithm and its variantss, Tdeally, any defi-
nition of a complexity measure for a graphical realization should try to caph@eomputational
complexity of the associated decoding algorithms. The analysis in [6, Sectishows that the
computational complexity of the sum-product algorithm specified by a givephical realization
of a code is determined in large part by the cardinalities, or equivalently diimes, of the local
constraint codes in the realization. Thus, as a simple measure of the compiezitgraphical
realization, which roughly reflects the complexity of sum-product decqdirgwill consider the
maximum of the dimensions of the local constraint codes in the realization.

LetI' = (G,w, (Cy,v € V), (S.,e € E)) be a graphical realization of a code Theconstraint
max-complexityor simply x-complexity of I is defined to be:(I') = max,cy dim(C,). Now,
recall that if(G,w) is a graph decomposition @f, thenR(C; G, w) denotes the set of all graphical
realizations o that extend G, w). We further define

K(CG,w) = reanin K(I) 1)
We add another level of minimization by defining, for a given grgplthe G-width of a codeC to
be

£(C;G) = mink(C; G, w),)

where the minimum is taken over all possible index mappingd — V (G), where! is the index
set ofC. Thus, theG-width of C is the least-complexity of any realization of on G, and may
be taken to be a measure of the least computational complexity of any suneptgde decoding
algorithm forC implemented on the gragh

CONSTRAINT COMPLEXITY OF GRAPHICAL REALIZATIONS 7

A broader optimization problem of considerable interest is the followingergia codeC and

a family of graphs®, identify aG € & on whichC can be realized with the least possille
complexity. We thus define

k(C; ®) = rgneiém(C;Q). (3)

Two special cases of this definition — treewidth and pathwidth (or trellis-wigtfgre particularly
of interest. We define treewidth first, and pathwidth a little further below.

If we let T denote the set of all trees, thefiC; ¥) is called thetreewidthof the codeC [11],
which we will denote bysyee(C). The notion of treewidthi(e., minimal k-complexity among tree
realizations) of a code was first considered by Forney [7], and alogaus notion has been defined
for matroids in [9]. The arguments in [7, Section V] (and also in [9]) shoat tlee(C) can always
be obtained by minimizing(C; T',w) over tree decompositiond’,w) in which 7" is a cubic tree
(i.e., a tree in which all internal nodes have degree 3),@amsla bijection between the index set of
C and the set of leaves @f.

A complexity measure related to treewidth, termed minimal tree complexity, was defimg
studied by Halford and Chugg [8]. Treewidth, as we have definedegbi®an upper bound on the
minimal tree complexity of Halford and Chugg.

The pathwidth xpan(C), of a codeC is defined to be the quantity(C; 33), where3 denotes the
sub-family of¥ consisting of all paths. We will find it convenient to refer to tree decompasitio
(P,w), with P € B, aspath decompositionsThus, x(C;B) is the minimum value ok(C; P, w)
as(P,w) ranges over all path decompositionsf In fact, by the argument of [7, Section V.B],
the minimizing path decompositidP, w) may be taken to be one in which the index mapping
surjective. Thuskpain(C) is the least-complexity of any conventional trellis realization 6f and
so we may also call it théconventional) trellis-widthof C. It is also known that sectionalization
cannot reduce the-complexity’ of a trellis realization [17, Theorem 6.3], and henggan(C) is
the minimum value of(C; P, w) over all path decompositior(?, w) in which the index mapping
w is a bijection between the index set®and the vertices of.

Measures of constraint complexity other thaicomplexity have been proposed in the previous
literature, especially in the context of trellis realizations [17],[14]. Fiecomplexityof a graph-
ical realizationl’ = (G,w, (Cy,v € V), (S, e € E)) is defined to bes™ (') = 3~ ., dim(C,).
Note thatﬁ xT(T) is the average local constraint code dimensiofi.irOn the other hand, it has
been suggested [7] that the sum of the constraint code cardinalities “enaybbtter guide to de-
coding complexity” tham:-complexity orx™*-complexity. Thus, we define®(I") = Y=, .\, |Cy| =
S ey [F|4m(C) - Analogous to (1)—(3), we may defing (C, G, w), £°4(C; G, w), etc., but we will
only touch upon these briefly in this paper.

We remark that while we have used constraint code dimensions to defirm®mpiexity mea-
sures for graphical realizations, one could also define measuresnplexity based on state-space
dimensions. For example, we could define the state max-complexity, of a graphical realiza-
tionT" to be the maximum of the dimensions of the state spacés$imilarly, we may consider the
complexity measures™t (T") ando'°(I") analogous ta:* (T') andx'°Y(T"). These measures are espe-
cially relevant and have been well studied in the context of trellis realizatagen, see [17],[14].
However, as noted by Forney [7], measures of state-space complexityrie less appropriate in
the context of realizations on arbitrary graphs or trees. For examplanfocodeC C F™, one can
always find a tree on whici can be realized in such a way that all state-spaces have dimension at
most 1. This would be the “star-shaped” ttEe€onsisting ofn leaves connected to a single internal
nodewv of degreen. Takew to be any bijection between the index seCadind the leaves df’; set
S. = IF at each edge of T'; and finally, take the local constraint codg at the internal node to be
C itself, and take the local constraint codes at the leaves {@,lé repetition codes. Clearly, the

2For this reason, what we have callegkn(C) here was calle@;eiis(C) in [11].
30ur notion ofk-complexity corresponds to the notion of “edge-complexity” in [17].

