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Abstract—Communication complexity refers to the minimum
rate of public communication required for generating a maximal-
rate secret key (SK) in the multiterminal source model of Csiszár
and Narayan. Tyagi recently characterized this communication
complexity for a two-terminal system. We extend the ideas
in Tyagi’s work to derive a lower bound on communication
complexity in the general multiterminal setting. In the important
special case of the complete graph pairwise independent network
(PIN) model, our bound allows us to determine the exact linear
communication complexity, i.e., the communication complexity
when the communication and SK are restricted to be linear
functions of the randomness available at the terminals.

I. INTRODUCTION

Csiszár and Narayan [1] introduced the problem of secret
key (SK) generation within the multiterminal source model.
In this model, there are multiple terminals, each of which
observes a distinct component of a source of correlated
randomness. The terminals must agree on a shared SK by
communicating over a noiseless public channel. This key is to
be protected from a passive eavesdropper having access to the
public communication. Various equivalent characterizations
of the SK capacity, i.e., the supremum of the rates of SKs
that can be generated within this model, are now known [1],
[2], [3]. Proofs of achievability of the SK capacity typically
involve communication protocols that enable “omniscience” at
all terminals, which means that the communication over the
public channel allows each terminal to recover the observations
of all the other terminals. On the other hand, it is known (see
remark following Theorem 1 in [1]) that omniscience is not
necessary for maximal-rate SK generation. Thus, communica-
tion enabling omniscience may be wasteful in terms of rate. In
this paper, we are concerned with the problem of determining
the communication complexity of achieving SK capacity, i.e.,
the minimum rate of communication required to generate a
maximal-rate SK.

In the case when there are only two terminals in the model,
Tyagi gave an exact characterization of the communication
complexity [4, Theorem 3] in terms of the minimum rate
of an “interactive common information”, a type of Wyner
common information [5]. We extend the main ideas of Tyagi’s
work to the general setting of m ≥ 2 terminals, and obtain a
lower bound on the communication complexity of SK capacity.
While we can show that our bound is always non-negative,
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evaluating the bound seems to be difficult even in well-studied
special cases like the pairwise independent network (PIN)
model of [3].

In the PIN model, Nitinawarat and Narayan [3] have shown
that a maximal-rate SK can be generated by a protocol in
which the public communication and the SK generated are
both linear functions of the observations of the terminals1.
We can then define the linear communication complexity of
achieving SK capacity as the minimum rate of communication
required when the communication and the SK are restricted
to be linear functions of the observations. An appropriately
modified version of our lower bound applies in this linear
setting. We are able to explicitly evaluate our bound in the
particular case of the complete graph PIN model. The SK-
capacity-achieving protocol in the proof of [3, Theorem 1]
uses a linear communication that enables omniscience at all
terminals; the rate of this communication is an upper bound on
the linear communication complexity. For the complete graph
PIN model on m ≥ 2 terminals, our lower bound meets this
upper bound: the linear communication complexity in this case
equals m(m− 2)/2. This exact result in an important special
case is a testament to the power of our lower bounding method.

The rest of the paper is structured as follows. Section II
presents the required definitions and notation. Section III
describes our lower bound on the communication complexity
of achieving SK capacity. In Section IV, we adapt our bound
to the linear setting and evaluate it for the complete graph PIN
model. The paper concludes with some remarks in Section V.

II. PRELIMINARIES

Throughout, we use N to denote the set of positive integers.
Consider a set of m terminals denoted byM = {1, 2, . . . ,m}.
Each terminal i ∈ M observes n i.i.d. repetitions of the
random variable Xi taking values in the finite set Xi. The n
i.i.d. copies of the random variable are denoted by Xn

i . For any
subset A ⊆M, XA and Xn

A denote the collections of random
variables (Xi : i ∈ A) and (Xn

i : i ∈ A), respectively. The
terminals communicate through a noiseless public channel, any
communication sent through which is accessible to all termi-
nals and to potential eavesdroppers as well. An r-interactive
communication is a communication f = (f1, f2, · · · , fr) con-
sisting of r transmissions. Any transmission sent by the ith

1Indeed, the protocol given in the proof of [3, Theorem 1] to obtain a
maximal-rate SK uses public communication that is a linear function of the
terminals’ observations. Though it is not explicitly stated in the proof, it is
easy to see that the SK function can also be chosen to be linear.



terminal is a deterministic function of Xn
i and all the previous

communication, i.e., if terminal i transmits fj , then fj is a
function only of Xn

i and f1, . . . , fj−1. We denote the random
variable associated with f by F; the support of F is a finite set
F . The rate of the communication F is defined as 1

n log|F|.
Note that f, F and F implicitly depend on n.

