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Abstract—Mobile nodes observing correlated data communi-
cate using an insecure bidirectional switch to generate a secret
key, which must remain concealed from the switch. We are
interested in fault-tolerant secret key rates, i.e., the rates of
secret key generated even if a subset of nodes drop out before
the completion of the communication protocol. We formulate
a new notion of fault-tolerant secret key capacity, and present
an upper bound on it. This upper bound is shown to be tight
when the random variables corresponding to the observations of
nodes are exchangeable. Further, it is shown that one round of
interaction achieves the fault-tolerant secret key capacity in this
case. The upper bound is also tight for the case of a pairwise
independent network model consisting of a complete graph, and
can be attained by a noninteractive protocol.

I. INTRODUCTION

A set of mobile nodes observing correlated data wish to
generate a secret key (SK) by communicating interactively
with each other via an honest-but-curious bidirectional central
switch. The (honest) central switch makes the communication
sent by each node available to all the other nodes. However, a
subset of the nodes may drop out before the communication
protocol is completed. The remaining nodes must agree upon
an SK that is concealed from the (curious) central switch.
Such fault-tolerant SK generation facilitates secure group
communication for mobile nodes in a wireless environment.

We consider a multiterminal source model, and assume
noiseless communication between the nodes and the central
switch. Fixing the number of rounds of interaction, we for-
mulate a notion of fault-tolerant SK capacity. This extends
the concept of multiterminal SK capacity defined in [3]. We
provide an upper bound on the fault-tolerant SK capacity.

Our upper bound is tight for two important source models of
practical interest. For the first model involving exchangeable
random variables (rvs) (see, for instance, [4, p. 365]), our
results show that the fault-tolerant SK capacity does not
improve with rounds of interaction. Furthermore, our achiev-
ability scheme shows the existence of an adaptive protocol that
generates an SK of optimum rate for any remaining subset of
nodes.
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The second model we consider is a pairwise independent
network (PIN) introduced in [5], [6]. This source model con-
sists of independent bits shared by pairs of nodes, unknown to
the central switch. These pairwise shared bits are represented
as edges of a multigraph with nodes as the vertices. In [5],
[6], an interactive protocol was provided to generate one bit
of SK when this multigraph is a spanning tree. For a (t+1)-
connected multigraph, we present a noninteractive and fault-
tolerant generalization of this protocol that generates one bit
of SK if up to t nodes drop out. For the symmetric case of
a complete graph, we use a modification of this protocol to
achieve a fault-tolerant SK rate that matches the one given
by the aforementioned upper bound, thus characterizing the
fault-tolerant SK capacity in this case. In fact, we show that
it is possible for the the nodes to agree with probability one
on an SK of optimal rate that is statistically independent of
the communication sent by the nodes; such an SK is termed
a perfect SK. Furthermore, this SK can be generated using
a noninteractive protocol. Moreover, our protocol generates a
perfect SK of optimum rate for any remaining subset of nodes.

In the context of computational secrecy, a dynamic group
extension of the Diffie-Hellman SK generation algorithm was
presented in [7]. The information-theoretic formulation here,
however, is new.

The rest of this paper is organized as follows. The basic
concepts of SK and SK capacity are defined in Section II. The
notions of fault-tolerant SK and fault-tolerant SK capacities,
along with our main results, are given in Section III.

We establish some notation here. The set {1, . . . ,m} is
denoted by M. Let X1, . . . , Xm,m ≥ 2, be rvs taking values
in finite sets X1, . . . ,Xm, respectively, and with a known
probability mass function. For i ∈ M and n ≥ 1, let Xn

i

denote n independent and identically distributed (i.i.d.) copies
of Xi. For a subset A ⊆M, denote by XA the rvs (Xi, i ∈ A),
and by Xn

A the rvs (Xn
i , i ∈ A). Given Ri ≥ 0, 1 ≤ i ≤ m,

let RA denote the quantity
∑
i∈ARi.

Finally, for 0 ≤ ε < 1, we say an rv U is ε-recoverable
from an rv V if there exists a function g of V such that
Pr (U = g(V )) ≥ 1− ε.

