Sliding-Block Decodable Encoders
Between (d, k) Runlength-Limited

Constraints of Equal Capacity*

Navin Kashyap
Department of Mathematics and Statistics
Queen’s University
Kingston, ON K7L 2H4, Canada
nkashyap@mast.queensu.ca

Paul H. Siegel

Department of Electrical and Computer Engineering
University of California - San Diego
9500 Gilman Drive
La Jolla, CA 92093-0407, USA
psiegel@ece.ucsd.edu

Abstract

We determine the pairs of (d, k)-constrained systems, S(d, k) and S(d, k), of equal capacity, for which
there exists a rate 1:1 sliding-block decodable encoder from S(d, k) to S(d, k). In all cases where there
exists such an encoder, we explicitly describe the encoder and its corresponding sliding-block decoder.

Keywords

(d, k)-constrained systems, finite-state encoders, sliding-block decoders

*This work was supported by Applied Micro Circuits Corporation and by the Center for Magnetic Recording
Research at UC San Diego, and was performed while the first author was at the University of California-San Diego.

I. INTRODUCTION

Given non-negative integers d, k, with d < k, we say that a binary sequence is (d, k)-constrained
if every run of zeros has length at most & and any two successive ones are separated by a run of
zeros of length at least d. A (d, k)-constrained system is defined to be the set of all finite-length
(d, k)-constrained binary sequences. The above definition can be extended to the case k = oo by
not imposing an upper bound on the lengths of zero-runs. In other words, a binary sequence is
said to be (d, c0)-constrained if any two successive ones are separated by at least d zeros, and a
(d, 00)-constrained system is defined to be the set of all finite-length (d, oc)-constrained binary
sequences. From now on, when we refer to (d, k)-constrained systems, we shall also allow k to
be co. Note that the above definition allows finite-length (d, k)-constrained sequences to begin
or end with a run of fewer than d zeros.

Binary sequences satisfying some (d, k) constraint are commonly used to encode information
in digital and optical recording systems [1]. The parameter k is imposed to guarantee sufficient
sign changes in the recorded waveform which are required to prevent clock drift during readback.
The parameter d is needed to prevent intersymbol interference.

It is possible to give a convenient graphical description of (d, k)-constrained systems as follows
(¢f- [1], [2, Chapters 2,3]). We define a labeled graph, G = (V,&,L), to be a finite directed
graph with vertex set V, edge set £ C V X V, and edge labeling £ : £ — %, where X is a finite
alphabet. A labeled graph can be used to generate sequences of symbols from 3 by reading off
the labels along paths in the graph. A constrained system, S or §(G), is the set of all finite-
length! sequences obtained by reading off the labels along paths in a labeled graph G. Any
(d, k)-constrained system, S(d, k), can be generated from an appropriate labeled graph: for finite
k, S(d, k) is the constrained system generated by the labeled graph G, given in Figure 1, while
S(d, 00) is generated by the labeled graph G4~ shown in Figure 2. Note that the edge labels for
both these graphs come from the binary alphabet {0, 1}.

Before proceeding further, we would like to make a remark concerning the notation we shall

use in this paper. While §(d, k) will be primarily used to denote the (d, k)-constrained system

1Sometimes, we shall also find it necessary to consider the constrained system of infinite sequences sps182. ..,
s; € 3, of edge labels, or the constrained system of bi-infinite sequences ...s_25_1508182..., 8; € X. In the
terminology of symbolic dynamics (cf. [2]), a constrained system of bi-infinite sequences is called a shift space, and
a constrained system of infinite sequences is called a one-sided shift.

Fig. 1. Graph, G4, generating the (d, k)-constrained system S(d, k) for finite k.

0 0 0 0
© © (@) 0

1

Fig. 2. Graph, Gg 0, generating the (d, co)-constrained system S(d, o).

of finite sequences, we shall also occasionally use the same notation for the the one-sided shift of
infinite (d, k)-constrained sequences, or the shift space of bi-infinite (d, k)-constrained sequences.
In such cases, it should be clear from the context which constrained system we mean to consider.

