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Abstract—In terabit-density magnetic recording, several bits technologies are not capable of setting (and reading b&ek) t
of data can be replaced by the values of their neighbors in the magnetic polarities of a region as small as a single graid; an
storage medium. As a result, errors in the medium are dependent (ii) the write and readback mechanisms are typically unawar

on each other and also on the data written. We consider a simple f the sh d it f th ins in th di |
one-dimensional combinatorial model of this medium. In our © € shapes and posiuons o € grains In (he medium. In

model, we assume a setting where binary data is sequentially CUrrent magnetic recording technologies, writing is gafer
written on the medium and a bit can erroneously change to done by dividing the magnetic medium into regularly-spaced

the immediately preceding value. We derive several properties pijt cells, and writing one bit of data into each of these bit
of codes that correct this type of errors, focusing on bounds on cells. The bit cells are much larger in size compared to the

their cardinality. . that h bit cell - ins. Writi
We also define a probabilistic finite-state channel model of the grains, so that each bit cell comprises many grains. Writing a

storage medium, and derive lower and upper estimates of its Dit into a bit cell is then a matter of uniformly magnetizind a
capacity. A lower bound is derived by evaluating the symmetric the grains within the cell; the effect of grains straddlimg t
capacity of the chgnnel, ie., th_e ma_ximum_tra_nsmission rate poundary between two bit cells can be neglected.
under the assumption of t_he uniform |nput_d|strlbutlon of_ t_he Recently, Wood et al. [8] proposed a new write mechanism,
channel. An upper bound is found by showing that the original that fi te to the si f individ
channel is a stochastic degradation of another, related channel a cap magne Iz€ areas pommensura € lo the size ot 1n '\,/'
model whose capacity we can compute explicitly. ual grains. With such a write mechanism and a corresponding
readback mechanism in place, the remaining bottleneck to
achieving magnetic recording densities as high as 10 Tsrabi
. INTRODUCTION per square inch is that the write and readback mechanisms do
One of the challenges in achieving ultra-high-density magot have precise knowledge of the grain boundaries.
netic recording lies in accounting for the effect of the grdan- The authors of [8] went on to consider the information loss
ity of the recording medium. Conventional magnetic reaogdi caused by the lack of knowledge of grain boundaries. A sample
media are composed of fundamental magnetizable unitgdcalsimulation considered a two-dimensional magnetic medium
“grains”, that do not have a fixed size or shape. Informatson ¢omposed of 100 randomly shaped grains, and subdivided into
stored on the medium through a write mechanism that sets te4 x 14 grid of uniformly-sized bit cells. Bits were written in
magnetic polarities of the grains [9]. There are two types @hster-scan fashion onto the grid. At thth step of the write
magnetic polarity, and each grain can be magnetized to tgk®cess, if any grain had more than a 30% (in area) overlap
on exactly one of these two polarities. Thus, each grain caith the bit cell to be written at that step, then that grairswa
store at most one bit of information. Clearly, if the bouridsr given the polarity value of théth bit. The polarity of a grain
of the grains were known to the write mechanism and thguld switch multiple times before settling on a final value.
readback mechanism, then it would be theoretically possilith a readback mechanism that reported the polarity value
to achieve a storage capacity of one information bit pemgraiat the centre of each bit cell, their simulation recorded the
There are two bottlenecks to achieving the one-bit-pgsroportion of bits that were reported with the wrong polarit
grain storage capacity: (i) the existing write (and rea@hacA similar simulation, but with a slightly different assungot
o , on the underlying grain distribution, was reported in [6].
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granular structure of the medium is described by an inangasiagain confine ourselves to length-2 grains. Our objective is
sequence of positive integers,= j; < jo < -+ < js <n, estimate the capacity of the channel. For a lower bound on
wherej; denotes the index of the bit cell at which thk grain the capacity we restrict our attention to uniformly distutiéd,
begins. Note that the length of thith grain is¢; = j,.1 — j; independent input letters which corresponds to the case of
(we setjs;+1 = n + 1 to be consistent). symmetric information ratdsymmetric capacity or SIR) of
The effect of a given grain pattern on anbit block of the channel. We are able to find an exact expression for the
binary dataxz = (z1,29,...,z,) to be written onto the SIR as an infinite series which gives a lower bound on the
medium is represented by an operatothat acts upone to true capacity. To estimate capacity from above, we relage th
produce¢(x) = (y1,¥2,---,Yn), Which is the binary vector grains channel to an erasure channel in which erasures never
that is actually recorded on the medium. For notational ,easecur in adjacent symbols, and are otherwise independent. W
our model assumes that it is tlfiest bit to be written within explicitly compute the capacity of this erasure channelf an
a grain that sets the polarity of the grain. Thus, for indicasbserve that the grains channel is a stochastically dedrade
j within the ith grain,i.e, for j; < j < j;4+1, we have version of the erasure channel. The capacity of the erasure
y; = x;. This means that théth grain introduces an error channel is thus an upper bound on the capacity of the grains
in the recorded datd.€., a situation wherey; # z;) precisely channel.
when z; # z;, for somej satisfyingj; < j < jiy1. In We would like to acknowledge a concurrent independent
particular, grains of length 1 do not introduce any errors. paper by lyengar, Siegel, and Wolf [4] which contains some
As an example, consider a medium divided into 15 bit cellef our results from Section V. The authors of [4] considered
with a granular structure consisting of grains of lengths\d aa more general channel model that includes our probabilisti
2 only, with the length-2 grains beginning at indices 3, 6, fodel of the grains channel as a particular case. Their paper
and 13. The grains in the medium would transform the vectoontains results that cover our Propositions 12 and 19, s we
x = (100001000010000) to (100001100010000) and the vec- as our Theorem 14. However, a major contribution of ours that
tor z = (000101011100010) to ¢(x) = (000001111100000). cannot be found in [4] is our Theorem 17, in which we give
Note that¢(x) # « iff a 01 or a 10 falls within some grain. an exact expression for the SIR of the grains channel.
In particular,¢(é(x)) = ¢(x) for any x. Throughout the papeh,(z) = —zlogy = — (1 — ) logy (1 —
In this paper, we consider only the case of granular media denotes the binary entropy function.
composed of grains of length at most 2. Even this simplest pos
sible case brings out the complexity of the problem of coding I
to correct errors caused by this combinatorial model. Mést o
the results we present can be extended straightforwardheto As observed above, when the length of the grains does
case of magnetic media with a more general grain distributionot exceed 2, bit errors are caused only by length-2 grains.
Note that in a medium with grains of length at most 2, iEurthermore, it can only be the second bit within such a grain
is precisely the length-2 grains that can cause bit erroes. Wat can be in error. Thus, any code that can cortdut-flip
denote byd,, ; the set of operatorg corresponding to all such errors (equivalently, a code with minimum Hamming distance
media withn bit cells and at most grains of length equal to 2. at least 2t+1) is &-grain-correcting code. In particulat;
Then, forz € {0,1}", we let®,, ,(z) = {¢(x) : ¢ € ®,,,}, grain-correcting codes whose parameters meet the Gilbert-

