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Abstract— We consider a number of constrained coding tech-
niques that can be used to mitigate a nonlinear effect in the
optical fiber channel that causes the formation of spurious pulses,
called “ghost pulses.” Specifically, if b1b2 . . . bn is a sequence of
bits sent across an optical channel, such that bk = bl = bm = 1
for some k, l, m (not necessarily all distinct) but bk+l−m = 0,
then the ghost-pulse effect causes bk+l−m to change to 1, thereby
creating an error. Such errors do not occur if the sequence
of bits satisfies the following constraint: for all integers k, l, m
such that bk = bl = bm = 1, we have bk+l−m = 1. We call
this the binary ghost-pulse (BGP) constraint. We will show,
however, that the BGP constraint has zero capacity, implying
that sequences satisfying this constraint cannot carry much
information. Consequently, we consider a more sophisticated
coding scheme, which uses ternary sequences satisfying a certain
ternary ghost-pulse (TGP) constraint. We further relax these
constraints by ignoring interactions between symbols that are
more than a certain distance t apart in the transmitted sequence.
Analysis of the resulting BGP(t) and TGP(t) constraints shows
that these have nonzero capacities, and furthermore, the TGP(t)-
constrained codes can achieve rates that are significantly higher
than those for the correponding BGP(t) codes. We also discuss
the design of encoders and decoders for coding into the BGP,
BGP(t) and TGP(t) constraints.

Index Terms— Binary ghost-pulse (BGP) constraint, capacity of
constrained systems, constrained encoding and decoding, optical
communication, ternary ghost-pulse (TGP) constraint.

I. INTRODUCTION

High data-rate optical fiber communication presents several
interesting challenges to a coding theorist. The diverse
impairments peculiar to the optical channel necessitate the
development of new coding schemes, capable of mitigating
the effects of these impairments. One such impairment
is the nonlinear effect known as intrachannel four-wave
mixing (FWM)— see [9], [20], [23] and references therein.
FWM results in strong inter-symbol interference between the
symbols in a bitstream transmitted across the optical fiber. It
is widely accepted [19], [20], [26] that at bit rates of 40 Gbps
and beyond, FWM will play a major role in limiting the
information-carrying capacity and the propagation distance of
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a dispersion-managed optical communication system. In this
paper, we consider a number of constrained coding techniques
motivated by the intrachannel FWM effect.

A. Background on Ghost-Pulse Formation

In a typical optical fiber communication scenario, a train of
light pulses, corresponding to a sequence of n bits, is sent
across an optical fiber. Each bit in the sequence is allocated
a time slot of duration T, and a binary one or zero is marked
by the presence or absence of a pulse in that time-slot. The
effect of intrachannel FWM is to transfer energy from triples
of pulses in ‘1’-slots into certain ‘0’-slots, thereby creating
spurious pulses known as ghost pulses. It has been observed
that the interaction of pulses in the k-th, l-th, and m-th time-
slots pumps energy into the (k+l−m)-th time-slot. If this slot
did not originally contain a pulse — that is, if the (k+l−m)-
th bit was a zero in the original n-bit sequence — then this
transfer of energy creates a ghost pulse in this time-slot. This
could cause the original zero to be read as a one (see Fig. 1).

Since the overall energy is conserved, some of the pulses
in the k-th, l-th, and m-th time-slots lose energy, resulting in
a lowering of their amplitude (intensity). On the other hand,
if the (k+l−m)-th slot already contained a pulse, then there
is an exchange of energy between the pulses in the k-th, l-th,
m-th, and (k+l−m)-th slots, leading to amplitude fluctuations.
An analytic explanation of these phenomena can be derived
using the nonlinear Schrödinger equation that describes pulse
propagation in optical fibers — see [1], [2], [26].
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Fig. 1. Model of ghost-pulse formation due to the interaction of three pulses

There are, in general, multiple (k, l, m) triples that result in
the same integer k+l−m. Thus it is possible to have several
pulse triples generating a ghost pulse at the same time-slot.
Of course, in reality, the number of pulse triples involved in
ghost-pulse formation at a certain time-slot is quite small. This
is because, as one would expect from physical considerations,
the interaction between pulses that are sufficiently far apart in
the transmitted pulse train is weak. Indeed, for typical optical
transmission parameters, pulses that are more than 10 to 12
time-slots apart do not contribute significantly to the formation
of ghost pulses [3], [19]. In any case, when multiple pulse
triples generate a ghost pulse at the same zero time-slot, the
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resulting ghost pulse is the superposition of the ghost pulses
formed by each of the pulse triples. The superposition of multi-
ple ghost pulses may result in a stronger ghost pulse, or some-
times (due to destructive interference) in a weaker ghost pulse.

As shown in [4], [19], the phases of the original pulses
play a vital role in determining which pulses lose energy and
which gain energy in the course of the energy transfer induced
by FWM. The phase of a ghost pulse created by a given
pulse triple depends on the phases of all the pulses in the
triple. Thus, in the case of a superposition of multiple triples,
the relationship of the phase of the resulting ghost pulse to
that of all the pulses involved in its creation can be quite
complex. Indeed, even the amplitude of a ghost pulse depends
on the phases of the pulse triples involved in its creation, since
superposition of ghost pulses with opposing phases at the same
time-slot will actually suppress ghost-pulse formation.

Physically, a ghost pulse is just another pulse of light. Thus
it is possible that ghost-pulse formation may propagate: the
interaction of a ghost pulse with actual pulses or other ghost
pulses may lead to the creation of even more ghost pulses.

Finally, it should be noted that FWM is primarily a problem
with long-haul and ultra long-haul optical communication sys-
tems, operating at 40 Gbps. This is so because the amplitude of
ghost pulses grows linearly with propagation distance. A long-
haul system consists of many periods of alternating spans of
conventional and dispersion-compensating fiber. This causes
quasi-periodic broadening and compression of the informat-
ion-bearing pulses. For typical transmission parameters, ghost
pulse amplitude reaches significant proportions over several
periods of the dispersion map that is typically 50–100 km long.
The simulations reported in the literature [19], [23], [26] were
carried out over links of length 500 km to 5000 km.

B. Related Modulation Techniques

The optics literature has seen the emergence of several simple
modulation schemes [4], [7], [16], [19] aimed at reducing
the impact of FWM. Most of these schemes are based on the
fact that FWM is a phase-sensitive effect and, therefore, can
be controlled by modulating the phase of the pulses being
transmitted. The one exception is the modulation scheme
of [16], which proposes to use unequally spaced pulses at the
expense of sacrificing spectral efficiency.

Coding — that is, introduction of redundancy in the trans-
mitted bits as a means of controlling errors — has not been
given much consideration as an approach to mitigating the
FWM effect. To the best of our knowledge, the only previous
work in this area has been reported by Vasic, Rao, Djordjevic,
Kostuk, and Gabitov in [24]. In that paper, the authors use
sequences satisfying a certain maximum-transition run (MTR)
constraint to counter the impact of FWM. In the language of
constrained coding, a binary sequence x is said to satisfy an
MTR( j) constraint if every run of ones in x has length at
most j (cf. [22]). In the modulation scheme of [24], a block
code of rate 0.8, consisting of 256 binary codewords of length
10 satisfying the MTR(2) constraint, is used for transmission.
Simulation results show significant ghost-pulse reduction due
to the use of this coding scheme. The authors of [24] conclude

that “it is possible to successfully tackle the detrimental effects
of FWM in 40-Gb/s systems using simple coding techniques.”

In this paper, we undertake a systematic study of a number
of coding schemes that combine constrained coding and phase
modulation. Our study focuses purely on the coding-theoretic
aspects (e.g. rate, encoding/decoding) of these schemes — we
make no claims regarding their effectiveness in suppressing
ghost pulses. In particular, we do not address the question
of how well constrained coding schemes are suited to tackle
the problem of eliminating ghost pulses in real-world optical
systems. Such questions can only be answered via experimen-
tation and/or extensive simulations of the fiber-optic channel,
which is beyond the scope of this work.

C. Binary Ghost-Pulse Constraint

To formulate a well-defined coding problem, we model the
formation of (primary) ghost pulses as follows. Let b1b2 . . . bn,
with bi ∈ {0, 1}, be the binary sequence corresponding to the
train of pulses sent across the fiber optic medium. If for some
integers k, l, and m (not necessarily all distinct), we have

bk = bl = bm = 1 while bk+l−m = 0 (1)

then the formation of a primary ghost pulse converts the zero
in time-slot k+l−m to a one. Note that if we can encode
the transmitted binary sequence in such a way that (1) never
occurs, we will eliminate all (higher-order) ghost pulses
caused by ghost-pulse propagation (discussed in Section I-A),
as well. For example, a sequence containing at most one 1, or
the all-ones sequence, or a sequence of alternating zeros and
ones all satisfy this condition. In general, we say that a binary
sequence c1c2 . . . cn satisfies the binary ghost-pulse (BGP)
constraint if for all integers k, l, m such that ck = cl = cm = 1
and 0 6 k + l −m 6 n−1, we also have ck+l−m = 1. It
is clear that transmitting a sequence that satisfies the BGP
constraint will not allow ghost pulses to be created.

