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ABSTRACT. A graphical realization of a linear codeC consists of an assignment of the coordi-
nates ofC to the vertices of a graph, along with a specification of linear state spaces and linear
“local constraint” codes to be associated with the edges and vertices, respectively, of the graph. The
κ-complexity of a graphical realization is defined to be the largest dimensionof any of its local
constraint codes.κ-complexity is a reasonable measure of the computational complexity of a sum-
product decoding algorithm specified by a graphical realization. The main focus of this paper is on
the following problem: given a linear codeC and a graphG, how small can theκ-complexity of a real-
ization ofC onG be? As useful tools for attacking this problem, we introduce the Vertex-Cut Bound,
and the notion of “vc-treewidth” for a graph, which is closely related to the well-known graph-
theoretic notion of treewidth. Using these tools, we derive tight lower bounds on theκ-complexity
of any realization ofC onG. Our bounds enable us to conclude that good error-correcting codescan
have low-complexity realizations only on graphs with large vc-treewidth. Along the way, we also
prove the interesting result that the ratio of theκ-complexity of the best conventional trellis realiza-
tion of a length-n codeC to theκ-complexity of the best cycle-free realization ofC grows at most
logarithmically with codelengthn. Such a logarithmic growth rate is, in fact, achievable.

1. INTRODUCTION

The study of graphical models of codes and the associated message-passing decoding algorithms
is a major focus of current research in coding theory. This is attributable tothe fact that coding
schemes using graph-based iterative decoding strategies —e.g., turbo codes and low-density parity
check (LDPC) codes — have low implementation complexity, while their performance is close to
the optimum predicted by theory. A unified treatment of graphical models and the associated decod-
ing algorithms began with the work of Wiberg, Loeliger and Koetter [18],[19], and has since been
abstracted and refined under the framework of the generalized distributive law [1], factor graphs
[12], and normal realizations [6],[7]. In fact, the study of cycle-freegraphical models of codes (i.e.,
models in which the underlying graphs are cycle-free) can be traced back to the introduction of the
Viterbi decoding algorithm in the 1960’s, which led to the study of trellis representations of codes.
A comprehensive account of the history and development of trellis representations can be found in
[17].

In this work, we will follow the approach of Forney [6],[7], and Halfordand Chugg [8] in
studying the general “extractive” problem of constructing low-complexitygraphical models for
a given linear code. Roughly speaking, a low-complexity graphical model isone that implies a
low-complexity decoding algorithm. In particular, in this paper, we investigate the question of how
small the complexity of an arbitrary graphical model for a given code can be.

We briefly introduce graphical models here; a detailed description can be found in Section 2. A
graph decomposition of a codeC is a mapping of the set of coordinates ofC to the set of vertices of a
graph. A graph decomposition may be viewed as an assignment of symbol variables to the vertices
of the graph. A graph decomposition can be extended to a graphical modelwhich additionally
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assigns state variables to the edges of the graph, and specifies a local constraint code at each vertex
of the graph. The full behavior of the model is the set of all configurations of symbol and state
variables that satisfy all the local constraints. Such a model is called a graphical realization ofC if
the restriction of the full behavior to the set of symbol variables is preciselyC. The realization is
said to be cycle-free if the underlying graph in the model has no cycles. A trellis representation of
a code can be viewed as a cycle-free realization in which the underlying graph is a simple path. In
contrast, atailbiting trellis representation [13],[14] is a graphical realization in which the underlying
graph consists of a single cycle.

We will focus our attention on the case of realizations of linear codes onconnectedgraphs only.
Indeed, there is no loss of generality in doing so, since a linear codeC has a realization on a graph
G that is not connected if and only ifC can be expressed as the direct sum of codes that may
be individually realized on the connected components ofG [6]. In this context, we will refer to
cycle-free graphical realizations simply as tree realizations, as the underlying graph is a connected,
cycle-free graph,i.e., a tree.

It is by now well known that any graphical realization of a code specifiesa canonical iterative
message-passing decoding algorithm, namely, the sum-product algorithm, onthe underlying graph
[1],[6],[12],[18]. When the underlying graph is a tree, the sum-product algorithm provides an exact
implementation of maximum-likelihood (ML) decoding. Even when the underlying graph contains
cycles, empirical evidence suggests that, in many cases, the sum-productalgorithm continues to be
a good approximation to ML decoding.

The computational complexity of the sum-product algorithm associated with a graphical real-
ization of a code is largely determined by the sizes of the local constraint codes in the realization.
In Section 3 of this paper, we define various measures of “constraint complexity” of a graphical
realization that can be used as estimates of the computational complexity of sum-product decoding.
These complexity measures may be viewed as generalizations of previously proposed measures of
trellis complexity [17],[14], and tree complexity [7],[8]. However, for the most part, we focus on
theκ-complexityof a graphical realization, which we define to be the maximum of the dimensions
of the local constraint codes in the realization.

In the restricted context of tree realizations, it has previously been established that certain “min-
imal” tree realizations can be canonically defined. Let the termtree decompositiondenote a graph
decomposition in which the graph is a tree. It is known that among all tree realizations of a code
C that extend a given tree decomposition, there is one that minimizes the dimension of the state
space at each edge of the underlying tree, and this minimal tree realization is unique [6]. It has
further been shown [11] that this unique minimal tree realization also minimizes (among all tree
realizations extending the given tree decompositions) the dimension of the local constraint code at
each vertex of the tree. In particular, it has the leastκ-complexity among all such tree realizations.

In contrast, there is very little known about the general case of realizations of a code on an
arbitrary (not necessarily cycle-free) graph. For instance, there appear to be no “canonical” minimal
realizations that can be defined in this situation. The only systematic study in this direction remains
that of Koetter and Vardy [13],[14], who studied minimal tailbiting trellis representations of codes,
which, as already mentioned, are graphical realizations in which the underlying graph consists of
exactly one cycle. Beyond this basic (though by no means easy) case, there is little of interest in
the literature on the complexity of realizations of codes on arbitrary graphs,the notable exception
to this being the work of Halford and Chugg [8].

In their work, Halford and Chugg lay the foundations for a systematic studyof complexity of
graphical realizations. Their main result is the “Forest-Inducing Cut-SetBound”, which gives a
lower bound on the constraint complexity of a graphical realization in terms ofits minimal tree
complexity. However, this bound does not appear be user-friendly in practice. The main limitation
of their approach is that they rely on the Edge-Cut Bound of Wiberget al. [18],[19] to derive their
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results. While the Edge-Cut Bound has been put to good use in the study of“state complexity” of
graphical realizations [5],[6], it is of limited value in the analysis of constraint complexity.

The main aim of our paper is to present useful and tight lower bounds on theconstraint com-
plexity of a graphical realization. Our bounds also provide considerableinsight into the problem of
finding low-complexity graphical realizations. The fundamental tool in our analysis is the Vertex-
Cut Bound, which we state and prove in Section 4. The Vertex-Cut Boundis a natural analogue
of the Edge-Cut Bound, but as we shall see, it is more suitable for use in the analysis of constraint
complexity.

In Section 5, we define a data structure calledvertex-cut treethat stores the information necessary
about a graph to effectively apply the Vertex-Cut Bound. Vertex-cuttrees are similar in structure to
the junction trees associated with belief propagation algorithms [10],[1]. Thevc-widthof a vertex-
cut tree is a measure of the size of the vertex-cut tree, and thevc-treewidthof a graph is the least
vc-width among all its vertex-cut trees. The vc-treewidth of a graph is very closely related to the
notion of treewidth of graphs much studied in graph theory [16],[3].

Using the Vertex-Cut Bound and the notion of vertex-cut trees, we derive, in Section 6, a suite
of lower bounds on theκ-complexity of graphical realizations of a linear codeC. We state one of
these bounds here as an illustrative example. Letκtree(C) be the leastκ-complexity among all tree
realizations ofC. Consider an arbitrary graphG, and letκvc-tree(G) denote its vc-treewidth. Then, the
κ-complexity of any realization ofC onG is bounded from below by the ratioκtree(C)/κvc-tree(G).

We further apply our methods to answer certain questions raised in [11]. Borrowing terminology
from [17], for a codeC, let b(C) denote the least edge-complexity of any trellis representation ofC
or any of its coordinate permutations. In the language of our paper,b(C) is the leastκ-complexity
of any conventional trellis realization ofC. We show that for any linear code of lengthn, we have
b(C)/κtree(C) = O(log2 n), and that this is the best possible estimate of the ratio, up to the constant
implicit in theO-notation. This is used to extend a known lower bound [15] onb(C) in terms of the
lengthn, dimensionk and minimum distanced of C, to a lower bound onκtree(C).