CONSTRUCTIONS OF GRAINCORRECTING CODES

and call two vectorsey, zo € {0,1}" t-confusablef Varshamov bound (see e.g. [7, p. 97]) are guaranteed ta exist
But we can sometimes do better than conventional error-
©it(@1) N Pre(2) # 0. correcting codes by taking advantage of the special nature o

A binary codeC of lengthn is said to correct grain errors grain errors.
if no two distinct vectorse,, x4 € C aret-confusable. Observe that the first bit to be written onto the medium can

In Sections Il and Il of this paper, we study propertiegever be in error in the grain model. So, we can construct
of t-grain-correcting codes. We derive several bounds on th@rain-correcting code§ of lengthn as follows: take a code
maximum size of a length- binary code that corrects C’ of lengthn — 1 that can correct bit-flip errors, and set
grain errors. Our lower bounds are based on either expli€it= (0|C") U (1|C’). Here, forb € {0,1}, (b|C’) refers to
constructions or existence arguments, while our upper d®urthe set of vectors obtained by prefixingo each codevector
are based on the count of runs of identical symbols in a vec®@ C’'. For example, whem = 2, we can takeC’' to be
or on a clique partition of the “confusability graph” of thethe binary Hamming code of lengt™ — 1, yielding a 1-
space{0,1}". We also briefly consider list-decodable graingrain-correcting cod€ of size [C| = 2" /n. Note that2" /n
correcting codes, and derive a lower bound on the maximwg¥ceeds the sphere-packing (Hamming) upper bound, i.e., is
cardinality of such codes by means of a probabilistic argumegreater than the cardinality of the optimal binary singlee