Let fBGP(n) be the number of binary sequences of length n
that satisfy the BGP constraint. Then the asymptotic informa-
tion rate (or the capacity, or the entropy) of the BGP constraint
is defined (cf. [18], [21]) as follows:

HBGP
def
= lim

n→∞

1
n

log2 fBGP(n). (2)

Of course, we would like HBGP to be as close to 1 as possible,
so that coding into the BGP constraint adds little redundancy
to the information being encoded. However, as we will show
in Section III, a finite-length binary sequence satisfies the BGP
constraint if and only if the ones in the sequence are uniformly
spaced — that is, the positions of the ones form an arithmetic
progression. It follows that there are O(n2) binary sequences
of length n that satisfy the BGP constraint, and HBGP = 0.
Hence, we need to investigate alternative approaches to dealing
with the ghost-pulse problem.

One approach that we consider is based on the intuition that
the interaction between pulses that are sufficiently far apart in
the transmitted pulse train is weak. As noted in Section I-A, in
a typical optical communication scenario, pulses that are more
than 10–12 time-slots apart do not contribute significantly to
the formation of ghost pulses (cf. [3], [19]).



KASHYAP, SIEGEL, AND VARDY: THE GHOST-PULSE CONSTRAINT 3

Disregarding the interaction between ones that are separated
by more than some fixed distance t, we say that a binary
sequence c1c2 . . . cn satisfies the BGP(t) constraint if for all
integers k, l, m (not necessarily distinct) such that

ck = cl = cm = 1, (3)

0 6 k + l −m 6 n − 1, (4)
and

max
{

|k − l|, |l −m|, |m− k|
}

6 t (5)

we also have ck+l−m = 1. The capacity H2(t) of the BGP(t)
constraint can be defined as in (2). (We will provide formal
definitions for the capacities of all such constraints in the next
section.) In Section III, we will show that H2(t) is positive
for all t. However, we also show in Section III that H2(t)
lies in the range 0.21 – 0.25, when t∈ {10, 11, 12}. This
makes the BGP(t) constraint somewhat unattractive as the
basis for a coding scheme. Nevertheless, we briefly discuss
in Section III the design of finite-state encoders that take an
unconstrained binary sequence as input and produce a BGP(t)-
constrained sequence as output.

D. Ternary Ghost-Pulse Constraint

Another approach that has been suggested [4], [7], [19] to
mitigate the formation of ghost pulses is to apply, at the
transmitter end, a phase shift of π to some of the pulses.
We can effectively think of this phase-modulation technique as
converting a binary sequence b1b2 . . . bn, with bi ∈ {0, 1}, into
a ternary sequence c1c2 . . . cn, where ci ∈ {−1, 0, 1}, such that
bi = |ci| for all i. One reason behind this phase-modulation
approach is that, as explained in Section I-A, superposition
of the contributions due to multiple pulse triples will result
in suppression of ghost-pulse formation if their interference
is destructive. Thus, knowledge of the relationship between
the phase of a ghost pulse and the phases of the pulses
involved in its creation makes it possible to manipulate the
phase of the transmitted pulses in a way that encourages
destructive interference. Such phase modulation schemes are
very effective at eliminating some of the stronger ghost pulses
(cf. [4], [19]). However, as observed in [4], it is impossible to
achieve destructive interference in several consecutive zero-
slots. Moreover, these schemes do not mitigate the “side
ghosts” that arise due to energy leakage from the one-slots into
adjacent zero-slots. Therefore, another approach is to modulate
the phase of the transmitted pulses with the aim of achieving
energy redistribution among the one-slots, thereby preventing
energy leakage into adjacent zero-slots. Overall, building upon
the work of [4], it appears reasonable to try preventing
situations in which pulses in time-slots k, l, and m all have the
same phase, while the slot at time k+l−m is empty (zero).

Thus we say that a ternary sequence c1c2 . . . cn satisfies the
ternary ghost-pulse (TGP) constraint if for all integers k, l, m
(not necessarily distinct) such that 0 6 k + l −m 6 n−1, and

ck = cl = cm = +1 or ck = cl = cm = −1 (6)

we also have ck+l−m 6= 0. Let T3 be the set of all finite-length
ternary sequences that satisfy the TGP constraint. To transmit a
finite-length binary data sequence, we encode it as a sequence

from T3. Based on the discussion above, we shall assume, as a
first-order approximation, that sequences in T3 are effective in
mitigating ghost-pulse formation, so the transmitted sequence
can be recovered without error at the receiver end.

However, there is a catch. Most long-haul optical commu-
nication systems use direct-detection optical receivers, which
can only detect the intensity (amplitude) of the optical signal
at the channel output, not its phase. Thus if the transmitted
ternary sequence was c1c2 . . . cn, then the receiver only sees
the sequence |c1|, |c2|, . . . , |cn|. In other words, the receiver
cannot distinguish a +1 from a −1. As a result, we cannot
use two sequences in T3 that differ only in phase (sign) to
encode two different binary data sequences.

We thus have a rather unusual coding problem: even though
the sequence being transmitted is ternary, the alphabet used
for encoding information is effectively binary. In general,
discrete channels for which the output alphabet is smaller
than the input alphabet are rarely encountered in information
theory. In fact, to the best of our knowledge, a situation
where the alphabet over which the constraint is defined is
different from the information-bearing alphabet has not been
previously studied in the constrained coding literature.

In order to describe the procedure for encoding a binary data
sequence using TGP-constrained sequences, we define the set

B3
def
=

{

|c1|, |c2|, . . . , |cn| : c1c2 . . . cn ∈T3
}

. (7)

This is the set of all finite-length binary sequences that can be
converted to a sequence in T3 by changing certain 1’s to −1’s.
To transmit a binary data sequence a1a2 . . . aN , we first encode
it as a sequence b1b2 . . . bn ∈B3, which is then converted to
a corresponding sequence c1c2 . . . cn ∈T3 at the input to an
optical channel. At the channel output, the receiver detects
the sequence b1b2 . . . bn, which can be uniquely decoded to
recover the original binary sequence a1a2 . . . aN .

The capacity HTGP of the TGP constraint can be now
defined in a manner analogous to (2). Let fTGP(n) denote
the number of sequences of length n in the set B3. Then

HTGP
def
= lim

n→∞

1
n

log2 fTGP(n). (8)

The analysis of the TGP constraint appears to be a much
more difficult problem than analysis of the BGP constraint.
However, we conjecture that HTGP = HBGP = 0. Strong
evidence in support of this conjecture is given in [15] (see
Section IV-A).

Consequently, we consider the weaker TGP(t) constraint
obtained, similarly to the BGP(t) constraint, by ignoring inter-
actions between nonzero symbols that are more than distance
t apart. Define the set T3;t by adjoining the extra condition (5)
to (6). The capacity H3(t) of the TGP(t) constraint can be
then defined as in (8), but with respect to the set T3;t rather
than T3. One can reasonably expect that as t increases, H3(t)
decreases, converging upon HTGP in the limit as t → ∞.
Indeed, we will prove in the next section that

HTGP = lim
t→∞

H3(t) = inf
t>1

H3(t). (9)

This provides a means of computing increasingly tight upper
bounds on the capacity HTGP which, as we mentioned earlier,
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is not easy to compute directly. Furthermore, we will show in
Section IV that

H3(1) = 1 and H3(2) ≈ 0.96. (10)

These values are significantly larger than the corresponding
values for the BGP(t) constraint, namely

H2(1) ≈ 0.69 and H2(2) ≈ 0.55. (11)

Moreover, it appears from (10) and (11) that H3(t) decreases
much slower with t than H2(t), since H2(1)− H2(2) ≈ 0.14
while H3(1) − H3(2) ≈ 0.04. Assuming that this trend con-
tinues for larger values of t, coding schemes based on TGP(t)-
constrained sequences can be a reasonably efficient means of
mitigating the ghost-pulse effect in optical communications.

Unfortunately, the techniques we use in Section IV to deter-
mine H3(1) and H3(2) do not easily generalize to the com-
putation of H3(t) for arbitrary t. Thus we have been unable to
verify whether the aforementioned trend continues for larger
values of t. In Section IV-D, we describe a general method for
computing H3(t); however, this method is too computationally
intensive to be implemented in practice. Nevertheless, we do
discuss (also in Section IV) the design of finite-state encoders
for coding schemes involving TGP(t)-constrained sequences.

Remark. Before concluding this introductory section, we note
that it is possible to design other coding schemes that combine
constrained coding with phase modulation in order to achieve
ghost-pulse suppression. For example, we can conceivably add
phase modulation to the constrained coding scheme of [24],
thereby gaining some improvement in performance. In this
paper, however, we have chosen to focus solely on the BGP
and TGP constraints. The unusual nature of these constraints
requires the development of non-standard tools for their anal-
ysis, which may be of independent interest to coding theorists.

