EQUALITIES AMONG CAPACITIES OF (D, K)-CONSTRAINED
SYSTEMS*
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Abstract. In this paper, we consider the problem of determining when the capacities of distinct
(d, k)-constrained systems can be equal. A (d, k)-constrained system consists of binary sequences
which have at least d zeros and at most k zeros between any two successive ones. If we let C(d, k)
denote the capacity of a (d, k)-constrained system, then it is known that C(d,2d) = C(d+1,3d+ 1),
and C(d,2d + 1) = C(d + 1,00). Repeated application of these two identities also yields the chain
of equalities C(1,2) = C(2,4) = C(3,7) = C(4,00). We show that these are the only equalities
possible among the capacities of (d, k)-constrained systems. In the process, we also provide useful
factorizations of the characteristic polynomials for these constraints.
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1. Introduction. Given non-negative integers d, k, with d < k, we say that a
binary sequence is (d, k)-constrained if every run of zeros has length at most k& and
any two successive ones are separated by a run of zeros of length at least d. A (d, k)-
constrained system is defined to be the set of all finite-length (d, k)-constrained binary
sequences. The above definition can be extended to the case k¥ = oo by not imposing
an upper bound on the lengths of zero-runs. In other words, a binary sequence is said
to be (d, 00)-constrained if any two successive ones are separated by at least d zeros,
and a (d, 00)-constrained system is defined to be the set of all finite-length (d, 0o)-
constrained binary sequences. From now on, when we refer to (d, k)-constrained
systems, we shall also allow k to be co.

Let S(d, k) be a (d, k)-constrained system, and let g4 1(n) be the number of length-
n sequences in S(d, k). The Shannon capacity, or simply capacity, of S(d, k) is defined
as

. 1
C(d, k) = lim ~1og, aae(n) 1)

It is well-known (see e.g., [2]) that C(d, k) = log, pa,x, where p4  is the unique largest-
magnitude root of a certain polynomial, xq,k(2), called the characteristic polynomial
of the constraint. When k is finite, xq,x(2) takes the form

k—d
Xap(z) =251 =Y 2 (2)
j=0

and when k = o0,
Xdyoo(2) = 2%t — 2% -1 (3)

pa,k is always real and lies in the interval (1,2], so that 0 < C(d,k) < 1. In fact,
C(d,k) =1 if and only if (d, k) = (0, 00).
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Interest in constrained systems and their capacities dates back to the work of
Shannon [8]. In the mathematical literature, constrained systems are the subject of
study of symbolic dynamics (¢f. [3]), where the capacity of a constrained system is
referred to as its entropy. (d, k)-constrained systems in particular have applications
in magnetic and optical recording systems [5].

It is easily verified that certain pairs of (d, k)-constrained systems have the same
capacity. For example, we have the identities

C(d,2d) = C(d +1,3d + 1) (4)
C(d,2d +1) = C(d + 1, 0) (5)

true for all d > 0. The first equality is a consequence of the fact that xg+1,34+1(2) =
(z4%1 + 1) xa24(2), since all the roots of z¢*! + 1 lie on the unit circle, so that

Pd,2d = Pd+1,34+1- Similarly, the factorization xq,24+1(2) = Xd+1,00(2) Z?:() 2! yields
(5), since Z;'i:o 2t = (24! —1)/(2 — 1) has all its roots on the unit circle as well.
Repeatedly applying the two identities above also yields the chain of equalities

C(1,2) = C(2,4) = C(3,7) = C(4, o) 6)

It is the aim of this paper to show that (4), (5) and (6) capture all the equalities
possible among the capacities of (d, k)-constrained systems. More precisely, we shall
prove the following theorem:

THEOREM 1. If C(d, k) = C(d, k) for (d, k) # (d, k), then one of the following
holds:
(i) {(d, k), (d, k)} = {(£,2€0), (£ +1,3C+ 1)} for some integer £ >0,
(i) {(d, k), (d, k)} = {(£,2¢+ 1), (£+1,00)} for some integer £ > 0,
(iw3) (d, k), (d, k) are among the pairs listed in (6).

The key to our proof of this result is an explicit factorization we obtain for the
characteristic polynomials of the (d, k)-constraints. We show that xg4(z) can be
factored as

Xdk(2) = ®ar(2) Tar(2)

where @, 1(2), Uar(2) € Z[z], ¥q1(2) is irreducible (over Z), and ®4 1 (2) either is 1 or
has all its roots on the unit circle. We can, in fact, determine an explicit form for the
polynomials ®4.(2), from which we can deduce an expression for ¥, ;(z) for certain
(d, k) pairs. An immediate consequence of this result is that C(d, k) = C(ci, lAc) if and
only if ¥gx(2) = ¥;;(2). Theorem 1 is then obtained by identifying all the cases
where we can have Wq(2) = ¥;;(2). This last step relies heavily on the explicit
form we derive for the & and ¥ polynomials.

The rest of the paper is organized as follows. In Section 2, we present the factor-
ization of x4, (2), which we use in Section 3 to prove Theorem 1.

2. Factorization of x4 ;(z). We shall first consider the factorization of x4, 00 (%),
as it follows directly from existing results. Throughout this paper, we shall only be
concerned with polynomials with integer coefficients. Any such polynomial is called
reducible if it can be factored over the integers, and irreducible otherwise.

If F(z) € Z|[z] is a polynomial of degree n, then F*(z) = 2"F(1/z) is called the
reciprocal polynomial of F(z). Thus, for example, if F(z) = 25 — 42* + 62° — 422 — 1,
then F*(2) = 1 — 4z + 622 — 42% — 25 is its reciprocal polynomial.
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Observe that xj ., (2) = 1 -z — 2%t!, so that when d is odd, —xj ,(—2) =
2% — 2z —1, and when d is even, X}  (—z) = 2*T + z+ 1. The following result deals
with the irreducibility of the polynomials z™ — z — 1 and 2™ + z + 1.

THEOREM 2 ([7, Theorem 1]). (i) 2™ — z — 1 is irreducible for all n.

(i5) For n > 2, 2™ + z + 1 is irreducible iff n Z 2 (mod 3). If n =2 (mod 3), then
22+ 2+ 1 is a factor and the other factor is irreducible.

Thus, by part (i) of the above theorem, for odd d, —xj; ., (—#) is irreducible, and
hence, s0 iS X4,00(2). When d is even, it is either 0, 2 or 4 ( mod 6). In the first
two cases, d + 1 # 2 (mod 3), and so by part (ii) of the above result, xj ,(—2) is
irreducible, and therefore, so is X4,00(2). When d = 4 (mod 6), we have d + 1 = 2
(mod 3), and applying part (ii) of the theorem again, we see that xj ., (—2) = (2% +
z + 1)p(z) for some irreducible p(z). Therefore, in this case, we have xg00(2) =
(2% — 24+ 1)Uy oo (2), with 4 oo (2) = p*(—2) being irreducible. In fact, one can easily
verify by means of an inductive argument that when d = 4 (mod 6), then

(d+2)/6
‘I’d,oo(z) =3 _ -1 + Z (z6l—3 _ z6!—5 _ z6l—6 + z6l—8) (7)
=2

We summarize these results in the following theorem.

THEOREM 3. For d # 4 (mod 6), X4,00(2) is irreducible. For d = 4 (mod 6),
Xd,00(2) = (22 =2+1) ¥4, o0 (2), with ¥y oo (2) irreducible and of the form given by (7).

When £ is finite, the factorization we obtain for x4, (2) is based on a technique
originally due to Ljunggren [4], which was further developed by Filaseta [1]. We
briefly describe this technique here. .

We define F(z) € Z[z] to be self-reciprocal if F(2) = £F*(z). Note that F(z) is
self-reciprocal if and only if A being a root of F(z) implies that A~! is also a root. An
example of a polynomial that is self-reciprocal is 2° — 1023 + 1022 — 1.

Now, any F(z) € Z[z] can always be written as F(z) = ®(z)¥(z), where ®(z)
is the product of all the irreducible self-reciprocal factors of F'(z) that have positive
leading coefficients. If F'(z) has no irreducible self-reciprocal factors, then we take
®(z) =1 and ¥(2) = F(z). We call ®(2) the reciprocal part of F(z), while ¥(z) is
called the non-reciprocal part of F(z). It is worth pointing out that this definition
does not preclude ¥(z) from being self-reciprocal itself. For example, F(z) = 25 +
224244323 +2242+1 = (22 +22+1)(2° + 2 +1), and both the factors are irreducible,
but not self-reciprocal. Thus, the non-reciprocal part of F'(2) is F(z) itself, which is a
self-reciprocal polynomial. On the other hand, the reciprocal part of any polynomial
is always self-reciprocal.