8 N. KASHYAP

resulting tree model (after essentialization) is a tree realizatigh dtus, it makes little sense to
define a state-space complexity measure analogous to treewidth, unlesstnet the kind of trees
on which we are allowed to realize the given cbde

The astute reader may point out that in the trivial tree realization abovesutineof the state-
space dimensions is non-trivial, and so a state-space analogue to treewidtihpotentially be
defined in terms o+ or o', This may be true, but we do not pursue this further, since, as already
observed previously, complexity measures based on constraint codesitime are a better guide
to decoding complexity. But, while on this topic, we mention in passing that fotrapyealization
I of a codeC, it turns out that

kT(I) = dim(C) 4+ o (T). 4)

Thus, the problem of minimizing ™ (I') among tree realizations of a given code’ is equivalent
to the problem of minimizing:* (T"). The identity in (4), which may be viewed as a generalization
of the statement of Theorem 4.6 in [14] for conventional trellis realizatisibnot be proved here
as it would be an unnecessary deviation from the main line of our develdpieuffices to say
that (4) follows from Theorem 3.4 in [11] by first verifying that it indehdlds for any minimal
tree realizationM (C; T, w), and then observing that the difference betweérl') ando™(T) is
preserved by the state-merging process mentioned in the statement of tnatrihe

Finally, we remark that the state max-complexity of a graphical realizationataxteed the
constraint max-complexity of the realization. This is because, as obsérv8dction 2.3, in
any essential graphical mod&J, w, (S.,e € E),(Cy,v € V)), for each edge € E, we have
dim(S.) < dim(C,), wherewv is any vertex incident wita.

3.1. Minimal Realizations. Given a code& and a tree decompositidif’,w) of C, there exists a
tree realization(7,w, (S7, e € E), (Cy, v € V)), of C with the following property [6],[7]:

if (T,w,(Se, e € E),(Cy,, veV))isatree realization of that extendsT, w),
then for alle € E, dim(S;) < dim(S,).

This minimaltree realization, which we henceforth denote/o(C; T', w), is unique up to isomor-
phisn. Constructions of\(C; T, w) can be found in [6],[7],[11].

It has further been shown [11] that not only does(C; T',w) minimize (among realizations in
R(C; T,w)) the state space dimension at each eddg,dfut it also minimizes the local constraint
code dimension at each vertex®f More preciselyM (C; T, w) also has the following property:

if (T,w,(Se, e € E),(Cy,, veV))is atree realization of that extend$T,w),

then for allv € V, dim(C}) < dim(Cy).
Consequently, we have thatC; T, w) = k(M(C;T,w)), k*(C;T,w) = k+(M(C;T,w)), and
KOYC; T, w) = KPY(M(C;T,w)). The fact thatM (C; T',w) minimizes local constraint code di-
mension at each vertex @f will be central to the derivation of our results in the sections to follow.

We will henceforth consistently use the notatiSf and C;; to denote state spaces and local

constraint codes in a minimal tree realization(C; T',w). Exact expressions for the dimensions
of S andC} in M(C;T,w) are known [6],[7]. Recall that for an edgeof T, we denote by

7() andT" the two components df' \ e. Let us further define/(e) = w='(V (7)) and
T(e) = w L (V(T'”)). We then have

dim(87) = dim(C) — dim(C;(¢)) — dim(Cy))- (5)

“We do get a reasonable state-space analogue to treewidth if we restratagiseof trees over which we attempt to
minimize state-space complexity to the class of cubic trees only; see [11].

SGraphical realization$G, w, (Cv,v € V), (Se,e € E)) and(G,w, (C,,v € V), (S., e € E)) of a codeC are said
to beisomorphicif, for eachv € V, C, andC, are isomorphic as vector spaces, and for each £, S. andS,, are
isomorphic as vector spaces. We do not distinguish between isomormalpilsigal realizations.

CONSTRAINT COMPLEXITY OF GRAPHICAL REALIZATIONS 9

Next, consider any vertexin 7'. If v has degreé, thenT —v has componentEi(”), 1=1,2,...,6.
DefineJ; = w—l(V(Ti(”))), fori =1,2,...,6. Then [7, Theorem 1],

é
dim(C;) = dim(C) —) _dim(Cy,). (6)
=1

In summary, the minimal tree realizatiovi (C; T', w) is an exact solution to the problem of deter-
mining the minimum-complexity extension of a tree decompositibnw) of a codeC. Moreover,
M(C; T, w) minimizes, among realizations {R(C; T, w), any reasonable measure of complexity,
be it state-space complexity or constraint complexity. Unfortunately, wheemuawe to realizations
on graphs with cycles, there appear to be no “canonical” minimal realizatithgproperties sim-
ilar to those of minimal tree realizations. In fact,(§f,w) is a graph decomposition of a code
whereg is a graph with cycles, there need not even be a realiz&titwat simultaneously achieves
Minpegc;gw) £(I) andminpegpye.g oy 1 (). An example of such a graph decomposition is given
in Appendix A.

Thus, given a codé and a graplg/ containing cycles, the problem of finding realization€an
G with the least possible-complexity,xT-complexity, ors©-complexity (within some interesting
sub-class of realizations @f on G) is much harder to solve than the corresponding problem for
cycle-free graphs. In the next section, we present a simple but Valt@d that will enable us to
derive non-trivial lower bounds on the constraint complexity of realiretiof a code on an arbitrary
graph. These bounds could be used, for example, to determine wheth@rthe complexity of a
given realization is close to the least possible.

4. CUT-SET BOUNDS

Let G = (V, E) be a connected graph. A partitigh”’, V") of V' is said to beseparatedby an
edge cutX C E'if, for each pair of vertices’ € V' andv” € V", any path ing that joinsv’ to v”
passes through some edge X. We remark that iiG \ X has more than two components, then
there is more than one patrtition ofthat is separated hy .

The Edge-Cut Bound, stated below, is a result of fundamental importatice study of graphi-
cal realizations. This result was originally observed by Wiberg, Loeliger Koetter [18],[19], but
the version we give here is due to Forney [6, Corollary 4.4].

Theorem 4.1(The Edge-Cut Bound)LetI’ = (G, w, (Cy,v € V), (S., e € E)) be a realization of
a codeC on a connected grap = (V, E). If (V/, V") is a partition of VV separated by an edge
cutX C FE, then, defining/’ = w=1 (V') andJ” = w=1(V"), we have

> dim(8.) > dim(C) — dim(C) — dim(Cyn).
ecX

The edge-cut bound can be used to derive useful lower bounde@tate-space complexity of
a graphical realization; see, for example, [5]. To deal with constraimpiexity, however, we will
need a closely-related bound that uses vertex cuts instead of edge cuts.