II. DEFINITIONS AND PRELIMINARY RESULTS

In this section, we formally define the various types of ghost-
pulse constraints that we shall be interested in. We also
give precise definitions for the corresponding capacities, and
establish several useful relationships between them.

Let Z and Z
+ denote the set of integers and the set of

positive integers, respectively. Given n, n′ ∈Z, we write

[n]
def
=

{

i ∈Z : 1 6 i 6 n
}

[n, n′]
def
=

{

i ∈Z : n 6 i 6 n′
}

.

Note that both [n] and [n, n′] could be empty. Let A2 = {0, 1}
and let A3 = {−1, 0, 1}. These are the relevant alphabets for
the binary and the ternary ghost-pulse constraints, respectively.
However, rather than giving definitions for the binary case and
the ternary case separately, we find it more convenient to de-
fine the ghost-pulse constraints over a generic q-ary alphabet.
Thus, given an integer q > 2, let Aq denote a fixed set of q
letters, one of which is a distinguished letter 0. Although this
is not required in what follows, a good way to think of Aq
is as the set of distinct q − 1th roots of unity, augmented by
zero. For n∈Z

+, let An
q denote the set of sequences of length

n over Aq. Given x = (x1x2 . . . xn)∈An
q , the support of x

is defined as supp(x ) = {i ∈ [n] : xi 6= 0}.

Definition 1. A sequence x ∈An
q satisfies the q-ary ghost-pulse

(q-GP) constraint if for all k, l, m∈ supp(x ) such that

xk = xl = xm

either k + l − m∈ supp(x ) or k + l − m /∈ [n]. Note that the
integers k, l, m above are not necessarily distinct.

For n∈Z
+, let Tq(n) be the set of sequences of length n

over Aq that satisfy the q-GP constraint. Further define

Tq
def
=

∞
⋃

n=1
Tq(n). (12)

This is the set of all finite-length sequences satisfying the q-GP
constraint. Let ξ : Aq → A2 be the “absolute value” function,
defined by

ξ(x)
def
=

{

0 x = 0
1 x 6= 0. (13)

For all n∈Z
+, we extend this “absolute value” function

componentwise to a function ξ : An
q → An

2 via

ξ(x1x2 . . . xn)
def
=
(

ξ(x1),ξ(x2), . . . ,ξ(xn)
)

. (14)

Given such a function, we further define for all n∈Z
+ the

sets Bq(n) ⊂ An
2 as follows

Bq(n) = ξ
(

Tq(n)
) def

=
{

ξ(x ) : x ∈Tq(n)
}

. (15)

Finally, we set Bq = ξ(Tq) =
⋃

∞

n=1 Bq(n). Thus, if Aq\{0}
is indeed a set of complex roots of unity, then Bq(n),
respectively Bq, consists of those binary sequences that can
be transformed into a sequence in Tq(n), respectively Tq, by
means of appropriate phase shifts. In particular, our definition
of B3 based upon (15) coincides with the earlier definition in
(7).

Definition 2. For all integers q > 2, the capacity of the q-ary
ghost-pulse constraint is defined by

Hq
def
= lim

n→∞

log2 |Bq(n)|

n
. (16)

It should be immediately clear from the discussion above
that H2 = HBGP and H3 = HTGP, as defined in (2) and (8)
respectively. The following proposition shows that all these
capacities are, indeed, well-defined.

Proposition 1. The limit below exists for all q > 2, and
moreover

lim
n→∞

log2 |Bq(n)|

n
= inf

n>1

log2 |Bq(n)|

n
. (17)

Proof. This follows from the standard argument for shift
spaces (see e.g. [18, pp. 103–104]), which we briefly reproduce
here for completeness. Use the following test for convergence
from elementary calculus: if a1, a2, . . . is a sequence of non-
negative numbers such that an+n′ 6 an + an′ for all n, n′ > 1,
then limn→∞ an/n exists and equals infn>1 an/n. Apply this
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test to the sequence defined by an = log2 |Bq(n)|. We need
to show that an+n′ 6 an + an′ or, equivalently, that

∣

∣Bq(n + n′)
∣

∣ 6
∣

∣Bq(n)
∣

∣

∣

∣Bq(n′)
∣

∣ . (18)

But this easily follows from the observation that if a sequence
y ∈An+n′

q satisfies the q-GP constraint, then every contiguous
subsequence of y also satisfies the q-GP constraint. Hence if
(x1x1 . . . xn+n′)∈Bq(n+n′), then (x1x2 . . . xn)∈Bq(n) and
(xn+1xn+2 . . . xn+n′)∈Bq(n′), which implies (18).

We will show in Section III-A that H2 = 0, and our analysis
in Section IV-A will lead us to conjecture that H3 = 0 as well.
In fact, we believe that Hq = 0 for all q. This is so because the
q-GP constraint has unbounded memory. For large n, the value
of a sequence x ∈Tq(n) at a given position i ∈ [n] depends on
the values of x at (essentially) all other positions. To obtain
nonzero capacities, we relax the q-GP constraint by bounding
its effective memory, as made precise in the next definition.
As explained in Section I, it makes physical sense to do so.

Definition 3. Let t∈Z
+ be fixed. A sequence x ∈An

q satisfies
the q-GP(t) constraint if for all k, l, m∈ supp(x ) such that

xk = xl = xm and max
{

|k−l|, |l−m|, |m−k|
}

6 t

either k + l − m∈ supp(x ) or k + l − m /∈ [n]. As before,
the integers k, l, m above need not be all distinct.

For n, t∈Z
+, we let Tq;t(n) denote the set of sequences of

length n over Aq satisfying the q-GP(t) constraint, and define
Tq;t =

⋃

∞

n=1 Tq;t(n) as in (12). With the help of the function
ξ : An

q → An
2 given by (13) and (14), we define

Bq;t(n) = ξ
(

Tq;t(n)
) def

=
{

ξ(x ) : x ∈Tq;t(n)
}

(19)

and write Bq;t = ξ(Tq;t) =
⋃

∞

n=1 Bq;t(n). We can now define
the capacity of the q-GP(t) constraint as follows.

Definition 4. For all integers q > 2 and t > 1, the capacity of
the q-GP(t) constraint is defined by

Hq(t) def
= lim

n→∞

log2 |Bq;t(n)|

n
. (20)

Exactly the same argument that we used in the proof of Pro-
position 1 can be now used to show that the limit in (20) exists,
and in fact

Hq(t) = inf
n>1

log2 |Bq;t(n)|

n
. (21)

Observe that, for all fixed q, the sequence Hq(1), Hq(2), . . . is
a nonincreasing sequence of nonnegative numbers. This is so
because Bq;t+1(n) ⊆ Bq;t(n) for all n∈Z

+ and all t∈Z
+, as

is evident from Definition 3. Therefore limt→∞ Hq(t) exists,
and equals inft>1 Hq(t). The following proposition shows that
this limit is also equal to Hq, as defined in (16).

Proposition 2. For all integers q > 2,

Hq = lim
t→∞

Hq(t) = inf
t>1

Hq(t). (22)

Proof. Let αq
def
= inft>1 Hq(t). We have already shown that

limt→∞ Hq(t) = αq, so it remains to prove that Hq = αq.
It follows immediately from Definition 1 and Definition 3 that

Bq;t(n) ⊇ Bq(n) for all n, t∈Z
+. Hence |Bq;t(n)| > |Bq(n)|

and Hq(t) > Hq for all t∈Z
+. Letting t → ∞, we conclude

that αq > Hq. For the reverse inequality, first fix an n∈Z
+

and observe that Bq(n) = Bq;n(n). Therefore

log2 |Bq(n)|

n
=

log2 |Bq;n(n)|

n
> inf

m>1

log2 |Bq;n(m)|

m
.

Note that the right-hand side above is precisely Hq(n) in view
of (21), and Hq(n) > αq by the definition ofαq. If follows that
log2 |Bq(n)|/n > αq for all n∈Z

+, and therefore Hq > αq.
This completes the proof of the proposition.

Observe that our claim in (9) follows as a special case (for
q = 3) from Proposition 2. Thus, as discussed in Section I-D,
Proposition 2 provides a means of computing increasingly tight
upper bounds on Hq. In particular, this proposition implies that
HTGP = H3 can be determined by studying the asymptotics
of the sequence H3(1), H3(2), . . .. In Section IV-D, we show
that there is indeed an algorithm that can be used to compute
H3(t) for any given t. Unfortunately, this algorithm is too
computationally intensive to be useful in practice.

III. THE BINARY GHOST-PULSE CONSTRAINTS

Following the terminology of Section I, we shall refer to the
q-GP constraints with q = 2 as the binary ghost-pulse (BGP)
constraints. Such constraints can be completely analyzed, and
the purpose of this section is to present this analysis.