Definition 1. A common randomness (CR) obtained from
an r-interactive communication F is a sequence of random
variables J(n), n ∈ N, which are functions of Xn

M, such
that for any 0 < ε < 1 and for all sufficiently large
n, there exist Ji = Ji(X

n
i ,F), i = 1, 2, . . . ,m, satisfying

Pr{J1 = J2 = · · · = Jm = J(n)} ≥ 1− ε.

Definition 2. A real number R ≥ 0 is an achievable SK
rate if there exists a CR K(n), n ∈ N, obtained from an r-
interactive communication F satisfying, for any ε > 0 and for
all sufficiently large n, I(K(n); F) ≤ ε and 1

nH(K(n)) ≥ R−ε.
The SK capacity is defined to be the supremum among all
achievable rates. The CR K(n) is called a secret key (SK).

From now on, we will drop the superscript (n) from both
J(n) and K(n) to keep the notation simple.

The SK capacity can be expressed as [1, Section V], [2]

I(XM) , H(XM)−max
λ∈Λ

∑
B∈B

λBH(XB |XBc) (1)

where B is the set of non-empty, proper subsets of M and
λ = (λB : B ∈ B) ∈ Λ iff λB ≥ 0 for all B ∈ B and for
all i ∈ M,

∑
B:i∈B λB = 1. It is a fact that I(XM) ≥ 0

[6, Proposition II]. From now on, we will denote the optimal
λ ∈ Λ for the linear program in (1) by λ∗.

We are now in a position to make the notion of communi-
cation complexity rigorous.

Definition 3. Let r ≥ m be fixed. A real number R ≥ 0 is said
to be an achievable rate of r-interactive communication for
maximal-rate SK if for all ε > 0 and for all sufficiently large
n, there exist (i) an r-interactive communication F satisfying
1
n log|F| ≤ R+ε, and (ii) an SK K obtained from F such that
1
nH(K) ≥ I(XM)− ε.

We denote the infimum among all such achievable rates by
RrSK.

The r ≥ m condition in the above definition requires a note
of explanation. The proof of Theorem 1 in [1] shows that
there exists an m-interactive communication F that enables
omniscience at all terminals and from which a maximal-rate
SK can be obtained. Thus, for r ≥ m, we have RrSK < ∞.
Another point to be noted is that RrSK is a non-increasing
function of r, since any rate achievable with r transmissions
is also achievable with r + 1 transmissions (by, say, keeping
the last transmission silent). Hence, we can define

RSK , lim
r→∞

RrSK (2)

to be the communication complexity of generating a maximal-
rate SK.

Tyagi gave a characterization of RSK in the case of a two-

terminal model [4, Theorem 3].2 The key to his characteriza-
tion was the observation that conditioned on a maximal-rate
SK K and the communication F from which K is extracted, the
observations of the two terminals are “almost” independent:
1
nI(Xn

1 ;Xn
2 | K,F) → 0 as n → ∞. Thus, the pair

(K,F) is a Wyner common information [5] for the randomness
at the terminals. Tyagi used the term “interactive common
information” to denote any Wyner common information that
consisted of a CR along with the communication achieving it.
We now extend these definitions to the multiterminal setting.

We will need the following extension of the definition of
I(XM) given in (1): for any random variable L, and any n ∈
N, we define

I(Xn
M|L) , H(Xn

M|L)−
∑
B∈B

λ∗BH(Xn
B |Xn

Bc ,L), (3)

where λ∗ = (λ∗B : B ∈ B) is the optimal λ ∈ Λ for the
linear program in the definition of I(XM) in (1). It follows
from Proposition II in [6] that I(Xn

M|L) ≥ 0. Also, note that
I(Xn

M) = nI(XM).

Definition 4. A (multiterminal) Wyner common information
(CIW ) for XM is a sequence of finite-valued functions L(n) =
L(n)(Xn

M) such that 1
n I(Xn

M|L
(n)) → 0 as n → ∞. An r-

interactive common information (CIr) for XM is a Wyner
common information of the form L(n) = (J,F), where F is an
r-interactive communication and J is a CR obtained from F.