II. SECRET KEYS AND PERFECT SECRET KEYS

We consider the multiterminal source model of [3]. Nodes
1, . . . ,m observe rvs Xn

1 , . . . , X
n
m, respectively. The com-

munication between the nodes is enabled by a bidirectional
central switch; any communication received by the switch is
made available (exactly) to all the nodes. The communication
transmitted by the ith node may be randomized using a
locally available rv Ui. The rv Ui is jointly independent of



(Xn
M, Uj , j ∈M \ {i}), and the rvs UM := (U1, . . . , Um)

satisfy H (UM) < ∞. Throughout this paper, we assume
that any communication originating from node i, i ∈ M, is
stamped with header information that identifies i.

Definition 1. An r-rounds interactive communication protocol
consists of mappings {fij | j ∈M, 1 ≤ i ≤ r}, where fij de-
notes the communication sent by the jth node in the ith round
of the protocol; specifically, fij is a function of

(
Uj , X

n
j

)
and

the communication sent in the previous rounds {fkl | 1 ≤
k ≤ i − 1, l ∈ M}. Denote the rv corresponding to the
communication by F = (F11, . . . , F1m, . . . , Fr1, . . . , Frm).
Note that F = F(n) (UM, X

n
M). For r = 1, we call the

protocol noninteractive.

The interactive protocol above is executed by the
central switch, which upon relaying the communication
F1M, . . . , FiM to all the nodes, receives the communication
F(i+1)j from the jth node. Note that here all m terminals
are assumed to communicate in each round of interaction. In
Section III, we will consider adaptive protocols in a scenario
where some of the terminals may drop out, leaving only a
subset Ai ⊆M to communicate in round i.

Definition 2. Given 0 ≤ ε < 1, for some n ≥ 1, an rv
K = K(n) (UM, X

n
M), taking values in a finite set K, is an

ε-secret key (ε-SK), achievable from observations of length
n, using randomization UM, and ε-recoverable from r-rounds
interactive communication F = F(n) (UM, X

n
M) if

(i) it satisfies the “strong” secrecy condition: log |K| −
H(K) + I(K ∧ F) < ε; and

(ii) it is ε-recoverable from (F, Ui, X
n
i ), for all i ∈M.

The rate of this ε-SK is given by 1
n log |K|.

A rate R ≥ 0 is an achievable SK rate if for every 0 <
ε < 1, there exists an ε-SK of rate greater than R− ε. The SK
capacity C(M) is defined as the supremum of all achievable
SK rates. A 0-SK K is referred to as a perfect SK, and the
supremum over the rates of a 0-SK is the perfect SK capacity
C0(M).

Theorem 1 (Csiszár-Narayan [3]). The SK capacity is given
by

C(M) = H (XM)−RCO, (1)

where RCO = min(R1,...,Rm)∈RCO(M)RM, with

RCO = {(R1, . . . , Rm) : RB ≥ H
(
XB |XM\B

)
, B (M}.

(2)

The quantity RCO above denotes the minimum rate of
communication for “omniscience” [3], i.e., the minimum
achievable rate of interactive communication F such that Xn

M
is ε-recoverable from (F, Ui, X

n
i ), for all i ∈ M. We further

note from [3] that there exists a noninteractive communication
of rate RCO that attains omniscience at M .

III. FAULT-TOLERANT SK GENERATION

In this section, a new fault-tolerant version of the SK gener-
ation problem is formulated. We consider adaptive protocols

that take into account the dropping out of nodes during the
protocol. It is required that the nodes that remain at the end
of a protocol agree upon an SK.

The adaptive protocol is executed by the central switch. Let
A1 denote the set of nodes that communicate in round 1, the
rest of the nodes having dropped out without communicating.
Knowing the set A1, the central switch then provides the nodes
in A1 with all the round-1 communication, and anticipates the
next round of communication from them. However, only the
nodes in a subset A2 of A1 communicate in round 2. This
process is repeated for r rounds, with only the nodes in Ar
remaining in the rth round. Clearly we have Ar ⊆ Ar−1 ⊆
. . . ⊆ A1 ⊆M. Note that in a given round of communication,
each remaining node has access to the communication that was
sent in the previous rounds. As in Definition 1, for r = 1, we
call the protocol noninteractive.