Note that if we take F'(2) = X4,00(2), then Theorem 3 shows that the reciprocal
part of F(z) is 1 when d # 4 (mod 6), and is 22 — z + 1 when d = 4 (mod 6). Thus,
the non-reciprocal part of F(z) is F(z) itself in the former case, and is ¥y .o(2) as
given by (7) in the latter case. Observe that in either case, the non-reciprocal part of
F(z) is irreducible.

The following result [1, Lemma 1] tells us precisely when the non-reciprocal part
of a polynomial is reducible.

LEMMA 4 (Ljunggren-Filaseta Lemma). The non-reciprocal part of F(z) € Z[z]
is reducible if and only if there exists G(z) different from +F(z) and £F*(z) such
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that G(2)G*(z) = F(2)F*(2).

The “only if” part of this lemma is sufficient for our purposes. To verify this part,
note that if the non-reciprocal part, ¥(z), is reducible, then ¥(z) = A(z)B(z) for some
non-self-reciprocal polynomials A(z) and B(z). Setting G(z) = A(z)B*(2)®(z), where
®(2) is the reciprocal part of F(z), we see that G(z) has the properties stated in the
lemma.

We shall use the Ljunggren-Filaseta lemma to prove the irreducibility of the non-
reciprocal part of xq4,(2) (k < 00). Once this is done, we shall study the reciprocal
part of the polynomial. Recall that xqr(z) is a polynomial of the form f(z) =
2" —zm —zm=t —  — 2z —1 for some n >m > 0. It is well-known (see e.g. [9])
that when n = m + 1, the polynomial f(z) is itself irreducible. So, we need only
consider the case when n > m + 2. We shall show that if g(z) € Z[z] is a polynomial
such that g(z)g*(z) = f(2)f*(z), then g(z) = £f(z) or £f*(z). The “only if” part
of the Ljunggren-Filaseta lemma then shows that the non-reciprocal part of f(z) is
irreducible.

So, let g(z) = "1, gi2® be a polynomial in Z[z] such that g(2)g*(2) = f(2)f*(2).
Note that g(z) must itself be a polynomial of degree n. Without loss of generality, we
may assume that g, > 0 (else, replace g(z) by —g(z)).

LEMMA 5. The coefficients g; of g(z) must satisfy the following equations:

gn=1,g0=-1 (8)
91 — 9Gn—1 = -1 (9)
D gigii=m—1 (10)

n—1
> gi=m (11)
i=1

Proof: Let f(z) = Y1, fiz', sothat f, =1, fi=0form+1<i<n-—1,and
fi=—=1lfor 0<i<m.

Equating the constant coefficients of f(z)f*(z) and g(z)g*(z), we see that gog, =
—1. Since go, 9, € Z and g,, > 0, we must have g, = 1,90 = —1.

(9) is obtained by equating the coefficients of z in f(2)f*(z) and g(z)g*(z). The
coefficient of z in ¢g(2)g*(2) is gogn—1 + 919n = g1 — gn—1. Now, note that since n >
m+2, we have f,_1 = 0. Hence, the coefficient of z in f(z) f*(2) is fofn—1+f1fn = —1.

To get (10), we equate the coefficients of z"~1. In g(z)g*(z), this coefficient is
1o 9igi+1, while in £(2)£*(2), it is 10 fifirr = Yivg fifisa, since fiy1 = 0 for
m <i<n—2,and f; = 0fori =n—1. Butin therange 0 <i < m—1, f; = fi31 = —1,
which shows that Z?:Ol fifiz1 = m. Thus, we have Z?:_()l gigi+1 = m, which reduces

o (10) upon using (8) and (9).

Finally, the coefficient of 2™ in g(2)g*(z) is > ., 97, and correspondingly, in
f(2)f*() is Y0 o f2 = m+2. Hence, Y. g7 = m+2, and since g3 = g2 = 1, we
see that 377" g7 = m, which proves (11). B

We use this lemma to prove the following proposition.
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PROPOSITION 6. The non-reciprocal part of f(2) = 2" — 2™ —2m"1— ... —2—1,
n >m > 0, is irreducible.

Proof: As noted above, we need only prove the result for n > m + 2. Lemma 5
(which applies for n > m + 2) shows that any g(z) = > .-, giz* such that g(z)g*(z) =
f(2)f*(2) and g, > 0 must satisfy (8)—(11). Now, observe that

n—2

n—2 n—2 n—2
Dgi—gin)’ =D G+ D 95— 2D 9%t
i=1 i=1 i=1

i=1
n—1 n—2
:229? —-9i =94 _229i9i+1
i=1 i=1
=2m—gi —gp1 —2(m-1)

with the last equality using (10) and (11). Thus, we see that

n—2

G+ 1+ Y (9 —gir1) =2 (12)

i=1

Since all the g;’s are integers, this equation is satisified if and only if exactly n — 2 of
the quantities g1, gn—1, 9: — gix1 ({ = 1,2,...,n — 2) are 0, and the remaining two
non-zero quantities take values from the set {—1,1}. In particular, g € {—1,0,1}.
We consider each of the three choices for g; in turn.

If g1 = —1, then (9) shows that g, 1 = 0. Hence, there exists a k € {1,2,...,n—
2} such that g, — gr+1 = 1 and g; — gi41 = 0fori =1,2,...,n — 2,7 # k. Now,
if g — gr+1 = 1, then we must have g; = —1 for 1 < i < k, and g; = —2 for
k+1 <1 <n—1, which contradicts g,—1 = 0. Hence, g; — gr+1 must be —1, in which
case g; = —1for 1 <i<k,and g; =0for k+1 <4 <n—1. Using (11), we see that
k = m, which forces g(z) to be 2™ — 2™ — 2™l — . — 2 —1 = f(2).

If g4 = 0, then (9) yields g,—1 = 1. As above, we must have gy — gx+1 = £1 for
some k € {1,2,...,n—2},and g; —gi+1 =0for i =1,2,...,n — 2, i # k. This time,
choosing gr — gr+1 to be 1 leads to g,—1 = —1, which contradicts g,—1 = 1. Thus,
gk—9gk+1 = —1,sothat g; = 0for1 <i < k,and g; = 1for k+1 < i < n—1. From (11),
we now get k+1 = n—m. Hence, g(z) must be 2"+ 2" "1 +...+ 27" —1 = —f*(2).

If gy = 1, then (9) implies that g,—1 = 2, which means that (12) cannot be
satisfied. So, g; cannot be 1.

Thus, we have shown that if g(z) is such that g(2)g*(z) = f(2)f*(z) and g, > 0,
then g(2) = f(z) or g(z) = —f*(z). For any g(z) with g, < 0, we can apply the above
reasoning to —g(z). This proves that if g(z) € Z[z]is such that g(2)g*(2) = f(2)f*(z2),
then g(z) = £f(z) or £f*(z). The proposition now follows from the Ljunggren-
Filaseta lemma. H

Having shown the irreducibility of the non-reciprocal part of f(z) = 2™ — 2™ —
2™~! — .. —2z—1, we move on to analyzing the reciprocal part, ¢(z), of f(z). Our
first goal is to show that all the roots of ¢(z) are in fact certain roots of unity, which
will help us in determining the exact form of ¢(z).

LEMMA 7. If X is a root of ¢(2), then X is a root of either Yo' z' or Y741 i,
In other words, X is either an mth or an (m + 2)th root of unity, distinct from 1.
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Proof: Let X\ be a root of ¢(z). Note that A # 0 because 0 cannot be a root of
f(2), as f(0) = —1. Since ¢(z) is a self-reciprocal polynomial, A~! is also a root of
#(z). Since ¢(z) is a factor of f(z), we have f(\) = f(A~!) = 0. This implies that

At =AM mh XA —-1=0 (13)
A AT AT L em 1 — (14)

Equating the left-hand sides of these two equations, cancelling out the common terms
and re-arranging, we obtain

A N2 AT (AT AT N =0
Dividing through by A # 0, we see that the above equation simplifies to
Al a2 41) =0

Hence, A is a root of either z"~™~1 + 1 or > "/ Y21, However, if \ is a root

of z»~™=1 + 1, then \»™~! = —1. Now, note that (14) can be re-written as
An—m-l(m+l +)\m+ ...+ X)—1 =0, which reduces to — A"t - ™ — . —X—-1=0,
since A" ™~! = _1. Hence if X is a root of 2» ™! + 1, then it is also a root of

1 i .
St 2%, which proves the lemma. B

We can actually say something more about the roots of ¢(z), as we shall see in
the next few lemmas.