Again, we shall drop the superscript (n) from L(n) for
notational simplicity. Wyner common informations L do exist:
for example, the identity map L = Xn

M is a CIW . To see
that CIrs (J,F) also exist, observe that J = Xn

M and a
communication F enabling omniscience constitute a CIW ,
and hence, a CIr. The proof of [1, Theorem 1] shows that
there exists a communication of m transmissions that enables
omniscience. It follows that a CIr exists for any r ≥ m.

Definition 5. A real number R ≥ 0 is an achievable CIW
(resp. CIr) rate if there exists a CIW L (resp. a CIr L = (J,F))
such that for all ε > 0, we have 1

nH(L) ≤ R + ε for all
sufficiently large n.

We denote the infimum among all achievable CIW rates by
CIW (XM). For r ≥ m, we denote the infimum among all
achievable CIr rates by CIr(XM).

The explanation for the r ≥ m condition in the definition of
CIr(XM) above is similar to that given after Definition 3. To
ensure that CIr(XM) <∞, the existence of at least one CIr

pair (J,F) is needed, and as observed earlier, this is guaranteed
when r ≥ m. The rate achieved by this guaranteed CIr pair
(J,F) is H(XM).

Furthermore, analogous to RrSK, CIr(XM) is a non-
increasing function of r. Hence, we can define CI(XM) ,
limr→∞ CIr(XM). The proposition below records the rela-

2It should be clarified that Tyagi’s characterization works only for “weak”
SKs, which are defined as in our Definition 2, except that the condition
I(K;F) ≤ ε is weakened to 1

n
I(K;F) ≤ ε. Using our definitions, Tyagi’s

arguments would only yield a two-terminal analogue of our Theorem 2.



tionships between some of the information-theoretic quantities
defined so far.

Proposition 1. For all r ≥ m, we have H(XM) ≥
CIr(XM) ≥ CI(XM) ≥ CIW (XM) ≥ I(XM).

Proof: The first inequality is due to the fact that for
any r ≥ m, there exists a CIr of rate H(XM). The second
inequality is trivial. The third follows from the fact that a CIr

is a special type of CIW , so that CIr(XM) ≥ CIW (XM).
For the last inequality, we start by observing that for any

function L of Xn
M, we have

I(Xn
M)− I(Xn

M|L) = I(Xn
M; L)−

∑
B∈B

λ∗BI(Xn
B ; L|Xn

Bc)

= H(L)−
∑
B∈B

λ∗BH(L|Xn
Bc)

Hence,
1

n
H(L) ≥ I(XM)− 1

n
I(Xn

M|L). (4)

Now, if L is any CIW of rate R, then by Definitions 4 and 5,
for every ε > 0, we have 1

nH(L) ≤ R+ε and 1
n I(Xn

M|L) ≤ ε
for all sufficiently large n. Thus, in conjunction with (4), we
have R + ε ≥ 1

nH(L) ≥ I(XM)− ε for all sufficiently large
n. In particular, R+ε ≥ I(XM)−ε holds for any ε > 0, from
which we infer that R ≥ I(XM). The inequality CIW (XM) ≥
I(XM) now follows.

Finally, analogous to Definition 3, we have a definition of
achievable rate of r-interactive communication required to get
a CIr.

Definition 6. Let r ≥ m be fixed. A real number R ≥ 0 is said
to be an achievable rate of r-interactive communication for CIr

if for all ε > 0 and for all sufficiently large n, there exist (i) an
r-interactive communication F satisfying 1

n log|F| ≤ R + ε,
and (ii) a CR J such that L = (J,F) is a CIr.

We denote the infimum among all such achievable rates by
RrCI.

As was the case with RrSK, we observe that RrCI is a non-
increasing sequence in r, bounded below by 0. Thus, we
can define RCI , limr→∞RrCI. The main theorem of our
paper, stated in the next section, gives a lower bound on the
communication complexity RSK, expressed in terms of the
quantities defined in Definitions 4–6.

III. LOWER BOUND ON RSK

The goal of this section is to state and prove the main result
of this paper, which partially extends Tyagi’s two-terminal
result [4, Theorem 3] to the multiterminal setting.

