
1

MCMC Methods for Drawing Random Samples
from the Discrete-Grains Model of a Magnetic

Medium
Abhinav Das N. V. Navin Kashyap

Abstract—The discrete-grains model is a simple model for
the distribution of “grains” on a magnetic medium. In this
model, grains on the medium are taken to be one of four
basic rectangular shapes (“tiles”) — 1 × 1, 1 × 2, 2 × 1 and
2 × 2. The magnetic medium is then modeled as an N × N
square tiled by these four basic tiles. In this paper, we present
Markov chain Monte Carlo (MCMC) methods for generating
random tilings of an N × N square consisting only of the four
basic tiles. To be precise, given a target probability distribution,
e.g., the uniform distribution, on the space, SN , of all possible
such tilings, we make use of the Metropolis-Hastings algorithm
to design an MCMC method for sampling from a probability
distribution arbitrarily close, in total variation distance, to the
target distribution. We further extend this approach to enable
sampling from probability distributions on certain subsets of SN ,
namely, those consisting of tilings in which each kind of tile
occurs a fixed number of times. We finally present some bounds
and conjectures on the mixing times of the underlying Markov
chains, which provide estimates of the amount of time taken by
the MCMC methods to generate a random tiling sampled from
the target probability distribution.

Index Terms—discrete-grains model, Markov Chain Monte
Carlo (MCMC) methods, Metropolis-Hastings algorithm, two-
dimensional magnetic recording (TDMR)

I. INTRODUCTION

The two-dimensional magnetic recording (TDMR) technol-
ogy conceived by Wood et al. [1] proposes to use sophisticated
two-dimensional coding and signal processing techniques to
drastically increase the areal density of bits that can be reliably
recorded on a magnetic medium. The key to developing
such techniques is having good models for the distribution
of the fundamental magnetizable units called “grains” on the
medium. Models for grain distributions yield useful channel
models for the magnetic medium that try to capture the
deviations from ideal behavior in the write and readback
processes. While write channel models attempt to characterize
the discrepancy between what the write head intends to write
on the magnetic medium and what actually gets recorded
on the medium, read channel models try to pin down the
non-idealities in the readback process [2]–[6]. At the kind of
Terabits-per-square-inch areal densities targeted by TDMR, the

This work was supported in part by research grants from the Department
of Science & Technology and the Department of Electronics & Information
Technology, Government of India.

A. Das is with Bharat Electronics Limited (BEL), Bangalore, India. Email:
abhinavdas.n.v@gmail.com

N. Kashyap is with the Department of Electrical Communication
Engineering, Indian Institute of Science, Bangalore. Email:
nkashyap@ece.iisc.ernet.in

Fig. 1. The rectangular tileset.

distribution of grains in the medium is a significant source of
non-ideality in both the write and readback processes. A nice
discussion of the effect of grain distributions on the write and
readback processes in TDMR can be found in the original
paper of Wood et al. [1].

Several models for grain distributions on a magnetic
medium have been considered in the literature [2], [3], [4],
[7]. Perhaps the simplest of these is the discrete-grains model,
which seems to have been first proposed by Krishnan et al.
[2] and Chan et al. [3]. As pointed out by Chan et al. [3],
this model is an oversimplified view of the medium, but it
has the advantage of being easily simulated, and at the same
time, being fairly amenable to analysis [5]. Subsequent works
have used this model as a test-bed for novel coding and signal
detection algorithms for TDMR [8], [9].

In the discrete-grains model, grains are assumed to have one
of finitely many pre-defined shapes, and the magnetic medium
is modeled as a tiling of a bounded region of the plane by these
pre-defined shapes. We will call each such pre-defined shape
a basic tile, or simply a tile, and the set of these shapes as
the tileset. The most commonly used tileset consists of four
rectangular tiles of dimensions 1×1, 1×2, 2×1 and 2×2, the
dimensions being specified with respect to some fundamental
unit of length – see Figure 1. In this paper, we will restrict
our attention to this rectangular tileset, although our techniques
can be readily extended to other tilesets as well.

To meaningfully talk about the channel capacity of a gran-
ular magnetic medium [1], [5], [9], or indeed to evaluate the
performance of two-dimensional coding and signal processing
algorithms, one requires a probabilistic model for the overall
channel formed by the cascade of the write and read channels.
To this end, it is necessary to have a good probabilistic model
for the underlying grain distribution. Within the context of
the discrete-grains model, this means that one must have a
probability distribution on the set of valid tilings of the plane,
i.e., tilings that use only tiles from the given tileset. Typically,

2

this probability distribution is described by specifying the
relative frequency of occurrence of each basic tile within
a random tiling sampled from the distribution [2], [5], [8].
Strictly speaking, the relative frequencies of occurrence by
themselves do not uniquely determine a probability distribu-
tion on valid tilings; nevertheless, from specifications of these,
one can obtain a useful channel model in practice.

For the purpose of carrying out simulations — for ex-
ample, to evaluate the performance of novel coding and
signal processing schemes designed for TDMR — one needs
algorithms to generate samples of the underlying granular
magnetic medium that are consistent with the probabilistic
model being assumed. Thus, given a probability distribution Π
on valid tilings, it is necessary to have a means of generating
a random tiling drawn according to the distribution Π. This
is what we call sampling from the probability distribution Π.
More concretely, our interest lies in generating random valid
tilings of an N × N square (which represents the magnetic
medium), for large values of N (say, N ≥ 20), sampled
from a given probability distribution Π(N) on such tilings.
The sampling methods described in the prior literature [2], [5],
[8] are essentially ad hoc in nature. They involve “randomly”
filling in tiles into the N ×N square in a manner consistent
with the desired relative frequency of occurrence of each basic
tile, starting with the hardest-to-fit tile (the 2 × 2 tile in the
rectangular tileset) and ending with the easiest (the 1×1 tile).
It is far from clear what overall probability distribution on
valid tilings is induced by this procedure.