Our lower bound onκtree(C) has an important implication. It shows that ifC is a code family
with the property that, for eachC ∈ C, κtree(C) is bounded from above by a fixed constant, then
either the dimension or the minimum distance of the codes inC grows sub-linearly with codelength.
Thus, such code families are not good from a coding-theoretic perspective. We also prove a slightly
more general result, which can be roughly interpreted as saying that a good error-correcting code
cannot have a low-complexity realization on a graph with small vc-treewidth. So, for good codes,
if low-complexity graphical realizations exist, then they must necessarily exist on graphs with large
vc-treewidth.

Some concluding remarks are made in Section 7, and an example in support ofa statement in
Section 3 is given in an appendix.

2. BACKGROUND AND NOTATION

In this section, we provide the necessary background, and define the notation we use in the
paper. We takeF to be an arbitrary finite field. Given a finite index setI, we have the vector space
F

I = {x = (xi ∈ F, i ∈ I)}. Forx ∈ F
I andJ ⊆ I, the notationx|J will denote theprojection

(xi, i ∈ J). Also, for J ⊆ I, we will find it convenient to reserve the use ofJ to denote the set
{i ∈ I : i /∈ J}.

2.1. Codes. A linear codeoverF, defined on the index setI, is a subspaceC ⊆ F
I . In this paper,

the terms “code” and “linear code” will be used interchangeably to mean a linear code over an
arbitrary finite fieldF, unless explicitly specified otherwise. The dimension, overF, of C will be
denoted bydim(C). An [n, k] code is a code of lengthn and dimensionk. If, additionally, the code
has minimum distanced, then the code is an[n, k, d] code.
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FIGURE 1. A graph decomposition ofI = {1, 2, 3, . . . , 11}.

Let J be a subset of the index setI. The projection of C onto J is the codeC|J = {c|J :
c ∈ C}, which is a subspace ofFJ . We will useCJ to denote thecross-sectionof C consisting of
all projectionsc|J of codewordsc ∈ C that satisfyc|J = 0. To be precise,CJ = {c|J : c ∈
C, c|J = 0}. Note thatCJ ⊆ C|J . Also, sinceCJ is isomorphic to the kernel of the projection
mapπ : C → C|J defined byπ(c) = c|J , we have thatdim(CJ) = dim(C) − dim(C|J). As a
consequence, we see that ifJ ⊆ K ⊆ I, thendim(CJ) ≤ dim(CK).

If C1 andC2 are codes overF defined on mutually disjoint index setsI1 andI2, respectively, then
theirdirect sumis the codeC = C1 ⊕C2 defined on the index setI1 ∪ I2, such thatCI1 = C|I1 = C1

andCI2 = C|I2 = C2. This definition naturally extends to multiple codes (or subspaces)Cα, where
α is a code identifier that takes values in some setA. Again, it must be assumed that the codesCα

are defined on mutually disjoint index setsIα, α ∈ A. The direct sum in this situation is denoted
by
⊕

α∈A Cα.

2.2. Graphs. In this paper, we are primarily interested in graphs that are connected, soany un-
qualifed use of the term “graph” should be taken to mean “connected graph”. Let G = (V, E) be a
graph, whereV andE denote its vertex and edge sets, respectively. To resolve ambiguity, we will
sometimes denote the vertex and edge sets ofG by V (G) andE(G), respectively. Given av ∈ V ,
the set of edges incident withv will be denoted byE(v).

ForX ⊆ E, we defineG \ X to be the subgraph ofG obtained by deleting all the edges inX. If
X consists of a single edgee, then we will writeG \ e instead ofG \ {e}. If G \X is disconnected,
thenX is called anedge cutof G. Similarly, for W ⊆ V , we defineG − W to be the subgraph of
G obtained by deleting all the vertices inW along with all incident edges. IfW consists of a single
vertexv, then we will writeG − v instead ofG − {v}. If G − W is disconnected, thenW is called
avertex cutof G.

A tree is a connected graph without cycles. Vertices of degree one in a tree are calledleaves, and
all other vertices are calledinternal nodes. Note that any subset of the edges of a tree constitutes
an edge cut, and any subset of internal nodes constitutes a vertex cut of the tree. Ife is an edge in a

treeT , then we will denote byT (e) andT
(e)

the two components ofT \ e. If v is a vertex of degree

δ in a treeT , then we will useT (v)
1 , T

(v)
2 , . . . , T

(v)
δ to denote the components ofT − v.

A path is a tree with exactly two leaves (the end-points of the path). All internal nodes in a path
have degree two. Asimple cycleis a connected graph in which all vertices have degree two. An
n-cycle, n ≥ 3, is a simple cycle withn vertices.

2.3. Graphical Realizations of Codes.The development in this section is based on the exposition
of Forney [6],[7]; see also [8],[11]. LetI be a finite index set. Agraph decompositionof I is a
pair (G, ω), whereG = (V, E) is a graph, andω : I → V is anindex mapping. For a codeC, we
will usually write “graph decomposition ofC” as shorthand for “graph decomposition of the index
set ofC”. We again wish to emphasize that, unless explicitly stated otherwise, we will takeG to
be a connected graph. WhenG is a tree,(G, ω) will be called atree decomposition. Pictorially, a
graph decomposition(G, ω) is depicted as a graph with an additional feature: at each vertexv such
thatω−1(v) is non-empty, we attach special “half-edges”, one for each index inω−1(v). Figure 1
depicts a graph decomposition ofI = {1, 2, 3, . . . , 11}.
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For a graphG = (V, E), recall thatE(v), v ∈ V , denotes the set of edges incident withv in G.
Consider a tuple of the form1 (G, ω, (Se, e ∈ E), (Cv, v ∈ V )), where

• (G, ω) is a graph decomposition ofI;
• for eache ∈ E, Se is a vector space overF called astate space;

• for eachv ∈ V , Cv is a subspace ofFω−1(v) ⊕
(⊕

e∈E(v) Se

)
, called alocal constraint

code, or simply, alocal constraint.

Such a tuple will be called agraphical model. A graphical model in which the underlying graphG
is a tree will be called atree model. The elements of any state spaceSe are calledstates. The index
sets of the state spacesSe, e ∈ E, are taken to be mutually disjoint, and are also taken to be disjoint
from the index setI corresponding to the symbol variables.

A global configurationof a graphical model as above is an assignment of values to each of the
symbol and state variables. In other words, it is a vector of the form((xi ∈ F, i ∈ I), (se ∈
Se, e ∈ E)). A global configuration is said to bevalid if it satisfies all the local constraints.
Thus,((xi ∈ F, i ∈ I), (se ∈ Se, e ∈ E)) is a valid global configuration if for eachv ∈ V ,
((xi, i ∈ ω−1(v)), (se, e ∈ E(v))) ∈ Cv. The set of all valid global configurations of a graphical
model is called thefull behaviorof the model.

Note that the full behavior is a subspaceB ⊆ F
I ⊕

(⊕
e∈E Se

)
. As usual, forJ ⊆ I, B|J

denotes the projection ofB onto the index setJ . For future convenience, we also define certain
other projections ofB. Let b = ((xi, i ∈ I), (se, e ∈ E)) be a global configuration inB. At any
givenv ∈ V , thelocal configurationof b atv is defined as

b|v = ((xi, i ∈ ω−1(v)), (se, e ∈ E(v))).

The set of all local configurations ofB atv is then defined asB|v = {b|v : b ∈ B}. By definition,
B|v ⊆ Cv. Similarly, given anye ∈ E, if b is a global configuration as above, then we define
b|e = se; we further defineB|e = {b|e : b ∈ B}. Clearly,B|e is a subspace ofSe.

A graphical model(G, ω, (Se, e ∈ E), (Cv, v ∈ V )) is defined to beessentialif B|v = Cv for
all v ∈ V andB|e = Se for all e ∈ E. WhenG is a tree, there is some redundancy in the above
definition, as the conditionB|e = Se for all e ∈ E actually implies thatB|v = Cv for all v ∈ V
[11, Lemma 2.2]. It is worth noting that, in an essential graphical model, at any edgee = {u, v},
the state spaceSe, may be viewed as a projection of each of the local constraint codesCu andCv.
Thus, for anye ∈ E, dim(Se) ≤ dim(Cv), wherev is any vertex incident withe.