In Section 1V, we consider a scenario in which the locatiorgorrecting code of length = 2™.
of the grains are available to either the encoder or the dacod More generally, again when is a power of 2, we can take
of the data, and derive estimates of the size of codes in thfsto be a binary BCH code of length — 1 that correctst
setting. bit-flip errors. The above construction then yieldg-grain-

In Section V, we consider a probabilistic channel modeborrecting code&® of lengthn and size|C| > 2"/n’.
that corresponds to the one-dimensional combinatorialehod We next describe a completely different, and remarkably
of errors discussed above, calling it the “grains chann&®. simple, construction of a length-grain-correcting code that



correctsanynumber of grain errors. For even integers- 2m, in the worst case (which happens when the first grain falls in
m > 1, define the cod&®,, C {0,1}"™ as the set the middle of a 1010 or 0101), the next grain can be placed
in (r(xz) — 1) — 3 ways; and so on. I

{(@122... 22m) € {0,1}" : 751 = ; for all even indices}. This leads to the following upper bound a (n, t).

1)
Note that when a codevector frorR, is written onto a Theorem 3 For any fixed value of,
medium composed of grains of length at most 2, the bits at on
even coordinates remain unchanged. Indeed, a bit at an even M(n,t) < = (1'2" 4+ 2+ o(1)),
index i could be in error only if a grain starts at indéex 1, "
causing the bit at index — 1 to overwrite the bit at index
i. However, the two bits are identical by construction. Thu ) : .
R, is a code of siz&"/2 that corrects anyarbitrary number o? foof : Let C be at-grain-correcting code of length, and let
grain errors. This construction can be extended to odd esngt Ci={xeC:|r(x) —n/2| < \/ntlogyn}.
n=2m+1, m>1, as follows:R,, = (0|Ram) U (1|R2m).

whereo(1) denotes a term that goes to Oras+ cc.

For anyx € C;, we have from Lemma 2,

[ll. BOUNDS ON THE SIZE OF GRAINCORRECTING CODES 1B, (@) > l(r(m)_l_?)(t_l))t
n,t -
Let M (n,t) denote the maximum size of a lengthbinary t1!
code that ist-grain-correcting. The constructions of the pre- > y(n/Q —/ntlogyn —1—3(t—1))" (2)

vious section show thad (n,t) > 2["/2] for anyn and¢, S _ _
and M (n,t) > 2" /n' whenn is a power of 2. In an attempt Since(; itself is t-grain-correcting, we also have
to determine the tightness of these lower bounds, we derive n ‘ ’
> = ,
below some upper bounds a¥f (n, t). 2" > | |J @nil@)|= ) [®ns(@)] 3)

xeCy xecCy
A. The One-Bit-Per-Grain Upper Bound It follows from (2) and (3) that
n+t
We start with the simplest upper bound, which is based on | < 2! (14 0(1)).

the fact that each grain in the medium can store at most one -t
bit of information. Now, letCy = C\C;. We shall bound from above the size®f

by the number of vectors € {0,1}" such thatr(z)—n/2| >
Proposition 1 Forn > 2t, we haveM (n,t) < 271, \/ntlog, n. Define : {0,1}" — {0,1}"~! by setting
Proof : Consider a medium with exactlygrains of length 2. ¢ ((x1,z2,...,2,)) = (21 ® T2, 22 D X3, ..., Tp—1 D Xy)

This medium has: — 2¢ grains of length 1, so that the total
number of grains i — ¢. Since each grain can hold at mos
one bit of information, we havé/(n,t) < 277t

here @ denotes modulo-2 addition. Then;(x) =
wg(¢Y(x)) + 1, wherewy () denotes Hamming weight. For
any given vector € {0,1}"1, there are exactly two vectors
The above bound is tight far € {2t, 2t + 1}81I;12c11eed, for z,, x5 =1 @ x; such thaty(x,) = ¢ (x2) = y. Therefore,
these values ofi, the upper bound evaluates2 , which .
is achieved by théR,, construction of the previous section./C2| 2{y €F3 " Jwn(y) +1-n/2 > /ntlog, n}
Whenn > 2t + 1, bounds better thad"~* can be obtained n/2—y/ntlogy n (n _ 1)