LEMMA 8. If X is a root of ¢(z) that is also a root of > i~ zZ then X is in fact
a root of Zg:_& 2%, where ¢ = ged(m,n).

Proof: Suppose that A is as in the hypothesis of the lemma. Since ¢(A) = 0, we
also have f(A) =0, which means that

AT—3 M=o (15)

But since A is a root of Y"1 ' 2%, we have > ' A = 0 and moreover, \™ = 1. Hence,
(15) reduces to )\" = 1. Hence, X is also an nth root of unity distinct from 1, i.e., A

is a root of 37 z'. Therefore, A is a root of gcd( HPPLE DA z') S A
where ¢ = ged(m,n). B

When A is an (m + 2)th root of unity, things get a little more complicated.

LEMMA 9. If X is a root of ¢(z) that is also a root of Zm_'gl 2, then
(i) m is even,
(i) X is a root of 2" + 1, where r = ged(R +1,n 4+ 1), and
(iii) (n +1)/r is odd.

Proof: Let A be as in the hypothesis of the lemma. Again, the fact that f(\) =
leads to (15). This time, since A # 1is an (m+2)th root of unity, we have Zm+1 PUES 0
which implies that — Em: At =AM+l = 1/) using A™*2 = 1. Therefore, (15) reduces
to A" +1/X = 0 or equivalently, \"+1 = —1.
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Now, since A is a root of E"fgl 2%, it is of the form A = e =+ for some k €

{1,2,...,m+1}. Therefore, —1 = A"*! = 2wz (1) Hence, = (n +1)=2j+1
for some integer j, which upon re-arrangement becomes

2K)(n+1)=(2j+1)(m+2) (16)

27—

Since the left-hand side of the above equation is even, so is the right-hand side. This
means that m must be even, since 2j + 1 is odd. This proves (i).
Re-arranging (16), we get k-2t = 2j + 1. Defining r to be ged(F + 1,n + 1),

m/2+1
we let m' = (3 + )/r and n = (n + 1)/r. Thus, m',n' are integers such that
ged(m/,n') =1, and m/2+1 = F Therefore, we have
n' )
ko =2j+1 (17)

Since ged(m',n') = 1, the fact that kT’;—I, is an integer implies that m/'|k. Writing
k = Im' and plugging into (17), we get In' = 2j + 1. Therefore, n'|(2j + 1) which
shows that n' is odd, thus proving (iii). Note that as l |(2] + 1), is also odd.

Finally, A\ = E2TIRTE = ¢Mim/sH = TirRT = emir | Since | is odd, A" = —1, which
shows that A is a root of 2" + 1, thus completlng the proof of the lemma. B

Now from Lemmas 7, 8 and 9, we see that every root of ¢(z) is also a root of
(Zz o 29)(z" +1). In fact, for odd m, Lemma 9 (i) shows that no root of ¢(z) can be a

root of 2" + 1, so that every root of ¢(z) is actually a root of Zz o 2. Now, if we can
show that ¢(z) has no repeated roots, it immediately follows that ¢(z) is a factor of

o ! 21 for odd m, and of >4 _0 2%)(2"+1) for even m. We proceed to show this next.
LEMMA 10. ¢(z) has no repeated roots.

Proof: Suppose that X is a repeated root of ¢(z). Note that |A| = 1 since any
root of ¢(z) is some root of unity. Define g(2) = (z —1)f(z) = 2™+t — 2 — zm+1 41,
If X is a repeated root of ¢(z), then it must be a repeated root of g(z) as well. Hence,
g(A) = ¢'(A) = 0, which implies that

AL A At 41 =0 (18)
(n+ A" —nA" ! — (m+1)A™ =0 (19)

Multiplying (18) by (n + 1) and subtracting the result from A times (19), we get
Ak (n—m)A™ =n 41 (20)
But, this leads to a contradiction because
n+1=A"+m-—mAN" T <N"+m-—m)N" =1+n-—m<n,

with the last inequality arising from the fact that m > 0. This contradiction proves
the lemma. W

As observed prior to the statement of Lemma 10, we can now conclude that ¢(2)
is a factor of 377, 2% for odd m, and of (£%=, 2¥)(2" + 1) for even m.
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In fact, for odd m, we can show that ¢(z) = Eg:_ol z%. Since we already know
that ¢(2)|(32%Z, #7) in this case, we only need to show that (3292, 2)|4(2). Tt actu-
ally suffices to show that (Zf;ol 2%)|f(z). This is because any factor, irreducible or
otherwise, of Z;’:—g 2% is always self-reciprocal (recall that ¢(z) is the product of all
irreducible self-reciprocal factors of f(z)): if 7(2) is a factor of Z;’:—& zt and A is a
root of m(2), then so is its complex conjugate, A = A~!.

So, to show that (E;I:_Ol 2Y)|f(2), we write n = n'q, m = m/q, so that

mq
fe) =1 -y
=0
m/qg—1
=" _ yma _ Z 2t
i=0

qg—1 n'— n'—
:< ﬂ T et (1)

Thus, we have proved that (37— 2%)|f(z), which implies that ¢(z) = 3%, z. Note
that the factorization in (21) is true for any m and n, not just for odd m. However,
odd m ensures that Zg;l 2z is the reciprocal part of f(z) and the other factor is the
non-reciprocal part.

The above argument, in conjunction with Proposition 6, proves the following
theorem.

THEOREM 11. Let f(z) = 2"=) 1" 2", n >m > 0, m odd, and let ¢ = gcd(m,n).

— . r_1 n_q
Then, f(z) = (E;’:& z‘) P(z), with Y(2) = S m 2491 =32 7 2! irreducible.
q

In particular, for odd m, f(z) is irreducible if and only if gcd(m,n) = 1.

We next tackle the case when m is even, which is a little less clean. The first
observation to be made here is that when (n + 1)/r is also even, where r = ged(F +
1,n + 1), then it follows from Lemma 9 (iii) that ¢(z) cannot share any roots with
St 21 So, it must share all its roots with Y.%_; 2%, ¢ being ged(m,n) as above,
implying that ¢(z)] E?:_(} zt. So, applying the argument given prior to the statement
of Theorem 11, we see that in this case as well, we have f(z) = < F zi) »(2),

with ¢(z) irreducible and of the form stated in the theorem. This situation holds,
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for example, when n is odd and 4|m, since then % + 1 is odd, and so is r because
r|(%% + 1), leading to the conclusion that (n + 1)/r is even.

So, we are left with the case when m is even, but (n + 1)/r is odd. This is dealt
with in the following proposition.

PROPOSITION 12. When m is even and (n + 1)/r is odd, then ¢(z) is the least
common multiple (lem) of "7, 0 2t and 2" + 1.

Proof: From Lemmas 7, 8 and 9, we know that ¢(z) is a factor of ¢1(2)¢a(z2),
where we have defined ¢1(z) = 2" + 1 and ¢2(2) = Ez o 2% In fact, as ¢(z) has

no repeated roots, it must be a factor of % = lem(¢y(2), #2(2)), since
dividing by ged(é1(z2), ¢2(z)) takes out some roots common to ¢;(z) and ¢o(2).

So, we need to show the converse, i.e., that lem(¢1(2), ¢2(2)) is a factor of ¢(z).
Equivalently, we need to show that ¢1(2)|¢(2) and ¢=2(2)|#(2). Recalling that ¢(z)
is the product of all the irreducible self-reciprocal factors of f(z), it suffices to show
that ¢1(2)|f(2) and ¢2(z)|f(2). This is because any factor, irreducible or otherwise, of
either ¢ (z) or ¢a(2) is self-reciprocal. Indeed, if 7(z) is a factor of either polynomial
and X is a root of 7(z), then so is its complex conjugate X. But as ), being a root
of ¢1(2) or ¢o(2), lies on the unit circle, we have A = A~!, implying that 7(2) is
self-reciprocal.