A. The BGP Constraint with Unbounded Memory

Note that Definitions 1 and 3 become somewhat redundant in
the binary case. For a binary sequence x = (x1x2 . . . xn), any
k, l, m∈ supp(x ) satisfy xk = xl = xm. Thus the BGP con-
straint is simply the requirement that for all k, l, m∈ supp(x ),
either k + l −m∈ supp(x ) or k + l −m /∈ [n]. The following
theorem makes use of this observation to show that sequences
that satisfy the BGP constraint are precisely those whose
support set forms an arithmetic progression.

Theorem 3. For all n∈Z
+, a sequence x = (x1x2 . . . xn)∈An

2
satisfies the BGP constraint iff there exist a, d∈ [0, n] such that

supp(x ) = (a + dZ) ∩ [n]. (23)

Proof. (⇐) Suppose that x satisfies (23), and consider any
k1, k2, k3 ∈ supp(x ). Then ki = a + dji for some ji ∈Z. Set
j = j1+ j2− j3. Then k1 + k2 − k3 = a + jd∈(a + dZ). Thus,
either k1 + k2 − k3 ∈ supp(x ) or k1 + k2 − k3 /∈ [n].

(⇒) Suppose that x = (x1x1 . . . xn) satisfies the BGP
constraint. If supp(x ) = ∅, then we can take a = d = 0
in (23). If | supp(x )| = 1, then we can take a to be the
unique integer in supp(x ) and set d = 0. Hence, it remains
to consider the case where | supp(x )| > 2. For this case, set

d = min
{

|k − m| : k, m∈ supp(x ), k 6= m
}

, (24)

and then take a to be any integer with a, a + d∈ supp(x ). To
prove that x satisfies (23) with this choice of a and d, we will
first show that (a + dZ) ∩ [n] ⊂ supp(x ), and then prove
that every element of supp(x ) must also be in a + dZ.
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Claim 1: (a + dZ) ∩ [n] ⊂ supp(x ). In order to establish
this claim, suppose that

{

a + `d : i 6 ` 6 j
}

⊂ supp(x ) (25)

for some i 6 0 and j > 1. By our choice of a and d, we know
that (25) certainly holds for i = 0 and j = 1. Observe that

a + (i−1)d =
(

a + id
)

+
(

a + id
)

−
(

a + (i+1)d
)

and

a + ( j+1)d =
(

a + jd
)

+ (a + jd) −
(

a + ( j−1)d
)

.

Hence, if x satisfies the BGP constraint, then a + (i−1)d
and a + ( j+1)d belong to supp(x ), provided only that these
positions are in [n]. In other words, we can grow the arithmetic
progression on the left-hand side of (25) in both directions, as
long as it fits inside [n], and the claim follows.

(    1)a+  j−   d (    1)a+  j−   d(    1)a+  j−   d

1

a+jda+jda+jdk k k

n

Fig. 2. Various possibilities for the choice of k ∈ supp(x ) with k 6∈ (a + dZ)

Claim 2: supp(x )⊂ (a + dZ). Assume to the contrary that
there is a k ∈ supp(x ) with k /∈ (a + dZ). Then we must have

a + ( j−1)d < k < a + jd (26)

for some j∈Z such that at least one of a + ( j−1)d and a + jd
lies in [n] (cf. Fig. 2). Without loss of generality (w.l.o.g.), sup-
pose that (a + jd)∈ [n]. Then (a + jd)∈ supp(x) in view of
Claim 1. But the difference between a + jd and k is strictly less
than d by (26), which contradicts the definition of d in (24).

By Claim 1 and Claim 2, we have supp(x ) = (a + dZ)∩ [n],
which completes the proof of the theorem.

Corollary 4. There are at most (n + 1)2 sequences in An
2 that

satisfy the BGP constraint, and therefore

HBGP
def
= lim

n→∞

log2|B2(n)|

n
6 lim

n→∞

log2(n + 1)2

n
= 0.

Proof. There are (n + 1)2 different ways of selecting the
integers a and d from [0, n]. By Theorem 3, every sequence
in B2(n) is uniquely determined by one such choice.

In fact, using Theorem 3 as a starting point, a more careful
analysis of the possible choices for a and d shows that

|B2(n)| =

{ 1
4 (n + 2)(n + 2) n even
1
4 (n + 1)(n + 3) n odd.

(27)

We leave the proof of this expression as a straightforward, but
tedious, combinatorial exercise for the reader.

B. The BGP(t) Constraints

We next take on the analysis of the BGP(t) constraint, for
arbitrary t∈Z

+. We will show that the BGP(t) constraint is
closely related to the well-known (t, ∞) constraint. A binary
sequence x is said to satisfy the (t, ∞) constraint if there are
at least t zeros between any two ones in x . We use St,∞(n)

TABLE I
CAPACITY OF THE BGP(t) CONSTRAINT FOR t = 1, 2, . . . , 20

t H2(t) t H2(t) t H2(t) t H2(t)

1 0.6942 6 0.3282 11 0.2301 16 0.1813
2 0.5515 7 0.3011 12 0.2180 17 0.1742
3 0.4650 8 0.2788 13 0.2073 18 0.1678
4 0.4057 9 0.2600 14 0.1977 19 0.1618
5 0.3620 10 0.2440 15 0.1891 20 0.1564

to denote the set of all (t, ∞)-constrained binary sequences
of length n. Such sequences have been extensively studied in
the constrained coding literature [12]–[14], [18], [21]. The next
theorem shows that the set B2;t(n) of all sequences in An

2 that
satisfy the BGP(t) constraint is not much larger than St,∞(n).

Theorem 5. Let Qt(n) denote the set of all sequences x ∈An
2

such that supp(x ) = (a + dZ)∩ [n] for some a and d in [0, t].
Then for all n, t∈Z

+, we have

B2;t(n) = St,∞(n) ∪Qt(n). (28)

Proof. It is easy to see from (the proof of) Theorem 3 that
Qt(n) ⊂ B2;t(n). Note that if x ∈St,∞(n), then (5) cannot
be satisfied by any k, l, m∈ supp(x ). Hence, by Definition 3,
all x ∈St,∞(n) also belong to B2;t(n). It follows that

(

St,∞(n) ∪Qt(n)
)

⊆ B2;t(n). (29)

To establish the inclusion in the other direction, it would
suffice to show that

(

B2;t(n) \ St,∞(n)
)

⊆ Qt(n). (30)

Thus consider an x ∈
(

B2;t(n)\St,∞(n)
)

. Since x /∈St,∞(n),
there exist distinct k, m∈ supp(x ) with |k − m| 6 t. Define

d def
= min

{

|k − m| : k, m∈ supp(x ), k 6= m
}

(31)

as in (24), and note that 1 6 d 6 t. As in Theorem 3, let a′
be any integer with a′, a′ + d∈ supp(x ). Then exactly the
same argument we used in the proof of Theorem 3 shows that

supp(x ) = (a′ + dZ) ∩ [n]. (32)

Finally, set a = a′ mod d. Since d 6 t in (31), we obviously
have a∈ [0, t−1]. But a′ + dZ = a + dZ, so (32) implies that
supp(x ) = (a + dZ) ∩ [n]. Thus x ∈Qt(n), as desired.

Let C(t, ∞) denote the capacity of the (t, ∞) constraint, gi-
ven by C(t, ∞) = limn→∞ log2|St,∞(n)|/n. It is well known
(see e.g. [12, p. 88]) that C(t, ∞) = log2 ρt, where ρt is the
largest-magnitude root of the polynomial zt+1 − zt − 1. It is
also known that this root is always real, irrational [5], and lies
in the open interval (1, 2). Thus 0 < C(t, ∞) < 1.

Corollary 6. Let ρt denote the largest-magnitude root of the
polynomial zt+1 − zt − 1. Then for all t∈Z

+, the capacity of
the BGP (t) constraint is given by

H2(t) = C(t, ∞) = log2 ρt. (33)

Proof. This follows immediately from Theorem 5. By (28),
we have |St,∞(n)| 6 |B2;t(n)| 6 |St,∞(n)| + |Qt(n)|. Note
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that |Qt(n)| 6 (t+1)2, as there are (t+1)2 different ways of
choosing a, d∈ [0, t]. The corollary now follows from (20).

It is well known [12, p. 89] (and obvious) that ρt decreases
as t increases. Moreover limt→∞ log2 ρt = 0, which by
Lemma 2 provides an independent confirmation of Corollary 4.

For reference, we list in Table I the value of H2(t) = log2ρt,
rounded to four decimal places, for all t = 1, 2, . . . , 20. As
can be seen from this table, H2(t) is less than 0.25 for all
t > 10. This means that codes consisting of sequences that
satisfy the BGP or the BGP(t) constraints are not particularly
efficient means of mitigating the ghost-pulse problem.

C. Coding Into the BGP Constraints

Nevertheless, it may still be of interest to suggest methods
for encoding an arbitrary binary sequence into a sequence
satisfying the BGP or the BGP(t) constraints.

For the BGP constraint, Theorem 3 and (27) give a precise
enumeration of all the sequences in B2(n). Thus unconstrained
binary data can be mapped into BGP-constrained sequences
using an enumerative coding technique [8].