An arbitrary graphical modelΓ with full behaviorB can always be “essentialized” by simply
replacing each local constraintCv in Γ with the projectionB|v, and replacing each state spaceSe

with the projectionB|e. The resulting “essentialization” ofΓ still has full behaviorB.
An essential graphical model(G, ω, (Se, e ∈ E), (Cv, v ∈ V )) is defined to be agraphical

realizationof a codeC, or simply arealization ofC on G, if B|I = C. A graphical realization of
C in which the underlying graphG is a tree, is called atree realizationof C. Our definition of a
graphical (and tree) realization differs slightly from the prior definitions in[6],[7],[8],[11], in that
we require the underlying graphical model to be essential. As explained above, any graph model
can be essentialized, so there is no loss of generality in this definition.

A graphical (resp. tree) realization(G, ω, (Se, e ∈ E), (Cv, v ∈ V )) of C is said toextend, or
be an extension of, the graph (resp. tree) decomposition(G, ω) of C. We will denote byR(C;G, ω)
the set of all graphical realizations ofC that extend the graph decomposition(G, ω) of C.

Now, it is an easily verifiable fact that any tree decomposition of a code canalways be extended
to a tree realization of the code [7],[11]. Such an extension is not unique in general, but we will
describe a canonical “minimal” extension a little later. More generally, any graph decomposition
of a codeC can always be extended to a graphical realization ofC, as we now explain. LetG =

1In referring to a tuple of the form(G, ω, (Se, e ∈ E), (Cv, v ∈ V )), we will implicitly assume thatV andE denote
the vertex and edge sets, respectively, of the graphG.
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(V, E) be a connected graph, and suppose that(G, ω) is a graph decomposition ofC. TakeT to
be any spanning tree ofG, and letET denote its edge set. Then,(T, ω) is a tree decomposition of
C. As noted above, this tree decomposition can be extended to a tree realization(T, ω, (Se, e ∈
ET ), (Cv, v ∈ V )) of C. We further extend this to a realization ofC on G as follows. Define the
state spacesSe, e ∈ E, as

Se =

{
Se if e ∈ ET

{0} if e ∈ E \ ET ,

and for eachv ∈ V , define the local constraintCv = Cv ⊕ (
⊕

e∈E(v)\ET
{0}). It should be clear

that(G, ω, (Se, e ∈ E), (Cv, v ∈ V )) is a graphical realization ofC.
Graphical realizations of codes in which the underlying graph is a path or asimple cycle have

received considerable prior attention in the literature. Such realizations were called “conventional
state realizations” (when the underlying graph is a path) and “tail-biting state realizations” (when
the underlying graph is a simple cycle) in [6]. We will call them “trellis realizations”. Briefly, a
trellis realizationof a codeC (defined on the index setI) is any extension of a graph decomposition
of C of the form(G, ω), whereG is either a path or a simple cycle, andω is a surjective mapω : I →
V (G). A trellis realization in which the surjective mapω : I → V (G) is not injective (so thatω is
not a bijection), is usually called asectionalizedtrellis realization. Aconventionaltrellis realization
is one in which the underlying graphG is a path. When the underlying graphG is a simple cycle,
the trellis realization is said to betailbiting. The theory of conventional trellis realizations is well
established; see, for example, [17]. On the other hand, tailbiting trellis realizations are less well
understood; the principal systematic study of these remains that of Koetter and Vardy [13],[14].
We remark that our requirement that graphical realizations have underlying graph models that are
essential corresponds to the requirement in [13],[14] that “linear trellises” be “reduced”.

3. COMPLEXITY MEASURES FORGRAPHICAL REALIZATIONS

As observed in [6], any graphical realization of a code specifies a class of associated graph-based
decoding algorithms, namely, the sum-product algorithm and its variants. Thus, ideally, any defi-
nition of a complexity measure for a graphical realization should try to capturethe computational
complexity of the associated decoding algorithms. The analysis in [6, Section V] shows that the
computational complexity of the sum-product algorithm specified by a given graphical realization
of a code is determined in large part by the cardinalities, or equivalently dimensions, of the local
constraint codes in the realization. Thus, as a simple measure of the complexityof a graphical
realization, which roughly reflects the complexity of sum-product decoding, we will consider the
maximum of the dimensions of the local constraint codes in the realization.

Let Γ = (G, ω, (Cv, v ∈ V ), (Se, e ∈ E)) be a graphical realization of a codeC. Theconstraint
max-complexity, or simplyκ-complexity, of Γ is defined to beκ(Γ) = maxv∈V dim(Cv). Now,
recall that if(G, ω) is a graph decomposition ofC, thenR(C;G, ω) denotes the set of all graphical
realizations ofC that extend(G, ω). We further define

κ(C;G, ω) = min
Γ∈R(C;G,ω)

κ(Γ) (1)

We add another level of minimization by defining, for a given graphG, theG-width of a codeC to
be

κ(C;G) = min
ω

κ(C;G, ω), (2)

where the minimum is taken over all possible index mappingsω : I → V (G), whereI is the index
set ofC. Thus, theG-width of C is the leastκ-complexity of any realization ofC on G, and may
be taken to be a measure of the least computational complexity of any sum-product-type decoding
algorithm forC implemented on the graphG.



CONSTRAINT COMPLEXITY OF GRAPHICAL REALIZATIONS 7

A broader optimization problem of considerable interest is the following: given a codeC and
a family of graphsG, identify aG ∈ G on whichC can be realized with the least possibleκ-
complexity. We thus define

κ(C; G) = min
G∈G

κ(C;G). (3)

Two special cases of this definition — treewidth and pathwidth (or trellis-width)— are particularly
of interest. We define treewidth first, and pathwidth a little further below.

If we let T denote the set of all trees, thenκ(C; T) is called thetreewidthof the codeC [11],
which we will denote byκtree(C). The notion of treewidth (i.e., minimalκ-complexity among tree
realizations) of a code was first considered by Forney [7], and an analogous notion has been defined
for matroids in [9]. The arguments in [7, Section V] (and also in [9]) show thatκtree(C) can always
be obtained by minimizingκ(C; T, ω) over tree decompositions(T, ω) in which T is a cubic tree
(i.e., a tree in which all internal nodes have degree 3), andω is a bijection between the index set of
C and the set of leaves ofT .

A complexity measure related to treewidth, termed minimal tree complexity, was defined and
studied by Halford and Chugg [8]. Treewidth, as we have defined above, is an upper bound on the
minimal tree complexity of Halford and Chugg.

Thepathwidth, κpath(C), of a codeC is defined to be the quantityκ(C; P), whereP denotes the
sub-family ofT consisting of all paths. We will find it convenient to refer to tree decompositions
(P, ω), with P ∈ P, aspath decompositions. Thus,κ(C; P) is the minimum value ofκ(C; P, ω)
as(P, ω) ranges over all path decompositions ofC. In fact, by the argument of [7, Section V.B],
the minimizing path decomposition(P, ω) may be taken to be one in which the index mappingω is
surjective. Thus,κpath(C) is the leastκ-complexity of any conventional trellis realization ofC, and
so we may also call it the(conventional) trellis-width2 of C. It is also known that sectionalization
cannot reduce theκ-complexity3 of a trellis realization [17, Theorem 6.3], and hence,κpath(C) is
the minimum value ofκ(C; P, ω) over all path decompositions(P, ω) in which the index mapping
ω is a bijection between the index set ofC and the vertices ofP .

Measures of constraint complexity other thanκ-complexity have been proposed in the previous
literature, especially in the context of trellis realizations [17],[14]. Theκ+-complexityof a graph-
ical realizationΓ = (G, ω, (Cv, v ∈ V ), (Se, e ∈ E)) is defined to beκ+(Γ) =

∑
v∈V dim(Cv).

Note that 1
|V | κ

+(Γ) is the average local constraint code dimension inΓ. On the other hand, it has
been suggested [7] that the sum of the constraint code cardinalities “may be a better guide to de-
coding complexity” thanκ-complexity orκ+-complexity. Thus, we defineκtot(Γ) =

∑
v∈V |Cv| =∑

v∈V |F|dim(Cv). Analogous to (1)–(3), we may defineκ+(C,G, ω), κtot(C;G, ω), etc., but we will
only touch upon these briefly in this paper.