We introduce here some terminology that we will use to state our vertex-amicbd-orv € V/,
let N(v) = {u € V : {u,v} € E} denote the set of neighbours ofin G. Furthermore, for
W C V, defineN(W) = U,cw N(v).

Definition 4.1. An ordered collectior{V;, V1, ..., Vs), § > 0, of subsets oV is said to be astar
partitionof V, if the V;’s form a partition ofV (i.e., the V;’s are pairwise disjoint, ande:0 Vi =
V), and for each € {1,2,...,d}, we haveN (V;) C V; U 1.

The definition has been worded so as to allow some ofiffseto be empty sets. WheVj is
non-empty for at most oné > 1, a star partition is simply a partition. When at least tWs

10 N. KASHYAP

Jl J2
— —

I,',',—{ I . "[

>// -

/

l l l ffl/
\/ \//
Ju J3

FIGURE 2. A depiction of the construction in the proof of the Vertex-Cut Bound.
G[V;] denotes the subgraph gfinduced by the vertices il7;.

other thanlj are non-empty, then a star partition is a partition that arises from a verteof ¢yt
as we now explain. For any> j > 1, if V; andV; are both non-empty, then the above definition
simply says that any path between a verteXjrand a vertex irl; must pass throughy. Thus, if

at least twoV/;'s other thanlj are non-empty, thefry is a vertex cut ofj. Conversely, ifl is a
vertex cut ofG, andgi, Go, ..., Gs, 0 > 2, are the (non-empty) componentsthf- 14, then, setting
Vi =V(G;) fori=1,2,...,4, we see thatVp, V1, ..., Vs) is a star partition ol/. The graph on
the left in Figure 2, which depicts a typical situation covered by the definiibayld also explain
the nomenclature.

Theorem 4.2(The Vertex-Cut Bound)LetI = (G, w, (Cy,v € V), (S, e € E)) be a realization
of a codeC on a connected grapg = (V, E). If (Vp, V1,...,Vs) is a star partition ofV/, then,
definingJ; = w=(V;) fori =1,2,...,6, we have

0
Z dim(Cy) > dim(C) — Zdim(CJZ.).
i=1

veEVY

Proof. LetB denote the full behaviour df. If b = ((x;,7 € I), (se, e € E)) is a global configura-
tion in B, then given anX’ C £, we will useb| . to denote the projectiofs., e € X'). We further
setB|y = {b|y : b e B}.

Fori =1,2,...,9, let X; be the set of edges ¢f with exactly one end-point ift;, so that the
other end-point is necessarily . We then define

%|‘/z = {(b‘szb|Xz) :be %},
fori=1,2,...,4. Furthermore, sefy = w™'(V)) andX, = ;_, X;, and define
%|V0 = {(b|JO’b|XO) :be %}

Now, consider the “star-shaped” tréde= (V, Er) consisting of a single internal vertey of
degree’, whose neighbours,, v9, . . ., vs are all the leaves df. Thus,Vp = {vp, v1,...,vs} and
Er = {{vo,vi}: i=1,2,...,6}. Deflne the index mapping : I — V7 as follows:«/(j) = v; iff
w(j) € Vi. Note that, fori = 0,1,2,...,6, we havea=1(V;) = w™1(V;) = J;. The construction
of the tree decompositiof?’, «) from (g, w) is depicted in Figure 2.

CONSTRAINT COMPLEXITY OF GRAPHICAL REALIZATIONS 11

We next extend the tree decompositidn o) to a tree model’ = (T, «, (36, ee€ Er), ((jv, vE
Vr)) by settingCy, = By, fori =0,1,2,...,4, andS,, .3 = By, fori =1,2,...,5. From
the fact thaf”" is a realization of’, it readily follows thatl is a tree realization of.

Recalling that the minimal tree realizatiovt (C; T, «) minimizes the local constraint code di-
mension at each vertex @f, we obtain via (6),

dim(a > dim(C Z dim(Cy,).

We complete the proof by observing that
dim(Cl,) = dim((Bly,) < Z dim(*B|,) Z dim(C

veEVD veVy
([l

The following useful corollary is an immediate consequence of the Verte>8Gund.

Corollary 4.3. Let (G,w) be a graph decomposition of a codewhereg is a connected graph.
For a vertex cutW of G, if G1,Gs,...,Gs are the components ¢f — W, then define\(W) =
dim(C) — Zle dim(Cy,), whereJ; = w™1(V(G;)) fori = 1,2,...,4. Then, for any realization
I'=(G,w,(Cy,v € V), (S, e € E)) of C that extend$G, w), we have

> dim(Cy) > A(W).

veW

In its most straightforward application, the Vertex-Cut Bound, via the almmrollary, can be
used in conjunction with constrained optimization techniques to find lower lsoond(C; G, w),
kT(C; G,w) andx™(C; G,w). Indeed, if(G, w) is a graph decomposition 6f andWy, Wa, ..., W,
are vertex cuts ofj, then, by Corollary 4.3, the dimensions of the local constraint c6tles € V,
inanyl’ € R(C; G, w) must satisfy) .. dim(Cy) > A(W;), i = 1,2,...,t. Thus, for example,
k1(C;G,w) is lower bounded by the solution to the following linear programming problem in the

variablest,, v € V: given a collection of vertex cutd’;, W, ..., W; of G,
minimize) " &,, subjectto Y &, > A(W;), i=1,2,... .t
veV weW;

However, we do not pursue this angle any further in this paper. Insteaavill henceforth re-
strict our attention to the-complexity measure, for which we will derive a suite of lower bounds,
again based on the Vertex-Cut Bound, which unearth some interestingawns with graph the-
ory, and moreover, are amenable to further mathematical analysis. Theldwoe derive rely on
the notion of vertex-cut trees introduced in the next section.