In this paper, we propose a mathematically rigorous proce-
dure that, in a certain asymptotic sense, samples from a desired
probability distribution on valid tilings of an N×N square. At
the heart of our sampling procedure is the Metropolis-Hastings
algorithm, a Markov chain Monte Carlo (MCMC) method
that we describe in detail in the next section. It should be
clarified that our choice of squares as the regions to be tiled is
completely arbitrary — there is no inherent difficulty in using
MCMC methods to generate random tilings of rectangular
regions or indeed regions of other shapes.

The rest of this paper is organized as follows. The
Metropolis-Hastings algorithm is described in Section II. In
Section III, we explain how this algorithm can be tuned to
yield an MCMC method for sampling from a probability
distribution arbitrarily close (in a sense that we will make
precise) to the uniform distribution on valid tilings of the
N ×N square. Then, in Section IV, we modify the algorithm
so that, for a pre-specified set of relative frequencies of
occurrence of the four basic tiles, it generates a tiling drawn
nearly uniformly at random from the set of all valid tilings
of the N × N square in which each basic tile occurs with
the desired relative frequency. The issue of convergence of
these algorithms is discussed in Section V. The paper ends in
Section VI with some concluding remarks.

II. THE METROPOLIS-HASTINGS ALGORITHM

The main issue with sampling from some probability dis-
tribution, for example, the uniform distribution, on the set of
all valid tilings of an N ×N square is that it is impractical to

list out all the valid tilings. In fact, it is very difficult even to
determine the total number of such tilings. It is in situations
such as this that MCMC methods are most useful. The
overview of MCMC in this section assumes some familiarity
with the basic definitions and terminology of Markov chain
theory — see e.g., [10, Chapters 1 and 2]. For more details
on MCMC, the reader is referred to the handbook [11].

Let S be the sample space, which we assume to be finite,
on which the desired probability distribution Π is defined. The
idea behind the MCMC method is to define a suitable discrete-
time Markov chain with S as its state space, such that Π is
the unique stationary distribution of the chain. The Markov
chain (Xn)n≥0 to be defined must be time-homogeneous,
irreducible and aperiodic, so that starting from any choice of
the initial distribution on X0, the Markov chain converges to
the stationary distribution Π. The MCMC method then consists
of simulating the Markov chain for T time steps starting from
an arbitrary choice of the initial distribution, where T is chosen
large enough that the distribution of XT is assured to be close
(say, in terms of total variation distance1) to the stationary
distribution Π. Thus, the realization of XT obtained from one
such simulation run may be taken to be a sample drawn from
the distribution Π. For this method to be useful, one must
design the Markov chain so that it can be efficiently simulated
and so that it rapidly converges to the stationary distribution.

The Metropolis-Hastings (MH) algorithm [12], [13] is a
recipe for designing a Markov chain with a desired station-
ary distribution Π. A time-homogeneous Markov chain on
the state space S is specified by its transition probabilities
p(s′|s) := Pr[Xn+1 = s′ | Xn = s], defined for all s, s′ ∈ S.
The MH choice of p(s′|s) is given by

p(s′|s) =

{
α(s, s′)q(s′|s) if s′ 6= s

1−
∑
s′′ 6=s α(s, s′′)q(s′′|s) if s′ = s,

(1)

where q(s′|s) is the proposal or candidate transition probabil-
ity, and α(s, s′) is the acceptance probability defined by

α(s, s′) = min

{
1,

Π(s′)q(s|s′)
Π(s)q(s′|s)

}
. (2)

The probabilities q(·|·) and α(·, ·) are to be interpreted as
follows: given that the Markov chain is in state s at time n
(i.e., Xn = s), the next state, Xn+1, is proposed to be s′ with
probability q(s′|s).2 With probability α(s, s′), the proposal
is accepted, and we have Xn+1 = s′; on the other hand,
with probability 1 − α(s, s′), the proposal is rejected and
the chain remains in state s at the next time instant (i.e.,
Xn+1 = s). With this choice of p(s′|s), the resulting Markov
chain is easily verified to be reversible, with Π as a stationary
distribution. The MH algorithm is summarized in Algorithm 1.

The transition probability matrix Q = (q(s′|s))s,s′∈S
should be chosen so that the Markov chain governed by the
transition probabilities p(s′|s), as defined by (1), is irreducible
and aperiodic. Beyond that, Q is a design parameter to be

1The total variation distance between two probability distributions Π and
Π′ on S is defined as ‖Π−Π′‖TV = maxA⊆S |Π(A) − Π′(A)|. It is a
standard fact that ‖Π−Π′‖TV = 1

2

∑
s∈S |Π(s)−Π′(s)|.

2To be clear, q(s|s), i.e., q(s′|s) for s′ = s, is also allowed to be strictly
positive.

3

Algorithm 1 The Metropolis-Hastings algorithm
Initialization: X0 ← s0
for n = 0 to T − 1 do

If Xn = s, generate an s′ ∈ S according to the proposal
distribution q(·|s)

Set Xn+1 =

{
s′ with probability α(s, s′)

s with probability 1− α(s, s′)
end for
return XT

fine-tuned to obtain good performance — Q governs both
the rate of convergence of the Markov chain as well as the
computational complexity of picking a proposed next state.