We remark that while we have used constraint code dimensions to define ourcomplexity mea-
sures for graphical realizations, one could also define measures of complexity based on state-space
dimensions. For example, we could define the state max-complexity,σ(Γ), of a graphical realiza-
tion Γ to be the maximum of the dimensions of the state spaces inΓ. Similarly, we may consider the
complexity measuresσ+(Γ) andσtot(Γ) analogous toκ+(Γ) andκtot(Γ). These measures are espe-
cially relevant and have been well studied in the context of trellis realizations; again, see [17],[14].
However, as noted by Forney [7], measures of state-space complexity become less appropriate in
the context of realizations on arbitrary graphs or trees. For example, for any codeC ⊆ F

n, one can
always find a tree on whichC can be realized in such a way that all state-spaces have dimension at
most 1. This would be the “star-shaped” treeT consisting ofn leaves connected to a single internal
nodev of degreen. Takeω to be any bijection between the index set ofC and the leaves ofT ; set
Se = F at each edgee of T ; and finally, take the local constraint codeCv at the internal node to be
C itself, and take the local constraint codes at the leaves to be[2, 1] repetition codes. Clearly, the

2For this reason, what we have calledκpath(C) here was calledκtrellis(C) in [11].
3Our notion ofκ-complexity corresponds to the notion of “edge-complexity” in [17].
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resulting tree model (after essentialization) is a tree realization ofC. Thus, it makes little sense to
define a state-space complexity measure analogous to treewidth, unless we restrict the kind of trees
on which we are allowed to realize the given code4.

The astute reader may point out that in the trivial tree realization above, thesum of the state-
space dimensions is non-trivial, and so a state-space analogue to treewidthcould potentially be
defined in terms ofσ+ or σtot. This may be true, but we do not pursue this further, since, as already
observed previously, complexity measures based on constraint code dimensions are a better guide
to decoding complexity. But, while on this topic, we mention in passing that for anytreerealization
Γ of a codeC, it turns out that

κ+(Γ) = dim(C) + σ+(Γ). (4)

Thus, the problem of minimizingσ+(Γ) among tree realizationsΓ of a given codeC is equivalent
to the problem of minimizingκ+(Γ). The identity in (4), which may be viewed as a generalization
of the statement of Theorem 4.6 in [14] for conventional trellis realizations,will not be proved here
as it would be an unnecessary deviation from the main line of our development. It suffices to say
that (4) follows from Theorem 3.4 in [11] by first verifying that it indeedholds for any minimal
tree realizationM(C; T, ω), and then observing that the difference betweenκ+(Γ) andσ+(Γ) is
preserved by the state-merging process mentioned in the statement of that theorem.

Finally, we remark that the state max-complexity of a graphical realization cannot exceed the
constraint max-complexity of the realization. This is because, as observedin Section 2.3, in
any essential graphical model(G, ω, (Se, e ∈ E), (Cv, v ∈ V )), for each edgee ∈ E, we have
dim(Se) ≤ dim(Cv), wherev is any vertex incident withe.

3.1. Minimal Realizations. Given a codeC and a tree decomposition(T, ω) of C, there exists a
tree realization,(T, ω, (S∗

e , e ∈ E), (C∗
v , v ∈ V )), of C with the following property [6],[7]:

if (T, ω, (Se, e ∈ E), (Cv, v ∈ V )) is a tree realization ofC that extends(T, ω),
then for alle ∈ E, dim(S∗

e ) ≤ dim(Se).

This minimal tree realization, which we henceforth denote byM(C; T, ω), is unique up to isomor-
phism5. Constructions ofM(C; T, ω) can be found in [6],[7],[11].

It has further been shown [11] that not only doesM(C; T, ω) minimize (among realizations in
R(C; T, ω)) the state space dimension at each edge ofT , but it also minimizes the local constraint
code dimension at each vertex ofT . More precisely,M(C; T, ω) also has the following property:

if (T, ω, (Se, e ∈ E), (Cv, v ∈ V )) is a tree realization ofC that extends(T, ω),
then for allv ∈ V , dim(C∗

v ) ≤ dim(Cv).

Consequently, we have thatκ(C; T, ω) = κ(M(C; T, ω)), κ+(C; T, ω) = κ+(M(C; T, ω)), and
κtot(C; T, ω) = κtot(M(C; T, ω)). The fact thatM(C; T, ω) minimizes local constraint code di-
mension at each vertex ofT will be central to the derivation of our results in the sections to follow.

We will henceforth consistently use the notationS∗
e andC∗

v to denote state spaces and local
constraint codes in a minimal tree realizationM(C; T, ω). Exact expressions for the dimensions
of S∗

e andC∗
v in M(C; T, ω) are known [6],[7]. Recall that for an edgee of T , we denote by

T (e) and T
(e)

the two components ofT \ e. Let us further defineJ(e) = ω−1(V (T (e))) and

J(e) = ω−1(V (T
(e)

)). We then have

dim(S∗
e ) = dim(C) − dim(CJ(e)) − dim(CJ(e)). (5)

4We do get a reasonable state-space analogue to treewidth if we restrict theclass of trees over which we attempt to
minimize state-space complexity to the class of cubic trees only; see [11].
5Graphical realizations(G, ω, (Cv, v ∈ V ), (Se, e ∈ E)) and(G, ω, (C′

v, v ∈ V ), (S ′

e, e ∈ E)) of a codeC are said
to be isomorphicif, for eachv ∈ V , Cv andC′

v are isomorphic as vector spaces, and for eache ∈ E, Se andS ′

e are
isomorphic as vector spaces. We do not distinguish between isomorphic graphical realizations.
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Next, consider any vertexv in T . If v has degreeδ, thenT −v has componentsT (v)
i , i = 1, 2, . . . , δ.

DefineJi = ω−1(V (T
(v)
i )), for i = 1, 2, . . . , δ. Then [7, Theorem 1],

dim(C∗
v ) = dim(C) −

δ∑

i=1

dim(CJi
). (6)

In summary, the minimal tree realizationM(C; T, ω) is an exact solution to the problem of deter-
mining the minimum-complexity extension of a tree decomposition(T, ω) of a codeC. Moreover,
M(C; T, ω) minimizes, among realizations inR(C; T, ω), any reasonable measure of complexity,
be it state-space complexity or constraint complexity. Unfortunately, when we move to realizations
on graphs with cycles, there appear to be no “canonical” minimal realizationswith properties sim-
ilar to those of minimal tree realizations. In fact, if(G, ω) is a graph decomposition of a codeC,
whereG is a graph with cycles, there need not even be a realizationΓ that simultaneously achieves
minΓ∈R(C;G,ω) κ(Γ) andminΓ∈R(C;G,ω) κ+(Γ). An example of such a graph decomposition is given
in Appendix A.

Thus, given a codeC and a graphG containing cycles, the problem of finding realizations ofC on
G with the least possibleκ-complexity,κ+-complexity, orκtot-complexity (within some interesting
sub-class of realizations ofC on G) is much harder to solve than the corresponding problem for
cycle-free graphs. In the next section, we present a simple but valuable tool that will enable us to
derive non-trivial lower bounds on the constraint complexity of realizations of a code on an arbitrary
graph. These bounds could be used, for example, to determine whether or not the complexity of a
given realization is close to the least possible.

4. CUT-SET BOUNDS

Let G = (V, E) be a connected graph. A partition(V ′, V ′′) of V is said to beseparatedby an
edge cutX ⊆ E if, for each pair of verticesv′ ∈ V ′ andv′′ ∈ V ′′, any path inG that joinsv′ to v′′

passes through some edgee ∈ X. We remark that ifG \ X has more than two components, then
there is more than one partition ofV that is separated byX.

The Edge-Cut Bound, stated below, is a result of fundamental importance inthe study of graphi-
cal realizations. This result was originally observed by Wiberg, Loeligerand Koetter [18],[19], but
the version we give here is due to Forney [6, Corollary 4.4].

Theorem 4.1(The Edge-Cut Bound). LetΓ = (G, ω, (Cv, v ∈ V ), (Se, e ∈ E)) be a realization of
a codeC on a connected graphG = (V, E). If (V ′, V ′′) is a partition ofV separated by an edge
cutX ⊆ E, then, definingJ ′ = ω−1(V ′) andJ ′′ = ω−1(V ′′), we have

∑

e∈X

dim(Se) ≥ dim(C) − dim(CJ ′) − dim(CJ ′′).

The edge-cut bound can be used to derive useful lower bounds on the state-space complexity of
a graphical realization; see, for example, [5]. To deal with constraint complexity, however, we will
need a closely-related bound that uses vertex cuts instead of edge cuts.

We introduce here some terminology that we will use to state our vertex-cut bound. Forv ∈ V ,
let N(v) = {u ∈ V : {u, v} ∈ E} denote the set of neighbours ofv in G. Furthermore, for
W ⊆ V , defineN(W ) =

⋃
v∈W N(v).