In principle, enumerative coding can be also used to code
into the BGP(t) constraints. However, this requires precise
enumeration of the sequences in B2;t(n) for each n∈Z

+. Un-
fortunately, Theorem 5 does not yield a simple formula for
computing |B2;t(n)| as a function of n and t. Thus, enumer-
ative coding would be unnecessarily complex in this case.

We can code into the BGP(t) constraint with significantly
lower complexity if we are willing to suffer a marginal loss
in coding rate. When n is sufficiently large, we can ignore the
contribution of Qt(n) to B2;t(n) for all practical purposes.
Observe that when t is fixed, |Qt(n)| is bounded by the
constant (t+1)2 while |St,∞(n)| grows exponentially with n.

0 1

11/001

01/100

10/101

01/000
00/100

00/01010/010

11/000

Fig. 3. A rate 2:3 sliding-block decodable encoder for the (1, ∞) constraint

Coding into the (t, ∞) constraint is a very well-studied
subject [13], [14], [18, Chapter 5], [21]. For all positive
integers p and q with p/q < C(t, ∞), there is a rate p : q
finite-state encoder for the (t, ∞) constraint, meaning a finite-
state machine that generates an output block of q bits for
every input block of p bits, and converts unconstrained binary
sequences into sequences that satisfy the (t, ∞) constraint.
For example, the graph in Fig. 3 is a rate 2:3 two-state encoder
for the (1, ∞) constraint. Such rate p : q encoders can, in fact,
be designed so that the constrained sequences they generate
are amenable to decoding with a sliding-block decoder [21,
Theorem 3.35]. For example, the encoder in Fig. 3 is indeed
sliding-block decodable: a description of the corresponding
sliding-block decoder can be derived from [18, Example 5.5.5].

It is well known [5] that the capacity C(t, ∞) is irrational
for all t > 1. Thus the design and the implementation of
rate p : q encoders necessarily becomes more cumbersome as
the rate p/q approaches capacity. Consequently, in situations
where variable-rate encoding and state-dependent decoding
are acceptable, the constrained coding technique of [6], [17],
known as “bit-stuffing,” is an attractive alternative. The bit-
stuffing encoder comprises two components. The first is an
invertible distribution transformer that converts a sequence of
i.i.d. equiprobable information bits into a sequence of i.i.d.
biased bits, with the probability of a zero given by a prescribed
value p. The second component inserts (stuffs) a string of t
consecutive zeros following every one in this biased sequence.
The decoder simply discards the string of t zeros that follows
each one, and then applies the inverse of the distribution
transformer. It can be shown [6] that, if the parameter p is
optimized, the average rate of the bit-stuffing encoder equals
the capacity C(t, ∞).

IV. THE TERNARY GHOST-PULSE CONSTRAINTS

It happens to be much harder to analyze the TGP and TGP(t)
constraints than their binary counterparts BGP and BGP(t).
Nevertheless, we will attempt to do so in this section.

A. The TGP Constraint with Unbounded Memory

In order to gain some understanding of the structure of finite-
length TGP-constrained binary sequences, we extend the defi-
nition of the TGP constraint in a natural way to bi-infinite se-
quences — that is, sequences indexed by the set of integers Z.

Definition 5. A bi-infinite sequence x = {x j} j∈Z over the
ternary alphabet A3 = {−1, 0, 1} is said to satisfy the TGP
constraint if for all k, l, m∈Z such that xk, xl , and xm are equal
and nonzero, we also have xk+l−m 6= 0.

Let T ∗
3 denote the set of all bi-infinite ternary sequences

satisfying the TGP constraint, and let B∗
3 = ξ

(

T ∗
3
)

denote
the set of all binary bi-infinite sequences that can be converted
to a sequence in T ∗

3 by changing some of their 1’s to −1’s.
Using results from a branch of mathematics known as Ramsey
theory [10], we have shown in [15] that any y ∈B∗

3 is almost
periodic: it differs from a periodic sequence in at most two
positions. Based on this and other results, we conjecture that
the capacity HTGP = H3 of the TGP constraint is zero.

TABLE II
VALUES OF B3(n) FOR n = 1, 2, . . . , 32

t |B3(n)| t |B3(n)| t |B3(n)| t |B3(n)|

1 2 9 240 17 2591 25 11497
2 4 10 358 18 3245 26 13427
3 8 11 501 19 3977 27 15521
4 16 12 705 20 4881 28 17952
5 32 13 937 21 5850 29 20498
6 60 14 1248 22 7026 30 23449
7 100 15 1609 23 8313 31 26590
8 162 16 2078 24 9860 32 30193

In Table II, we list the number of sequences in B3(n) for
all n = 1, 2, . . . , 32. All the values in Table II have been found
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Fig. 4. Plot of log2 |B3(n)|/n as a function of n, for n = 1, 2, . . . , 32

by exhaustive computer search. We then used these values to
plot log2 |B3(n)|/n as a function of n in Fig. 4. As can be
seen from this plot, the value of log2 |B3(n)|/n decreases
steadily as n increases, lending some further credence to our
conjecture that HTGP = limn→∞ log2 |B3(n)|/n = 0.

B. The TGP(1) Constraint
For the degenerate case t = 1, things remain simple. It is
easy to show that the set B3;1(n) of all the binary sequences
that satisfy the TGP(1) constraint is, in fact, the entire space
An

2 . This is based upon the following simple observation. A
ternary sequence (x1x2 . . . xn) is in T3;1(n) if and only if the
following holds: for all k ∈ [n] such that

xk = xk+1 = +1 or xk = xk+1 = −1 (34)

we have xk−1 6= 0 if (k−1)∈ [n] and xk+2 6= 0 if (k+2)∈ [n].
On the other hand, it is easy to allocate signs to any binary
sequence in such a way that (34) never holds. In what follows,
we will often use + and − to denote +1 and −1, respectively.

+

0/00/0

1/−1/−

1/+

−

Fig. 5. Simple rate 1:1 two-state encoder for the TGP(1) constraint

Theorem 7. For all n∈Z
+, we have B3;1(n) =An

2 and there-
fore the capacity of the TGP (1) constraint is H3(1) = 1.

Proof. Given any sequence y ∈An
2 , the following encoding

rule converts y to a ternary sequence x satisfying the TGP(1)
constraint: label the ones in y with alternating signs. More
precisely, if we think of y as the input to the rate 1:1 encoder
in Fig. 5, then x is the output of the encoder. To see that x

indeed satisfies the TGP(1) constraint, note that the alternating
signs rule guarantees that (34) never occurs.

Observe that, in addition to its use in the proof of Theo-
rem 7, the encoder of Fig. 5 gives a practical method by which
an arbitrary finite-length binary sequence can be transformed
into a ternary sequence satisfying the TGP(1) constraint.

C. The TGP(2) Constraint

For t = 2, things become much more interesting. Our
main result for this case is the characterization of the set
B3;2=ξ(T3;2) of all finite-length binary sequences that satisfy
the TGP(2) constraint in terms of a small number of forbidden
blocks.

To make this precise, let us first clarify our use of the term
sub-block. We say that a sequence (x′1x′2 . . . x′m) is a sub-block
of the sequence (x1x2 . . . xn) if there exists an i ∈ [0, n−m]
such that (x′1x′2 . . . x′m) = (xi+1xi+2 . . . xi+m). Now, let

F (2)
def
=

{

(011100), (001110), (001111100)
}

(35)

and let SF (2)(n) be the set of all binary sequences of length n
that do not contain any element of F (2) as a sub-block. Our
main result in this subsection is the following theorem.

Theorem 8. For all n∈Z
+, we have

B3;2(n) = SF (2)(n). (36)

We split the proof of (36) into two lemmas: one shows that
SF (2)(n) ⊆ B3;2(n), the other establishes B3;2(n) ⊆ SF (2)(n).
One of the two directions is easy, as the next lemma shows.

Lemma 9. For all n∈Z
+, we have

B3;2(n) ⊆ SF (2)(n). (37)

Proof. We need to show that none of the sequences in B3;2
contains any of the three sequences in F (2) as a sub-block.
Consider first the sequence (011100)∈F (2). The three ones
in (011100) can be labeled in 23 different ways by +/−
to produce ternary sequences. However, noting that a ternary
sequence x satisfies the TGP(2) constraint if and only if so
does the sequence −x , it is enough to consider the following
four labelings of (011100):

(0+++00), (0++−00)
(0+−+00), (0+−−00). (38)

It can be verified by direct inspection that none of the four
sequences in (38) satisfies the TGP(2) constraint. Hence, none
can be a sub-block of a sequence in T3;2, which implies that
(011100) cannot be a sub-block of a sequence in B3;2. The
other two forbidden blocks in F (2) can be disposed of in the
same way.