In this paper, we assume that for r ≥ 2, Ar = Ar−1, i.e.,
for adaptive protocols, the nodes remaining in the (r − 1)th
round are required to communicate in the rth round, or else
the protocol fails. (The case of r = 1 is handled separately.)
Thus, except when r ≥ 2 and i = r, the set of nodes that will
communicate in round i is not known to the central switch
at the end of the previous round. In the exceptional case,
the assumption Ar = Ar−1 ensures that the set of nodes
that will communicate in the rth round is known a priori.
In practice, this could be implemented by having the central
switch announce to all nodes at the beginning of the rth round
that this is the final round of communication. If all nodes in
Ar−1 respond, the protocol completes; otherwise it fails.

Using the adaptive protocol above, the nodes generate an
SK for the remaining set, Ar, of nodes. We do not require
that the SK be concealed from the nodes in M\ Ar. Fixing
the maximum number of nodes that may drop out during the
protocol as t, the SK rate guaranteed by the protocol corre-
sponds to the worst-case rate of an SK that is generated by the
remaining nodes in Ar, for all choices of sets Ar ⊆ · · · ⊆ A1

with |Ar| = |Ar−1| ≥ m− t.
Formally, we have the following two definitions.

Definition 3. For r ≥ 1, and n ≥ 1, an r-rounds adap-
tive protocol, for each A = {Al : 1 ≤ l ≤ r − 1}, with
Ar−1 ⊆ Ar−2 ⊆ . . . ⊆ A1 ⊆ M, consists of mappings
{fij | j ∈ Ai−1, 1 ≤ i ≤ r} , where A0 = M. For each j ∈
Ai−1, fij is a function of

(
Uj , X

n
j

)
and the communication

from all the previous rounds, {fkl | 1 ≤ k ≤ i− 1, l ∈ Ak}.
Here fij denotes the communication from the jth node in

the ith round of communication, and so, is defined only for the
nodes j ∈ Ai−1, where Ai−1 is the set of nodes that remain
after the (i − 1)th round. The function fij depends on the
sequence of sets Ai−1 ⊆ ... ⊆ A1 ⊆ A0 =M.

With a slight abuse of notation, let F = FA denote the
random value of the communication corresponding to the
decreasing family of subsets A.

It is perhaps worth clarifying that fij in the definition above
is what j ∈ Ai−1 prepares to communicate in the ith round;
it may happen that j drops out before actually sending this



communication. For r ≥ 2, the nodes remaining at the end of
(r − 1)th round must communicate in the rth round, or else
the protocol fails.

Definition 4. For 1 ≤ t ≤ m and r ≥ 2, a rate R ≥ 0 is said to
be an achievable (r, t)-fault-tolerant SK rate, if for every 0 <
ε < 1, there exists n ≥ 1, and an r-rounds adaptive protocol as
above, such that for every decreasing family A, with |Ar−1| ≥
m − t, there exists an ε-SK K = K(n)

(
UAr−1 , X

n
Ar−1

)
, of

rate greater than R− ε, that
(i) satisfies the “strong” secrecy condition: log |K|−H(K)+

I (K ∧ F) < ε; and
(ii) is ε-recoverable from (F, Ui, X

n
i ), for all i ∈ Ar−1; we

say that K is an ε-SK for Ar−1 recoverable from the protocol.
Note that a rate R is achievable if every remaining subset

Ar−1 of size m − t or more can form an SK of rate R,
irrespective of A. The actual SK K, however, may depend
on A.

Similarly, R ≥ 0 is an achievable (1, t)-fault-tolerant SK
rate if for every 0 < ε < 1, there exists n ≥ 1, and
a noninteractive (1-round adaptive) protocol, such that for
every A ⊂ M, with |A| ≥ m − t, there exists an ε-
SK K = K(n) (UA, X

n
A), of rate greater than R − ε, that

satisfies (i) and (ii) above. The (r, t)-fault-tolerant SK capacity
Cr,t(M) is defined as the supremum of all (r, t)-fault-tolerant
SK rates.