We have already seen (equation (21)) that ¢2(z)|f(z). To prove that ¢1(2)|f(z),
we shall show that f(A) = 0 for any root A of ¢ (z), which is sufficient because ¢;(z)
has no repeated roots. Since A ¢ {0, 1}, it is enough to show that A(A—1)f(A\) =0, i.e.,
A2 AmHL_\m+2 4 ) = 0. Now, An+L = (Ar)"HD/m = () (mED/T = g as (n4 1) /r
is odd. Moreover, defining m' = (% + 1)/r, we have A2 = (Ar)2m’ = (—1)2ml =1
Hence, \"+2 — \ntl — \m+2 4 N = )\ — (=1) =1+ A =0, as desired. H

The next lemma explicitly determines the lcm of Z 0 Zz' and 2" + 1.

LemMmA 13. If q is even, then

lem( Zz 2" +1) =7 _:_11 Zzi = (i(—z)’) (iz’)

=0 =0 =0
Otherwise,
qg—1 qg—1
lcm(z 2527+ 1)=0"+1)) 2
i=0 i=0

Proof: Let ¢1(z) = 2"+ 1 and ¢2(2) = E;I;(} 2%, Since ged(¢y, ¢2) -lem(y, ¢o) =
¢1(2)¢=2(2), the lemma is proved once we show that ged(¢d1, ¢2) is z + 1 if ¢ is even,
and 1 otherwise.

We first show that if ged(é1, ¢2) # 1, then ¢ is even, and ged(dr, ¢2) = z + 1.
Suppose that m(z) is a non-trivial factor of both ¢(z) and ¢»(z), so that there exists
a A such that ¢1()\) = ¢2()\) = 0. Such a A must be of the form \ = 2™ 4 for some
ke {1,2,...,q — 1}, and must satisfy A" = —1. Hence, 2 — —1, which means
that 2k£ must be an odd integer.
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Now, as g|n and r|(n+1), ged(g,r) = 1. So, for 2k£ to be an integer, 2k must be
a multiple of q. Let 2k = ¢l, so that 2kZ = [r. Thus, Ir is an odd integer, which shows
that r and [ are both odd. Furthermore, since 2k = ¢l, the fact that [ is odd implies
that ¢ is even. In fact, this also forces A to be —1, because A = 2™y = emil — -1,
since [ is odd.

Thus, if 7(2) is a non-trivial factor of both ¢ (2) and ¢2(z), then A = —1 is the
only root that 7(z) can have. Since neither ¢, (z) nor ¢»(z) has repeated roots, —1
must be a simple root of 7w(z), which shows that 7(z) = z + 1. We have thus shown
that if gcd(¢1, ¢2) is non-trivial, then ¢ is even and ged(é1, ¢2) = 2 + 1.

It only remains to show that if ¢ is even, then gcd($1,¢2) = z + 1. Note that
if ¢ = ged(m,n) is even, then so is n. Therefore, n + 1 is odd, and since r|(n + 1),
so is 7. But, for even ¢ and odd r, it is clear that ¢1(—1) = ¢2(—1) = 0. Hence,
(z + 1)| ged(¢y, ¢2), meaning that ged(dy, o) is non-trivial. But as we have already
shown, this implies that gcd(d1,¢2) =2+ 1. B

We compile all the results proved above for the case when m is even in the fol-
lowing theorem.

THEOREM 14. Let f(z) = 2" — Y " 2, n > m > 0, m even, and let ¢ =
ged(m,n), r = ged( +1,n+1), n' = (n+1)/r. Then, f(z) = ¢(2)y¥(z), where 1(z)
is irreducible and

E;’;é zt if n' is even
#(z) = (E::_ol(—z)z) (23;01 z’) if q is even
(2" +1) 23;01 2t otherwise.

We would like to remark that when ¢ is even, n' = (n 4+ 1)/r is odd, so that the
statement of the theorem is indeed consistent.

At this stage, it is worth pointing out that the results of Theorems 11 and 14 can
be partially obtained from results in the existing literature, specifically [4] and [6].
Observe that, as noted in the proof of Lemma 10, we may define g(z) = (z —1)f(z) =
2™l — 2 — zm+1 4 1. Now, Ljunggren [4] considered the factorization of polynomials
of the form ¢(z) = 2™ £ 2™ + 2P + 1 with n > m > p > 0, and claimed to show that
all such polynomials can be factored as g(x) = ¢(z)y(x), where ¢(z) is self-reciprocal
and has all its zeros on the unit circle, and 1 (x) is either 1 or a non self-reciprocal
irreducible polynomial. However, there was a minor error in Ljunggren’s work, which
was subsequently corrected by Mills [6]. Mills’ work shows that Ljunggren’s claim is in
fact true for any polynomial g(z) as above. Since m+1 > 2, g(z) is not self-reciprocal
and hence, must have a non-trivial non-reciprocal part ¥(z). Thus, these results show
that g(z), and hence f(z), can be written as the product of a self-reciprocal polynomial
having all its roots on the unit circle and a non-trivial, irreducible, non self-reciprocal
polynomial. Of course, these results do not go so far as to provide the specific forms
of the reciprocal and non-reciprocal parts of f(z) that we have derived above. So, in
the interest of keeping our paper self-contained, we have chosen to include complete
proofs of the aforementioned theorems.

3. Identifying Equalities Among (d, k) Capacities. We shall use the factor-
ization obtained in the previous section for the characteristic polynomials of (d, k) con-
straints to determine all possible equalities among the capacities of such constraints.
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We begin by showing that this problem is equivalent to the one of determining when
the non-reciprocal parts of the characteristic polynomials of two such constraints can
be equal. Throughout this section, we consider (d, k) pairs such that 0 < d < k < oo,
and ®41(2) and ¥4 4(2) will be used to denote the reciprocal and non-reciprocal
parts, respectively, of the characteristic polynomial x4 x(2). Also, given polynomials
f(2),9(2) we shall use f(z) = g(z) to denote that the two polynomials are identical.

TueorEM 15. C(d, k) = C(d, k) if and only if Uq(2) = ¥ ;;(2).

Proof: We shall show that pgx = p;; if and only if ¥q(2) = ¥;;(2), the p's
being the largest roots of their respective characteristic polynomials.

Observe first that since the reciprocal parts of the characteristic polynomials have
all their roots on the unit circle, and the p’s are strictly greater than 1, the p’s must
be roots of the non-reciprocal parts. So, if ¥q,x(2) = ¥ ;(2), then their largest roots
must be identical, i.e., pgr = Pii-

Conversely, suppose that pgr = p ik Since ¥4 1(2) is irreducible and has pq 1, as
a root, it must be the minimal polynomial (over Z) of pq,. Similarly, ¥;;(z) is the
minimal polynomial of p i Hence, by the uniqueness of the minimal polynomial of
an algebraic integer, pa; = p; j, implies that ¥qx(2) = ¥;;(2). B

With this theorem in hand, we can begin our investigation of equalities among the
capacities of (d, k)-constrained systems. We shall first consider the case when at least
one of the (d, k) constraints has k = co. Observe that since ¥4 ., (2) is either x4,00(2)
itself or of the form given in (7), we can have C(d,00) = C(d, o), or equivalently,
Vioo(2) =" &’oo(z), if and only if d = d. So, we need only concern ourselves with the
situation when C(d, 00) = C(d, k) with k finite.

At this point, we shall find it convenient to introduce some definitions.

DEFINITION 16. A polynomial f(z) = 2" — Y 1" 2", n > m > 0, is defined as
being of
e Type I if its reciprocal part, ¢(2), is of the form E?il 2%, with ¢ > 1 odd;

e Type IT if ¢(z) is of the form (2" + 1) Zg;& 2%, with g > 1 odd, r > 1; and
e Type III if ¢(2) is of the form (E;&(—z)") (Z;’;& z"), with ¢ > 2 even,
and r > 3 odd.

Theorems 11 and 14 show that any such f(2) is always of Type I, II or III, with
q = ged(m,n) and r = ged( + 1,n + 1). These theorems can be used to determine
exactly when f(z) is of a particular type. For example, f(z) is of Type I precisely
when one of the following three conditions holds: (i) m is odd, (ii) m and (n +1)/r
are even, and (iii) m and n are even, and r = 1. Note that when f(2) is of Type I, its

n

1 n_y
non-reciprocal part, 1(z) is of the form )2 m 2'9T1 — 3" 2 " 2! as shown by (21).
q

The following simple fact about f(z)’s of Type II or III will be used often.