Definition 4.1. An ordered collection(V0, V1, . . . , Vδ), δ ≥ 0, of subsets ofV is said to be astar
partitionof V , if theVi’s form a partition ofV (i.e., theVi’s are pairwise disjoint, and

⋃δ
i=0 Vi =

V ), and for eachi ∈ {1, 2, . . . , δ}, we haveN(Vi) ⊆ Vi ∪ V0.

The definition has been worded so as to allow some of theVi’s to be empty sets. WhenVi is
non-empty for at most onei ≥ 1, a star partition is simply a partition. When at least twoVi’s
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FIGURE 2. A depiction of the construction in the proof of the Vertex-Cut Bound.
G[Vi] denotes the subgraph ofG induced by the vertices inVi.

other thanV0 are non-empty, then a star partition is a partition that arises from a vertex cutof G,
as we now explain. For anyi > j ≥ 1, if Vi andVj are both non-empty, then the above definition
simply says that any path between a vertex inVi and a vertex inVj must pass throughV0. Thus, if
at least twoVi’s other thanV0 are non-empty, thenV0 is a vertex cut ofG. Conversely, ifV0 is a
vertex cut ofG, andG1,G2, . . . ,Gδ, δ ≥ 2, are the (non-empty) components ofG −V0, then, setting
Vi = V (Gi) for i = 1, 2, . . . , δ, we see that(V0, V1, . . . , Vδ) is a star partition ofV . The graph on
the left in Figure 2, which depicts a typical situation covered by the definition,should also explain
the nomenclature.

Theorem 4.2(The Vertex-Cut Bound). Let Γ = (G, ω, (Cv, v ∈ V ), (Se, e ∈ E)) be a realization
of a codeC on a connected graphG = (V, E). If (V0, V1, . . . , Vδ) is a star partition ofV , then,
definingJi = ω−1(Vi) for i = 1, 2, . . . , δ, we have

∑

v∈V0

dim(Cv) ≥ dim(C) −
δ∑

i=1

dim(CJi
).

Proof. Let B denote the full behaviour ofΓ. If b = ((xi, i ∈ I), (se, e ∈ E)) is a global configura-
tion in B, then given anX ⊆ E, we will useb|X to denote the projection(se, e ∈ X). We further
setB|X = {b|X : b ∈ B}.

For i = 1, 2, . . . , δ, let Xi be the set of edges ofG with exactly one end-point inVi, so that the
other end-point is necessarily inV0. We then define

B|Vi
= {(b|Ji

,b|Xi
) : b ∈ B},

for i = 1, 2, . . . , δ. Furthermore, setJ0 = ω−1(V0) andX0 =
⋃δ

i=1 Xi, and define

B|V0
= {(b|J0

,b|X0
) : b ∈ B}.

Now, consider the “star-shaped” treeT = (VT , ET ) consisting of a single internal vertexv0 of
degreeδ, whose neighboursv1, v2, . . . , vδ are all the leaves ofT . Thus,VT = {v0, v1, . . . , vδ} and
ET = {{v0, vi} : i = 1, 2, . . . , δ}. Define the index mappingα : I → VT as follows:α(j) = vi iff
ω(j) ∈ Vi. Note that, fori = 0, 1, 2, . . . , δ, we haveα−1(Vi) = ω−1(Vi) = Ji. The construction
of the tree decomposition(T, α) from (G, ω) is depicted in Figure 2.
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We next extend the tree decomposition(T, α) to a tree model̂Γ = ((T, α, (Ŝe, e ∈ ET ), (Ĉv, v ∈

VT )) by settingĈvi
= B|Vi

for i = 0, 1, 2, . . . , δ, andŜ{v0,vi} = B|Xi
for i = 1, 2, . . . , δ. From

the fact thatΓ is a realization ofC, it readily follows that̂Γ is a tree realization ofC.
Recalling that the minimal tree realizationM(C; T, α) minimizes the local constraint code di-

mension at each vertex ofT , we obtain via (6),

dim(Ĉv0) ≥ dim(C) −
δ∑

i=1

dim(CJi
).

We complete the proof by observing that

dim(Ĉv0) = dim(B|V0
) ≤

∑

v∈V0

dim(B|v) =
∑

v∈V0

dim(Cv).

�

The following useful corollary is an immediate consequence of the Vertex-Cut Bound.

Corollary 4.3. Let (G, ω) be a graph decomposition of a codeC, whereG is a connected graph.
For a vertex cutW of G, if G1,G2, . . . ,Gδ are the components ofG − W , then defineλ(W ) =

dim(C) −
∑δ

i=1 dim(CJi
), whereJi = ω−1(V (Gi)) for i = 1, 2, . . . , δ. Then, for any realization

Γ = (G, ω, (Cv, v ∈ V ), (Se, e ∈ E)) of C that extends(G, ω), we have
∑

v∈W

dim(Cv) ≥ λ(W ).

In its most straightforward application, the Vertex-Cut Bound, via the above corollary, can be
used in conjunction with constrained optimization techniques to find lower bounds onκ(C;G, ω),
κ+(C;G, ω) andκtot(C;G, ω). Indeed, if(G, ω) is a graph decomposition ofC, andW1, W2, . . . , Wt

are vertex cuts ofG, then, by Corollary 4.3, the dimensions of the local constraint codesCv, v ∈ V ,
in anyΓ ∈ R(C;G, ω) must satisfy

∑
v∈Wi

dim(Cv) ≥ λ(Wi), i = 1, 2, . . . , t. Thus, for example,
κ+(C;G, ω) is lower bounded by the solution to the following linear programming problem in the
variablesξv, v ∈ V : given a collection of vertex cutsW1, W2, . . . , Wt of G,

minimize
∑

v∈V

ξv, subject to
∑

w∈Wi

ξw ≥ λ(Wi), i = 1, 2, . . . , t.

However, we do not pursue this angle any further in this paper. Instead, we will henceforth re-
strict our attention to theκ-complexity measure, for which we will derive a suite of lower bounds,
again based on the Vertex-Cut Bound, which unearth some interesting connections with graph the-
ory, and moreover, are amenable to further mathematical analysis. The bounds we derive rely on
the notion of vertex-cut trees introduced in the next section.

5. VERTEX-CUT TREES

We begin with a simple lemma, which plays a role in our definition of a vertex-cut tree below.

Lemma 5.1. Suppose thatV0, V1, . . . , Vδ are subsets ofV such that
⋃δ

i=0 Vi = V . If, for each pair
of distinct indicesi, j, we haveVi ∩ Vj ⊆ V0, then(V0, V1 \ V0, . . . , Vδ \ V0) is a partition ofV .

Proof. It is evident thatV0 ∪
⋃δ

i=1(Vi \ V0) =
⋃δ

i=0 Vi = V . If i, j > 0, i 6= j, then(Vi \ V0) ∩
(Vj \ V0) = (Vi ∩ Vj) \ V0 = ∅, sinceVi ∩ Vj ⊆ V0. �

For the main definition of this section, we introduce some convenient notation, which will hence-
forth be used consistently. IfA andB are sets, andf : A → 2B is a mapping fromA to the power
set ofB, then for anyX ⊆ A, we definef(X) =

⋃
x∈X f(x). Also, recall that ifz is a vertex of

degreeδ in a treeT , then the components ofT − z are denoted byT (z)
i , i = 1, 2, . . . , δ.
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Definition 5.1. LetG be a connected graph. Avertex-cut treeofG is a data structure(T, β), where
T is a tree, andβ : V (T ) → 2V (G) is a mapping with the following properties:

(VC1) β(V (T )) = V (G);
(VC2) for each pairx, y ∈ V (T ), if z ∈ V (T ) is any vertex that lies on the unique path between

x andy in T , thenβ(x) ∩ β(y) ⊆ β(z);
(VC3) for eachz ∈ V (T ), (β(z), V1, V2, . . . , Vδ) is a star partition ofV (G), whereδ is the degree

of z, andVi = β(V (T
(z)
i )) \ β(z) for i = 1, 2, . . . , δ.

A vertex-cut tree(T, β) in whichT is a path is called avertex-cut path.

Note that, by Lemma 5.1, conditions (VC1) and (VC2) in the above definition imply that, for
eachz ∈ V (T ), with δ andVi, i = 1, 2, . . . , δ, as in condition (VC3),(β(z), V1, V2, . . . , Vδ) is a
partition ofV (G). Thus, for(T, β) satisfying conditions (VC1) and (VC2), condition (VC3) is met
iff, for eachz ∈ V (T ), we haveN(Vi) ⊆ Vi ∪ β(z) for all i ≥ 1.