The (r, t)-fault-tolerant perfect SK capacity Cr,t0 (M) is
defined analogously.

Since any r-rounds adaptive protocol can be implemented
in r + 1 rounds by choosing f1j = ∅, and defining the last r
rounds of communication fij , 2 ≤ i ≤ r+1 as in the r-rounds
protocol, we have from their definitions that various notions
of fault-tolerant capacity are related as below:

For r ≥ 2,

C1,t
0 (M) ≤ C1,t(M) ≤ Cr,t(M) ≤ Cr+1,t(M).

Next, given A ⊆ M, consider the family A1 = ... =
Ar−1 = Ar = A. This family corresponds to the case where
the nodes j that communicate during the protocol never drop-
out. Therefore, the rate R of an SK that a fault-tolerant
protocol generates for this family can not exceed the SK
capacity for A, C(A) (see Definition 2). Here C(A) is defined
as in (1), with constraints in (2) now applied for all B ( A1.
Thus, if R is an achievable (r, t)-fault-tolerant SK rate, then
for any subset A of M, with |A| ≥ m− t, it holds that

R ≤ C(A).

Consequently,

Cr,t(M) ≤ min
A⊆M
|A|≥m−t

C(A), r ≥ 1.

In fact, the following lemma allows us to restrict to the sets

1This is different from the notation in [3] where C(A) corresponds to the
maximum rate of a SK that can be generated by the nodes in A when nodes
M\A act as helpers.

with |A| = m− t in the upper bound above.

Lemma 2 (Monotonicity of SK capacity).

C(M) ≥ min
A⊆M
|A|=m−1

C(A).

The proof is based on an alternative expression for C(M)
derived in [1], and is omitted due to space constraints. We
summarize the observations above in the following Lemma.

Lemma 3. For r ≥ 1, the (r, t)-fault-tolerant SK capacity
satisfies the following:

C1,t
0 (M) ≤ Cr,t(M) ≤ Cr+1,t(M) ≤ min

A⊆M
|A|=m−t

C(A).

The fault-tolerant SK capacity represents the optimal worst-
case rate of an SK. A much stronger optimality criterion given
below requires the protocol to generate an optimum rate SK
for each remaining subset of nodes.

Definition 5. For r ≥ 2 and n ≥ 1, we say that an r-
rounds adaptive protocol is strongly optimal for fault-tolerant
SK generation if for every decreasing family A, consisting of
Ar−1 ⊆ . . . ⊆ A1, and for every 0 < ε < 1, there exists an ε-
SK K for Ar−1, recoverable from the protocol, of rate greater
than C (Ar−1) − ε. A similar definition holds for adaptive
protocols with r = 1.

In applications like mobile communication, it is required
that all the nodes have a symmetric role in the SK generation
protocol. In fact, it is often the case that the underlying source
model is also symmetric. In the remainder of this paper, we
will focus on such symmetric models for fault-tolerant SK
generation. We are now in a position to state our main results.

A. Exchangeable source model

We first consider a symmetric source model consist-
ing of exchangeable rvs X1, . . . , Xm, i.e., PX1,...,Xm =
PXσ(1),...,Xσ(m)

, for all permutations σ of {1, . . . ,m}. Then,
for A ⊆ M, H

(
XA|XM\A

)
depends only on the size of

A; for 1 ≤ i, j < m and i + j ≤ m, denote by g(i|j)
the conditional entropy H (X1, . . . , Xi|Xi+1, . . . , Xi+j), with
the convention g(m|0) = H (XM) and g(0|m) = 0. We
characterize next the minimum rate of communication for
omniscience RCO for exchangeable rvs.

Lemma 4. Given exchangeable rvs X1, . . . , Xm, for

αm =
g(m− 1|1)
m− 1

,

(αm, . . . , αm) is in RCO and RCO = mαm (see Theorem 1).