LEMMA 17. Let m be even and let f(z) be of Type II or III. If ¢ = gcd(m, n) and
r=gced(F +1,n+1), then g #r.

Proof: If ¢ = r, then f(z) cannot be of Type III, since the definition requires g
to be even and r to be odd. So, suppose that f(z) is of Type II, with ¢ = r. Note
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that since g|n and 7|(n + 1), we must have ged(g,7) = 1, and hence, g = r = 1. As
2"+ 1=2z+1is a factor of f(z), we must have f(—1) = 0. Now, it is easily verified
that since f(z) has the form 2™ — 7" 2%, f(—1) can be 0 only if m and n are both
even. So, ¢ = ged(m,n) is even, which is impossible since ¢ = 1. &

We will also find the following set of definitions to be useful.
DEFINITION 18. Given a polynomial g(z) =Y, _, ciz*, we define
e ¢;(g), i > 1, to be the ith smallest k > 0 such that ¢ # 0.
e &i(9), i > 1, to be the ith largest k > 0 such that ¢ # 0.

Thus, for example, with g(z) = 2% — 2° — 22 — 2 — 1, we have ¢;(g) = i for
i1=1,2,3,€e4(g9) =6, &1(g9) =6 and &;(g) = 5 —i for i = 2,3,4. Note that if g(z2), h(z)
are polynomials such that g(z) = h(z), then €;(g) = €;(h) and &(g) = &;(h) for all
1> 1.

We tackle the equality C(d,o0) = C(d, k) through a series of lemmas, each of
which considers a special case in which x4 00(2) is either irreducible (d # 4 (mod 6))
or reducible (d = 4 (mod 6)), and x; ;(2) is of one of the three types defined above.

LEMMA 19. Let d £ 4 (mod 6) and d, k be such that X4 i(2) is of Type I. Then,
C(d,0) = C(d, k) only if (d,k) = (d—1,2d — 1).

Proof: Let i = k + 1, i = k — d, so that xji(2) = 2" — E?;Ozi, and let ¢ =
ged(rm, 7). Under the assumptions of the lemma, ¥4 (2) = Xd,00(2) = 24Tt =24 -1,
g1 . a1 .
and ¥, 5(2) = D, 210 = DL 210

If C(d,0) = C(d, k), then by Theorem 15, Vg oo(2) =9;(2), ie

)

a_q a_q
q q
LAl d 1 — Z S+ _ Z Sl (22)
1=0

%
Now, note that & (¥4,00) = d + 1, while & (lIJ(i,;c) =n — ¢+ 1. Equating these, we get
d=1h—§ (23)
Next, observe that €;(¥4,00) = d. Additionally, we claim that €; (¥ ; ;) = ¢. This
is because the smallest k > 0 such that the coefficient of z* in — Eﬁ: _01 2! is non-zero
is precisely ¢, and the term —z¢ cannot be cancelled out by any term in El%: ; P
The reason that —z% cannot get cancelled out is that the smallest exponent of z in
le_:_ﬂl 219+ is /i + 1, which is larger than §, since § = ged (i, 7). Therefore, equating

61(‘1’;,00) and 61(‘1’&,1%)7 we get
=g (24)

From (23) and (24), we see that 7 = 2d. Plugging this and § = d into (22),
we get 24t — 24 —1 = Ell_% Zldtl — 24 — 1. Tt follows that 7 = d, and since

(m,n) = (k — d,k + 1) by definition, the fact that (rh,7) = (d,2d) implies that
(dk)=(d-1,2d—1). =
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The proof of the above lemma involves arguments typical of those used in the

proofs to follow. One especially important fact used in the above proof that should
a_1 .

be kept in mind is that the function €;, when applied to the polynomial Elq:ﬁ Phpn

q

Ez%: _01 24 yields §. Also, in all that is to follow, we shall continue to take (172, 7) to
be (k —d,k + 1), and § to be ged(r, 7).

LEMMA 20. Ifd # 4 (mod 6) and d,k are such that X4 i(2) is of Type II, then
C(d,00) # C(d, k).

Proof: With d, d, k as in the statement of the lemma, we have Uy o0(z) = 20+ —
d
2% —1, and

R o R PR R s NP
5 (o= Xak®) M =FleE Zig 7~ Xm0 ?
bh 2;:(2)  (F+1)TLg A 41

where 7 = gcd(% + 1,7 + 1), and the last equality above comes from (21).
Suppose that C(d,00) = C(d, k), so that Wa,00(2) = ¥ ;(2). Since the ¥’s are as

A1 . L i
L 20T =308 24, which upon
q

given above, we have (27 + 1)(z4t! =24 —1) = 3°

expanding out the left-hand side (LHS) becomes

a_q 21

q q
zd+r+1+zd+1—zd+r—zr—zd—1:Zzlq+1—zzlq (25)

—m =0

q

Our goal is to show that such an equality cannot arise for any d, cf,lz: satisfying the
hypothesis of the lemma, leading to a contradiction that proves the lemma.
Applying & to both sides of (25), we get d +7 + 1 =7 — ¢+ 1, implying

d+i=n—q (26)

Next, note that the function €;, when applied to the RHS of (25), yields ¢, and when
applied to the LHS, yields either d or #, depending on whether d < 7 or d > 7. So, if
d <7, then d = ¢, and if d > 7, then § = 7. However, we cannot have d > 7, since
q = 7 is ruled out by Lemma 17.

Thus, we see that d < 7, so that d = §. Plugging this into (26), we get 2 =2+ 7.
Using this and d = ¢, the RHS of (25) becomes

a1 a1 2 g
Z Sd+1 _ Z Jd — Z Sd+1 _ Z Sl 4 Attt dd
=2 =0 =2 1=0

Therefore, upon cancelling out some terms common to both sides, (25) simplifies to
P pd ] =y ldtl Zﬁ:o Z!4. Applying & to both sides of this equality,

=2
we get d+1 =741, i.e., d = . We thus have § = d = 7, which is impossible by
Lemma 17. B
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LEMMA 21. Ifd # 4 (mod 6) and d, k are such that X4.i(?) is of Type III, then
C(d,0) # C(d, k).

Proof: An argument similar to that at the beginning of the proof of Lemma 20
shows that if C(d, ) = C(d, k), with d, d, k as above, then

=0

-1 21 i
<Z(_z)z> (zd+1 — L4 _ 1) — Z Sla+l _ Z Ja
=" =0
q

Equivalently, multiplying both sides by z + 1, we have

a1 2
(" + 1)z =24 —1) = (2 +1) Z A Z P
—m 1=0

Expanding out both sides of the above equation, we get
%—1 21 %—1
SOl L dtl o ddE L d Z Sli+2 _ Z Slat1 _ Z Sl (27)

q

Now, by definition of Type III, # > 3, so that the term —z%t" on the LHS of the
above equation cannot get cancelled out by another term on the LHS. Therefore, the
RHS must also have a —z%*" term, and due to the negative sign, it must be one of
the terms in — legl LA+t Zﬁ:_ol 2!4. In other words, d + # must be one of the
exponents of z in these two summations. Observe that the maximum exponent of z
in these summations is max(h — § + 1,7 — §) = max(rh + 1,7) — § = n — ¢, since
n > . Therefore, d+ 7 < n — §.

However, if we apply & to both sides of (27), we find that d+7+1 =% — G+ 2,
so that d+7 = n — ¢+ 1, which contradicts d + 7 < i — §. So, (27) cannot hold under
the assumptions of the lemma, implying that C(d, o) cannot be equal to C(d, k). B

The last three lemmas show that when d # 4 (mod 6), then C(d, 00) = C(d, k)
only if (d,k) = (d — 1,2d — 1). The next three lemmas consider the case when d = 4
(mod 6). Recall that for any such d, ¥4 ..(2) is as given in (7).

~

LEMMA 22. Let d =4 (mod 6) and d, k be such that X&,I}(Z) is of Type I. Then,
C(d,00) = C(d, k) only if d =4 and (d, k) = (1,2).