Given a (d, k)-constrained system, S(d, k), let g4 x(n) be the number of length-n sequences in

S(d, k). The Shannon capacity, or simply capacity, of S(d, k) is defined as
.1
C(d,k) = lim —log,qay(n) (1)

It is well-known (see e.g., [3]) that C(d, k) = logy p4, where pq . is the unique largest-magnitude
root of a certain polynomial, x4x(2), called the characteristic polynomial of the constraint.
Xdx(z) is, in fact, the characteristic polynomial of the adjacency matrix of the corresponding

labeled graph G, ;. When £ is finite, x4(2) takes the form

k—d
Xak(z) = 2571 =Y "2 (2)
j=0
and when k = oo,
Xdoo(z) = 241 =20 — 1. (3)

The root pqj is always real and lies in the interval (1,2], so that 0 < C(d,k) < 1. In fact,
C(d, k) = 1 if and only if (d, k) = (0, 00).

It is easily verified that certain pairs of (d, k)-constrained systems have the same capacity. For

example, we have the identities

C/(d, 2d) C(d+1,3d+1) (4)

Cd,0) = C(d—1,2d—1) (5)

true for alld > 1. The first equality is a consequence of the fact that x4+1,34+1(2) can be factorized
as (z9%1 +1) xg4.24(2). Since all the roots of 241 + 1 lie on the unit circle, while the largest roots
of the x-polynomials lie outside the unit circle, we must have pg24 = pg+1,34+1. Similarly, the
factorization x4—1,2d—1(2) = Xd,00(2) Z?:_ol 2" yields (5), since Zf;(} 2t = (22— 1)/(z — 1) has all

its roots on the unit circle as well.

Repeatedly applying the two identities above also yields the chain of equalities
C(1,2) =C(2,4) = C(3,7) = C(4,00) (6)

In [5],[6], it was shown that no equalities other than those listed in (4)—(6) are possible among
the capacities C(d, k).

Given a pair of (d,k)-constrained systems, S(d,k) and S(d, k), with the same capacity, a
question that naturally arises in the context of constrained coding is whether or not there exists
a rate 1:1, finite-state encoder from S(d, k) to S(d, k) that is sliding-block decodable. We provide
a brief review of the terminology used here. The reader is referred to [1] for a thorough discussion
of encoders and decoders for constrained systems.

A rate p : q finite-state encoder is a finite-state machine, shown schematically in the top half of
Figure 3, that accepts a block of p bits as input and generates a binary codeword of length ¢ as
output. The actual output codeword depends on the input block and the current internal state of
the encoder. Upon generating an output, the internal state of the encoder may change depending
on the output and the current state. A rate p : ¢ encoder from S(d, k) to S (J, l%) must satisfy
the following requirement: in response to a sequence of p-bit input blocks whose concatenation is
in §(d, k), the encoder must produce a sequence of g-bit codewords whose concatenation lies in
S(ci, l%) In particular, a rate 1:1 encoder from S(d, k) to 8((2, l%), in response to an input sequence

from S(d, k), produces an output sequence belonging to S (cf,];,') by sequentially replacing each

input bit by an output bit.

Encoder
——» Combinational ——
p symbols Logic q symbols

Encoder State

Fig. 3. Schematics of a rate p : ¢ finite-state encoder and a sliding-block decoder.

A sliding-block decoder for a rate 1 : 1 finite-state encoder is a mapping
D: {0, 1}t 5 (0,1}

for some integers m,a satisfying m + a > 0, such that if ¢ = ¢pcic2..., ¢ € {0,1}, is any
sequence of bits produced by the encoder in response to the input sequence of bits b = byb1 b, . . .,
b; € {0,1}, then for i > m,

bi = D(Ci-mCi-m+1---Ci---Cita)-

In other words, given a sequence, ¢ = cgcice . .., of encoded bits, a sliding-block decoder makes
a decision on ¢; on the basis of its local context in the sequence ¢. The local context of ¢; in this
case is a “decoding window” consisting of the bit ¢; itself, along with a fixed number, m, of bits

preceding ¢; and a fixed number, a, of bits following c;.

More generally, a sliding-block decoder for a rate p : ¢ finite-state encoder is a mapping
D: ({0,139 — {0,1)

for some integers m,a satisfying m + a > 0, such that if ¢ = ¢peica..., ¢; € {0,1}%, is any
sequence of g-bit codewords produced by the encoder in response to the input sequence of p-bit

blocks b = bgbibs ..., b; € {0,1}?, then for i > m,
bi = D(Ci_mci_m+1 [P o S Ci+a)-

The integer m is referred to as the memory of the sliding-block decoder, and the integer a is
called the anticipation of the decoder. A schematic representation of a sliding-block decoder is
provided in Figure 3. Naturally, a finite-state encoder is called sliding-block decodable if there
exists a sliding-block decoder for the encoder. Not every finite-state encoder may be sliding-block
decodable.