Theorem 2. For all r ≥ m, we have

RrSK ≥ RrCI ≥ CIr(XM)− I(XM).

Hence, by letting r →∞,

RSK ≥ RCI ≥ CI(XM)− I(XM).

By Proposition 1, the lower bounds above are non-negative.
The ideas in our proof of Theorem 2 may be viewed as

a natural extension of those in the proof of [4, Theorem 3].
We start with three preliminary lemmas. In all that follows,
λ∗ = (λ∗B : B ∈ B) is any optimal λ ∈ Λ for the linear
program in (1).

Lemma 3. For any function L of XM, we have

nI(XM) = I(Xn
M|L) +H(L)−

∑
B∈B

λ∗BH(L|Xn
Bc).

Proof: Consider L = L(Xn
M). From (1), we have

nI(XM) = H(Xn
M)−

∑
B∈B

λ∗BH(Xn
B |Xn

Bc)

= H(Xn
M,L)−

∑
B∈B

λ∗BH(Xn
B ,L|Xn

Bc)

= H(Xn
M|L) +H(L)

−
∑
B∈B

λ∗BH(Xn
B |L, Xn

Bc)−
∑
B∈B

λ∗BH(L|Xn
Bc)

= I(Xn
M|L) +H(L)−

∑
B∈B

λ∗BH(L|Xn
Bc)

the last equality above being due to (3).

Lemma 4. For any CR J obtained from an interactive com-
munication F,

lim
n→∞

1

n

∑
B∈B

λ∗BH(J|Xn
Bc ,F) = 0.

Proof: Fix an ε > 0. We have for all sufficiently large n,
by Fano’s inequality,

1

n

∑
B∈B

λ∗BH(J|Xn
Bc ,F) ≤ 1

n

∑
B∈B

λ∗B (h(ε) + εH(Xn
Bc ,F))

≤ 1

n

∑
B∈B

λ∗B (h(ε) + εH(Xn
M,F))

=
1

n

∑
B∈B

λ∗B (h(ε) + εH(Xn
M))

=
1

n

∑
B∈B

λ∗B (h(ε) + nεH(XM))

≤ (2m − 2) [h(ε) + εH(XM)] (5)

where h(.) is the binary entropy function, and (5) follows from
the fact that, by definition, λ∗B ≤ 1 and |B|= 2m − 2. Note
that the expression in (5) goes to 0 with ε, since h(ε)→ 0 as
ε→ 0, and H(XM) ≤ log(

∏m
j=1|Xj |).

The last lemma we need, stated without proof, is a special
case of [7, Lemma B.1].

Lemma 5 ([7], Lemma B.1). For an interactive communica-
tion F we have

H(F) ≥
∑
B∈B

λ∗BH(F|Xn
Bc).



With these lemmas in hand, we can proceed to the proof of
Theorem 2.

Proof of Theorem 2: The proof is done in two parts. In
the first part, we prove that RrCI ≥ CIr(XM)− I(XM). In the
second part, we show that RrSK ≥ RrCI.

Part I: RrCI ≥ CIr(XM)− I(XM)

The idea is to show that I(XM) +RrCI is an achievable CIr

rate, so that CIr(XM) ≤ I(XM) +RrCI.
Fix an ε > 0. By the definition of RrCI, for all sufficiently

large n, there exists an r-interactive communication F satisfy-
ing 1

n log|F| ≤ RrCI + ε/2 and a CR J such that L = (J,F) is
a CIr. We will show that 1

nH(J,F) ≤ I(XM) + RrCI + ε for
all sufficiently large n. This, by Definition 5, suffices to show
that I(XM) +RrCI is an achievable CIr rate.

Setting L = (J,F) in Lemma 3, we obtain

1

n

[
H(J,F)−

∑
B∈B

λ∗BH(F|Xn
Bc)

]
− I(XM)

=
1

n

[∑
B∈B

λ∗BH(J|Xn
Bc ,F)− I(Xn

M|J,F)

]
≤ ε/2, (6)

where (6) follows from Lemma 4. Re-arranging, we get

1

n
H(J,F) ≤ I(XM) +

1

n

∑
B∈B

λ∗BH(J|Xn
Bc ,F) + ε/2

≤ I(XM) +
1

n
H(F) + ε/2

the second inequality coming from Lemma 5. Finally, using
the fact that 1

nH(F) ≤ 1
n log|F| ≤ RrCI + ε/2, we see that

1

n
H(J,F) ≤ I(XM) +RrCI + ε

which is what we set out to prove.
Part II: RrSK ≥ RrCI
Fix ε > 0. From the definition of RrSK , there exist an r-

interactive communication F and an SK K obtained from F
such that, for all sufficiently large n, 1

n log|F| ≤ RrSK +ε and
1
nH(K) ≥ I(XM)− ε. We wish to show that (K,F) is a CIr,
so that by Definition 6, we would have RrSK ≥ RrCI.