The MH algorithm has one very useful property: it works
even in situations when the desired probability distribution
Π = (Π(s))s∈S is specified only as being proportional to a
weight distribution (w(s))s∈S , where w(s) is a non-negative
weight function computable directly from s. The constant of
proportionality — usually denoted by Z−1, where Z is the
normalization constant

∑
s∈S w(s) — need not be exactly

computed. This is very useful in situations where it is difficult
or impractical to exhaustively enumerate the elements of
the state space S. Indeed, the acceptance probability in (2)
does not require knowledge of Z, since it is equivalently
computable as α(s, s′) = min

{
1, w(s′)q(s|s′)

w(s)q(s′|s)

}
. In particular,

if Π is a uniform distribution on S, then we have

α(s, s′) = min

{
1,
q(s|s′)
q(s′|s)

}
. (3)

This makes the MH algorithm well-suited for our purposes.
Our work is inspired largely by the well-known application

of the MCMC method to produce random domino tilings of a
square (see e.g., [14]). A domino tiling of an N×N square, N
being an even integer, is a tiling using only two basic tiles —
a 1×2 horizontal domino and a 2×1 vertical domino. Starting
from an arbitrary domino tiling of the N ×N square, pick a
2× 2 window uniformly at random. If this 2× 2 window is a
domino square, i.e., a square covered by a pair of horizontal
dominos or by a pair of vertical dominos, then perform a
domino flipping move: rotate the pair of dominos by 90◦, as
shown in Figure 2. It can be shown (again, see [14]) that this
defines an irreducible Markov chain on the state space S of all
domino tilings of the square, with the stationary distribution
being the uniform distribution on S. It is easy to check that
this Markov chain can be realized by the MH algorithm by
taking the proposal distribution to be

q(s′|s) =

1

(n−1)2 if s′ ∈ D1(s)

1− 1
(n−1)2 |D1(s)| if s′ = s

0 otherwise,

where D1(s) is the set of all domino tilings s′ reachable
from s via exactly one domino flipping move, and taking the
acceptance probability to be α(s, s′) = 1 for all s, s′ ∈ S.

Fig. 2. Domino flipping.

(b)(a)

Fig. 3. (a) In the 4× 4 tiled square shown, the top-left and bottom-left 2× 2
windows are tile-closed rectangles, while the top-right and bottom-right ones
are not. (b) All the possible tile-closed rectangles of sizes 1× 2, 2× 1 and
2× 2.

III. GENERATING A UNIFORMLY RANDOM TILING USING
THE RECTANGULAR TILESET

We denote by SN the state space consisting of all the
possible tilings of an N × N square (for some fixed integer
N > 1) that use only tiles from the rectangular tileset depicted
in Figure 1. Determining the exact size of SN is a difficult
problem. Indeed, even if we dropped the 2 × 2 tile from the
rectangular tileset of Figure 1, counting the number of tilings
of an N × N square using the reduced tileset is a famous
open problem of statistical mechanics — see e.g., [15]. For
even N , a crude lower bound on the size of SN is given
by the number of domino tilings of the N × N square, for
which an exact formula is known [16]. From this, we obtain
|SN | & (1.338515 . . .)N

2

for even N . For odd N , we could
bound |SN | from below by the number of domino tilings
of the (N − 1) × N rectangle, which, again by Kasteleyn’s
formula [16], is approximately (1.338515 . . .)N(N−1). These
bounds show that |SN | grows exponentially in N2, which
makes listing out all the tilings in SN highly impractical for
all but a few small values of N . This is precisely the kind of
situation in which the MH algorithm is most useful.

A. The MH Algorithm for Sampling from the Uniform Distri-
bution on SN

Given a tiling s ∈ SN , define an m×n tile-closed rectangle
to be an m×n window within s with the property that no tile
of s crosses the boundary of the window. Figure 3(a) shows
examples of 2 × 2 windows within a 4 × 4 tiled square that
are tile-closed rectangles and others that are not. Figure 3(b)
lists all the possible tile-closed rectangles of sizes 1×2, 2×1
and 2× 2.

Recall that in the domino flipping move described in the
previous section (see Figure 2), one domino square is replaced
by another. We extend that idea to our present context by
defining a collection of valid local moves. Each valid local

4

Fig. 4. Valid local moves for tilings in SN .

move involves replacing one tile-closed rectangle in a tiling
s ∈ SN by another tile-closed rectangle of the same size.
To facilitate our description, the tile-closed rectangle to be
replaced will be called the object, while the rectangle that
replaces the object will be called the target. The specific
collection of valid local moves that we use is depicted in
Figure 4. Note that these moves only involve the tile-closed
rectangles shown in Figure 3(b).

For a given tile-closed rectangle R, let Tgt(R) denote the
set of all targets of valid moves starting from R. Thus, if R is
one of the 1×2 or 2×1 rectangles, then Tgt(R) consists solely
of the other rectangle of the same size. Also, from Figure 4,
we see that if R consists of four 1×1 tiles, then |Tgt(R)| = 3;
if R is a 2× 2 rectangle consisting of at least one domino tile
(1× 2 or 2× 1), then |Tgt(R)| = 5; and finally, if R consists
of the 2× 2 tile, then |Tgt(R)| = 7.