5. VERTEX-CUT TREES
We begin with a simple lemma, which plays a role in our definition of a vertex-cetetow.

Lemma 5.1. Suppose thaty, V1, . .., Vs are subsets o such tha1Uf:0 V; = V. If, for each pair
of distinct indices, j, we haveV; N V; C Vj, then(Vp, Vi \ Vo, ..., V5 \ V) is a partition of V.

Proof. It is evident thatiy U Ule(V; \ Vo) = Uf:on‘ = V. Ifi,j>0,i#j, then(V; \ Vo) N
(V;i\ Vo) = (V;nV;) \ Vo = 0, sinceV; NV; C V. 0

For the main definition of this section, we introduce some convenient notatieahwwill hence-
forth be used consistently. K and B are sets, and : A — 28 is a mapping from\ to the power
set of B, then for anyX C A, we definef(X) = (J,cx f(z). Also, recall that ifz is a vertex of

degree in a treeT’, then the components @f — z are denoted by”i(z), 1=1,2,...,96.

12 N. KASHYAP

Definition 5.1. LetG be a connected graph. vertex-cut treef G is a data structuréT’, 3), where

Tisatree,and?: V(T') — 2V(9) is a mapping with the following properties:

(VC1) B(V(T)) = V(9);

(VC2) for each pairz,y € V(T), if z € V(T) is any vertex that lies on the unique path between
zandyin T, theng(z) N B(y) C B(2);

(VC3) foreachz € V(T), (B(z), V1, Va, ..., Vs) is a star partition ofl’(G), whered is the degree
of z, andV; = B(V(T*)) \ B(z)fori: 1,2,...,0.

A vertex-cut tregT’, 3) in WhlchT is a path is called avertex-cut path

Note that, by Lemma 5.1, conditions (VC1) and (VC2) in the above definition imally tbr
eachz € V(T), withé andV;, i = 1,2,...,4, as in condition (VC3)(3(z), V1, Va,...,Vs)isa
partition of V(G). Thus, for(7',) satisfying conditions (VC1) and (VC2), condition (VC3) is met
iff, for eachz € V(T'), we haveN (V;) C V; U 3(z) forall i > 1.

Trivial vertex-cut trees (and paths) always exist for a gréph- given any tre€l’, pick a vertex
2o € V(T), and define a mapping by setting3(z9) = V(G), andj3(z) = 0 for z # 2y. This
allows us to make the following definition.

Definition 5.2. LetG be a connected graph. The-width of a vertex-cut tre¢T’, 3) of G is defined
asmax,cy 7y |3(2)|, and is denoted by vc-width, 3). Thevc-treewidth(resp.vc-pathwidtt) of
G is the least vc-width among all vertex-cut trees (resp. vertex-cuspattyy, and is denoted by

Kve-tree(G) (resp-"‘fvc-path(g))-

Thus, for any graplyy, we have) < ryctredG) < kvepatG) < |V(G)|. The ve-treewidth of any
tree is equal to one. Indeed,Tfis a tree, thel T, 3), defined by3(z) = {z} forall z € V(T), is
a vertex-cut tree of’, with vc-width equal to one.

Example 5.1.LetG be ann-cycle with verticesg, v1, . . ., v,_1, labeled in cyclic order. LeP be a
path withn — 1 vertices, which in the linear order defined by the path, are labeled,, .. ., z, 1.
To be precisez is one of the two Ieaves and fbe 1, 2, . —1, z; is adjacent taz; 1 in P. If
we define the mapping: V(P) — 2V (9 asf(z) = {vo,vl} for i=1,2,...,n—1,then(P,)
is a vertex-cut path of, of vc-width two. It is not difficult to verify that has no vertex-cut tree of
vc-width one, and henceyc.tredG) = Kvc-pat(G) = 2.

Our definition of vertex-cut trees may appear at first to be an artificiatract brought in solely
for the purpose of finding applications for the Vertex-Cut Bound. Hamwethis is far from being
the case. Vertex-cut trees are very closely related to junction trees, colmassociated with belief
propagation algorithms in Bayesian networks [10] and coding theornyidéther close relative of
vertex-cut trees is the data structure known as tree decomposition (aph)di6],[2],[3], which
has received considerable attention in the graph theory and computecestiteratures.

Definition 5.3. Atree decompositioof a connected grap§ is a data structurdT’, 3), whereT is
atree, and3 : V(T) — 2V(9) is a mapping with the following properties:
(T1) B(V(T)) = V(G);
(T2) for each pairz,y € V(T), if z € V(T) is any vertex that lies on the unique path between
zandyin T, thens(z) N B(y) C B(2);
(T3) for each pair of adjacent vertices v € V(G), there exists & € V(T") such that{u, v} C
B(2).

A tree decompositiofil’, 3) in which T is a path is called gath decompositian

Thewidth of a tree decomposition as above is defined tabe ..y (1) |3(2)| — 1. Thetreewidth
(resp.pathwidth) of a graphg, denoted bykiee(G) (resp.xpatn(G)), |s the minimum among the
widths of all its tree (resp. path) decompositions. Note th&t ifas at least one non-loop edge,
then, because of (T3), any tree decompositiotj ahust have width at least one. Thus, for any

CONSTRAINT COMPLEXITY OF GRAPHICAL REALIZATIONS 13

(1) (6)
(cb)—(&o]
(5e) . (&)

FIGURE 3. (a) A graphg on eight vertices. (b) A tree decomposition®fwith
width 2, and vc-width 3. (c) A vertex-cut path gfof vc-width 3 that is not a path
decomposition of;.

such graphg, we have0 < kgee(G) < kpan(G) < |V(G)| — 1. It is not hard to check that

any tree with at least two vertices has treewidth equal t&,omed that ifG is ann-cycle, then
Htree(g) = /‘Cpath(g) =2.