In this paper, we completely resolve the question of when there exists a rate 1:1, sliding-block
decodable, finite-state encoder between (d, k)-constrained systems having the same capacity.
Moreover, for each case where such an encoder exists, we explicitly describe the encoder and its

sliding-block decoder. Specifically, we prove the following theorem.

Theorem L.1: Let S(d, k) and S(d, k) be such that C(d, k) = C(d, k). Then, there exists
a rate 1:1, sliding-block decodable, finite-state encoder from S(d, k) to S(d, k) if and only if one
of the following conditions holds:
1: (d,k) = (0,1) and (d, k) = (1, 00)
(dk)=(d+1,3d+1),d>1
(

2: (d,k) = (d,2d) and
3: (d, k) = (d,00) and (d, k) =(d—1,2d —1),d > 1
4: (d k) = (1,2) and (d, k) = (3,7).

Note that conditions 1-4 above are not symmetric with respect to (d, k) and (d, k). In fact, the
only case where there exists a rate 1:1, sliding-block decodable, finite-state encoder from S(d, k)

to S(d, k), as well as one in the reverse direction from S(d, k) to S(d, k), is when {(d, k), (d, k)} =

{(0,1),(1,00)}. The existence of these encoders is covered by conditions 1 and 3, the latter with
d = 1, in the statement of the theorem.

The proof of the theorem is presented in two parts. In Section II, we explicitly demonstrate rate
1:1 finite-state encoders and sliding-block decoders for all of the indicated cases. In Section III,
we use results from the symbolic dynamics literature to prove that no such encoder can be found
for any other pair S(d, k) and S (cf, lAc) with equal capacity.

We would like to remark that as a corollary of a theorem of Ashley [4,Theorem 1.1], one can
deduce necessary and sufficient conditions for the existence of a rate 1:1 sliding-block decod-
able finite-state encoder from one (d, k)-constrained system to another with equal capacity. In
principle, these conditions could be used to prove Theorem I.1. Moreover, Ashley’s proof of
sufficiency of the conditions is constructive and could be used to define a rate 1:1 encoder with
the desired properties. However, due to the generality of Ashley’s construction, the resulting
encoders will be substantially more complex than those presented in Section II. Also, as shown
in Section III, the non-existence results implicit in Theorem 1.1 can be proved using more easily

verifiable conditions necessary for the existence of the sliding-block mappings.

II. EXISTENCE OF ENCODERS

A rate 1:1 finite-state encoder from §(0, 1) onto S(1, 0o) that is trivially sliding-block decodable
is obtained by mapping the symbols 0 and 1 to their respective complements. The same rule
also defines a similar encoder from §(1, c0) onto S(0, 1).

The graph in Figure 4 depicts a rate 1:1 finite-state encoder from S§(d,2d) to S(d+1,3d + 1),
for d > 1. The vertices of the graph represent the states of the encoder, and the directed edges
represent the state transitions. The vertex labeled 0 (drawn as a double circle in Figure 4) will
be referred to as the initial state of the encoder. Note that each edge of the graph is tagged by
z/y, where z is the input label for that edge, and y is the corresponding output label. The encoder
transforms (finite or infinite) sequences from S(d, 2d) to sequences in S(d+ 1,3d + 1) as follows.
Suppose that x = zgz1z2... is a sequence in S(d,2d) that is to be encoded. Starting at the
initial state (vertex 0), there is precisely one path whose sequence of input labels is zgz1z2
The sequence, y = yoy1y2-.., of output labels along this path is the output of the encoder
corresponding to the input sequence x.