We are now in a position to define our proposal transition
probabilities q(·|·). Given an s ∈ SN , let τs denote the total
number of 1 × 2, 2 × 1 and 2 × 2 tile-closed rectangles in
s. Moreover, define M1(s) to be the set of all s′ ∈ SN
that can be obtained from s using exactly one valid local
move. Note that for each s′ ∈M1(s), there is a unique valid
local move that takes s to s′. This move is identified by the
smallest window within which s and s′ contain different tile-
closed rectangles. Thus, for s′ ∈M1(s), let Rs→s′ denote the
(unique) object rectangle in s that gets converted to a target
rectangle in s′ by the (unique) valid local move that takes s

to s′. We then set

q(s′|s) =

{
1

τs|Tgt(Rs→s′)|
if s′ ∈M1(s)

0 otherwise.
(4)

To complete our description of the MH algorithm, we
need to define the acceptance probability α(s, s′) for all
s′ ∈ M1(s). Since we want the stationary distribution to be
uniform, α(s, s′) is given by (3). Note that, by construction,
p(s′|s) = α(s, s′)q(s′|s) > 0 for all s′ ∈ M1(s). In other
words, for any s ∈ SN , each valid local move acting on s has
a positive probability of occurring.

Lemma III.1. Let p(s′|s), α(s, s′) and q(s′|s) be defined
by (1), (3) and (4), respectively. Then, the Markov chain
having transition probability matrix P = (p(s′|s))s,s′∈SN is
irreducible and aperiodic.

Proof: Let s∗ ∈ SN denote the tiling consisting of 1 ×
1 tiles only. Note that for any s ∈ SN , s 6= s∗, there is a
sequence of valid local moves that converts s to s∗. This is
because valid local moves allow us to replace any 1 × 2 or
2× 1 tile by two 1× 1 tiles, and any 2× 2 tile by four 1× 1
tiles. Moreover, reversing such a sequence of valid local moves
would take us from s∗ back to s. Thus, for any s, s† ∈ SN ,
there is a sequence of valid local moves that takes us from s
to s†. Since each valid local move has a positive probability
of occurring, the Markov chain defined by P is irreducible.

To show aperiodicity, it is enough to check that p(s∗|s∗) >
0. Let k be the total number of 1 × 2 and 2 × 1 tile-closed
rectangles in s∗, and ` be the number of 2 × 2 tile-closed
rectangles in s∗. Thus, τs∗ = k + `. It is easy to verify that
k = 2N(N − 1) and ` = (N − 1)2, but for our purposes, we
only need that ` > 0. We then have∑
s′∈M1(s∗)

α(s, s′)q(s′|s) ≤
∑

s′∈M1(s∗)

q(s′|s)

=
1

k + `

∑
s′∈M1(s∗)

1

|Tgt(Rs∗→s′)|
.

(5)

Since Rs∗→s′ is a tile-closed rectangle in s∗, it is composed
of 1 × 1 tiles only. Thus, from Figure 4, we note that
|Tgt(Rs∗→s′)| = 1 if Rs∗→s′ is of size 1 × 2 or 2 × 1, and
|Tgt(Rs∗→s′)| = 3 if Rs∗→s′ is of size 2×2. Thus, each of the
k tile-closed rectangles of size 1×2 or 2×1 in s∗ contributes
1 to the sum in (5), and each of the ` tile-closed rectangles of
size 2× 2 in s∗ contributes 1

3 to the sum. Hence,∑
s′∈M1(s∗)

1

|Tgt(Rs∗→s′)|
= k +

1

3
`.

Plugging this into (5), we obtain∑
s′∈M1(s∗)

α(s, s′)q(s′|s) ≤ 1

k + `

(
k +

1

3
`
)
,

which is strictly less than 1, since ` > 0. Therefore,
p(s∗|s∗) = 1−

∑
s′∈M1(s∗)

α(s, s′)q(s′|s) > 0.
As a consequence of the above lemma, we have that the

Markov chain (Xn)n≥0 with P as its transition probability

5

matrix has a unique stationary distribution, and moreover, for
any choice of the initial distribution on X0, the Markov chain
converges to the stationary distribution. By our choice of P ,
the stationary distribution is the uniform distribution, which we
will denote by ΥN , on SN . Thus, the MH algorithm, when run
for a long enough time T , will produce a sample drawn from
a distribution close (in terms of the total variation distance) to
ΥN . We will comment upon how large T must be to guarantee
this in Section V.

The MH algorithm for sampling a (nearly) uniformly ran-
dom tiling from SN is summarized in Algorithm 1′ below.
The initial state s0 can be chosen arbitrarily. For example, it
can be taken to be the state s∗ composed of 1× 1 tiles only.

Algorithm 1′ The MH algorithm with q(·|·) given by (4) and
α(·, ·) defined by (3).

Initialization: X0 ← s0
for n = 0 to T − 1 do

If Xn = s, generate an s′ ∈ M1(s) according to the
proposal distribution q(·|s)

Set Xn+1 =

{
s′ with probability α(s, s′)

s with probability 1− α(s, s′)
end for
return XT

B. Analysis of Computational Complexity

For a fixed T (and fixed N > 1), the computational
complexity of Algorithm 1′ can be easily analyzed. The first
step within each iteration of the for loop involves sampling,
for a given s ∈ SN , an s′ ∈M1(s) according to the proposal
distribution q(·|s) defined by (4). This can be done as follows:

1) Identify the set Ts of all 1×2, 2×1 and 2×2 tile-closed
rectangles in s.

2) Select an R uniformly at random from Ts.
3) Obtain s′ by changing R in s to a target R′ chosen

uniformly at random from Tgt(R).
Steps 2) and 3) above can be executed in O(1) time using
a random number generator. Step 1) can be carried out by
scanning through the N × N tiled square s, a process that
requires O(N2) time. Note, however, that a scan of the entire
N×N square only needs to be performed in the first iteration
(n = 0) of the for loop. For each subsequent iteration (n =
1, . . . , T − 1), the computation of the set Ts can actually be
carried out in O(1) time in the previous iteration itself, by
means of the following extra step:

4) Modify Ts to obtain Ts′ via a scan of s′ in the immediate
neighbourhood of R′.