Lemma 5.2. Any tree decomposition of a connected grgpis also a vertex-cut tree @f. Hence,
FvetredG) < Kiree(G) + 1, andkyepati(G) < Kpath(G) + 1.

Proof. Let (T, 3) be a tree decomposition gf We only have to show th&f", 3) satisfies condition
(VC3) of Definition 5.1. Consider any € V(T'), with degree, and letV;, i = 1,.. ., d, be defined
as in condition (VC3). By virtue of (T1), (T2) and Lemma 5(B,z), V1, ..., Vs) is a partition of
V(G). Thus, we must show tha{ (V;) C V; U g(z) fori =1,...,6.

Suppose, to the contrary, that there exists & V; such that for some. € N(v), we have
u ¢ V; U B(z). Thus, by definition oV, we haveu ¢ B(V(Ti(z))) U B(z), whilewv € 5(z) \ (=)
for somex € V(Ti(z)). Now, by condition (T3), we havéu,v} C ((y) for somey € V(T). In
particular,v € 5(x) N B(y). On the other hand, by our assumption:grwe must havey # = and
y ¢ V(Ti(z)). Thus,y € V(Tj(z)) for some;j # i. This means that the vertexlies on the unique
path inT joining = andy, and hence, by (T2 € ((z), which contradicts the existence ofas
postulated. O

A graphg can have a vertex-cut tree that is not a tree decomposition. Figure 3 shroexam-
ple of a vertex-cut path of a graghthat is not a path decomposition f Also, the inequality
kve-red G) < kiree(G) + 1 in Lemma 5.2 can hold with equality — for the graghn Figure 3(a), it
is possible to show thatyee(G) = 2, While kyctredG) = Kve-patG) = 3.

6. LOWERBOUNDS ONk-COMPLEXITY

Vertex-cut trees allow us to derive lower bounds on theomplexity of a graphical realization
of a code, as we now show. L&F,w) be a graph decomposition of a codeand let(T’, 5) be a

Without the 1" in the definition of width of a tree decomposition, a tree with at least two vertigeuld have treewidth
equal to two.

14 N. KASHYAP
*

Ol

FIGURE 4. The mapping: : V(T) — 2V(9), with the vertex:* chosen as shown,
constructed from the vertex-cut tree in Figure 3(b).

vertex-cut tree of;. For each: € V(T), setJ; = w=(V;) fori = 1,2,...,d, where theV;’s are
as defined in condition (VC3) of Definition 5.1. Further define

m(z) = dim(C Z dim(Cy,). (7

Now, consider any graphical realization,= (G, w, (S.,e € E),(C,,v € V)), of C that extends
(G,w). By the Vertex-Cut Bound, we have, for eacte V(T'), >_,c4,) dim(Cy) > m(z). Since

2 vep(z) Aim(Cy) < (maxvev(y dim(C') 18(2)] = &(T) |B(2)]|, we obtain
k() [6(2)| = m(2).

Maximizing over allz € V(T'), we get

k(D) - ve-width(T, 8) > max m(z) & u(C;w, B) (8)
zeV(T)

We thus have the following proposition.

Proposition 6.1. Let (G, w) be a graph decomposition of a codeand let(T, 3) be a vertex-cut
tree ofG. Then, for any graphical realizatiohi € R(C; G,w), we have

() p(C;w, B)
~ ve-width(T, 3)

The lower bound in the above proposition can be brought into a form nooneenient for further
analysis. To do this, we will construct a tree decompositidtyy) of C such thatu(C;w, 8) =
k(C;T,~). So, once again, l€iG,w) be a given graph decomposition 6f and (7', 5) a given
vertex-cut tree ofy. We will first give a recipe for constructing tree decomposition€ dfom
(G,w) and(T, 3). Then, we will show how the main ingredient of the recipe may be choseraso th
the resulting tree decompositidf’, v) satisfies:(C;w,) = x(C; T, 7).

For any pair of vertices:,y € V(T), let (z,y] denote the set of vertices on the unique path
betweenr andy in T, includingy, but not includingz. Also, we will uses(z,y|, instead of the
more cumbersomg((z, y]), to denote the sét). ., 3(z). Pick an arbitrary vertex* in V/(T).

Define the mapping: : V(T') — 2V(9) as follows:a(z*) = 3(z*), and forz # z*,
a(z) = B(z) \ B(z,27].

An example of such a mapping constructed from the vertex-cut tréé&’, 3) in Figure 3(b) is
depicted in Figure 4.

We record in the next two lemmas some properties of the mappithgit we use in the sequel.
Recall our convention that fok' C V(T), a(X) = U, x a(2).

CONSTRAINT COMPLEXITY OF GRAPHICAL REALIZATIONS 15

FIGURE 5. A depiction of the situation whesi* ¢ V(7(%)). Dashed ovals repre-
sent components df — z.

Lemma 6.2. For z € V(T)), if T*) is any component &f — z, then

() _ | BV(TD)) if 2* € V(T®)
a(V(T')) = {ﬂ(V(T(z))) \B(z) ifz*¢ V(T(Z))_
Proof. Suppose first that* € V(T(%)), and setX = V(7)) \ {z*}. It then follows from the

definition ofa that
U o) = (U ﬁ(x)) \B(=").
zeX rzeX
Thereforea (V(T'*))) = a(X) Ua(z*) = (B(X) \ B(z")) U B(z") = B(V(T)).
Now, consider the case whe ¢ V(T(?)), as depicted in Figure 5. In this case, the definition
of o implies that

U a(gc)(U ﬁ(z))\ﬂ[z,z*],
)

eV (T®) zeV (T)
where[z, z*| denotes the set of vertices on the path betweand:* in 7', including bothz andz*.
Note that, as a consequence of condition (VC2) of Definition 5.1, we iawvany z € V(7(?)),

B(x) N Bz, z*] = B(z) N B(2). Hence,

(U ﬂ(w))\mz,zﬂ(U ﬁ(w))\ﬁ(z),
))

zeV (T zeV (T
which proves the desired result. O

Lemma 6.3. The setsy(z), z € V(T'), form a partition ofV (G).