We now provide an explanation for why this encoder produces (d + 1,3d + 1)-constrained

11 11 . 11 1/1 00
0/0 0/0 0/0 00 . 00
1 - d-1 d d+1

© () (&9 () -

1/0 000
0 1 e d-1 d

Q 00 -/ 00 00— 0/0

11

Fig. 4. Encoder from S(d,2d) to S(d +1,3d + 1).

sequences as its output in response to (d,2d)-constrained input sequences. For the sake of
notational convenience, we shall use the shorthand “(1) 0?” to either denote a block of the form
107 within some sequence, or a block of the form OV at the beginning of a sequence. Let x be a
sequence in S(d,2d) that is to be encoded. Note that x also belongs to S(d + 1,3d + 1) if and
only if it does not contain the block 1041. From the encoder graph in Figure 4, it can be seen
that the only edge in the graph whose output label is different from its input label is the edge,
eqo', from state d to state 0'. This edge is used in the encoding process precisely when the input
sequence, X, contains the block (1) 0?1 (i.e. x contains 1091 or starts with 0%1). Thus, when the
edge eqy is not used by the encoder, which happens precisely when x does not contain (1) 041,
the input sequence is passed through unchanged. But, in this case, since x does not contain 10¢1,
it belongs to S(d+1,3d+ 1) as well, so that the output of the encoder is indeed a (d+ 1,3d+ 1)-
constrained sequence. On the other hand, when the edge ey is used by the encoder, a block of
the form (1) 0%1 is converted to (1) 0%*!, Note that if the block (in x) following the transformed
block is 071, d < j < 2d, then the segment of the output sequence corresponding to the input
segment (1)091071 is (1) 0%t7+11, which satisfies the (d + 1,3d + 1)-constraint. Thus, if the
input to the encoder is a (d, 2d)-constrained sequence, then the corresponding output is always
a (d+ 1,3d + 1)-constrained sequence.

It must be pointed out that if the input to the encoder is not a (d,2d)-constrained sequence,
then the output of the encoder may not be a (d + 1, 3d + 1)-constrained sequence. For example,
the all-zeros input sequence of any length is passed through unchanged by the encoder.

A sliding-block decoder for the above encoder, with memory d+ 1 and anticipation d, is defined

via the mapping, D : {0,1}24"2 — {0,1}, specified by the following rule:

1 if yi—(d—l—l) = 1, and
D(Yim(dt1)s- -2 Yir-- - Yitd) = yj=0,j=i—d,...,i+d

1y; otherwise.

Let yoy1y2 - - . be the sequence generated by the encoder in response to the (d, 2d)-constrained in-
put sequence Zgx1Zs - ... To ensure proper retrieval of the entire sequence zoz1zs . . ., the decoder
is actually run on the extended sequence y_(441)y—d---Y-1Y0Y1Y2 - - ., where y_(qy1)y—d-..y-1 =
0%1. Tt is easily verified that the sliding-block decoder defined above reverses any changes made
by the encoder, since the decoding rule converts blocks of the form (1) 097111, d < j < 2d, to
(1) 091 071.

Moving on to the next case, a rate 1:1 finite-state encoder from §(d, oo) to S(d—1,2d —1), for

d > 1, is graphically depicted in Figure 5. The initial state of the encoder is the vertex labeled

0/1

0/0 0/0 @ 0/0 @

1/0 1/C

Fig. 5. Encoder from S(d, 00) to S(d —1,2d — 1).

0, drawn as a double circle in the figure. The encoding procedure is similar to that described
previously for the encoder in Figure 4.

We now describe how the encoder converts infinite (d,c0)-constrained input sequences to
infinite (d — 1,2d — 1)-constrained output sequences. The encoding process for finite sequences
is just a finite termination of the process for infinite sequences. Given a binary sequence x =
ToT1T2 - .., We use I[; j), ¢ < j, to denote the finite block z;x;11 ... z;j—1. Also, z};) will be used
to denote the infinite sequence z;x;+1%;+2.... Using this notation, we define a mazimal run of
zeros in a binary sequence, x, to be a block, zj; ;) (j may be oc), that consists of zeros alone,

such that z;_; = 1 and, if j is finite, z; = 1 as well. To extend this definition naturally to the

case of an initial run of zeros, we take x_1 to be 1. Thus, a maximal run of zeros is a run of
zeros that is not a subblock of a larger run of zeros. Note that in a (d, oc)-constrained sequence,
every maximal run of zeros after the first 1 is of length d or more.