This extra step is useful because the s in Iteration n is either
the same as the s in Iteration n − 1, or is equal to the
s′ ∈ M1(s) determined in Iteration n − 1. In summary, the
first step within the for loop in Algorithm 1′ requires O(N2)
time for the first iteration of the loop, and O(1) time for each
subsequent iteration.

The second step within the for loop requires computation
of α(s, s′). But this is trivial once τs = |Ts|, τs′ = |Ts′ |, R

States in S3

0 20 40 60 80 100 120 140 160

N
u
m

b
e
r

o
f
v
is

it
s
 t
o
 a

 s
ta

te

×10
4

2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

2.4

2.45

2.5

Fig. 5. Plot of the number of times each of the 163 states in S3 is visited in
one run of the MH Markov chain for 3.9 million time steps.

States in S4

2000 4000 6000 8000 10000 12000 14000

N
u
m

b
e
r

o
f
v
is

it
s
 t
o
 a

 s
ta

te

900

950

1000

1050

1100

1150

1200

Fig. 6. Plot of the number of times each of the 15623 states in S4 is visited
in one run of the MH Markov chain for 17 million time steps.

and R′ are known from Steps 1)–4) above:

α(s, s′) = min

{
1,

τs|Tgt(R)|
τs′ |Tgt(R′)|

}
.

Thus, overall, Algorithm 1′ has a run-time of O(N2) + (T −
1)O(1) = O(N2) +O(T).

C. Simulation results

For N = 3 and N = 4, we were able to exhaustively list
out all the tilings in SN by means of a computer search. It
turns out that there are 163 tilings in S3 and 15623 in S4.
For the state space S3, we ran the Markov chain described in
Section III-A for 3.9 million time steps (T = 3.9 × 106 in
Algorithm 1′). Figure 5 plots the number of times each of the
163 states was visited during one run of the Markov chain.
For S4, we ran the Markov chain for 17 million time steps,
and Figure 6 shows the corresponding plot. The plots show
that each state in the state space is visited approximately the
same number of times. This is consistent with what one would
expect the long-term behaviour of an ergodic Markov chain,
whose stationary distribution is uniform on the state space, to
be.

6

It should be said that these plots took a long time to
generate. They were generated by a Matlab code running on
a standard desktop computer. The code for generating the plot
in Figure 5 ran for about a week, whiler that for the plot in
Figure 6 ran for considerably longer. No attempt was made to
optimize either the Matlab code or the choices being made
in the MH algorithm described in this section. We expect
that better implementation as well as cleverer choices of the
local transformations and the proposal transition probabilities
should reduce the runtime needed considerably.

IV. GENERATING A RANDOM TILING WITH FIXED TILE
FREQUENCIES

As discussed in the Introduction, in many practical situa-
tions, one would like to specify at the outset a desired relative
frequency of occurrence of each tile from the tileset, and then
generate a random tiling of an N ×N square in which each
basic tile has the desired relative frequency [2], [5], [8]. In
this section, we briefly sketch how this can be accomplished
using the MH algorithm.

We define the type of a tiling s ∈ SN to be the vector
[a1 a2 a3 a4], where a1, a2, a3 and a4 are the numbers of
1×1, 1×2, 2×1 and 2×2 tiles, respectively, in s. Considering
the area covered by each basic tile, we have

a1 + 2a2 + 2a3 + 4a4 = N2. (6)

Now, suppose that in a tiling, we would like the relative
frequency of occurrence of tiles of size 1×1, 1×2, 2×1 and
2×2 to be p1, p2, p3 and p4, respectively. For this to happen,
the type of the tiling must satisfy pi = ai∑

i ai
for i = 1, 2, 3, 4.

These conditions along with (6) yield the unique solution

ai =
N2pi

p1 + 2p2 + 2p3 + 4p4
, i = 1, 2, 3, 4.

Since the right-hand side above need not be an integer,
some rounding to integer values may be required, keeping
in mind that (6) must be satisfied. This yields a type vector
a = [a1 a2 a3 a4] such that in any tiling of type a, the
individual tiles from the tileset occur with (approximately) the
desired relative frequencies. Thus, what we require is a means
of sampling uniformly from the subset of SN consisting of
tilings of fixed type a. This can be done via the MH algorithm.

Given a type vector a, let us denote by SN (a) the subset
of SN consisting of tilings of type a. We describe here
a set of local moves and corresponding proposal transition
probabilities q(·|·) that, when used in the MH algorithm, will
allow us to sample uniformly at random from a large subset of
(but perhaps not all of) SN (a). Note that there may be other
choices of local moves that yield similar or even better results.
We make some comments on this at the end of this section.

Figure 7 shows the local moves we use on tilings in SN (a).
As was the case with the local moves defined in Figure 4,
the objects and targets of the local moves in Figure 7 are
tile-closed rectangles. Note that these local moves simply
rearrange the tiles in each tile-closed rectangle, thus preserving
the type of the overall tiling.

We set the proposal transition probabilities q(·|·) in a
manner analogous to (4). For s ∈ SN (a), let τas denote the

Fig. 8. An isolated state in S5([1 6 6 0]).

States in S4 of type [6 3 2 0]
0 100 200 300 400 500 600 700 800 900

N
u
m

b
e
r

o
f
v
is

it
s
 t
o
 a

 s
ta

te

800

850

900

950

1000

1050

1100

1150

1200

Fig. 9. Plot of the number of times each of the 992 states in S4([6 3 2 0])
is visited in one run of the MH Markov chain for 1 million time steps.

total number of occurrences in s of the tile-closed rectangles
depicted in Figure 7. Also, let Ma

1(s) denote the set of all
s′ ∈ SN (a) that can be obtained from s using exactly one of
the local moves in Figure 7. With this, we define

q(s′|s) =

{
1
τa
s

if s′ ∈Ma
1(s)

0 otherwise.
(7)

As before, the acceptance probability α(s, s′), for s′ ∈Ma
1(s),

is defined as in (3).
The initialization of the MH algorithm can be done in an

arbitrary fashion. One could, for example, take the initial state
s0 to be a tiling in SN (a) generated by the simple algorithm
described in [5, Section II-A].