Proof. Let Ti(z*), i=1,2,...,6, denote the components 6f— z*. Observe that, by Lemma 6.2,
5

§
U az) = Jav(@™) = BV I\ BE) = (U 5<z>> \BE").
2#£z* i=1 i=1 zFz*
Therefore| J,cy () (z) = Uev (1) B(2) = V(G), by condition (VC1) of Definition 5.1.
Next, we want to show that(z) N a(z") = 0 for z # 2’. This is true by definition oé if either
z = z* orz’ = z*. So, we henceforth assume theand>’ are distinct vertices itV (7") \ {z*}.
Suppose that there existea «(z) N a(z’). We then have

16 N. KASHYAP

(1) v € B(2), butv ¢ B(y) foranyy € (z, 2*|; and

(2) v e B(2'), butv ¢ B(y) foranyy € (2, 2*].
In particular, we see that ¢ §(z*). It also follows from (1) and (2) that’ ¢ (z,2*], andz ¢
(7', 2*], which together imply that* lies on the path betweenand:’. However, by (VC2), this
means that € 3(z*), a contradiction. O

We now construct a tree decompositiffi,) of the index set/, of C, by defining an index
mappingy : I — V(T') as follows: for eachi € I, sety(i) = z if w(i) € a(z). In other words, for
eachz € V(T), 7 1(z) = w ! (a(z)). Since the seta(z), z € V(T), form a partition ofV (G),
the mappingy is well-defined.

Example 6.1. Suppose thaf is a code of length 10, defined on the indexiset {1,2,...,10}.
For the graphG shown in Figure 3(a), consider the graph decompositignw) of C defined by
w(l) =w2) =4, w3) =w@d) =w’B) = B,w6) =wl) =E w® = F, andw(9) =
w(10) = H. Let(T,3) be the vertex-cut tree @ in Figure 3(b), from which we obtain the
mappinga : V(T) — 2V(9) depicted in Figure 4. Based on the last figure, we will use the labels
z*, A, D, G, F and H to identify the vertices of the tré& Then, the index mapping: I — V(7))
is given byy(1) = v(2) = A, 7(3) = 7(4) = ¥(5) = ~(6) = +(7) = 2", 7(8) = F, and
7(9) =~(10) = H.

Note that our construction of the tree decompositi@try) depends on the choice of the vertex
z*, via the mappingy. Up to this point, our choice of* was arbitrary. We now specify* € V(T

to be such thatn(z*) = p(C;w, 5). We claim that for the tree decompositi¢f,) arising from
such a choice of*, we haveu(C;w, 5) = k(C; T,).

Proposition 6.4. Given a graph decompositidi/, w) of a codeC, and a vertex-cut tre€T’, 3) of
g, there exists a tree decompositi@f, v) of C such thatu(C;w, 8) = x(C; T, 7).

Proof. Pick az* € V(T) such thatm(z*) = u(C;w,), and construct the tree decomposition
(T',~) as described above. Note that, by (6),

C;T,v) =rk(M(C;T, = k(z),
K(C;T,7) = K(M(C T, 7)) nax (2)
where, for a vertex: € V(T') of degreed, k(z) def dim(C) — Zledim(CKi), with K; =
yl (V(Tﬁ))) for i = 1,2,...,5. Recall from the definition of; thaty~'(z) = w'(a(2))

foranyz € V(T). Hence,K; = w! (a(V(Tf”))), i=1,2,...,0.

To prove the proposition, we show thetz) < m(z) forall = € V(T'), with equality holding
if z = 2z*. From (7), we see that:(z) = dim(C) — Zle dim(Cy,), where, fori = 1,2,...,0.
Ji = wl (ﬂ(V(Ti(z))) \,B(z)). We must therefore show that, for eaeche V(T), we have

Ji C K; for all 4, which would prove thak(z) < m(z); and furthermore, when = z*, we have
J; = K; for all i, which would prove thak(z*) = m(z*).

So, consider any € V(T'). From Lemma 6.2, we see thaﬂifz) is any component df’ — z,
then

BTN\ B(2) € a(V(T)) 9
Hence,J; C K;. Moreover, wher: = z*, we always have* ¢ V(Ti(z)), and so, again by
Lemma 6.2, equality holds in (9), implying thét = K. O

From Propositions 6.1 and 6.4, we obtain the following theorem.

Theorem 6.5. Let (G, w) be a graph decomposition of a cofleand let(T', 5) be a vertex-cut tree
of G. Then, there exists a tree decomposit{@h~) of C such that, for any graphical realization

CONSTRAINT COMPLEXITY OF GRAPHICAL REALIZATIONS 17

I' e R(C; G,w), we have
K(C; T, y)
w0) 2 S Wit 3)

CT,
Hencex(C; G,w) > Wh(%)ﬁ)

The theorem above is a fundamental result with several important coeisegs, some of which
we present here. The first of these is a corollary that gives a lowandon thex-complexity of
anyrealization of a given codé on a graply.

Corollary 6.6. For a codeC and a connected grapfi, we have

’itree(c) > /‘itree(c)

C.G) > >)
~(C:9) Kyc-tred G) Kiree(G) + 1

Proof. Consider an arbitrary index mapping: I — V(G), wherel is the index set of. Let
(T, 3) be anoptimalvertex-cut tree ofj, by which we mean that vc-widt’, 3) = Kyc-tredG). BY
Theorem 6.5, there exists a tree decompositibny) of C such that

/{(a T, ’7) ’Qtree(c)
: > > .
~C:9:9) 2 SoWiGT, B) = wvouedG)
Minimizing over all possible mappings: I — V(G), we obtain

"itree(c)
C; _—
K(7g) = ch-tree(g)

From Lemma 5.2, we also ha¥gc.tred G) < Kiree(G) + 1. O

If, in the above proof, we tak€r’, 3) to be an optimal vertex-cut path instead,, take(7', 3) to
be a vertex-cut path such that ve-widlh 3) = rvc-pat(G), then we obtain the next corollary.