From the encoder graph in Figure 5, it can be seen that the encoder converts each 1 in the input
sequence to a 0, and the process of encoding a maximal run of zeros always begins at the initial
state (vertex 0). Following paths on the graph from the initial state, we see that in response
to a maximal zero-run of finite length ¢, the encoder produces the output sequence (04~11)70%,
where r, s are the unique integers such that £ = rd + s, with 0 < s < d — 1. Also, the output
of the encoder corresponding to a maximal zero-run of infinite length is the infinite sequence
(0%11)% = 0411041104 '1.... Now, let the input to the encoder be a (d, co)-constrained
sequence of the form 0%10410%1..., with £y > 0 and d < £; < oo, i > 1. The corresponding
encoder output is the sequence (0%~11)700% 0 (04~11)"10% 0 (0%~11)™20%2 .. ., where for each i > 0,
T3, S; are the unique integers such that ¢; = r;d + s;, with 0 < s; < d — 1. It is easily verified
that this output sequence is a (d — 1,2d — 1)-constrained sequence. Finally, if the input (d, oo)-
constrained sequence is of the form 091041 ... 0%-110%, for some integer j > 1, with £y > 0,
d</t; <o0,1<i<j—1and¥; = o0, then the encoder output is the (d —1,2d — 1)-constrained
sequence (04~11)700% 0 (04=11)"10%1 0 ... (0411)7-10%-1 (0% 11)*°, where r;,5;, 0 <4 < j — 1,
are defined as before.

The mapping, D : {0, 1}2d — {0, 1}, specified by the rule given below, defines a sliding-block

decoder for the above encoder, with memory d and anticipation d — 1:

0 ify, gq=9y; =1, and
D(yi—da"'7yi7"'7y’i+d—1) = y]:OaZ_d—I_lSJSZ—{_d_LJ#Z

y; otherwise.

Let y = yoy1%2 - - - be the sequence generated by the encoder in response to the (d, co)-constrained
input sequence x = xox1Z2.... To start decoding, the decoder is given as input the extended
sequence Y—gy_(4—1) - - - Y-1YoYy1y2 - - ., where yj_40y = 0911. Let X = Z9&122... be the output
produced by the decoder in response to y. When x begins with a run of d or more zeros, then
it may be verified that x = x. However, when x starts with 071, with 0 < j < d — 1, then we

indeed have #; = z; for all 1+ > 0, except for i = j, as z; = 1, but the decoder produces Z; = 0.

10

Therefore, since the decoder has no prior knowledge of the length of the initial zero-run in x, it
can only be guaranteed that &; = x; for all ¢ > d.

To finish the proof of the sufficiency of conditions 1-4 of Theorem 1.1, it only remains to show
the existence of a rate 1:1 finite-state encoder from S(1,2) to §(3,7) and the corresponding
sliding-block decoder. Let &£ be the encoder from §(1,2) to S(2,4) guaranteed by condition 2 of
the theorem applied with d = 1, and let D; be its sliding-block decoder. Similarly, condition 2
applied with d = 2 yields an encoder, &, from S(2,4) to S(3,7) with sliding-block decoder, D.
But now, the composition & o &; is a rate 1:1, finite-state encoder from S(1,2) to S(3,7), which
is sliding-block decodable by the decoder defined by D; o Dy. This completes the proof of the

sufficiency of conditions 1-4 of Theorem I.1.

III. NON-EXISTENCE OF ENCODERS

In this section, we prove the converse part of Theorem 1.1, i.e. we show that there do not exist
rate 1:1, sliding-block decodable, finite-state encoders between S(d, k) and S(d, k) that have the
same capacity but are not covered by conditions 1-4 of the theorem. The proof relies upon
results from symbolic dynamics; the reader is referred to [2] for the relevant background.

As noted earlier, all the equalities possible among the capacities C(d, k) are listed in (4)—(6).
Thus, we need to show the non-existence of rate 1:1, sliding-block decodable encoders in the
following cases:

(i) from S(d +1,3d + 1) to S(d,2d), d > 1,
(i) from S(d —1,2d — 1) to S(d, 00), d > 1;
(#4i) from S(4,00) to S(1,2) or S(2,4).

Observe that a sliding-block decoder for a rate 1:1 finite-state encoder from S(d, k) to S(d, k)
(viewed as constrained systems of finite sequences) can be extended to a sliding-block map from
the shift space S (cZ, lAc) onto the shift space S(d, k). Now, from an elementary result in symbolic
dynamics [2, p. 18, Proposition 1.5.11], we know that, under a sliding-block mapping from S(d, k)
to S(d, k), the image of a bi-infinite sequence y in S(d, k) of period n must be a sequence z in
S(d, k) whose least period divides n. Moreover, from [2, p. 414, Proposition 12.2.3], we can
deduce that whenever the shift spaces S(d, k) and S(d, k) have the same capacity, the existence

of a sliding-block mapping from S(d, k) onto S(d, k) implies that the characteristic polynomial

11

Xd,x(z) is a divisor of x d,ic(z) in the ring of integer polynomials. Consequently, there exists a
sliding-block decoder for a rate 1:1 encoder from S(d, k) to S(d, k) only if the periodic sequence
condition and the characteristic polynomial condition simultaneously hold.