One issue with the MH algorithm in this case is that the
concomitant Markov chain on the state space SN (a) need
not be irreducible. Indeed, for certain type vectors a, the
state space SN (a) contains some isolated states that are not
reachable from any other state, as they contain none of the tile-
closed rectangles shown in Figure 7 — one such example is
shown in Figure 8. However, such states are typically only a
small subset of the overall state space SN (a), and the MH
Markov chain traverses most of SN (a). As an illustrative
example, the plot in Figure 9 shows that the MH Markov chain,
when run long enough, visits all the 992 states in S4([6 3 2 0])
roughly the same number of times.

In principle, it is possible to mitigate the problem of isolated
states identified above by expanding the set of local moves to
include, for example, 5×5 tile-closed rectangles as objects and
targets. Indeed, in general, the richer the collection of local
moves, the more effective will be the MH Markov chain’s
exploration of the state space, potentially lowering the mixing

7

Fig. 7. Local moves for tilings of a fixed type.

time of the chain. However, this generally comes at the cost
of making the proposal probability distribution q(·|s) more
complex, which increases the computational complexity of
sampling from this distribution. Thus, the collection of local
moves should be chosen so as to strike a balance between
a faster and more thorough exploration of the state space, on
the one hand, and an increase in the computational complexity
of sampling from the proposal distribution, on the other. Our
choice of local moves, shown in Figure 7, has been made
keeping this balance in mind.

V. CONVERGENCE AND MIXING TIME

We now turn to the question of how long (in terms of the
number of iterations of the main for loop) an MH algorithm
needs to be run in order to guarantee that it will produce
a sample from a distribution close, in a sense that we will
make precise below, to the desired stationary distribution. To
keep our discussion concrete, we will address this question
specifically for Algorithm 1′ described in Section III-A. The
methods we use can also be applied to the MH algorithm in
Section IV, but we do not do so here.

We begin by introducing some notation to be used in this
section. Let P be the transition probability matrix of a time-
homogeneous Markov chain (Xn) with state space S. For
s, s′ ∈ S, we use P (s, s′) to denote the (s, s′)th entry of P ,
namely, the one-step transition probability p(s′|s) = Pr[X1 =
s′ | X0 = s]. Then, for any positive integer n, the (s, s′)th
entry of the matrix Pn, which we denote by Pn(s, s′), is the
n-step transition probability Pr[Xn = s′ | X0 = s]. Thus, the
sth row of Pn, denoted by Pn(s, ·), represents the probability
distribution of Xn given X0 = s.

As is well known from Markov chain theory, an irreducible
and aperiodic Markov chain (Xn) on a finite state space S con-
verges to its (unique) stationary distribution Π = (Π(s))s∈S .
What this convergence precisely means is that if P is the
transition probability matrix of the Markov chain (Xn), then

every row of the matrix Pn converges in total variation
distance to Π: limn→∞ ‖Pn(s, ·)−Π‖TV = 0 for all s ∈ S .
The convergence here is in fact exponentially fast. Indeed,
let r > 0 be such that all entries of P r are strictly positive;
such an r always exists under the irreducible and aperiodic
assumption. Let δ > 0 be such that P r(s, s′) ≥ δΠ(s′) for all
s, s′ ∈ S; since S is finite, such a δ exists. Then (see proof
of [17, Theorem 4.9]), for any integers k ≥ 1 and j ≥ 0,

‖P rk+j(s, ·)−Π‖TV ≤ (1− δ)k. (8)

Precise knowledge of r and the largest possible choice of δ
for that r would allow us to obtain a good estimate of the rate
of convergence to the stationary distribution. In particular, it
would allow us to get an estimate, via (8), of the mixing time,
tmix(ε), of the Markov chain, which for an arbitrarily small
ε > 0 is defined as [17, Section 4.5]

tmix(ε) = min{n : max
s∈S
‖Pn(s, ·)−Π‖TV ≤ ε}. (9)

This definition makes precise the notion of how long the
Markov chain (Xn) must be run so that, irrespective of
the starting state X0, the distribution of Xn is ε-close in
total variation distance to the stationary distribution. Thus, in
Algorithms 1 and 1′, we should set T = tmix(ε), for some
suitably small ε > 0, to be assured that the output XT is
sampled from a distribution close to the stationary distribution
of the MH Markov chain. For a Markov chain satisfying (8), if
we set k =

⌈
log ε

log(1−δ)

⌉
, then we have ‖P rk(s, ·)−Π‖TV ≤ ε,

and hence, tmix(ε) ≤ r
⌈

log ε
log(1−δ)

⌉
.

For the Markov chain associated with Algorithm 1′ and
defined on the state space SN , we can take r = N2, as shown
by the lemma below.

Lemma V.1. Let p(s′|s), α(s, s′) and q(s′|s) be defined by (1),
(3) and (4), respectively. Then, for the transition probability
matrix P = (p(s′|s))s,s′∈SN , all the entries of PN

2

are strictly
positive.

8

Proof: The proof is a refinement of the proof of
Lemma III.1. As in that proof, let s∗ ∈ SN denote the tiling
consisting of 1 × 1 tiles only. We have already shown there
that p(s∗|s∗) > 0, from which we infer that Pn(s∗, s∗) > 0
for all n ≥ 1.