To establish inclusion in the opposite direction, we describe
an encoding rule that takes an arbitrary sequence y ∈SF (2)(n)
and assigns a +/− labeling to the ones in y in such a way that
the resulting ternary sequence satisfies the TGP(2) constraint.
More precisely, we construct a function

Ψ :
⋃

∞

n=1
An

2 →
⋃

∞

n=1
An

3 (39)

such that ξ
(

Ψ(y)
)

= y for all y in the domain of Ψ and, fur-
thermore, Ψ(y)∈T3;2(n) for all y ∈SF (2)(n). This function
Ψ will be based upon the alternating signs idea of Theorem 7;
however, a much more careful analysis is now required.

The first step in the construction of Ψ consists of decompos-
ing a binary sequence y into its maximal runs. Henceforth, we
use 0 j and 1 j to denote the all-zero and the all-one sequences
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of length j, respectively. Any finite-length nonzero binary
sequence y can be written uniquely in its maximal-run form:

y =
(

0a0 1b1 0a1 1b2 0a2 · · · 0ar−1 1br 0ar
)

(40)

for some r > 1, where a1, a2, . . . , ar−1 and b1, b2, . . . , br are
positive integers while a0, ar > 0. Each of the r sub-blocks
1bi of y is called a maximal run of ones in y .

The next step is to convert maximal runs into sequences
over the alphabet {+,−}. Specifically, we define the function
ψ :

⋃

∞

j=1{1 j} →
⋃

∞

j=1{+,−} j as follows:

ψ(11) = + , ψ(12) = +− , ψ(13) = +−+

ψ(14) = +−−+ , ψ(15) = +−++−

ψ(16) = +−−++− , ψ(1 j) = +−− 1 j−6−−+

(41)

where the last expression above applies for all j > 7. Observe
that ψ(1 j) is a sequence of length j, so that ξ

(

ψ(1 j)
)

= 1 j.
More importantly, ψ(1 j) satisfies the property described in the
following lemma.

Lemma 10. Let j be a positive integer other than 3 or 5, and let
ψ(1 j) = (x1x2 . . . x j). Then for all k, l, m∈ [ j] such that

xk = xl = xm and max
{

|k−l|, |l−m|, |m−k|
}

6 2 (42)

we have k + l −m∈ [ j] as well. Thus xk+l−m 6= 0 and, more-
over, if (x1x2 . . . x j) is a sub-block of a TGP (2)-constrained
ternary sequence x of length n, then this sub-block does not
impose constraints on any of the other n − j positions in x .

Proof. The fact that k + l −m∈ [ j] whenever (42) is satis-
fied follows by direct inspection from (41).

Now let y ∈An
2 be an arbitrary binary sequence of length n.

If y = 0n or y = 1n, we simply set Ψ(y) = y . Otherwise,
we decompose y into its maximal runs as in (40), and set

Ψ(y) =
(

0a0 x1 0a1 x2 0a2 · · · 0ar−1xr 0ar
)

(43)

where xi ∈ {+,−}bi are defined by the following iterative
procedure:

x1 =

{

++− if a0 = 0 and b1 = 3
ψ(1b1) otherwise

(44)

x i =

{

ψ(1bi ) if last symbol of xi−1 is −

−ψ(1bi ) if last symbol of xi−1 is +
(45)

for all i = 2, 3, . . . , r, but with two exceptions. If bi = 5 while
ai ∈ {0, 1}, we modify the expression for x i as follows:

x i =

{

+−−+− if last symbol of xi−1 is −

−++−+ if last symbol of xi−1 is + .
(46)

Finally, if y ends with 0111 (that is, if ar = 0 and br = 3),
then we also modify the expression for xr as follows:

xr =

{

+−− if last symbol of xr−1 is −

−++ if last symbol of xr−1 is + .
(47)

Observe that (44) – (47) iteratively determine x1, x2, . . . , xr in
such a way that the first symbol of x i is always opposite in
sign to the last symbol of xi−1, for all i = 2, 3, . . . , r. This is

the appropriate generalization of the alternating signs rule of
Theorem 7 for the case of the TGP(2) constraint.
Lemma 11. The functionΨ defined by equations (40) – (47) has
the following properties:

P1. For all y ∈An
2 , we have ξ

(

Ψ(y)
)

= y .
P2. For all y ∈SF (2)(n), we have Ψ(y)∈T3;2(n).

Proof. Property P1 means that Ψ converts a given binary se-
quence y to a ternary sequence solely by assigning +/− labes
to the ones in y . This should be obvious from the fact that
ξ
(

ψ(1 j)
)

= 1 j and our construction of Ψ in (43) – (47).
To establish property P2, consider an arbitrary y ∈SF (2)(n)

and let x = (x1x2 . . . xn) denote its image Ψ(y) under Ψ. We
need to show that x satisfies the TGP(2) constraint. Clearly, if
y ∈ {0n, 1n}, then x = y trivially satisfies the constraint. We
therefore assume that y /∈ {0n, 1n}, which implies that x is
given by (43). Now, let k, l, m∈ supp(x ) and suppose that

xk = xl = xm and max
{

|k−l|, |l−m|, |m−k|
}

6 2.

We will further assume w.l.o.g. that k 6 l 6 m. Clearly,
either xk and xm come from the same sub-block x i of x in
(43), or they belong to distinct sub-blocks x i and x j. This
leads to two cases, which we consider next.

Case 1: xk belongs to x i while xm belongs to x j, with i 6= j.
Since distinct sub-blocks in (43) are separated by at least one
zero, the only way that |m − k| 6 2 can be satisfied is if
xk is the last symbol of x i whereas xm is the first symbol
of xi+1. But then the alternating signs rule implemented in
(44) – (47) guarantees that xk 6= xm. We have thus arrived at
a contradiction. This implies that xk and xm (and, hence, also
xl) must belong to the same sub-block x i of x in (43).

Case 2: xk , xl , xm belong to the sub-block x i of length j.
First suppose that j /∈ {3, 5}. Then (44) – (47) guarantee that
x i = ψ(1 j) or x i = −ψ(1 j). For this case, Lemma 10
implies that xk+l−m, xk+m−l , and xl+m−k also lie within x i.
This, in turn, guarantees that they are all nonzero, which is
in agreement with the TGP(2) constraint. We are thus left to
deal with the situation where j = 3 or j = 5. This is precisely
where the forbidden blocks in F (2) come into play.

Case 2.1: The sub-block x i is of length j = 5.
The key point is that the binary sequence (001111100)
never occurs as a sub-block of y . Hence x i never appears
in the context · · · 00 xi 00 · · · . Note that the only relevant
context for the TGP(2) constraint consists of the two
symbols immediately before x i and the two symbols
immediately after x i. The fact that (001111100) does
not occur in y together with the encoding rules in (41) –
(47) guarantee that x i appears as follows in all of its
possible contexts:

(+−++−00··· (+−++−0+···
(0+−++−00··· (0+−++−0+···

···+0−+−−+00··· ···+0−+−−+0−···
···−0+−++−00··· ···−0+−++−0+···
···00+−−+−0+··· ···00−++−+0−···

···00+−−+−) ···00−++−+)
···−0+−−+−) ···+0−++−+)
···00+−−+−0) ···00−++−+0)
···−0+−−+−0) ···+0−++−+0)

(48)



10 Revised version, submitted to the IEEE TRANSACTIONS ON INFORMATION THEORY, January 17, 2006

where ‘(’ and ‘)’ signify the beginning and the end of the
entire sequence x =Ψ(y), respectively. It is now easy to
verify by direct inspection that each of the 18 sequences
in (48) satisfies the TGP(2) constraint.

Case 2.2: The sub-block x i is of length j = 3.
Similarly to the previous case, the fact that (011100) and
(001110) do not occur in y together with the encoding
rules in (41) – (47) guarantee that x i appears as follows
in all of its possible contexts:

(++−00··· (++−0+··· (0+−+0−···

···−0+−+0−··· ···+0−+−0+···

···00+−−) ···+0−++) ···−0+−+0)
···00−++) ···−0+−−) ···+0−+−0).

(49)

Again, it can be verified by direct inspection that each of
the 11 sequences in (49) satisfies the TGP(2) constraint.

Since our analysis in Cases 1 and 2 is exhaustive, this estab-
lishes property P2 and completes the proof of the lemma.

Lemma 11 shows that every sequence y ∈SF (2)(n) can be
converted to a ternary sequence in T3;2(n) by assigning +/−
labels to the ones in y . This implies that SF (2)(n) ⊆ B3;2(n),
by the definition of B3;2(n) in (19). Together with Lemma 9,
this completes the proof of Theorem 8. The next corollary uses
this result to determine the capacity of the TGP(2) constraint.

Corollary 12. Let ρ denote the largest-magnitude root of the
polynomial z10 − 2z9 + z5 − z4 + 2z3 − z2 − 2z + 1. Then
the capacity of the TGP (2) constraint is given by

H3(2) = log2 ρ ≈ 0.96048. (50)

Proof. We will use the results of Wilf [25] and of Guibas and
Odlyzko [11], which provide a much more efficient means to
compute the capacity of a constraint from its set of forbidden
blocks than the standard methods (briefly discussed at the end
of this subsection). Let g0 = 1, and for n∈Z

+, define

gn
def
= |B3;2(n)| = |SF (2)(n)| .