IA

using the techniques of Sections 1lI-B and III-C. 4 Z
=0

IN

)
B. Upper Bounds Based on Counts of Runs 1 2y/ntlogyn — 1)}

< dexpi(n—1)h
Denote byr(x) the number of runs (maximal subvectors {( ) (2 2(n—1)

of consecutive identical symbols) in the vectere {0,1}". whereh(z) = —zlog, z — (1 — z)log,(1 — z) is the binary
As remarked in Section |, a single grain can change entropy function. Sincé(L — =) < 1 — 2522,
to a different vector if and only if the grain straddles "

the boundary between two successive runsain Thus, < 4 2 (2y/ntlogyn — 1)
b N IC2] < dexpi(n—1)—.—
|Pp1(x)] = 1+ (r(x) — 1) = r(x). For ¢ > 2, the In2 4(n—1)
number|®,, ;(x)| is not readily expressible in a closed form. < gntlpn—t,
Nevertheless, we have the following lemma. )
We conclude by noting thdt| = |Cy| + |C2|. 1
Lemma 2

) For fixedt, the upper bound of the above theorem is within

t 1— .

1 ) a constant multiple of the lower bounti/(n,¢) > 2"/n',

[P (@) 21+ Z il H(T(‘B) —1-3j). stated earlier as being valid whenis a power of 2.
i=1  j=0

Proof : The right-hand side is a worst-case count of the number | "€ Pound of Theorem 3 islnot useful wheegrows linearly
of ways in whichi < ¢ length-2 grains can be placed so thaf/Ith 7 say,t = n7 for 7 € (0, 1/2]. In this case, we define
each grain straddles the boundary between successiverruns i R(r) = lim su logo M (n, |n7)) @
@. The first grain can be placed i{x) — 1 ways; after that, - p :

n—00 n



A simple consequence of Proposition 1 is tRdt) < 1—7 for .
7 € (0,1/2]. A better upper bound oR(7) for small+ can be 3
established by an argument similar to the proof of Theorem 0.955

— clique partition upper bound
“““ proposition 3 upper bound ||
= ='max(GV,0.5) lower bound

Proposition 4 Letx* = z*(7) be the smallest positive solu- 0.85f
tion of the following equation:

1—=x 1—=z 47 ~ 0.75F 1
(") ) =1 ORI
> )t 11—z x A
ForT < 0.0706, the following bound holds true: 065l 1
1—a i
R(r) < h(—"). 5) x
2 055 Y
Proof : The proof relies on a coarser estimate |@f, ,(x)| I I NI ST I SIS S CIETE T
than the one in Lemma 2. Consider the boundaries between 045 N S S RN R R S
(2i—1)-th and2i-th runsinz, i = 1,2, ..., |r(x)/2]. Length- 0 005 01 015 02 °'T25 0.3 035 04 045 05
2 grains can be independently placed across these bousida...

leading to the lower bound Fig. 1. Upper and lower bounds on the asymptotic coding ratgrain-

t correcting codes.
lr(z)/2]
vz 3 (1), ©
) i f(8) = g(d). In other words, the minimizing value @fin this
Fort = [7n], letC be at-grain-correcting code. For somey,q6 5 precisely the* in the statement of the proposition. It
0>0, let is readily verified that ab = 1 — 87, we haveg(d) — f(9) =
c = {w cC:r(x)/2> E(l _ 5)J } h(47) + 27 — 1, which is negative whem < 0.0706. 1
L Bound (5) is plotted in Fig. 1, along with the asymptotic
The bound (6) implies that for each€ C, version of the Gilbert-Varshamov lower bound, which, as
t |2(1—0)] observed in Section I, is also valid for grain-correctirggles.
|y e ()] > Z ( : i ) The methods of the next subsection yield upper bounds on
=0

R(r) for any 7 < 1/2, but these are harder to evaluate than

From the above and (3), we obtain the bound of Proposition 4.