Setting L = (K,F) in Lemma 3, we have for all sufficiently
large n,

1

n
I(Xn

M|K,F) = I(XM)− 1

n
H(K,F) +

1

n

∑
B∈B

λ∗BH(F|Xn
Bc)

+
1

n

∑
B∈B

λ∗BH(K|Xn
Bc ,F)

≤ I(XM)− 1

n
H(K|F) + ε (7)

≤ I(XM)− 1

n
H(K) + ε+ ε (8)

≤ 3ε, (9)

where (7) follows from Lemmas 4 and 5, (8) follows from
the fact that I(K; F) ≤ ε, while (9) is due to the fact that

1
nH(K) ≥ I(XM)− ε. Thus, by Definition 4, (K,F) is a CIr.

We do not know if the lower bounds of Theorem 2 are
in general tight, in the sense of there being matching upper
bounds. For the special case of the two-terminal model,
Theorem 3 of [4] shows that the bound on RSK is tight (albeit
under a weaker notion of SK, as explained in Footnote 2).
Another issue with our Theorem 2 is that the bounds are
difficult to evaluate explicitly, as we do not have a computable
characterization of CIr(XM) or CI(XM). However, in the
next section, we show that a version of our bound can be
computed exactly in the case of the complete graph PIN model,
where it matches an upper bound known from [3].

IV. THE LINEAR COMMUNICATION COMPLEXITY OF THE
COMPLETE GRAPH PIN MODEL

Throughout this section, we focus solely on the PIN model
of Nitinawarat and Narayan [3], which we quickly review first.
The model is defined on an underlying graph G = (V, E) with
V = M, the set of m terminals of the model. For n ∈ N,
define G(n) to be the multigraph (V, E(n)), where E(n) is the
multiset of edges formed by taking n copies of each edge of
G. Associated with each edge e ∈ E(n) is a Bernoulli(1/2)
random variable ξe; the ξes associated with distinct edges in
E(n) are independent. With this, the random variables Xn

i , for
i ∈ M, are defined as Xn

i = (ξe : e ∈ E(n) and e is incident
on i). When G = Km, the complete graph on m vertices, we
have the complete graph PIN model.

The SK capacity, I(XM), of a PIN model defined on a
graph G is equal to the “spanning tree packing rate” of G
[3, Theorem 5]. When G = Km, this can be computed to be
m/2 [8]. As mentioned in the Introduction (see Footnote 1),
it is known that in the PIN model, a maximal-rate SK can be
generated by a protocol in which the public communication
F and the SK K are linear functions of Xn

M. Of course, to
have linear functions, we must assume that all the underlying
alphabets, Xi, F etc., are linear spaces — indeed, we take
them to be finite-dimensional vector spaces over the binary
field F2. As shown in [3], a maximal-rate SK K (which may
be taken to be a linear function of Xn

M) can be obtained from
an omniscience-enabling linear m-interactive communication
F of rate RCO , H(XM)− I(XM). The quantity RCO is the
minimum rate of communication (not necessarily linear) that
enables omniscience at all terminals.

It is natural to ask whether a lower rate of communication
could suffice to achieve SK capacity within the PIN model,
when the communication and the SK are restricted to be
linear functions of Xn

M. To formulate this question precisely,
we modify Definition 3 by additionally requiring that the r-
interactive communication F and the SK K be linear functions
of Xn

M, and denote by LRrSK the infimum over all achievable
rates as per the modified definition. Analogous to (2), we
define the linear communication complexity of generating a
maximal-rate SK to be LRSK = limr→∞ LRrSK. By the
discussion before the definition of RCO above, we obviously



have LRSK ≤ LRrSK ≤ RCO for all r ≥ m. The question is
whether LRSK = RCO.