Trivial vertex-cut trees (and paths) always exist for a graphG — given any treeT , pick a vertex
z0 ∈ V (T ), and define a mappingβ by settingβ(z0) = V (G), andβ(z) = ∅ for z 6= z0. This
allows us to make the following definition.

Definition 5.2. LetG be a connected graph. Thevc-widthof a vertex-cut tree(T, β) ofG is defined
asmaxz∈V (T ) |β(z)|, and is denoted by vc-width(T, β). Thevc-treewidth(resp.vc-pathwidth) of
G is the least vc-width among all vertex-cut trees (resp. vertex-cut paths) ofG, and is denoted by
κvc-tree(G) (resp.κvc-path(G)).

Thus, for any graphG, we have0 < κvc-tree(G) ≤ κvc-path(G) ≤ |V (G)|. The vc-treewidth of any
tree is equal to one. Indeed, ifT is a tree, then(T, β), defined byβ(z) = {z} for all z ∈ V (T ), is
a vertex-cut tree ofT , with vc-width equal to one.

Example 5.1.LetG be ann-cycle with verticesv0, v1, . . . , vn−1, labeled in cyclic order. LetP be a
path withn− 1 vertices, which in the linear order defined by the path, are labeledz1, z2, . . . , zn−1.
To be precise,z0 is one of the two leaves, and fori = 1, 2, . . . , n− 1, zi is adjacent tozi−1 in P . If
we define the mappingβ : V (P ) → 2V (G) asβ(zi) = {v0, vi} for i = 1, 2, . . . , n − 1, then(P, β)
is a vertex-cut path ofG, of vc-width two. It is not difficult to verify thatG has no vertex-cut tree of
vc-width one, and hence,κvc-tree(G) = κvc-path(G) = 2.

Our definition of vertex-cut trees may appear at first to be an artificial construct brought in solely
for the purpose of finding applications for the Vertex-Cut Bound. However, this is far from being
the case. Vertex-cut trees are very closely related to junction trees, commonly associated with belief
propagation algorithms in Bayesian networks [10] and coding theory [1].Another close relative of
vertex-cut trees is the data structure known as tree decomposition (of a graph) [16],[2],[3], which
has received considerable attention in the graph theory and computer science literatures.

Definition 5.3. A tree decompositionof a connected graphG is a data structure(T, β), whereT is
a tree, andβ : V (T ) → 2V (G) is a mapping with the following properties:

(T1) β(V (T )) = V (G);
(T2) for each pairx, y ∈ V (T ), if z ∈ V (T ) is any vertex that lies on the unique path between

x andy in T , thenβ(x) ∩ β(y) ⊆ β(z);
(T3) for each pair of adjacent verticesu, v ∈ V (G), there exists az ∈ V (T ) such that{u, v} ⊆

β(z).

A tree decomposition(T, β) in whichT is a path is called apath decomposition.

Thewidthof a tree decomposition as above is defined to bemaxz∈V (T ) |β(z)|−1. Thetreewidth
(resp.pathwidth) of a graphG, denoted byκtree(G) (resp.κpath(G)), is the minimum among the
widths of all its tree (resp. path) decompositions. Note that ifG has at least one non-loop edge,
then, because of (T3), any tree decomposition ofG must have width at least one. Thus, for any
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FIGURE 3. (a) A graphG on eight vertices. (b) A tree decomposition ofG with
width 2, and vc-width 3. (c) A vertex-cut path ofG of vc-width 3 that is not a path
decomposition ofG.

such graphG, we have0 < κtree(G) ≤ κpath(G) ≤ |V (G)| − 1. It is not hard to check that
any tree with at least two vertices has treewidth equal to one6, and that ifG is ann-cycle, then
κtree(G) = κpath(G) = 2.

Lemma 5.2. Any tree decomposition of a connected graphG is also a vertex-cut tree ofG. Hence,
κvc-tree(G) ≤ κtree(G) + 1, andκvc-path(G) ≤ κpath(G) + 1.

Proof. Let (T, β) be a tree decomposition ofG. We only have to show that(T, β) satisfies condition
(VC3) of Definition 5.1. Consider anyz ∈ V (T ), with degreeδ, and letVi, i = 1, . . . , δ, be defined
as in condition (VC3). By virtue of (T1), (T2) and Lemma 5.1,(β(z), V1, . . . , Vδ) is a partition of
V (G). Thus, we must show thatN(Vi) ⊆ Vi ∪ β(z) for i = 1, . . . , δ.

Suppose, to the contrary, that there exists av ∈ Vi such that for someu ∈ N(v), we have

u /∈ Vi ∪ β(z). Thus, by definition ofVi, we haveu /∈ β(V (T
(z)
i )) ∪ β(z), while v ∈ β(x) \ β(z)

for somex ∈ V (T
(z)
i ). Now, by condition (T3), we have{u, v} ⊆ β(y) for somey ∈ V (T ). In

particular,v ∈ β(x) ∩ β(y). On the other hand, by our assumption onu, we must havey 6= z and

y /∈ V (T
(z)
i ). Thus,y ∈ V (T

(z)
j ) for somej 6= i. This means that the vertexz lies on the unique

path inT joining x andy, and hence, by (T2),v ∈ β(z), which contradicts the existence ofv as
postulated. �

A graphG can have a vertex-cut tree that is not a tree decomposition. Figure 3 shows an exam-
ple of a vertex-cut path of a graphG that is not a path decomposition ofG. Also, the inequality
κvc-tree(G) ≤ κtree(G) + 1 in Lemma 5.2 can hold with equality — for the graphG in Figure 3(a), it
is possible to show thatκtree(G) = 2, while κvc-tree(G) = κvc-path(G) = 3.

6. LOWER BOUNDS ONκ-COMPLEXITY

Vertex-cut trees allow us to derive lower bounds on theκ-complexity of a graphical realization
of a code, as we now show. Let(G, ω) be a graph decomposition of a codeC, and let(T, β) be a

6Without the ‘−1’ in the definition of width of a tree decomposition, a tree with at least two vertices would have treewidth
equal to two.
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FIGURE 4. The mappingα : V (T ) → 2V (G), with the vertexz∗ chosen as shown,
constructed from the vertex-cut tree in Figure 3(b).

vertex-cut tree ofG. For eachz ∈ V (T ), setJi = ω−1(Vi) for i = 1, 2, . . . , δ, where theVi’s are
as defined in condition (VC3) of Definition 5.1. Further define

m(z) = dim(C) −
δ∑

i=1

dim(CJi
). (7)

Now, consider any graphical realization,Γ = (G, ω, (Se, e ∈ E), (Cv, v ∈ V )), of C that extends
(G, ω). By the Vertex-Cut Bound, we have, for eachz ∈ V (T ),

∑
v∈β(z) dim(Cv) ≥ m(z). Since∑

v∈β(z) dim(Cv) ≤
(
maxv∈V (G) dim(Cv)

)
|β(z)| = κ(Γ) |β(z)|, we obtain

κ(Γ) |β(z)| ≥ m(z).

Maximizing over allz ∈ V (T ), we get

κ(Γ) · vc-width(T, β) ≥ max
z∈V (T )

m(z)
def
= µ(C; ω, β) (8)

We thus have the following proposition.

Proposition 6.1. Let (G, ω) be a graph decomposition of a codeC, and let(T, β) be a vertex-cut
tree ofG. Then, for any graphical realizationΓ ∈ R(C;G, ω), we have

κ(Γ) ≥
µ(C; ω, β)

vc-width(T, β)
.

The lower bound in the above proposition can be brought into a form more convenient for further
analysis. To do this, we will construct a tree decomposition(T, γ) of C such thatµ(C; ω, β) =
κ(C; T, γ). So, once again, let(G, ω) be a given graph decomposition ofC, and(T, β) a given
vertex-cut tree ofG. We will first give a recipe for constructing tree decompositions ofC from
(G, ω) and(T, β). Then, we will show how the main ingredient of the recipe may be chosen so that
the resulting tree decomposition(T, γ) satisfiesµ(C; ω, β) = κ(C; T, γ).

For any pair of verticesx, y ∈ V (T ), let (x, y] denote the set of vertices on the unique path
betweenx andy in T , includingy, but not includingx. Also, we will useβ(x, y], instead of the
more cumbersomeβ((x, y]), to denote the set

⋃
z∈(x,y] β(z). Pick an arbitrary vertexz∗ in V (T ).