Corollary 6.7. For a codeC and a connected grapfi, we have

Kpath(C) > rpath(C)
Fve-pat(G) — Kpath(G) +1°

k(C;G) >

The (first) inequality above can be tight, in the sense that there are exaoipiedesC and

H . _ Kpath(C)
graphsg for whichx(C; G) = [ml.

Example 6.2. TakeC to be the[24, 12, 8] binary Golay code, and le® be the family of graphs
consisting of alln-cycles. From Example 5.1, we know thgt.par(G) = 2 for anyG € &. ltis
also known thakpan(C) = 9 [7, Example 1]17, Section 5] Hence, by the bound of Corollary 6.7,
noting thatx(C; G) must be an integer, we hawéC;G) > 5 for anyG € &. Thus,x(C; &) > 5.
The tailbiting trellis realization of the Golay code given[B] hasx-complexity equal to 5, from
which we conclude that(C; &) = 5.

Using Corollary 6.7 as a starting point, we derive a lower bound on the igéewf an[n, &, d]
linear code. For this, we will also need the following result [4, Theorert .15 is a graph with
treewidth at most, then the pathwidth of is at most(¢ + 1) log, [V (G)|.

Proposition 6.8. For an [n, k, d] linear codeC, withn > 1,

Kpath(C) S k(d—1)

- .
Kiree(C) > 34 2logy(n —1) — n(3+ 2logy(n — 1))

18 N. KASHYAP

Proof. The second inequality above is due to the fact, shown in [15]/ foatan [n, k,d] linear
codeC, kpath(C) > k(d — 1) /n.

The first inequality is proved as follows. LET",w) be an optimal tree decomposition ©f so
thatx(C; T, w) = rwee(C). As mentioned in Section 37", w) may be chosen so thdtis a cubic
tree, andv is a bijection between the index setbénd the leaves df. Thus,T is a cubic tree with
n leaves, from which it follows thdf” hasn — 2 internal nodes. Hencé/ (T')| = 2n — 2. SinceT
has treewidth equal to one, by the result from [4] quoted earjgt(7) < 2log,(2n — 2).

We now have, via Corollary 6.7,

tpath(C) Kpath(C)
: > : > >
AGTw) 2 /(O 2 o T logy(2n —2) 41

which proves the proposition. O

In particular, Proposition 6.8 shows that for any linear c6d# lengthn,

Fpath(C)
/‘itree(c)

This estimate of the ratié% is the best possibfeup to the constant implicit in th@-notation.

Indeed, it was shown in [11] that a sequence of ca@é@s(i = 1,2,3,...), with lengthn; =
12(28 — 1) + 2, ke C?) = 2 andrpan(C?) > 1(i + 3), can be constructed over any finite field
. Kpath(C)
F. Itis clear thatnfree(20
A less precise formulation of the second inequality in Proposition 6.8 is alsauatise: there
exists a constany > 0 such that, for anyn, k, d| linear codeC, withn > 1,
kd
n logon’
A noteworthy implication of the above inequality is that code families of boundesMidth are
not very good from an error-correcting perspective. Given argerte > 0, denote byTW(t) the
family of all codes oveff of treewidth at most. A code family€ is calledasymptotically goodf
there exists a sequencelof, k;, d;] codexC() € ¢, with lim; n; = oo, such thatim inf; k;/n; and
lim inf; d; /n; are both strictly positive. The following result, an easy consequencE)fiesolves
a conjecture in [11].

= O(logy n).

grows logarithmically with codelength.

"Jtree(c) > ¢

(10)

Corollary 6.9. LetC, i = 1,2, 3, be any sequence pf;, k;, d;] codes such that

log n;
ogni _

hm K/tree(c(i))
1—00 n;

Then, eithetim; ., k;/n; = 0 or lim;_,, d;/n; = 0. In particular, for anyt > 0, the code family
TW(t) is not asymptotically good.

In fact, a more general result is true. For a fixed integer 0, let &, denote the family of all
graphs with vc-treewidth at mogt In particular, note that, by Lemma 5.8, contains all graphs
with treewidth at most — 1. Then, for an[n, k, d] linear codeC with n > 1, we have, via (3),
Corollary 6.6 and Proposition 6.8,

/{1(67 Qﬁ() 2 Htree(c) Z k(d 1) .

14 n (3 4+ 2logy(n — 1))
"The result in [15] is only explicitly stated as a lower bound on the state maplaxity of any conventional trellis
realization ofC. However, the state max-complexity of a graphical realization can rexared the constraint max-
complexity of the realization, as noted in Section 3.
8it was conjectured in [11] that for cod€sof lengthn, kpan(C) — kiree(C) = O(log n), but we now do not believe this
to be true.

CONSTRAINT COMPLEXITY OF GRAPHICAL REALIZATIONS 19

We thus have the following corollary to Proposition 6.8, which extends Coycii®.

Corollary 6.10. Given an integert > 0, if € is a family of codes oveF with the property that
k(C; &) < tforall C € €, then€ is not asymptotically good.

A rough interpretation of the last result is that a “good” error-corregtiode cannot have a low-
complexity realization on a graph with small (vc-)treewidth. In other wordsles that are good
from an error-correcting standpoint can have low-complexity realizatiny on graphs with large
(vc-)treewidth.

7. CONCLUDING REMARKS

In this paper, we demonstrated at length the use of the Vertex-Cut Botdindiimg lower bounds
on thex-complexity of graphical realizations. As suggested at the end of Sectenatural appli-
cation of the Vertex-Cut Bound is to formulate constrained optimization problémse solutions
are lower bounds to various measures of constraint complexity. This metiudi ke used, for in-
stance, to determine lower bounds on the true computational complexity of sagueb decoding
for a given code. This can be done by choosing a constraint complex#gure that accurately
reflects the cost of sum-product decoding. Such a complexity measurBecahosen based on
detailed counts of the number of arithmetic operations required in the sungiralgorithm; see,
for example, [1],[6],[7].