2’ﬂ
Z# . (L%(ll—ﬁ)J)‘ C. Upper Bounds Based on Clique Partitions

7=

. - A clique partitionof a graphG is a partition(Vy, ..., Vi)
The size of the remaining subset of vect@ss= C\C; does . . ' hu kA
not exceed the number of all vectaeswith r(a) < (1 —5), of its vertex sefl” such that the subgraph induced by eagh

IC1] <

e j=1,...,k, is a clique ofG. Let x(G) denote the smallest
o L2 (1-4)] size (number of parts) of any clique partition Gf
ICa| < Z <n 1) < onh(152) Let G(n,t) be a confusability graph of the code space,
= ( N defined as follows: the vertex set 6f(n,t) is {0,1}", and
Therefore two distinct verticese, ' are joined by an edge iff they are
' t-confusable. For notational simplicity, we dengté=(n,t))
| < min{ 2: 4 onh(352) } by ¥...:- We do not assume thais an integer; for non-integer
~ B UT, (R0

values oft, we sety,: = Xn,|¢]-
5 . ] To state our next result, we need to extend the definition
Whent < 1%, or equivalently,0 < 1 — 87, the dominant

of M(n,t) as follows: M (0,¢) = 1 for all ¢.
term in the sum in the denominator above(liét(:;f”),which Pro cEZiti(zn 5 Form < (am; -
. 1 n(175)h(47,.) . ) p m=n IS
is bounded below bWQ 1 -3/, From this, we obtain

M(n,t) < Xm,s M(n —m,t —s).

R(r)< min max{l 1= 6h( Ar ),h(l - 5)} Proof : Let C C {0,1}" be at-grain-correcting code of size
0<4<1-87 4 1-9 2 IC| = M(n,t), and let(V;,...,V,) be a clique partition
(7) of G(m,s) of sizek = ¥ Forj =1 k, define
Now, for 1 — 87 to be positive, we need < 1/8. For any N . s SRR
fixedr € [0,1/8), andé € [0,1—87], the functionf(8) = 1— € ={ler,....cn) €C: (cr,... cm) € V). AS theV;'s form
s A N o ! _ T a partition of{0, 1}, theC;’s form a partition ofC. Therefore,
=1-h| 1= ) is an increasing function aof, while the function j; g enough to show thdt,| < M(n—m,t—s) for all j. Let
g(0) = h(%‘s) is a decreasing function aof. At 6 = 0, we C; = {(¢mt1,---5¢n) : F(C15. - Cm, Cmg1,---5Cn) € Cj}
haveg(d) > f(d). If, atd = 187, we haveg(d) < f(d), then The canonical projection map : C; — C; is a bijection; to
it follows that the minimum ovep in (7) is achieved when see this, it is enough to show thais injective. If7(c) = 7 (&)




for c,¢ € Cj, thenc = (c1,...,Cm;sCmt1,-..,¢n) and
¢ = (¢1,...,ém,Cm+1,...,¢q) fOr some(cy,...,c,) and
(é1,...,6y) in V;. But, since the subgraph induced By
forms a cligue inG(m,s), we have that(cy,...,¢,) and
(¢1,...,¢,) are s-confusable. Thus, we see thate are s-
confusable (and hendeconfusable since < t) unlessc = ¢.
Hence,r is a bijection, so thalC;| = |C}|.

We further claim thaC; C {0,1}"~™ is a (¢ — s)-grain-
correcting code, which Would show that;| = [C}| < M (n—
m,t— s). Indeed, consider any pair of dlstmct wordsd’ €
Cj. There exist distinct codewords’, ¢’) and (b, d’) in C;.
By definition of C;, a’ andb’ are s-confusable. So, it/ and
d’ were (t — s)-confusable, thetia’, ¢’) and (b', d’) would be

Algorithm 1 A greedy algorithm for finding clique partitions
in G(m, s).

1: determine the set®,, !, (y) for all y € {0,1}™;
:setB(y) = @, (y) for all y €{0,1}™,

setk = 0;
3: while there exists & such thatB(y) is hon-emptydo
4 k—k+1;
5 find ay, such thai B(y,,)| = maxyco,13» |B(y)l;
6: setV, = B(yy);
7
8
9

N

for eachy € {0,1}™
B(y) < B(y) \ Vi;

s return V..., Vi

t-confusable, which cannot happen for distinct codewords in

Cj. HenceC} is a (t — s)-grain-correcting codes

From Corollary 6 and Table |, we can obtain a suite of

Repeated application of the above proposition yields, forupper bounds o/ (n,t) valid for various ranges of andt;

positive intege < min{n/m,t/s},

M(Tl, t) < (X'rn,s)é M(Tl - mevt - Sé) (8)

for example, the entry fofm, s) = (10,1) in the table yields
that M(n,t) < 236t27~19 for t/n < 1/10. The following
upper bound onR(7), which was defined in (4), is also a

By choosingl appropriately, we obtain the following corollarydirect consequence of Corollary 6.

to Proposition 5.