As noted in the discussion following Theorem 1, the opti-
mum rate communication for omniscience can be noninterac-
tive. The lemma above implies that it is possible to attain
omniscience using noninteractive communication of equal
rates from each node. The next lemma shows that this equal
rate of transmission decreases with the number of nodes.

Lemma 5. The αm defined above is decreasing in m.



The proofs of Lemmas 4 and 5 are based on elementary
properties of the conditional entropies g(i|j) and are omitted
due to space constraints.

Using these observations, the following theorem character-
izes the (r, t)-fault-tolerant SK capacity for exchangeable rvs,
when r ≥ 2.

Theorem 6. For 1 ≤ t ≤ m and r ≥ 2, the (r, t)-fault-tolerant
SK capacity is given by

C2,t(M) = Cr,t(M) = g(m− t|0)− (m− t)αm−t.

Furthermore, there exists a 2-rounds adaptive protocol that is
strongly optimal.

Proof . We first note from Lemma 3, Theorem 1, and
Lemma 4 that Cr,t(M) ≤ g(m− t|0)− (m− t)αm−t.

We next show that C2,t(M) ≥ g(m− t|0)− (m− t)αm−t.
Fix 0 < ε < 1. Assume, for now (we will prove this later),
that for sufficiently large n, there exists a 2-rounds adaptive
protocol with the following properties:

(i) For j ∈M, f1j : Xnj → {1, . . . , d2nαme},
(ii) for A ⊆ M, with k = |A|, let f2j = fk2j , where fk2j :

Xnj →
{
1, . . . , d2n(αk−αm)e

}
, for all j ∈ A; denote its

random value by F k2j ,
(iii) for each A ⊆ M, Xn

A is ε-recoverable from(
Xn
l , F1j , F

k
2j , j ∈ A

)
, for all l ∈ A.

Note that if only the nodes in a subset A with |A| = k re-
main after the first round, the overall rate of communication for
the protocol is kαk. Using a version of the Balanced Coloring
Lemma [3, Lemma B.3], for sufficiently large n, there exists
an rv K = K (Xn

A) of rate greater than H (XA) − kαk − ε
with I

(
K ∧ F1j , F

k
2j , j ∈ A

)
≤ ε. The nodes first use the

protocol above to recover Xn
A, and then compute the SK

K = K (Xn
A). It follows from Lemma 4 and Theorem 1

that C(A) = H (XA) − kαk, which establishes the strong
optimality of the protocol above. Furthermore, from Lemma 2,
if k ≥ m− t, then C(A) ≥ g(m− t|0)− (m− t)αm−t. Thus,
the proof of the theorem would be complete once we show
the existence of the protocol above.

To that end, from Lemma 4 and [2, Lemma 13.13], for
sufficiently large n, random mappings Fj , j ∈ A, of rate αk
result in omniscience at the terminals in A. In fact, the same
result holds if Fj is replaced by two independent random
mappings of rates that sum to αk. Specifically, consider
random mappings F1j of Xn

j of rate αm for j ∈ M. For
k ≤ m, for 1 ≤ j ≤ k, let F k2j be random mappings of rate
αk − αm. Note that from Lemma 5 we have αk − αm ≥ 0.
Therefore, from the discussion above, the random mappings
F1j , j ∈ M, and F k2j , 1 ≤ j ≤ k, constitute a protocol
with the required properties, with probability close to 1 for n
sufficiently large.

Remark. It remains unresolved whether the inequality
C1,t(M) ≤ C2,t(M) is strict or not for the exchangeable
source model studied here.

B. PIN model

In this section, we consider fault-tolerant SK generation for
a special case of the multiterminal source model, namely, the
PIN model (see [5], [6]). The PIN model is specified by a
graph G = (V, E), with vertex set V = M and edge set E .
For n ≥ 1, let G(n) be the multigraph with vertex set V =M
and edge set E(n) containing n copies of each edge of G. The
n copies of an edge e = {i, j} ∈ E represent n i.i.d. copies
of an unbiased random bit Be available to the nodes i and
j. For each e ∈ E , the rv Bne is jointly independent of the
rvs (Bne′ , e

′ ∈ E \ {e}). Consequently, for each i ∈ M, the
observations of the ith node are given by the rv

Xn
i =

(
Bn{i,j}, j ∈M, {i, j} ∈ E

)
.