Now, given s, s′ ∈ S, let d and d′ be total number of tiles
in s and s′, respectively, that are not of size 1 × 1. Note
that d, d′ ≤ N2/2, so that d + d′ ≤ N2. The argument
in the proof of Lemma III.1 shows that s can be converted
to s∗ by a sequence of d valid local moves, and s∗ can
be converted to s′ by a sequence of d′ valid local moves.
Thus, P d(s, s∗)P d

′
(s∗, s′) > 0, and hence, PN

2

(s, s′) ≥
P d(s, s∗)PN

2−(d+d′)(s∗, s∗)P d
′
(s∗, s′) > 0.

So, for the Markov chain on SN associated with Algo-
rithm 1′, we may take r = N2 and

δ = min
s,s′

PN
2

(s, s′)

Π(s′)
= |SN |

(
min
s,s′

PN
2

(s, s′)

)
,

since the stationary distribution in this case is the uniform
distribution on SN . With this, as argued above, we obtain the
bound

tmix(ε) ≤ N2

⌈
log ε

log(1− δ)

⌉
.

Unfortunately, it seems to be difficult to derive from this a
good upper bound on the mixing time expressible as a function
of ε and N alone. We therefore look for some alternative
approaches.

Many techniques have been established in the literature for
bounding the mixing time of a Markov chain (see, e.g., [17]).
We attempted to use two techniques that have been previously
applied to MCMC algorithms for tiling problems. One was
the “canonical paths” method developed by Sinclair [18], [19].
Applying this technique to our Markov chain, we could only
obtain an O(N2|SN | log(|SN |/ε)) upper bound on tmix(ε). We
refer the reader to the Master’s thesis of the first author [20,
Section 7.2] for the details of this approach. Given that |SN | ≥
cN

2

for some constant c > 1, we believe that this bound is
overly pessimistic.

We in fact conjecture that the mixing time of the Markov
chain under consideration is poly(N). Our conjecture is based
in part on empirical evidence gathered from our observations
of the running time of Algorithm 1′, and in part on analysis
using a coupling time approach described in [14]. Using this
approach, it was shown in [14, Theorem 4.3] that the mixing
time for the MCMC method for domino tilings described in
Section II is at most 8eN8dln ε−1e. While we were unable to
harness this method to bound the mixing time of the Markov
chain associated with Algorithm 1′, we were able to use it to
analyze a class of Markov chains on SN with a certain non-
uniform stationary distribution. To be a little more precise,
we designed an MH Markov chain on the state space, ŜN , of
N × N tilings composed of three basic tiles only — 1 × 1,
1 × 2 and 2 × 1. The designed stationary distribution was
Πγ(s) = 1

Zγ
γb(s) for s ∈ ŜN , where γ ∈ [0, 1] is a constant,

b(s) is the total number of 1 × 2 and 2 × 1 tiles in s, and
Zγ =

∑
s∈ŜN γ

b(s) is the normalization constant. Observe
that when γ = 1, Πγ is the uniform distribution on ŜN . For

γ ≤ 1/3, we could use the coupling time method from [14]
to show that the mixing time tmix(ε) of the Markov chain is
O(N8 ln(ε−1)). The details of the analysis can be found in
[20, Section 7.3].

VI. CONCLUDING REMARKS

In this paper, we presented MCMC methods, based on
the MH algorithm, for generating tilings nearly uniformly
at random from the set, SN , of all tilings of an N × N
square that use only tiles of sizes 1 × 1, 1 × 2, 2 × 1 and
2 × 2. We also showed how these methods could be adapted
to generate almost uniformly random samples from a subset
of SN consisting of only those tilings in which the four basic
tiles occur with given relative frequencies. The underlying
Markov chains in these algorithms are shown to converge
rapidly (exponentially quickly in N), although we are unable
to pin down the precise rate of convergence or mixing time of
these chains. We leave it as a conjecture that the mixing time
is polynomial in N .

While our focus has largely been on sampling from a
uniform distribution on tilings, it ought to be clear from the
description in Section II that the MH algorithm can be used
to sample from an arbitrary distribution Π on SN . The only
modification to be made in Algorithm 1′ is to the acceptance
probability, which should now follow (2) rather than (3). The
method also carries over easily to tilings of regions other than
squares.

One major drawback of our MCMC algorithms is that
they may be prohibitively expensive from a computational
perspective. To be assured that the MH algorithm produces
a sample from a distribution close to the target distribution,
it should be run for a length of time T that is at least as
large as the mixing time of the associated Markov chain. Also,
note that the samples produced at times T and T + 1 are not
independent — their joint probabilities are governed by the
transition probability matrix of the Markov chain. If we want
almost independent samples, then they must again be spread
apart by a length of time of the order of the mixing time.
While we believe that the mixing time is a polynomial in N ,
it could be a polynomial of relatively large degree, say O(N8)
or higher, which will get unreasonably large even for moderate
values of N , say, N > 10.

Nevertheless, one can still use the MCMC method to add
an extra level of randomization to a tiling that is generated
using some ad-hoc method of low complexity. One could
initialize the MH algorithm with a tiling generated by a simpler
algorithm, such as the one described in [5, Section II-A], and
then run the Markov chain for some reasonable number of
time steps till one gets a tiling with an extra sprinkling of
randomness to suit one’s taste.

REFERENCES

[1] R. Wood, M. Williams, A. Kavcic and J. Miles, “The feasibility of
magnetic recording at 10 Terabits per square inch on conventional
media,” IEEE Trans. Magn., vol. 45, no. 2, pp. 917–923, Feb. 2009.