Proof: If C(d,o0) = C’((f, I::) with d,d, k as above, then we have
(d+2)/6 71 71

By 14+ Z 2613 _ ,6l=5 _ 61—6 | ,6l— 8 Zzlq—i-l Zzlq (28)
1=0

Applying €1 to both sides of this equation, we get 1 = §. Therefore, ®;;(2) =
970 2 = 1, and hence ¥ ;1 (2) = x4 (2). Thus, we must have @ 4,00(2) = x4;(2)-
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Now, the polynomial on the LHS of (28) can be of the form 2™ — 3> 2 only
if d = 4, since in this case it has no terms of the form 26/—3 — 26!—5 _ ,61—-6 | ,61-8
S0, Wa,00(2) = X4 j(2) implies that d = 4, in which case ¥g,00 = 22—z —1=x1,2(2).

Hence, (d, k) = (1,2), which proves the lemma. B

For the proofs of the next couple of lemmas, it is convenient to introduce the
following notation: we shall use Q(z*) to denote an arbitrary polynomial of the form

Zi-:k ¢zt with [ > k.

LEMMA 23. Letd =4 (mod 6) and d, k be such that X&’k(z) 1s of Type II. Then,
C(d,00) = C(d, k) only if d = 4 and (d, k) = (2,4).

_Proof: Arguing as in the proof of Lemma 20, we find that for the above choice of
d,d,k, C(d,0) = C(d, k) implies

(d+2)/6 -1 i1

1) B—r—1+ Z 8173 _ ,6l=5 _ ,61-6 | ,61-8) Zzlq+1 zzhj
1=0

—
g

As usual, we now apply €1 to bpth sides of this equation, which yields 1 = ¢.
Hence, <I>d,k( z) = (" )Ez Oz = 2" + 1. Therefore, x;;(2) = ®;;(2)¥;;(2) =
® 4 1(2)¥4,00(2), which shows that
(d+2)/6
X(m(z) =+ |2 -2-1+ Z 208178 _ 8175 _ 616 | ,61-8) (29)

Note that since § = 1, by Lemma 17, 7 > 2.
Suppose first that d = 4, so that ¥q,00(2) = 2> — 2 — 1. Then, (29) becomes
X4.i(2) = (2™ 4+ 1)(2® — z — 1), which is the same as

Xi’;c(z)=zf+3+z3—zi+1—zf—z—1 (30)

Since only the leading coefficient of the polynomial x, ;(2) is positive, either 2™ or
2% must be eliminated by one of the other terms on the RHS of (30). As 7 + 3 is
strictly larger than any other exponent of z on the RHS, 22 is the term that must
get eliminated, and this can happen only if either ¥+ = 3 or # +1 = 3, i.e., ¥ = 2.
If # = 3, then the RHS of (30) turns out to be 2% — 2* — z — 1, which is not of
the form z® — "™ 2% So, we must have # = 2, in which case the RHS of (30)
becomes 2% — 22 — z — 1 = x2.4(2). So, one possible solution for C(d, c0) = C(d, k) is
(d,d, k) = (4,2,4).

Now, suppose that d > 4, so that d > 10, as 10 is the next largest integer that is
equivalent to 4 (mod 6). Then, ¥4 (2) = —1—z+23+2*+Q(2%), and (29) becomes

Xji(2) =242 g 2 4 2 T T 2 - 14 Q(2°) (31)

Note that if # > 5, then the RHS above becomes 24+ 2% — 2— 1+ Q(2°), which cannot
be of the form 2" — }"7" | z%. So, we must have 7 = 2, 3 or 4.
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If # = 2, then the RHS of (29) is of the form z4+7=1 4 S =2 ¢ iy 42251,
which cannot be x4 ;(2) for any d, k. Similarly, if # = 4, then the RHS of (29) is of
the form z4+7—1 4 Zd+T % ¢;2' + 28 — 2 — 1, which cannot be any X4.i(2)-

Finally, if # = 3, then the RHS of (29) becomes z4+7~1 4 S H 2 ¢i _ 5 1
which can at best be z+t7~1 — 2 — 1 = 2942 — » — 1 = x4 4,1(2). But this too does
not yield a solution to C(d, 00) = C(d, k), since it is clear that C(d,00) # C(d,d + 1)
for any d. This completes the analysis of the d > 4 case, and hence the proof of the
lemma. B

LEMMA 24. Letd =4 (mod 6) and d, k be such that X i(?) is of Type III. Then,
C(d,0) = C(d, k) only if (d,k) = (d—1,2d — 1).

Proof: With d, d,k as in the above statement, if C(d,00) = C(ci, I;:), then the
usual argument shows that we must have

i1 LY LY
(Z( 2 ) B SPLL S (32)
i=0 1= 1; =0
with ¥4 »(2) having the form given in (7).
Note that as x (i,k(z) is of Type III, we must have # > 3 odd. Suppose first that
# = 3. Then the LHS of the above equation is (22 — z + 1)U 4 .00(2) = Xa,00(2) =
28+l — 24 _ 1 by Theorem 3. Therefore, (32) in this case is identical to (22) in the
proof of Lemma 19. As analyzed there, this equation implies (d, k) = (d — 1,2d — 1).
So, we are left with the case # > 5. Note that the LHS of (32) may be written as

(z _z+1+z )wdm (2) = (22 = 2+ DT o0(2) — 2° (TZH)") Pa,00(2)
i=0
A B P (Tz_j(—z)’) T ,00(2)
i=0

Therefore, if we multiply both sides of (32) by Z 0 2%, and use (21), then the resulting
equation can be written as

- i1
Xdk( z) = (2 R 1) Zzz -z (Z )z> ‘I'd,oo(z)zzi
=0

=0 i=0
Gg—1
=200 _ 5 Z 2t 4+ 2% + Q24 (33)
=0

where we have used the fact that (241 — 2@ — 1) Y307 2% = z4+0 — 4 — 5207140,
Now, the fact that # = ged(Z + 1,72 + 1) > 5 implies that 2 + 1 > 5 which
means that 7 > 8. Therefore, x;;(2) = 2" — S, 2 must contain the sequence
—28 — 2" — ... — z — 1. In particular, the coefficient of 23 in X4, (?) is —1. However,
on the RHS of (33), there are at most two 23 terms, one of which is +23, and the

other is —2z3 from the summation — ?:_01 2% if g — 1> 3. So, the coefficient of z* on
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the RHS of (33) can either be 0 or +1, which implies that the RHS cannot be of the
form required by x; i(2). Therefore, we cannot have C(d,00) = C(d, k) when7 > 5. B

Lemmas 19 — 24 together prove the following result, which is the part of Theorem 1
dealing with the case when one of the (d, k) constraints involved is a (d, 00) constraint.

THEOREM 25. If d,d,k are non-negative integers such that C(d, ) = C’(cz, IAc),
then one of the following holds:
(Z) (da k) = (d_ 152d - 1):
(ii) d = 4 and (d, k) is either (1,2) or (2,4).

We now move on to analyze the equality C(d, k) = C(d,k) when k, k are both
finite. Once again, we perform a case-by-case analysis of the various situations that
arise when each of the characteristic polynomials involved is of one of the three types
defined earlier. Because of symmetry, there are only six cases to be considered —
three when x4 (2) and x i () are of the same type, and three more as follows: (a)
Xa,k(2) of Type I, Xd,ic(z) of Type II, (b) xa,x(2) of Type I, Xd»’;c(z) of Type III, and
(¢) xa,k(2) of Type II, x; ;(2) of Type IIL.

The situation when xaq,k(2) and X ;(z) are both of Type I is the easiest to deal
with, and we dispose of this first. As usual, we define (m,n) = (k — d,k + 1),
(,7) = (k — d,k + 1), ¢ = ged(m,n) and § = ged(rh, ).

LEMMA 26. Let d,k,d,k be such that Xa,k(z) and X(j,fg(z) are both of Type I.
Then, C(d, k) = C(d, k) only if (d,k) = (d, k).

Proof: By Theorem 15, C(d,k) = C(d, k) implies Vyr(z) = ¥;;(2). Since
Xa,k(2) and x; ; (2) are both of Type I, we have an explicit form for their non-reciprocal
parts, using which we get

21 n1 A 4
E Zlatl _ 2 = L+l P (34)
I=m 1=0 =2 1=0

Applying € to both 51des of the above equation, we get ¢ = ¢. But this means that

Bap(z) = X0 2 = Zq szt = @ ;(2). Thus, the polynomials xa,x(2) and x; ;(2)
have identical reciprocal parts and identical non-reciprocal parts, which shows that

Xd,k(z) = Xd",fc(z)a i.e., (d7 k) = (J7 ];') u

When x4,x(2) and x; ;(2) are both of Type II or Type III, the analysis involves
the use of the following technical lemma, whose proof we defer to the end of this paper.