Further, define the generating function G(z) = ∑∞

n=0 gnz−n.
Using Theorem 1 of [11], we find that G(z) is given by

G(z) =
z(z + 1)(z8 − z7 + z6 − z5 + z4 − z2 + 2z − 1)

z10 − 2z9 + z5 − z4 + 2z3 − z2 − 2z + 1
.

It can be easily verified (using, say, MATLAB or MATHEMAT-
ICA) that the largest-magnitude pole of G(z) is the unique
largest-magnitude root of its denominator polynomial. More-
over, this root ρ is real and simple. It now follows from the
theory of generating functions due to Wilf [25, Chapter 5] that
gn = α ρn(1 + o(1)

)

for some constant α > 0. Consequently,

H3(2) = lim
n→∞

log2 |B3;2(n)|

n
= lim

n→∞

log2 gn

n
= log2 ρ.

Using the MATHEMATICA software package, we have found
that ρ ≈ 1.94596, and therefore H3(2) ≈ 0.96048.

Observe that H3(t) is much larger than H2(t) for t = 1, 2,
as can be seen by comparing Table I with Theorem 7 and
Corollary 12. Furthermore, the drop from H3(1) to H3(2) is

significantly smaller than the drop from H2(1) to H2(2). As
mentioned in Section I-D, if this trend continues for larger val-
ues of t, we can have reasonably efficient codes that, under the
simplifying assumption of that section, mitigate the formation
of ghost pulses in a typical optical communication scenario.

To conclude our discussion of the TGP(2) constraint, we
comment upon the design of encoders for converting arbitrary
binary sequences into TGP(2)-constrained ternary sequences.
The function Ψ constructed in (41) – (47) provides an explicit
method of transforming sequences in SF (2)(n) = B3;2(n) into
sequences in T3;2(n). However, this function does not work
for arbitrary binary sequences: if y /∈SF (2)(n), then Ψ(y)
is not necessarily in T3;2(n). Thus, we still need to design
an encoder that converts an arbitrary (unconstrained) binary
sequence to a sequence in the constrained system

SF (2)
def
=

⋃

∞

n=1
SF (2)(n).

The theory of constrained coding provides a standard way
to design such encoders, which we briefly outline in what
follows. Let G be a finite, labeled, directed graph. We say that
G is a presentation of a constrained system S if S is the set
of all sequences obtained by reading the labels of all finite
paths in G. A presentation G of S is deterministic if at each
vertex of G, the outgoing edges are labeled distinctly. Given
a deterministic presentation of S along with integers p and
q such that p/q is less than or equal to the capacity of S ,
there is a systematic algorithm [21, Section 4] for designing a
rate p:q finite-state encoder for S along with a corresponding
decoder. Thus, to construct a finite-state encoder for our
constrained system SF (2) = B3;2, all we need to do is provide
a deterministic presentation for SF (2). From this, the desired
encoder can be generated via the algorithm mentioned above.
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Fig. 6. A deterministic presentation of the constrained system SF (2) = B3;2

It may be verified that the graph in Fig. 6 is a deterministic
presentation of SF (2). Hence, it can be used as the starting point
for the design of encoders that convert unconstrained binary
sequences to sequences in B3;2 (and then, via the function Ψ
in (41) – (47), to sequences in T3;2). In fact, the graph in Fig. 6
is the minimal deterministic presentation (also known as the
Shannon cover) of B3;2, in the sense that it has the least num-
ber of vertices among all deterministic presentations of B3;2.

While on the subject of deterministic presentations, let us
state the following well-known fact [21, Theorem 3.12], which
will be needed in the next subsection. If G is a deterministic
presentation of a given constrained system S , then the capacity
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of S is log2λ
(

AG

)

, where λ
(

AG

)

is the largest eigenvalue
of the adjacency matrix of G. Incidentally, this provides
an alternative proof of Corollary 12, since the characteristic
polynomial of the adjacency matrix of the graph in Fig. 6 is
precisely z10 − 2z9 + z5 − z4 + 2z3 − z2 − 2z + 1.

D. The TGP(t) Constraints for t > 3
It is clear that the painstaking analysis presented in the
previous subsection cannot be easily extended to the TGP(t)
constraint for an arbitrary t∈Z

+. Instead, we suggest an
alternative, systematic approach to tackle the general case,
which can, in principle, be programmed into a computer.

The approach developed in this section has two main
disadvantages. First, instead of computing H3(t) we end up
with a slightly different quantity

H′
3(t) def

= lim
n→∞

log2 |B
′
3;t(n)|

n
(51)

where B′
3;t(n) is the set of all binary sequences of length n that

can be extended to a bi-infinite sequence without violating the
TGP(t) constraint (more precise definition to follow shortly).
This is not much of a problem, since H′

3(t) 6 H3(t) for
all t and there are good reasons to believe that H ′

3(t) =
H3(t) for all t (see the remark below). The second problem
is the computational complexity of the proposed approach.
Unfortunately, this complexity is doubly-exponential in t. In
fact, in order to compute H′

3(t) one needs to construct a graph
with at least 2Ω(9t) vertices. Thus the proposed approach is
not practical even for t = 2. Nevertheless, we believe that this
approach has conceptual value, and sheds additional light on
the underlying structure of the TGP(t) constraint.

The general idea behind our approach is to develop a
procedure that, given a t∈Z

+, generates a deterministic
presentation H3;t of the constrained system

B′
3;t

def
=

⋃

∞

n=1
B′

3;t(n). (52)

In developing our results, it would be much more convenient
to deal with bi-infinite sequences. This eliminates the “edge
effects” present at the beginning and end of a finite sequence,
which could be quite bothersome (for example, much of the
effort in describing the encoding rule Ψ of the previous subsec-
tion — see (44), (46), (47) — was devoted to such edge effects).

Recall that T ∗
3 was defined in Section IV-A as the set of bi-

infinite ternary sequences satisfying the TGP constraint. We ex-
tend this definition in the natural way to the TGP(t) constraint.

Definition 6. A bi-infinite sequence x = {x j} j∈Z over the
ternary alphabet A3 = {−1, 0, 1} is said to satisfy the TGP (t)
constraint if for all k, l, m∈Z such that

max
{

|k − l|, |l −m|, |m− k|
}

6 t ,

whenever xk, xl , xm are equal and nonzero, then xk+l−m is also
nonzero. We let T ∗

3;t denote the set of all bi-infinite ternary se-
quences satisfying the TGP (t) constraint, and let B∗

3;t=ξ
(

T ∗
3;t
)

denote the set of all bi-infinite binary sequences that can be
converted to a sequence in T ∗

3;t by negating some of their ones.

We now construct a deterministic presentation for T ∗
3;t. Given

a t∈Z
+, define a finite, labeled, directed graph G3;t, as

follows. The set of vertices of G3;t is the set of all

x =
(

x−tx−t+1 . . . x−1x0x1 . . . x2t−1x2t
)

∈A3t+1
3

that satisfy the following condition: for all k, l, m∈ [0, t] such
that xk, xl , xm are equal and nonzero, we also have xk+l−m 6= 0.
Note that the position indices k, l, m are restricted to the
interval [0, t] in the above condition. This implies that G3;t
has at least 32t vertices; for example all the sequences of the
form

(

x−tx−t+1 . . . x−1 00 . . . 0 xt+1xt+2 . . . x2t
)

are vertices of G3;t. In fact, the order (number of vertices) of
G3;t is probably closer to 33t than to 32t (however, when t is
small, the vertices of G3;t can still be enumerated by exhaustive
computer search). The edges of G3;t are defined as follows. For
each pair of vertices

x =
(

x−tx−t+1 . . . x2t
)

and x
′ =

(

x′−tx
′
−t+1 . . . x′2t

)

where x and x
′ are not necessarily distinct, we draw a single

directed edge from x to x
′ if and only if the last 3t symbols

of x are equal to the first 3t symbols of x
′, that is if

(

x−t+1x−t+2 . . . x2t
)

=
(

x′−tx
′
−t+1 . . . x′2t−1

)

.

The label of this directed edge is the symbol x′2t. This
completes our construction of the graph G3;t.

Given a finite, labeled, directed graph G, the sofic shift of
G is the set of all bi-infinite sequences obtained by reading
the labels of bi-infinite paths in G. One of our main results in
this subsection is the following theorem.