Define the mappingα : V (T ) → 2V (G) as follows:α(z∗) = β(z∗), and forz 6= z∗,

α(z) = β(z) \ β(z, z∗].

An example of such a mappingα constructed from the vertex-cut tree(T, β) in Figure 3(b) is
depicted in Figure 4.

We record in the next two lemmas some properties of the mappingα that we use in the sequel.
Recall our convention that forX ⊆ V (T ), α(X) =

⋃
x∈X α(x).
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FIGURE 5. A depiction of the situation whenz∗ /∈ V (T (z)). Dashed ovals repre-
sent components ofT − z.

Lemma 6.2. For z ∈ V (T ), if T (z) is any component ofT − z, then

α(V (T (z))) =

{
β(V (T (z))) if z∗ ∈ V (T (z))

β(V (T (z))) \ β(z) if z∗ /∈ V (T (z)).

Proof. Suppose first thatz∗ ∈ V (T (z)), and setX = V (T (z)) \ {z∗}. It then follows from the
definition ofα that

⋃

x∈X

α(x) =

(
⋃

x∈X

β(x)

)
\ β(z∗).

Therefore,α(V (T (z))) = α(X) ∪ α(z∗) = (β(X) \ β(z∗)) ∪ β(z∗) = β(V (T (z))).
Now, consider the case whenz∗ /∈ V (T (z)), as depicted in Figure 5. In this case, the definition

of α implies that

⋃

x∈V (T (z))

α(x) =




⋃

x∈V (T (z))

β(x)



 \ β[z, z∗],

where[z, z∗] denotes the set of vertices on the path betweenz andz∗ in T , including bothz andz∗.
Note that, as a consequence of condition (VC2) of Definition 5.1, we have,for anyx ∈ V (T (z)),
β(x) ∩ β[z, z∗] = β(x) ∩ β(z). Hence,




⋃

x∈V (T (z))

β(x)



 \ β[z, z∗] =




⋃

x∈V (T (z))

β(x)



 \ β(z),

which proves the desired result. �

Lemma 6.3. The setsα(z), z ∈ V (T ), form a partition ofV (G).

Proof. Let T (z∗)
i , i = 1, 2, . . . , δ, denote the components ofT − z∗. Observe that, by Lemma 6.2,

⋃

z 6=z∗

α(z) =
δ⋃

i=1

α(V (T
(z∗)
i )) =

δ⋃

i=1

β(V (T
(z∗)
i )) \ β(z∗) =




⋃

z 6=z∗

β(z)



 \ β(z∗).

Therefore,
⋃

z∈V (T ) α(z) =
⋃

z∈V (T ) β(z) = V (G), by condition (VC1) of Definition 5.1.
Next, we want to show thatα(z) ∩ α(z′) = ∅ for z 6= z′. This is true by definition ofα if either

z = z∗ or z′ = z∗. So, we henceforth assume thatz andz′ are distinct vertices inV (T ) \ {z∗}.
Suppose that there exists av ∈ α(z) ∩ α(z′). We then have
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(1) v ∈ β(z), butv /∈ β(y) for anyy ∈ (z, z∗]; and
(2) v ∈ β(z′), butv /∈ β(y) for anyy ∈ (z′, z∗].

In particular, we see thatv /∈ β(z∗). It also follows from (1) and (2) thatz′ /∈ (z, z∗], andz /∈
(z′, z∗], which together imply thatz∗ lies on the path betweenz andz′. However, by (VC2), this
means thatv ∈ β(z∗), a contradiction. �

We now construct a tree decomposition(T, γ) of the index set,I, of C, by defining an index
mappingγ : I → V (T ) as follows: for eachi ∈ I, setγ(i) = z if ω(i) ∈ α(z). In other words, for
eachz ∈ V (T ), γ−1(z) = ω−1(α(z)). Since the setsα(z), z ∈ V (T ), form a partition ofV (G),
the mappingγ is well-defined.

Example 6.1. Suppose thatC is a code of length 10, defined on the index setI = {1, 2, . . . , 10}.
For the graphG shown in Figure 3(a), consider the graph decomposition(G, ω) of C defined by
ω(1) = ω(2) = A, ω(3) = ω(4) = ω(5) = B, ω(6) = ω(7) = E, ω(8) = F , andω(9) =
ω(10) = H. Let (T, β) be the vertex-cut tree ofG in Figure 3(b), from which we obtain the
mappingα : V (T ) → 2V (G) depicted in Figure 4. Based on the last figure, we will use the labels
z∗, A, D, G, F andH to identify the vertices of the treeT . Then, the index mappingγ : I → V (T )
is given byγ(1) = γ(2) = A, γ(3) = γ(4) = γ(5) = γ(6) = γ(7) = z∗, γ(8) = F , and
γ(9) = γ(10) = H.

Note that our construction of the tree decomposition(T, γ) depends on the choice of the vertex
z∗, via the mappingα. Up to this point, our choice ofz∗ was arbitrary. We now specifyz∗ ∈ V (T )
to be such thatm(z∗) = µ(C; ω, β). We claim that for the tree decomposition(T, γ) arising from
such a choice ofz∗, we haveµ(C; ω, β) = κ(C; T, γ).

Proposition 6.4. Given a graph decomposition(G, ω) of a codeC, and a vertex-cut tree(T, β) of
G, there exists a tree decomposition(T, γ) of C such thatµ(C; ω, β) = κ(C; T, γ).

Proof. Pick az∗ ∈ V (T ) such thatm(z∗) = µ(C; ω, β), and construct the tree decomposition
(T, γ) as described above. Note that, by (6),

κ(C; T, γ) = κ(M(C; T, γ)) = max
z∈V (T )

k(z),

where, for a vertexz ∈ V (T ) of degreeδ, k(z)
def
= dim(C) −

∑δ
i=1 dim(CKi

), with Ki =

γ−1
(
V (T

(z)
i )
)

for i = 1, 2, . . . , δ. Recall from the definition ofγ that γ−1(z) = ω−1(α(z))

for anyz ∈ V (T ). Hence,Ki = ω−1
(
α(V (T

(z)
i ))

)
, i = 1, 2, . . . , δ.

To prove the proposition, we show thatk(z) ≤ m(z) for all z ∈ V (T ), with equality holding
if z = z∗. From (7), we see thatm(z) = dim(C) −

∑δ
i=1 dim(CJi

), where, fori = 1, 2, . . . , δ.

Ji = ω−1
(
β(V (T

(z)
i )) \ β(z)

)
. We must therefore show that, for eachz ∈ V (T ), we have

Ji ⊆ Ki for all i, which would prove thatk(z) ≤ m(z); and furthermore, whenz = z∗, we have
Ji = Ki for all i, which would prove thatk(z∗) = m(z∗).

So, consider anyz ∈ V (T ). From Lemma 6.2, we see that ifT
(z)
i is any component ofT − z,

then
β(V (T

(z)
i )) \ β(z) ⊆ α(V (T

(z)
i )) (9)

Hence,Ji ⊆ Ki. Moreover, whenz = z∗, we always havez∗ /∈ V (T
(z)
i ), and so, again by

Lemma 6.2, equality holds in (9), implying thatJi = Ki. �

From Propositions 6.1 and 6.4, we obtain the following theorem.

Theorem 6.5. Let (G, ω) be a graph decomposition of a codeC, and let(T, β) be a vertex-cut tree
of G. Then, there exists a tree decomposition(T, γ) of C such that, for any graphical realization
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Γ ∈ R(C;G, ω), we have

κ(Γ) ≥
κ(C; T, γ)

vc-width(T, β)
.

Hence,κ(C;G, ω) ≥ κ(C;T,γ)
vc-width(T,β) .

The theorem above is a fundamental result with several important consequences, some of which
we present here. The first of these is a corollary that gives a lower bound on theκ-complexity of
anyrealization of a given codeC on a graphG.

Corollary 6.6. For a codeC and a connected graphG, we have

κ(C;G) ≥
κtree(C)

κvc-tree(G)
≥

κtree(C)

κtree(G) + 1
.

Proof. Consider an arbitrary index mappingω : I → V (G), whereI is the index set ofC. Let
(T, β) be anoptimalvertex-cut tree ofG, by which we mean that vc-width(T, β) = κvc-tree(G). By
Theorem 6.5, there exists a tree decomposition(T, γ) of C such that

κ(C;G, ω) ≥
κ(C; T, γ)

vc-width(T, β)
≥

κtree(C)

κvc-tree(G)
.