A

LEMMA 27. Let m, n,r,m I be positive integers such that n > m, and 1 > M.

If (2" + 1) (z” -3 z’) = (2" +1) ( Ei:oz ), then (m,n,r) = (M, A, ).

In all that is to follow, we shall take r = ged(Z2+1,n+1) and # = ged(Z+1,A+1),
whenever m,m are even.

LEMMA 28. Letd, k,d, k be such that Xd,k(z) and Xci,ic(z) are either both of Type II
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or both of Type III. Then, C(d, k) = C(d, k) only if (d, k) = (d, k).

Proof: Suppose first that xqr(z) and x i, i(2) are both of Type II. As shown in
the proof of Lemma 20, we have

n_q n_q a1 . A1 .
q lg+1 _ q Iq [ 2 A lq
Zl:% Z dto ? =2 z Yito 2

T, .(2) = :
2r +1 ’ d’k(z 2t +1

Vak(z) =

Therefore, if C(d, k) = C(d, k), then we have ¥, (z) = ¥ ; 1.(2), from which it follows
that

n_q n_q 2_1 |
GRS PR LA N CUS )N BT AR YL (35)
l:% =0 l:% =0

We shall consider the following four cases individually: (i) r < § and ¢ < 7,
(ii)) r < gand ¢ > 7, (iii) r > § and ¢ < #, and (iv) r > § and ¢ > Observe,
however, that (iv) is the same as (i), with the roles of (d, k) and (d, k) reversed. So,
it suffices to consider the first three cases only.

We consider case (i) first. In this case, applying €; to both sides of (35), we find
that ¢ = r, which is impossible by Lemma 17.

In case (ii), applying €; to both sides of (35) yields r = 7. Hence, (35) reduces to
(34) in the proof of Lemma 26, which as shown in that proof, leads to the conclusion
that (d, k) = (d, k).

Moving on to case (iii), applying €; to (35) here yields ¢ = ¢§. Hence, multiplying
both sides of (35) by S0 2%, we get via (21), (2* +1) (2" = X7, 2) = (2" +
1) (zﬁ -3 zi). But now, Lemma 27 shows that (m,n) = (17, 7), which implies

that (d, k) = (d, k) in this case as well. Thus, we have shown that when Xd,k(z) and
X4.i(#) are both of Type II, then C(d, k) = C(d, k) is possible only if (d, k) = (d, k).
If xa,1(2), Xd‘,ic(z) are both of Type III, then using (21), we find that

a
7.

n_q n_q a_1 . a_1 .
Zlq:ﬂ zlq—i—l _ Elq:O zlq lq:@ Zlq+1 _ Elq:O zlq
v p ) lI’d,ic(z) = T P
Zi:o (=2) Zi:() (—2)

So, from ¥q,k(2) = ¥4 ;(2), we obtain

Vak(z) =

-1 . a1 a1 r—1 . i1 71
(T (Z o) = (S [ S - 5
=0 l:% =0 =0 l:% =0
Multiplying both sides of the above equation by z+ 1, we obtain (35), which as shown
above, leads to (d, k) = (d, k). &

At this point, we would like to remark that Lemmas 26 and 28 actually prove
the following interesting fact: if two polynomials of the same type (I, IT or III) have
identical non-reciprocal parts, then the polynomials themselves are identical. In other
words, within each of the three type classes, a polynomial is uniquely determined by
its non-reciprocal part.
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We are now only left to deal with the three cases where the characteristic poly-
nomials are of different types. The next three lemmas consider each case in turn.

LEMMA 29. Letd, k,d, k be such that Xa,k(2) is of Type I and x ; ;(2) is of Type IL.
Then, C(d, k) = C(d, k) only if (d,k) = (d,2d) and (d, k) = (d+1,3d + 1).

Proof: With d, k, ci,fc as above, we have

1 N
L

-1 a_
ORI o
l_ =0
Tar(z) = E : A — E : Z = 2+ 1

So, if Wa,x(2) = ¥ ;(2), then it follows that

21 n_1 a_1 a_1
q q q

(2" +1) Z Zlatl Z 2| = Z Pt Z P (36)
1=0 = 1=0

—aq

Note that if # < g, then applying €; to both sides of (36), we get # = §, which is
impossible by Lemma 17. Hence, we must have 7 > gq.

So applylng €1 to (36) yields ¢ = §. Therefore, multiplying both 51des of (36) by

) 2%, we obtain on account of (21), (2" + 1) (2" = X1, 2%) = 27 = Y™ 2%, or
equlvalently,

m m [
zn-i—i‘_}_zn_zzf'-‘ri_zzi:zﬁ_zzi (37)
=0 =0 =0

We claim that the equality in (37) is possible only if # = m+1and n = 2m+1, in
which case the LHS of the equation iS Xm+1,3m+1(2). To prove this claim, we observe
first that if # < m, then on the LHS of (37), the coefficient of 2" is —2. This is because
we have one —z" term coming from the summation — Y ;- 2" %, and another from
the summation — ) /" 2%, and neither of these terms can be cancelled out by 2™ or
2"t since n > m > 7. However, since there cannot be any term with coefficient —2
on the RHS, we must have # > m.

Also, 7 > m+ 1 is impossible, since if this were the case, 2" — Y 1" o 2" Hi =" 21
cannot be of the form — an:o 2%, as can easily be verified. Thus, we are forced to
conclude that for (37) to hold, # must be equal to m + 1.

With # = m+ 1, the LHS of (37) becomes 2" +™+1 4 27 — 5"+ i which can be
of the form 2™ — Ef;o Z* only if n = 2m+1, so that 2™ cancels out with —z2™*!. With
this choice of # and m, the LHS of (37) reduces to 2312 — 32 2 = ., i1 sy (2)-
Hence, we see that (d,k) = (m + 1,3m + 1), and as (m,n) = (m,2m + 1), we also
have (d, k) = (m,2m), which proves the lemma. B

LEMMA 30. Let d,k,d,k be such that Xa,k(2) is of Type I and X{j’k(z) is of
Type III. Then, C(d, k) = C(d, k) only if (d,k) = (d,2d) and (d, k) = (d +1,3d + 1),
or (d, k) = (1,2) and (d, k) = (3,7).
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Proof: For the above choice of d, k,d, k, it follows from Wak(2) = ¥;;(2) that
(S o)) (S 2ot - i #10) = o, 2000 — 3410, which upon

multiplying by z + 1 becomes

n_q n_q a_q a_q
q q q q

Z Zlatt Z 2 =(z2+1) Z L+t _ Z P (38)
l:% =0 1 =0

—a

Now, the RHS above can be written as (z + 1) Eq o 20T — f_l Phd) — oy

Note that the —z term cannot get cancelled out by any other term, since the smallest
a1 .

exponent of z in (2 +1) 37 ,, 29! is 1 + 1 > 2. Therefore, ¢; applied to the RHS
=%

of (38) yields 1

When ¢ is applied to the LHS of (38), we either get #, if # < ¢, or we get ¢, if
7 > q. Therefore, either # = 1 or ¢ = 1. However, # = 1 is impossible because 7 > 3
by definition of Type III polynomials. Hence, we must have ¢ = 1.

Therefore, (38) reduces to

m | a1
(2" +1) (z” — Z z’) (z+1) z PRI Pl (39)
] =0

We will show that if m > 2, then the above equality is possible only if (d, k) =
(d,2d) and (d, k) = (d+1,3d+1), and if m = 1, then the equality above implies that
(d,k) = (1,2) and (d, k) = (3,7).

So, suppose first that m > 2. The LHS of (39) can be written as z"*" 4+ 2™ —
Y2t =3 2% Since # > 3 and m > 2, the coefficient of 22 in this polynomial
is —1. Now, since § > 2 by definition of Type III polynomials, there can be a —z2
term on the RHS of (39) only if § = 2. Therefore, it follows from (21) that the RHS
of (39) is

n_ N i n_ N
(z+1) L Zi=0? ngQZ =(z+1) T Ziz0® Dizo?' =" Zz
Z?:ozz z+1

Thus, we see that when m > 2, we must have § = 2, and furthermore, (39) reduces
o (37). But, as shown in the proof of Lemma 29, (37) holds only if (d, k) = (d, 2d)
and (d, k) = (d+1,3d + 1).