The existence of such an encoder for the constrained systems listed in cases (i) and (ii) above
is ruled out by the application of the condition on periodic sequences. In particular, for case
(i), note that the condition is violated because for any d > 1, the shift space S(d, 2d) contains a
sequence of period d+ 1, namely, the sequence (O"ll)Oo =...0910%10%..., while S(d+1,3d +1)
does not contain any sequence of period d+ 1 or less. The periodic sequence condition is violated
in case (ii) as well, since S(d,00) contains the all-zeros sequence, 0°°, which is periodic with
period 1, while §(d — 1,2d — 1), d > 1, does not contain the all-zeros sequence or the all-ones
sequence, which are the only sequences of period 1. We would like to remark that when d = 1,
the shift space S(d — 1,2d — 1) does in fact contain the all-ones sequence.

The condition on periodic sequences is not strong enough to handle case (iii), since S(4, 00)
contains the period-1 sequence consisting of all zeros. Instead, we show that there cannot exist
a rate 1:1 sliding-block decodable encoder from S(4, c0) to either §(1,2) or §(2,4) by appealing

to the characteristic polynomial condition. From (3), we see that
Xo0(2) = 2° — 24— 1,

and from (2) we find that

X1,2(2) = P —2-1

and

x24(2) =2° — 2% — 2z — 1.

By inspection, it follows that x4,00(2) is not a divisor of either xi2(z) or x24(z) in the ring of
integer polynomials. Therefore, there does not exist a sliding-block mapping from either S(1, 2)
or §(2,4) onto §(4,00). This completes the proof of Theorem I.1.

We would like to make one final observation regarding the (d, k)-constrained shift spaces,
S(d, k). Our proof of Theorem I.1 in fact shows that given distinct shift spaces S(d,k) and

S(d, lAc) of equal capacity, there exists a sliding-block map from S (ci, lAc) onto S(d, k) if and only if

one of conditions 1-4 in the statement of the theorem holds. It follows that the only case where

12

there exists a sliding-block map from S(d, k) onto S(d, k), and from S(d, k) onto S(d, k) as well,
is when {(d, k), (d,k)} = {(0,1), (1,00)}. Therefore, aside from S(0,1) and S(1,0), no pair of
distinct (d, k)-constrained shift spaces can be conjugate. It is a well-known and trivial fact that
S§(0,1) and S(1,00) are indeed conjugate as shift spaces, the required conjugacy being obtained
by mapping 0’s and 1’s to their respective complements. Thus, the only pair of (d, k)-constrained

shift spaces that are conjugate are S(0,1) and S(1,00).

ACKNOWLEDGMENT

The authors wish to thank Brian Marcus for an especially thorough review of the paper, and

for suggesting various changes to the paper in the interests of simplicity and correctness.

REFERENCES

[1] B.H. Marcus, R.M. Roth and P.H. Siegel, “Constrained Systems and Coding for Recording Channels,” in
Handbook of Coding Theory, R. Brualdi, C. Huffman and V. Pless, Eds., Amsterdam, The Netherlands:
Elsevier, 1998.

[2] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge Univ. Press, 1995.

[3] K.A.S. Immink, P.H. Siegel and J.K. Wolf, “Codes for digital recorders,” IEEE Trans. Inform. Theory, vol.
44, no. 6, pp. 2260-2299, Oct. 1998.

[4] J. Ashley, “Resolving factor maps for shifts of finite type with equal entropy,” Ergod. Th. & Dynam. Sys.,
vol. 11, pp. 219-240, 1991.

[6] N. Kashyap and P.H. Siegel, “Capacity equalities in 1-dimensional (d, k)-constrained systems,” Proc. IEEE
Int. Symp. Inform. Theory, Yokohama, Japan, June 29 - July 4, 2003, p. 105.

[6] N. Kashyap and P.H. Siegel, “Equalities among capacities of (d, k)-constrained systems,” SIAM J. Discrete

Math., vol. 17., no. 2, pp. 276297, 2003.