To answer this question, we need lower bounds on LRrSK
and LRSK. Bounds analogous to those in Theorem 2 can
be readily obtained by simply modifying the appropriate
definitions. Thus, for any PIN model, we define LCIW , LCIr,
LCIW (XM), LCIr(XM), LRrCI and LRCI analogous to CIW ,
CIr, CIW (XM), CIr(XM), RrCI and RCI, respectively, by
modifying Definitions 4–6 to include the additional require-
ment that L, J and F be linear functions of Xn

M. The
arguments of Section III then show that the linear analogues
of Proposition 1 and Theorem 2 hold for any PIN model. For
future reference, we record two inequalities in particular: for
all r ≥ m,

H(XM) ≥ LCIr(XM) ≥ LCIW (XM) (10)
LRrSK ≥ LCIr(XM)− I(XM) (11)

From this point on, we restrict our attention to the complete
graph PIN model, where we are actually able to determine
LRSK exactly. For this model, we know that I(XM) = m/2
[8], and hence, RCO =

(
m
2

)
−m/2 = m(m− 2)/2. Thus, we

have
LRSK ≤ LRrSK ≤ m(m− 2)/2 (12)

for all r ≥ m. The theorem below states that the inequalites
in (12) are all equalities.

Theorem 6. For the PIN model defined on the complete graph
Km, we have for any r ≥ m,

LRrSK = LRSK = RCO = m(m− 2)/2.

Thus, for the complete graph PIN model, we are able
to answer in the affirmative the question asked earlier of
whether LRSK = RCO. In particular, the linear communication
complexity of this PIN model is achieved by the SK generation
protocol of [3] that goes through omniscience at all terminals.

The remainder of this section is devoted to a proof of
Theorem 6. The key idea is to compute LCIr(XM), for which
we need a means of dealing with the quantity I(Xn

M|L) when
L is a linear function of Xn

M. To start with, we explicitly
determine λ∗, the optimal λ ∈ Λ for the linear program in
(1). If we define λ̃ = (λ̃B : B ∈ B) such that λ̃B = 1

m−1

whenever |B|= m− 1, and λ̃B = 0 otherwise, then it can be
easily verified that λ̃ ∈ Λ, and moreover,

H(XM)−
∑
B∈B

λ̃BH(XB |XBc) = m/2.

Since we know that I(XM) = m/2, we infer from (1) that λ̃
is an optimal λ ∈ Λ, i.e., λ∗ = λ̃. Hence, for the complete
graph PIN model, (3) reduces to

I(Xn
M|L) = H(Xn

M|L)− 1

m− 1

m∑
i=1

H(Xn
M\{i}|X

n
i ,L)

(13)
Now consider any linear function L of Xn

M. The fact that L

is a function of Xn
M allows us to further simplify (13):

I(Xn
M|L) = H(Xn

M)−H(L)

− 1

m− 1

m∑
i=1

[H(Xn
M)−H(Xn

i )−H(L|Xn
i )]

=
nm

2
−H(L) +

1

m− 1

m∑
i=1

H(L|Xn
i ), (14)

the equality (14) using the facts that H(Xn
M) = n

(
m
2

)
and

H(Xn
i ) = n(m− 1).

To proceed further, we need to use the linearity of L.
Observe that L(Xn

M) can be viewed as the product Lξ over the
binary field F2, where ξ is the random vector (ξe : e ∈ E(n))

and L is a (deterministic) matrix over F2 with nm(m−1)
2

columns. The columns of L are indexed by the set E(n); the
indexing of columns of L is in the same order as the indexing
of the coordinates of ξ. For i ∈ M, let Ei = {e ∈ E(n) :
e is incident with i}.

The lemma below allows us to express H(L) and H(L|Xn
i )

in (14) in terms of the ranks of certain submatrices of L.

Lemma 7. Let Y = (Y1, Y2, · · · , Yp) be a vector of i.i.d.
Bernoulli(1/2) random variables and A be any matrix over
F2 with p columns. Consider Z = AY , all operations being
over F2. For S ⊆ {1, 2, · · · , p}, let YS = (Yi : i ∈ S), and
let A|S denote the submatrix of A consisting of the columns
indexed by S. We then have
(a) H(Z) = rank(A).
(b) H(Z|YS) = rank(A|Sc).