It only remains to consider the case when m = 1. In this case, the LHS of (39)
is (27 +1)(2" — 2 — 1) = 2™ 4 27 — 2™ _ 27 — 2 — 1. Cancelling out —z — 1 from
both sides of (39), we get

21 a_1
q
2 g — T (z+1) Z Lt Z P (40)
=1

¢1

Now, ¢; applied to the RHS above yields ¢, and the coefficient of 2% is —1. The —z¢
term on the RHS must correspond to either —z" or —z"*! on the LHS. Since § # #
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by Lemma, 17, the —2z7 term on the RHS must correspond to the —z"+! term on the
LHS, showing that ¢ = 7 + 1. Therefore, ¢; when applied to the LHS of (40) must
yield # + 1, which means that —z" must get cancelled by 2", so that we must have
n = 7. Finally, applying &; to (40), we also obtain n+7 =f—§+ 2. Using§=7+1
and n = 7 to eliminate ¢ and 7 from this last equation, we get n = 3n — 1.

Since § =7+ 1 =n+1, and |7, we find that n + 1 must divide 3n — 1. Writing
3n —1 as 3(n+ 1) — 4, we see that n + 1 must be a factor of 4. Hence, n = 0,1
or 3. But asn > m > 1, n must in fact be 3. Hence, n = 3n — 1 = 8. Further-
more, § = n + 1 = 4, and so the facts that ¢l and 7 < 7 now imply that m = 4.
Thus, we have shown that when m = 1, equality in (38) is possible only if n = 3 and
(m,n) = (4,8). As these values of (m,n) and (m,n) are equivalent to (d, k) = (1,2)
and (d, k) = (3,7), the proof of the lemma is complete.

LEMMA 31. Let d,k, d

ok be such that xak(2) is of Type II and x;;(2) is of
Type III. Then, C(d, k) = C(

kb
C(d, k) only if (d, k) = (d,2d) and (d, k) = (d +1,3d + 1).

Proof: When xq1(2) is of Type II and x i i(2) is of Type IIL, from the equality
Tok(2) = ¥;4(2), we get via (21),

o1 21 21 %—1 %—1
(Seor) (S -] ey | S - 5
=0 =7 l:% =0
Upon multiplying both sides of this equation by z + 1, we obtain

1 -1 21 21

(z" +1) Zzlq“ Zz =(z+1)(z"+1) Zzl‘”l Zzl‘i (41)
=0

Using (2" +1)(2 +1) = 2™ + 27 + 2 + 1, we can write the RHS above as

——1 a_q
q

(z+ 1)( Z Rt Z AUl — (T 42"+ 241) (42)

Recall that the definition of Type ITT requires § > 2 even and 7+ > 3 odd. Since
m > ¢ > 2, the smallest exponent of z in (z + 1)(2" + 1) (Z;;__,: z"”l) ism+1>3.
=3

Hence, the —z term in (42) cannot be cancelled out by any other term. It follows that
the coefficient of z on the RHS of (41) is non-zero, and so this must be true on the
LHS as well. But, the only way for the coefficient of z to be non-zero on the LHS is
if # =1 or ¢ = 1. The former is impossible since 7 > 3. So, we must have ¢ = 1, and
consequently, the LHS of (41) simplifies to (2™ + 1) (2™ — Y} 2%). Expanding out

the product (z + 1) (En_m la+l _ Zl%:;l zl‘i) on the RHS of (41), we can re-write
4
(41) as

m __1 %—1 %—1
o (-3 = P
M =0 =0

i=0
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We have thus far shown that for ¥4 (2) = ¥;;(2) to be true for d, k,d,k as in
the statement of the lemma, then we must have ¢ = 1 and (43) must hold. Our aim
now is to show that for ¢ = 1 and (43) to be true, we must also have r = 2 and ¢ = 4,
from which it will follow that (d, k) = (d,2d) and (d, k) = (d + 1,3d + 1).

The first step in this process is to show that ¢ # 2, so that (since § is even) ¢ > 4.
If we assume that § = 2, then it is easily seen that the RHS of (43) simplifies to

(2" +1) (z" -, z’) Therefore, by Lemma 27, (43) holds only if (m,n) = (1h, f),

or equivalently, (d, k) = (ci, IAc), which cannot happen since xq1(2) and x i i(2) are of
different types. Hence, ¢ = 2 is impossible, and so § > 4. We next show that this,
along with the fact that ¢ = 1, implies that r = 2.

Note that m is even, for if it were odd, then by Theorem 11, x4,x(2) would be
of Type I. Hence m > 2, from which it follows that the LHS of (43) contains a —z2
term, i.e., the coefficient of z? on the LHS is —1. Therefore, the RHS of (43) must
also contain a —z? term, which since ¢ > 4, can happen only if r = 1 or 2. But since
q = 1, Lemma 17 forces r to be 2.

Setting r = 2, it can be verified that (43), upon multiplying out the product on
its RHS, becomes

a_q m_q

1
q

m q
(z" +1) (z" - Z z’) = Z Lt Z (2103 4 PlEF2 4 Qlatly 24 (44)
=0 =

FSED
|

=0 1=

[=}

We now show that the above equality can hold only if § = 4. Suppose, to the
contrary, that ¢ # 4, so that ¢ > 6. Observe that since ¢ > 6, no cancellation of terms
is possible among the various summations on the RHS of (44), as the exponents in
different summations leave different remainders modulo §. It follows that the RHS of
(44) is of the form —1 — z — 22 — 23 + Q(2%), where Q(2%) denotes some polynomial
of the form ), cx2*. In particular, the RHS cannot contain any z* or z° terms.

On the other hand, the LHS of (44) is 2" " +2" =70 [ 2™+ =3~ 2% Note that
neither 2™*" nor 2™ can cancel out any term in the summation — Yo, 2%, so that
all the terms in this summation remain intact on the LHS. But as the LHS cannot
contain any z* or 2% terms (because the RHS does not contain such terms), we find
that m < 3. However, as observed earlier, m is even, so that we must in fact have
m = 2. But now, in order for the LHS to contain a —z°® term, we must either have
7 =3,orn =7 and # + 1 = 3. The latter is impossible, as it implies that n = 2 = m,
which cannot happen. But 7 = 3 is also impossible, since with # = 3 and m = 2, the
LHS reduces to 2"t + 2" — E?:o 2%, which will always contain a z* or z° term. Thus,
if we assume that § # 4, we are forced to conclude that (44) cannot hold.

Therefore, for (44) to hold, we must have § = 4. But with § = 4, it is readily veri-
fied that the RHS of (44) simplifies to 2z — Y™  2¢. As aresult, (44) becomes identical
to (37) in the proof of Lemma 29, and as shown there, equality in (37) is possible only
if (d, k) = (d,2d) and (d, k) = (d+1,3d+1). This completes the proof of the lemma. W

Lemmas 26 and 28-31 together prove the following theorem, which in conjunction
with Theorem 25, forms Theorem 1.

THEOREM 32. If d, k,d,k are non-negative integers such that C(d, k) = C(d, k),
but (d, k) # (d, k), then one of the following holds:
(i) {(d, k), (d, k)} = {(£,20), (£ + 1,30+ 1)} for some integer £ > 0.
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(i) {(d, k), (d. k)} = {(1,2),3,7)}-

There still remains a loose end that needs to be tied up, namely, a proof of
Lemma 27. We provide such a proof now.

Proof of Lemma 27: Suppose that m,n,r,m, 7,7 are as in the statement of the
lemma, and that

(z"+1) (z" - Z z’) =(z"+1) (zﬁ — Z z’) . (45)

i=0

It suffices to show that r = 7.
Multiplying both sides of (45) by z — 1, we obtain

"+ 1) =2 — 2™ 1) = (27 + 1) = 2 = 2 1. (46)

Observe first that upon comparing the degrees of both sides of the above equation,
we get

n+r=n+r7 (47)

Taking the derivative of both sides of (46) and setting z = 1 yields —2m = —27h,
so that m = . Next, taking the second derivative of both sides of (46) and setting
z =1, we get

4n — 2m* — 2mr — 2m = 47 — 2m° — 2MF — 2rh.
Using the fact that m = m, the above equation reduces to
4dn — 2mr = 47 — 2mf. (48)
But now, using (47) and (48), we have
(2m +4)r =4(r +n) — (4n — 2mr) = 4(F + 1) — (40 — 2m7) = (2m + 4)7.

Since m # —2, as m > 0, we must have r = 7, as desired. B
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