Theorem 13. Let X3;t denote the sofic shift of the graph G3;t.
Then, for all t∈Z

+, we have

X3;t = T ∗
3;t. (53)

Proof. We first show that T ∗
3;t ⊆ X3;t. Consider any element

x = {x j} j∈Z of T ∗
3;t. For all j∈Z, let x j denote the sub-block

(x j−tx j−t+1 . . . x j+2t) of x . Since x satisfies the TGP(t)
constraint, it follows from our construction of G3;t that x j is a
vertex of G3;t for all j∈Z. Moreover, since the last 3t symbols
of x j−1 are obviously equal to the first 3t symbols of x j, the
graph G3;t has a unique edge e j from x j−1 to x j, which is
labeled by x j+2t. But then, the sequence of such edges {e j} j∈Z

is a path in G3;t that generates x . It follows that x ∈X3;t.
In order to establish the inclusion X3;t ⊆ T ∗

3;t, consider
any element x = {x j} j∈Z of X3;t and let {e j} j∈Z denote the
path in G3;t that generates x . We again let x j denote the sub-
block (x j−tx j−t+1 . . . x j+2t) of x . Then, it follows from our
construction of G3;t that for all j∈Z, the vertex at which e j+2t
terminates must be the sequence x j. Therefore, x j is a vertex
in G3;t for all j∈Z. Now, suppose we have k, l, m∈ supp(x )
such that max{|k−l|, |l−m|, |m−k|} 6 t and xk = xl = xm.
In order to prove that x ∈T ∗

3;t, we must show that xk+l−m 6= 0.
Since k, l, m are all within a distance of t of each other, there
exists a j∈Z such that k, l, m∈ [ j, j + t]. Observe that for any
k, l, m∈ [ j, j + t], the integer k + l −m lies in [ j− t, j + 2t].
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But now, since x j is a vertex of G3;t, it follows from our defi-
nition of the vertex set of G3;t that xk+l−m 6= 0. Thus x ∈T ∗

3;t,
which shows that X3;t ⊆ T ∗

3;t and completes the proof.

We now define T ′
3;t as the set of all finite-length sequences

that are sub-blocks of some sequence in T ∗
3;t. Stated another

way, T ′
3;t is a subset of the set T3;t defined in Section II,

consisting of all finite-length sequences that a) satisfy the
TGP(t) constraint and b) can be extended to a bi-infinite
sequence that satisfies the TGP(t) constraint. It is possible
that some finite-length sequences in T3;t cannot be extended
in this way, in which case T ′

3;t is strictly smaller than T3;t.

Corollary 14. Let X3;t denote the constrained system of the
graph G3;t. Then, for all t∈Z

+, we have

X3;t = T ′
3;t. (54)

Moreover, the graph G3;t is a deterministic presentation of its
constrained system X3;t = T ′

3;t.

Proof. It should be obvious from our construction of G3;t
that outgoing edges at each vertex of G3;t are labeled distinctly.
Hence G3;t is a deterministic presentation of its constrained
system. Furthermore, it is well known (and obvious) that (53)
implies (54). In the terminology of symbolic dynamics, the
sets X3;t and T ′

3;t are precisely the languages of the sofic shifts
X3;t and T ∗

3;t. Since the shifts are equal (by Theorem 13), their
languages must be also equal.

Corollary 14 implies that we can find the capacity of T ′
3;t

from the largest eigenvalue of the adjacency matrix of G3;t.
However, we are not interested in T ′

3;t, but rather in the set

B′
3;t = ξ

(

T ′
3;t
)

=
{

ξ(x ) : x ∈ T ′
3;t
}

. (55)

Letting B′
3;t(n) denote the number of sequences of length n

in B′
3;t, we get the expression (51) for the capacity H ′

3(t).

Remark. Here is a heuristic argument in support of our claim
that H′

3(t) is likely to be equal to H3(t). The difference
between H′

3(t) and H3(t) stems from the difference between
the sets T ′

3;t and T3;t. It is well known [13], [18], [21] that the
capacity of a language is equal to the entropy of the underlying
shift. Thus, instead of looking at T ′

3;t, we might as well look at
the underlying sofic shift X3;t = T ∗

3;t. The TGP(t) constraint
defining T3;t is a finite restriction of the TGP(t) constraint
defining T ∗

3;t. Furthermore, the TGP(t) constraint is local, in
the sense that it is defined through a finite window of length t.

Now, it is generally observed in the literature [18] that if a
constrained system S is obtained via a finite restriction of a
local constraint that defines a sofic shift X , then the capacity
of S equals the entropy of X . Of course, this is clearly true
whenever any finite sequence in S can be extended to a bi-
infinite sequence in X . However, “edge effects” sometimes
make it impossible to extend certain sequences in S without
violating the constraint. But, in the case of a local constraint,
these edge effects are usually not strong enough to affect a sig-
nificant proportion of the sequences in S , so that the capacity
of S is still equal to the entropy of X . This is not always true,
but the exceptions to this rule tend to be pathological.

It may be possible to prove rigorously that H ′
3(t) = H3(t),

but such a proof would have to deal in detail with the “edge
effects” and is likely to be too tedious to be worth the effort.

The remaining problem is to construct a deterministic
presentation for the set B′

3;t in (52) and (55). Given the graph
G3;t, constructing a presentation for B′

3;t is easy: simply apply
ξ(·) to all the labels in G3;t. Specifically, let G ′

3;t denote the
graph obtained from G3;t by replacing the labels of all the
edges with their absolute values. Then it is obvious from (55)
and Corollary 14 that the graph G ′

3;t is a presentation for B′
3;t.

Note, however, that although G3;t is a deterministic presen-
tation of T ′

3;t, the graph G ′
3;t is not necessarily a deterministic

presentation of B′
3;t. Indeed, there may be two edges ema-

nating from the same vertex x in G3;t, one labeled with +
and the other with −, whose labels in G ′

3;t would both be
1. Fortunately, there is a well-known procedure that, given
an arbitrary presentation of a constrained system, constructs
a deterministic presentation for it. This procedure is called
the subset construction method; it is described in detail in
[21, Section 2.2.1] and in [18, Theorem 3.3.2]. Applying the
subset construction method to the graph G ′

3;t, we finally obtain
a deterministic presentation H3;t for the set B′

3;t. Given this
presentation, we can compute the capacity H ′

3(t) and construct
encoders into B′

3;t, as described in the previous subsection.
We can now summarize the entire procedure for computing

the capacity H′
3(t), as follows:

1 Construct the graphs G3;t and G ′
3;t as described above,

and let B′
3;t be the constrained system presented by G ′

3;t.

2 Apply the subset construction method to G ′
3;t in order to

obtain a deterministic presentation H3;t for B′
3;t.

3 Construct the adjacency matrix A3;t of H3;t, and compute
its largest eigenvalue λ = λ(A3;t). Set H′

3(t) = log2λ.

Of course, in theory, H3;t can also be used to construct finite-
state encoders for converting unconstrained binary sequences
to sequences in B′

3;t ⊂ B3;t, as explained in Section IV-C.
In turn, the graphs G3;t and G ′

3;t provide a method for trans-
forming a binary sequence y ∈B′

3;t into a ternary sequence x ,
with ξ(x ) = y , that satisfies the TGP(t) constraint. For each
given y ∈B′

3;t, there is a path in G ′
3;t whose label sequence is

y . We may then take x to be the sequence of labels along the
same path in G3;t. The practicality of this method depends on
the existence of a systematic procedure for finding a path in
G ′

3;t that generates y . Of course, it also depends on the order
of the graphs H3;t, G ′

3;t, and G3;t.
We have already observed that the order of G3;t and G ′

3;t is
exponential in t. However, since we are interested primarily
in small values of t, such exponential growth could still be
tolerated. The main computational problem is with the subset
construction method at Step 2 above. The subset construction
technique, when applied to a graph with n vertices, produces
a graph with 2n − 1 vertices. As a result, the graph H3;t
constructed in Step 2 has at least 29t

vertices. In fact, this
is likely to be a vast underestimate of the order of H3;t.



KASHYAP, SIEGEL, AND VARDY: THE GHOST-PULSE CONSTRAINT 13

V. SUMMARY

We have defined and analyzed a number of “ghost-pulse”
constraints that can be used to design coding schemes which
mitigate the formation of ghost pulses in the optical fiber
channel. We show that coding schemes based upon sequences
that satisfy the binary ghost-pulse (BGP) constraint must
necessarily have poor rates, since the capacity of this constraint
is zero. Sequences satisfying a more relaxed constraint, which
we call the BGP(t) constraint, are more suitable for use as
codes; however, the rate of such codes is still too low for
practical applications. A more promising approach is to use
the phase-modulation idea, which leads to ternary constraints.
Thus we study the ternary ghost-pulse (TGP) and TGP(t)
constraints. We leave the analysis of the TGP constraint with
unbounded memory as an open problem, conjecturing that it
has zero capacity. But we do provide a detailed analysis of
the TGP(1) and TGP(2) constraints. Our analysis suggests
that coding schemes using TGP(t)-constrained sequences
can achieve much higher rates than those using BGP(t)-
constrained sequences. We are therefore led to believe that
TGP(t) constraints yield reasonably efficient schemes for mit-
igating the ghost-pulse problem. We also discuss the design of
encoders and decoders for coding schemes involving the BGP,
the BGP(t), and the TGP(t) constraints. While the procedures
we suggest for coding into the BGP(t), TGP(1), and TGP(2)
constraints can be implemented in practice, the corresponding
design procedure for the general TGP(t) constraint with t > 3
is too computationally intensive to be implementable in its
present form.
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