As before, XM = (X1, . . . , Xm) and Xn
M = (Xn

1 , . . . , X
n
m).

For this PIN model, an interactive communication protocol
was given in [5], [6] to generate a 1-bit perfect SK from
XM, when G is a spanning tree for the vertices in M. Here,
we present a new fault-tolerant variant of that protocol. In
particular, our protocol below yields a 1-bit (1, t)-fault-tolerant
perfect SK for a PIN model consisting of a (t+1)-connected
spanning graph G (we say that a graph G is (t+1)-connected
if the subgraph G(A) induced by G on the vertices in A ⊆M
is connected whenever |A| ≥ m− t).
Protocol 1:
For each i ∈M, the ith node communicates

fi (Xi) =
(
B{i,j} ⊕B{i,j′} : {i, j}, {i, j′} ∈ E , j 6= j′

)
.

For A ⊆ M, |A| ≥ m − t, let eA be an edge in G(A); such
an edge exists as G is (t+ 1)-connected.
Claim: For each i ∈ A, BeA is a function of (FA, Xi), and
I (BeA ∧ FA) = 0. Thus, BeA is a 1-bit perfect SK achievable
from XA.

Proof. Since G is (t+ 1)-connected, and |A| ≥ m− t, for
each i ∈ A and for some edge el incident on i, there exists
a path {eA, e1, . . . , el} in G(A). Since el is incident on i,
Bel is a function of Xi. Further, note that the communication
FA includes the rvs BeA ⊕Be1 , Be1 ⊕Be2 , . . . , Bel−1

⊕Bel .
Therefore, BeA = (BeA⊕Be1)⊕(Be1⊕Be2)⊕ . . .⊕(Bel−1

⊕
Bel)⊕Bel is a function of (FA, Xi).

Labelling the rest of the edges so that E =
{e0 = eA, e1, . . . , ek}, we have

H
(
Bei ⊕Bej , 0 ≤ i, j ≤ k

)
= H

(
Be0 ⊕Bej , 1 ≤ j ≤ k

)
≤ k. (3)

The equality above follows from the fact that for all i, j, we
have Bei ⊕Bej = (Be0 ⊕Bei)⊕ (Be0 ⊕Bej ). Similarly,

H
(
Bei ⊕Bej , 0 ≤ i, j ≤ k | BeA

)
= H (Be1 , . . . , Bek | Be0)
= k, (4)

where the last equality follows from the pairwise independence
assumption. Hence,

0 ≤ I (BeA ∧ FA) ≤ I
(
BeA ∧Bei ⊕Bej , 0 ≤ i, j ≤ k

)
≤ 0,



the last inequality following from (3) and (4).
For the remainder of this section we take G to be Km, i.e.,

the complete graph on m vertices. This is the unique choice
of G for which the rvs X1, . . . , Xm are exchangeable. For
this symmetric model, the theorem below shows the strong
optimality (see Definition 5) of Protocol 1, when it is applied
to a certain packing of spanning trees.

Theorem 7. For the PIN model specified by the complete
graph Km, we have

Cr,t(M) = C1,t
0 (M) =

m− t
2

, 0 ≤ t ≤ m, r ≥ 1.

Furthermore, there exists a strongly optimal protocol for fault-
tolerant SK generation.

Proof. For i ∈M, denote by Yi the “star-shaped” spanning
tree with edge set given by Ei = {{i, j} : j ∈ M, j 6= i}.
Then, for any subset A ⊆ M, the union of

⋃
i∈A Yi(A) is

precisely the multigraph, K(2)
A , on the vertex set A with two

edges between each pair of distinct vertices. Therefore, if the
nodes in a subset A of M remain, we can use Protocol 1
to generate a 1-bit perfect SK bit for each Yi(A), i ∈ A.
This yields a perfect SK of size |A| bits achievable from the
observations X2

A = (X2
i , i ∈ A). The rate of this SK is |A|/2.