It is now probably fair to say that the main open problem in the area of gralpiealizations
of codes is to explicitly construct, for a given coeand an arbitrary graply, realizations ofC
on G whose constraint complexity is within striking distance of the lower boundsdaising the
methods of this paper. While we have shown that our bounds can be tigdgdoific examples of
code<C and graphgj, their tightness in the generic instance remains to be investigated.

APPENDIXA. AN EXAMPLE

We provide here an example of a cadland a graph decompositi@g, w) of C, for which there
is no realization' € R(C;G,w) such thats(T") = x(C;G,w) andx™(T') = x*(C;G,w). The
example we give is based on Example 3.1 in [14].

Consider thgl1, 3, 3] binary linear cod€ generated by the codewor@g011100000, 00000111000
and00101010100. We takel = {1,2,3,...,11} to be the index set &f, identifying the index
with theith coordinate of”. Now, letG be the 11-cycle, and : I — V(G) the index mapping
depicted in Figure 1. Figure 6 shows a tailbiting trellis realizatibp, of C that extend$g, w).
Note thatx(T';) = 2, while s*(T'1) = 14. A second tailbiting trellis realizatior)s, in R(C; G, w)
is shown in Figure 7, with(T'z) = 3 andx™ (I'2) = 13. It can be shown (using arguments similar
to those given in Example 3.1 in [14]) thatl) = x(C; G,w), while k™ (T'3) = k*(C; G, w), and
that there is no realization € R(C; G, w) that simultaneously achieve$C; G, w) andx™ (C; G, w).

REFERENCES

[1] S.M. Aji and R.J. McEliece, “The generalized distributive laWEEE Trans. Inform. Theoryol. 46, no. 2, pp.
325-343, 2000.

[2] S. Arnborg, D.G. Corneil and A. Proskurowski, “Complexity aiding embeddings in &tree,” SIAM J. Alg. Disc.
Meth, vol. 8, pp. 277-284, 1987.

[3] H.L. Bodlaender, “A tourist guide through treewidtitta Cyberneticavol. 11, pp. 1-23, 1993.

[4] H.L. Bodlaender, T. Kloks, “Efficient and constructive algorithiior the pathwidth and treewidth of graphs,”
Algorithms vol. 21, no. 2, pp. 358—-402, 1996.

[5] A.R. Calderbank, G.D. Forney Jr., and A. Vardy, “Minimal taitibg trellises: The Golay code and moréZEE
Trans. Inform. Theoryvol. 45, pp. 1435-1455, July 1999.

[6] G.D. Forney Jr., “Codes on graphs: normal realizatiofSEE Trans. Inform. Theoryol. 47, no. 2, pp. 520-548,
Feb. 2001.

[7] G.D. Forney Jr., “Codes on graphs: constraint complexity aleyree realizations of linear code$EEE Trans.
Inform. Theoryvol. 49, no. 7, pp. 1597-1610, July 2003.

20 N. KASHYAP

0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 1 0 1 0 0
@

(b)

FIGURE 6. A tailbiting trellis realization for an[11,3,3] binary linear code.
(a) Trellis diagram. (b) Depiction of trellis realization showing the length and
dimension of the local constraint codes; all state spaces have dimension 1.

0 0 0 0 0 0 0 0 0 0 0

(b)

FIGURE 7. A tailbiting trellis realization for an[11,3,3] binary linear code.
(a) Trellis diagram. (b) Depiction of trellis realization showing the length and
dimension of the local constraint codes, and the dimensions of the statsspac

[8] T.R. Halford and K.M. Chugg, “The extraction and complexity limitsgpéphical models for linear codesEEE
Trans. Inform. Theoryto appear.
[9] P. Hlinény and G. Whittle, “Matroid tree-width,Europ. J. Combin.vol. 27, pp. 1117-1128, 2006.
[10] F.V. JensenAn Introduction to Bayesian NetworkSpringer, New York, 1996.
[11] N. Kashyap, “On minimal tree realizations of linear codes,” subaiddEEE Trans. Inform. TheonArXiv e-print
0711.1383
[12] F.R. Kschischang, B.J. Frey and H.-A. Loeliger, “Factorpiy® and the sum-product algorithmEEE Trans.
Inform. Theoryvol. 47, no. 2, pp. 498-519, Feb. 2001.
[13] R. Koetter and A. Vardy, “On the theory of linear trellises,”liformation, Coding and Mathematics!. Blaum,
P.G. Farrell and H.C.A. van Tilborg, eds., Kluwer, Boston, Magsy 2002, pp. 323-354.
[14] R.Koetterand A. Vardy, “The structure of tail-biting trellises: minimatyd basic principlesf[EEE Trans. Inform.
Theory vol. 49, no. 9, pp. 2081-2105, Sept. 2003.
[15] A. Lafourcade and A. Vardy, “Asymptotically good codes havénite trellis complexity,”IEEE. Trans. Inform.
Theory vol. 41, no. 2, pp. 555-559, March 1995.

CONSTRAINT COMPLEXITY OF GRAPHICAL REALIZATIONS 21

[16] N. Robertson and P.D. Seymour, “Graph minors. I. Excludirfgrast,” J. Combin. Theory, Ser.,Bol. 35, pp.
39-61, 1983.

[17] A. Vardy, “Trellis Structure of Codes,” iHandbook of Coding TheorR. Brualdi, C. Huffman and V. Pless, Eds.,
Amsterdam, The Netherlands: Elsevier, 1998.

[18] N. Wiberg,Codes and Decoding on General GrapR#.D. thesis, Lin&ping University, Linkdping, Sweden, 1996.

[19] N. Wiberg. H.-A. Loeliger and R. Koetter, “Codes and iterativeaing on general graph€uro. Trans. Telecom-
mun, vol. 6, pp. 513-525, Sept./Oct. 1995.