[2] A. R. Krishnan, R. Radhakrishnan and B. Vasic, “Read channel modeling
for detection in two-dimensional magnetic recording systems,” IEEE
Trans. Magn., vol. 45, no. 10, pp. 3679–3682, Oct. 2009.

9

[3] K. S. Chan, J. J. Miles, E. Hwang, B. V. K. Vijayakumar, J. G. Zhu,
W. C. Lin and R. Negi, “TDMR platform simulations and experiments,”
IEEE Trans. Magn., vol. 45, no. 10, pp. 3837–3843, Oct. 2009.

[4] K. S. Chan, R. Radhakrishnan, K. Eason, M. R. Elidrissi, J. J. Miles,
B. Vasic and A. R. Krishnan, “Channel models and detectors for two-
dimensional magnetic recording,” IEEE Trans. Magn., vol. 46, no. 3,
pp. 804–811, March 2010.

[5] A. Kavcic, X. Huang, B. Vasic, W. Ryan and M. F. Erden, “Channel
modeling and capacity bounds for two-dimensional magnetic recording,”
IEEE Trans. Magn., vol. 46, no. 3, pp. 812–818, March 2010.

[6] A. R. Iyengar, P. H. Siegel, and J. K. Wolf, “Write channel model for
bit-patterned media recording,” IEEE Trans. Magn., vol. 47, no. 1, pp.
35–45, Jan. 2011.

[7] S. M. Khatami and B. Vasic, “Generalized belief propagation detector
for TDMR microcell model,” IEEE Trans. Magn., vol. 49, no. 7, pp.
3699–3702, July 2013.

[8] L. Pan, W.E. Ryan, R. Wood and B. Vasic, “Coding and detection for
rectangular-grain TDMR models,” IEEE Trans. Magn., vol. 47, no. 6,
pp. 1705–1711, June 2011.

[9] M. Khatami, V. Ravanmehr and B. Vasic, “GBP-based detection and
symmetric information rate for rectangular-grain TDMR model,” in
Proc. 2014 IEEE Int. Symp. Inf. Theory (ISIT 2014), Honolulu, Hawaii,
USA, June 29–July 4, 2014, pp. 1618–1622.

[10] P. G. Hoel, S. C. Port and C. J. Stone, Introduction to Stochastic
Processes, Houghton-Mifflin Company, Boston, 1972.

[11] Handbook of Markov Chain Monte Carlo, S. Brooks, A. Gelman,
G. L. Jones and X.-L. Meng (Eds.), Chapman and Hall/CRC Press,
2011.

[12] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and
E. Teller, “Equations of state calculations by fast computing machines,”
J. Chemical Physics, vol. 21, no. 6, pp. 1087–1092, 1953.

[13] W. K. Hastings, “Monte Carlo sampling methods using Markov chains
and their applications,” Biometrika, vol. 57, no. 1, pp. 97–109, 1970.

[14] M. Luby, D. Randall and A. Sinclair, “Markov chain algorithms for
planar lattice structures,” SIAM J. Computing, vol. 31, pp. 167–192,
2001.

[15] C. Kenyon, D. Randall and A. Sinclair, “Approximating the number
of monomer-dimer coverings of a lattice,” J. Stat. Phys., vol. 83, pp.
637–659, 1996.

[16] P.W. Kasteleyn, “The statistics of dimers on a lattice. I. The number of
dimer arrangements on a quadratic lattice,” Physica, vol. 27, pp. 1209–
1225, 1961.

[17] D.A. Levin, Y. Peres and E.L. Wilmer, Markov Chains and Mixing
Times, American Mathematical Society, 2009.

[18] A. J. Sinclair, Randomised Algorithms for Counting and Generating
Combinatorial Structures, PhD Thesis CST-58-88, Dept. Computer
Science, University of Edinburgh, Nov. 1988.

[19] A. J. Sinclair, “Improved bounds for mixing rates of Markov chains and
multicommodity flow,” Combinatorics, Probability and Computing, vol.
1, pp. 351–370, 1992.

[20] Abhinav Das N. V., Sampling from a Target Probability Distribution
on a Two Dimensional Magnetic Recording Medium, M. E. Project
Report, Dept. Electrical Communication Engineering, Indian Institute
of Science, June 2015.

Abhinav Das N. V. received the B. Tech. degree in
Electronics and Communication Engineering from
the Govt. College of Engineering, Kannur, in 2011,
and the M. Tech. degree in Telecommunication
Engineering from the Indian Institute of Science,
Bangalore in 2015. In December 2015, he joined
the Central Research Laboratory, Bharat Electronics
Ltd., Bangalore, as a Member-Research Staff. His
research interests lie in the areas of communication
networks and coding theory.

Navin Kashyap (S’97-M’02-SM’07) received the B.Tech. degree in Electrical
Engineering from the Indian Institute of Technology, Bombay, in 1995, the
M.S. degree in Electrical Engineering from the University of Missouri-Rolla in
1997, and the M.S. degree in Mathematics and the Ph.D. degree in Electrical
Engineering from the University of Michigan, Ann Arbor, in 2001. From
November 2001 to November 2003, he was a postdoctoral research associate
at the University of California, San Diego. From 2004 to 2010, he was at the
Department of Mathematics and Statistics at Queen’s University, Kingston,
Ontario, first as an Assistant Professor, then as an Associate Professor.
In January 2011, he joined the Department of Electrical Communication
Engineering at the Indian Institute of Science as an Associate Professor.
His research interests lie primarily in the application of combinatorial and
probabilistic methods in information and coding theory. Prof. Kashyap served
on the editorial board of the IEEE Transactions on Information Theory during
the period 2009–2014.