Thus, for 0 ≤ t ≤ m, (m− t)/2 is an achievable (1, t)-fault-
tolerant perfect SK rate.

To prove the converse, first note from Lemma 2 that

C1,t
0 (M) ≤ Cr,t(M) ≤ C(A),

for A ⊆ M, |A| = m − t. Thus the converse will follow
upon showing that C(A) = (m − t)/2, when |A| = m − t.
In fact, if C(A) = (m − t)/2 holds, then the protocol is
strongly optimal. To that end, since the rvs X1, . . . , Xm are
exchangeable, a straightforward computation using Theorem 1
and Lemma 4 yields C(A) = m−t

2 .
The rate-optimal protocol above is noninteractive and does

not require local randomness. However, it does need obser-
vations of length n = 2. We next propose a fault-tolerant
perfect SK generation protocol that works with observations
of length n = 1, is noninteractive, and generates bm/2c − t
bits of SK when upto t nodes leave. Specifically, for Km, our
result below gives a spanning tree packing of size bm/2c, i.e.,
a collection of bm/2c disjoint2 spanning trees of Km, such
that every vertex is a leaf for all but one of the spanning trees
in the packing. The SK generation protocol then involves using
Protocol 1 on each of these disjoint spanning trees. Removing
a vertex only disconnects those spanning trees for which the
vertex is not a leaf. Consequently, upon removing t vertices,
the remaining graph still contains bm/2c− t disjoint spanning
trees. Hence, when up to t nodes leave, the remaining nodes
generate bm/2c − t bits of SK.

Lemma 8. Km contains a spanning tree packing of size
bm/2c, such that every vertex is a leaf for all but one of
the disjoint spanning trees in the packing.

2Here, “disjoint” means that distinct spanning trees share no edges.

$u_i$ $v_i$

Fig. 1. Spanning tree Ti corresponding to the edge {ui, vi}

Proof. We give a construction for even m. For odd m,
the proof can be completed by introducing a dummy node,
carrying out the construction for Km+1, and finally deleting
the dummy node.

For m = 2k, consider a perfect matching in Km. It
partitions the vertices into two disjoint sets {u1, . . . , uk}
and {v1, . . . , vk}, and consists of edges {ui, vi} for
1 ≤ i ≤ k. For each edge {ui, vi} of the match-
ing, consider the spanning tree Ti, whose edge set is
the union of {{ui, uj}, i < j ≤ k}, {{ui, vj}, 1 ≤ j ≤ i},
{{vi, vj}, i < j ≤ k}, and {{vi, uj}, 1 ≤ j < i}, as depicted
in Fig. 1. It is clear that the edge-disjoint spanning trees Ti,
i = 1, . . . , k, satisfy the properties claimed above.

IV. CONCLUDING REMARKS

The adaptive protocols considered in this paper are ad-
mittedly a first step towards the larger goal of information-
theoretic SK agreement for dynamic groups. The next step is to
allow rejoining of terminals that drop out, and more generally,
to handle arbitrary dropping in-and-out of the m terminals. We
also intend to consider stronger adversarial models.

ACKNOWLEDGEMENT

The authors thank Amitabh Saxena and Andrew Thangaraj
for useful discussions leading up to this work. The first
author would also like to thank Prakash Narayan for helpful
comments.

REFERENCES

[1] C. Chan and L. Zheng, “Mutual dependence for secret key agreement,”
in Proceedings of 44th Annual Conference on Information Sciences and
Systems (CISS), 2010.

[2] I. Csiszár and J. Körner, Information theory: Coding Theorems for
Discrete Memoryless Channels. 2nd Edition. Cambridge University
Press, 2011.

[3] I. Csiszár and P. Narayan, “Secrecy capacities for multiple terminals,”
IEEE Trans. Inform. Theory, vol. 50, no. 12, pp. 3047–3061, 2004.
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