We defer the proof of the lemma till the end of this section.
Returning to (14), Lemma 7 shows that H(L) = rank(L), and
H(L|Xn

i ) = rank(L|Eci ), where

Eci = {e ∈ E(n) : e is not incident with i}.

Thus, (14) becomes

I(Xn
M|L) =

nm

2
− rank(L) +

1

m− 1

m∑
i=1

rank(L|Eci ). (15)

As the final step in our processing of I(Xn
M|L), we derive

a lower bound on the last term of (15). Let t = rank(L), and
let T = {e1, e2, . . . , et} ⊆ E(n) be a subset of the columns of
L that form a basis for its column space. We then have

m∑
i=1

rank(L|Eci ) ≥
m∑
i=1

|T ∩ Eci |

=

m∑
i=1

t∑
`=1

IEci (e`)

=

t∑
`=1

m∑
i=1

IEci (e`)

=

t∑
`=1

(m− 2) (16)

= (m− 2)rank(L) (17)



where IEci (e`) equals 1 if e` ∈ Eci , and equals 0 otherwise. The
equality in (16) is due to the fact that any edge e` is incident
on exactly two vertices, and hence, is not incident on exactly
m−2 vertices i ∈M. Plugging (17) back into (15), we obtain

I(Xn
M|L) ≥ nm

2
− 1

m− 1
rank(L). (18)

We are now in a position to compute LCIr(XM) using
(10). The upper bound gives us LCIr(XM) ≤

(
m
2

)
for all

r ≥ m. For the lower bound, let L be any LCIW so that (by
the linear analogue of) Definition 4, for any ε > 0, we have
1
n I(Xn

M|L) ≤ ε
m−1 for all sufficiently large n. The bound in

(18) now yields m
2 −

1
n(m−1) rank(L) ≤ ε

m−1 , or equivalently,
1
n rank(L) ≥

(
m
2

)
− ε for all sufficiently large n. Thus, for any

ε > 0, we have 1
nH(L) ≥

(
m
2

)
− ε for all sufficiently large n.

Hence, from Definition 5, it follows that LCIW (XM) ≥
(
m
2

)
.

From the upper and lower bounds in (10), we now obtain
LCIr(XM) =

(
m
2

)
for all r ≥ m.

From (11), we now have LRrSK ≥
(
m
2

)
−m/2 = m(m−2)/2

for all r ≥ m. Together with (12), this yields LRrSK = m(m−
2)/2 for all r ≥ m, and hence, LRSK = m(m− 2)/2 as well.
This completes the proof of Theorem 6, modulo the proof of
Lemma 7, which we give below.

Proof of Lemma 73: Part (a) follows immediately from [9,
Theorem 7.3]. For part (b), we introduce some notation: for
S ⊆ {1, 2, . . . , p}, let ỸS = (Ỹ1, . . . , Ỹp) be defined by setting
Ỹi = Yi if i ∈ S, and Ỹi = 0 otherwise. Then,

H(Z|YS) = H(Z +AỸS | YS)

= H(A(Y + ỸS) | YS)

= H(AỸSc | YS)

= H(A|ScYSc | YS)

= H(A|ScYSc)

= rank(A|Sc)

by part (a) of the lemma.

V. CONCLUDING REMARKS

We regard the work presented in this paper as the first step
towards characterizing a rate region for the communication
needed to generate a maximal-rate SK. We have given lower
bounds on the total sum rate, i.e., the sum of the rates of
communication from all terminals. A next step would be to
find bounds on partial sum rates, i.e., the sum of the rates
of communication from a subset of the terminals in M. We
expect that such bounds will be needed to characterize the
communication rate region, analogous to that in the distributed
source coding (Slepian-Wolf) problem of information theory.

Another important open problem is to find computable
characterizations of the rates CIr(XM) and CIW (XM). At
the very least, we would like to be able to explicitly evaluate
these rates in some special cases, such as in the PIN model.

3The authors would like to thank Shashank Vatedka for the proof of part (b)
of the lemma.

We expect that the linear setting results of Section IV should
be easily extendable to a wider class of PIN models.

Finally, we remark that the bounding technique used in
Theorem 2 can also be used to get bounds on the minimum rate
of communication needed to generate maximal-rate private
keys (as defined in [1]) and maximal-rate keys when some
terminals are silent (as defined in [10]).
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