Minimizing over all possible mappingsω : I → V (G), we obtain

κ(C;G) ≥
κtree(C)

κvc-tree(G)
.

From Lemma 5.2, we also haveκvc-tree(G) ≤ κtree(G) + 1. �

If, in the above proof, we take(T, β) to be an optimal vertex-cut path instead,i.e., take(T, β) to
be a vertex-cut path such that vc-width(T, β) = κvc-path(G), then we obtain the next corollary.

Corollary 6.7. For a codeC and a connected graphG, we have

κ(C;G) ≥
κpath(C)

κvc-path(G)
≥

κpath(C)

κpath(G) + 1
.

The (first) inequality above can be tight, in the sense that there are examplesof codesC and

graphsG for whichκ(C;G) = ⌈
κpath(C)

κvc-path(G)⌉.

Example 6.2. TakeC to be the[24, 12, 8] binary Golay code, and letG be the family of graphs
consisting of alln-cycles. From Example 5.1, we know thatκvc-path(G) = 2 for anyG ∈ G. It is
also known thatκpath(C) = 9 [7, Example 1],[17, Section 5]. Hence, by the bound of Corollary 6.7,
noting thatκ(C;G) must be an integer, we haveκ(C;G) ≥ 5 for anyG ∈ G. Thus,κ(C; G) ≥ 5.
The tailbiting trellis realization of the Golay code given in[5] hasκ-complexity equal to 5, from
which we conclude thatκ(C; G) = 5.

Using Corollary 6.7 as a starting point, we derive a lower bound on the treewidth of an[n, k, d]
linear code. For this, we will also need the following result [4, Theorem 7.1]: if G is a graph with
treewidth at mostℓ, then the pathwidth ofG is at most(ℓ + 1) log2 |V (G)|.

Proposition 6.8. For an [n, k, d] linear codeC, with n > 1,

κtree(C) ≥
κpath(C)

3 + 2 log2(n − 1)
≥

k(d − 1)

n(3 + 2 log2(n − 1))
.
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Proof. The second inequality above is due to the fact, shown in [15], that7 for an [n, k, d] linear
codeC, κpath(C) ≥ k(d − 1)/n.

The first inequality is proved as follows. Let(T, ω) be an optimal tree decomposition ofC, so
thatκ(C; T, ω) = κtree(C). As mentioned in Section 3,(T, ω) may be chosen so thatT is a cubic
tree, andω is a bijection between the index set ofC and the leaves ofT . Thus,T is a cubic tree with
n leaves, from which it follows thatT hasn− 2 internal nodes. Hence,|V (T )| = 2n− 2. SinceT
has treewidth equal to one, by the result from [4] quoted earlier,κpath(T ) ≤ 2 log2(2n − 2).

We now have, via Corollary 6.7,

κ(C; T, ω) ≥ κ(C; T ) ≥
κpath(C)

κpath(T ) + 1
≥

κpath(C)

2 log2(2n − 2) + 1
,

which proves the proposition. �

In particular, Proposition 6.8 shows that for any linear codeC of lengthn,

κpath(C)

κtree(C)
= O(log2 n).

This estimate of the ratioκpath(C)
κtree(C) is the best possible8, up to the constant implicit in theO-notation.

Indeed, it was shown in [11] that a sequence of codesC(i) (i = 1, 2, 3, . . .), with lengthni =
12(2i − 1) + 2, κtree(C

(i)) = 2 andκpath(C
(i)) ≥ 1

2(i + 3), can be constructed over any finite field

F. It is clear thatκpath(C
(i))

κtree(C(i))
grows logarithmically with codelengthni.

A less precise formulation of the second inequality in Proposition 6.8 is also instructive: there
exists a constantc0 > 0 such that, for any[n, k, d] linear codeC, with n > 1,

κtree(C) ≥ c0
k d

n log2 n
. (10)

A noteworthy implication of the above inequality is that code families of bounded treewidth are
not very good from an error-correcting perspective. Given an integer t > 0, denote byTW(t) the
family of all codes overF of treewidth at mostt. A code familyC is calledasymptotically goodif
there exists a sequence of[ni, ki, di] codesC(i) ∈ C, with limi ni = ∞, such thatlim infi ki/ni and
lim infi di/ni are both strictly positive. The following result, an easy consequence of (10), resolves
a conjecture in [11].

Corollary 6.9. LetC(i), i = 1, 2, 3, be any sequence of[ni, ki, di] codes such that

lim
i→∞

κtree(C
(i))

log ni

ni
= 0.

Then, eitherlimi→∞ ki/ni = 0 or limi→∞ di/ni = 0. In particular, for anyt > 0, the code family
TW(t) is not asymptotically good.

In fact, a more general result is true. For a fixed integerℓ > 0, let Gℓ denote the family of all
graphs with vc-treewidth at mostℓ. In particular, note that, by Lemma 5.2,Gℓ contains all graphs
with treewidth at mostℓ − 1. Then, for an[n, k, d] linear codeC with n > 1, we have, via (3),
Corollary 6.6 and Proposition 6.8,

κ(C; Gℓ) ≥
κtree(C)

ℓ
≥

k(d − 1)

ℓ n (3 + 2 log2(n − 1))
.

7The result in [15] is only explicitly stated as a lower bound on the state max-complexity of any conventional trellis
realization ofC. However, the state max-complexity of a graphical realization can neverexceed the constraint max-
complexity of the realization, as noted in Section 3.
8It was conjectured in [11] that for codesC of lengthn, κpath(C) − κtree(C) = O(log n), but we now do not believe this
to be true.
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We thus have the following corollary to Proposition 6.8, which extends Corollary 6.9.

Corollary 6.10. Given an integert > 0, if C is a family of codes overF with the property that
κ(C; Gℓ) ≤ t for all C ∈ C, thenC is not asymptotically good.

A rough interpretation of the last result is that a “good” error-correcting code cannot have a low-
complexity realization on a graph with small (vc-)treewidth. In other words, codes that are good
from an error-correcting standpoint can have low-complexity realizations only on graphs with large
(vc-)treewidth.

7. CONCLUDING REMARKS

In this paper, we demonstrated at length the use of the Vertex-Cut Bound infinding lower bounds
on theκ-complexity of graphical realizations. As suggested at the end of Section 4, a natural appli-
cation of the Vertex-Cut Bound is to formulate constrained optimization problemswhose solutions
are lower bounds to various measures of constraint complexity. This method could be used, for in-
stance, to determine lower bounds on the true computational complexity of sum-product decoding
for a given code. This can be done by choosing a constraint complexity measure that accurately
reflects the cost of sum-product decoding. Such a complexity measure can be chosen based on
detailed counts of the number of arithmetic operations required in the sum-product algorithm; see,
for example, [1],[6],[7].

It is now probably fair to say that the main open problem in the area of graphical realizations
of codes is to explicitly construct, for a given codeC and an arbitrary graphG, realizations ofC
on G whose constraint complexity is within striking distance of the lower bounds found using the
methods of this paper. While we have shown that our bounds can be tight forspecific examples of
codesC and graphsG, their tightness in the generic instance remains to be investigated.

APPENDIX A. A N EXAMPLE

We provide here an example of a codeC and a graph decomposition(G, ω) of C, for which there
is no realizationΓ ∈ R(C;G, ω) such thatκ(Γ) = κ(C;G, ω) andκ+(Γ) = κ+(C;G, ω). The
example we give is based on Example 3.1 in [14].

Consider the[11, 3, 3] binary linear codeC generated by the codewords00011100000, 00000111000
and00101010100. We takeI = {1, 2, 3, . . . , 11} to be the index set ofC, identifying the indexi
with the ith coordinate ofC. Now, letG be the 11-cycle, andω : I → V (G) the index mapping
depicted in Figure 1. Figure 6 shows a tailbiting trellis realization,Γ1, of C that extends(G, ω).
Note thatκ(Γ1) = 2, while κ+(Γ1) = 14. A second tailbiting trellis realization,Γ2, in R(C;G, ω)
is shown in Figure 7, withκ(Γ2) = 3 andκ+(Γ2) = 13. It can be shown (using arguments similar
to those given in Example 3.1 in [14]) thatκ(Γ1) = κ(C;G, ω), while κ+(Γ2) = κ+(C;G, ω), and
that there is no realizationΓ ∈ R(C;G, ω) that simultaneously achievesκ(C;G, ω) andκ+(C;G, ω).
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