Corollary 6 Ift/n < s/m, then

M(n,t) < (Xm’s)tt/SJ gn—t—(m=s)|t/s] (9)
If s/m <t/n<1/2, then
M(n,t) < (Ym,s) 2" 7700 (10)
where? = [ 2=2L |,
Proof : Note first thatn — mé > 2(t — s¢) iff n — 2t >

(m—2s). Whent/n < s/m, setl = |t/s]. Sincet/n < s/m
is equivalent ton — 2t > (t/s)(m — 2s), we haven — 2t >
¢(m —2s). Hence, from Proposition 1, we gé&f (n —m/{,t —
sf) < 2n—mi=(t=sf) Plugging this into (8), we obtain (9).

Whens/m < t/n < 1/2, then set! = | 2=2L ], It is easily
verified that! < n/m = min{n/m,t/s}, which is required
for (8) to hold. Since we also hawve— 2¢ > ¢(m — 2s), and
hence,n — m¢ > 2(t — sf), the bound (10) follows directly
from Proposition 1.1

It is difficult to determiney,, s exactly for arbitrarym, s.

Upper bounds ory,, s can be found by explicit constructions

of clique partitions ofG(m,s). Observe that for any €
{0,1}™, the set®, ! (y) := {x € {0,1}" : y € D s(2)}
forms a clique inG,, s. Thus, clique partitions of sizé can
be found by identifying sequences, ..., vy, € {0,1}™ such
that the set®,'.(y,), j = 1,..., k, cover{0,1}". Note that

the setsV; = @' (y;) \ (UK] l) j=1,...,k, then form

Corollary 7 Form, s such that < s/m,

Rir)<l-r (m ~ Lo, XW) . (11)
S S
Form, s such that/m < 7 < 1/2,
— 1—-27 m 1
< Xom.s — — =.
k(7)< <m - 2s> (log2 Xms =75 ) * 2 (12)

Proof : The bound in (11) follows easily from (9), while the
derivation of (12) from (10) could use a note of explanation.
To analyze the asymptotics of the bound in (10), we may
ignore the floor function in the expression fér Then, with

(= n=2t, ml = 2(t — sf), or equivalently,
n—t—{¢(m—s)=(n—ml)/2. From this, the bound in (12)

can be readily deriveds

When used in conjunction with Table |, the above corollary
gives useful upper bounds aR(7). For instance, using the
table entry for(m,s) = (16,4), we find thatR(r) < 1 —
7(4 — 1log, 662) ~ 1 — 1.6577 for 7 < 1/4. Figure 1 plots,
for € [ , 3], the minimum of all the upper bounds d¥(7)
obtainable from Corollary 7 and the entries of Table I. That pl
also takes into account the fact thafr) is a monotonically
decreasing function of.

Setting s mm in Corollary 7, we obtainR(r) <
= logy Xm,~m, and hence,

,_.

a clique partition ofG(m,s). We |mplemented the greedy™

algorithm described below to find such a list of sequences R(r)

Y1,--.,Y, and hence, a clique partitiov, . . ., Vj.
Table | lists upper bounds og,, s obtained via our im-

plementation of the greedy algorithm. The underlined estri[5, p. 85]), noting thatf (m)

in the table are known to be exact valuesygf s, obtained
either from the fact thag,, , > M (m,s) > 2["™/21 or from

specialized arguments that we omit here.

(13)

1
lim —logy Xm,rm.-
m—oo M,

<inf kS logy Xm,rm =
m m

The last equality above follows from Fekete’'s lemma (see e.g

= logy Xm.rm IS @ subadditive

function, i.e.,f(m+n) < f(m)+ f(n). The bound in (13) is

presently only of theoretical interest, as the infimum (onit)

on the right-hand side is difficult to evaluate in general.



m

2[3[4[5[6[7[8] 9 [10[11[12] 13 [ 14 | 15 [ 16
214|610 |18| 36| 66| 122 | 236 | 428 | 834 | 1574 | 3008 | 5716 | 11014
s 41 8 |12|18| 30| 54 | 92 | 162 | 284 | 530 | 948 | 1730 | 3210

8 | 16|24 | 34 | 56 | 88 | 138 | 238 | 418 | 716 | 1266
16| 32 | 44 | 64 | 98 | 156 | 248 | 392 662

AWN -

TABLE |
UPPER BOUNDS ONYn,s OBTAINED BY COMPUTER SEARCH THE UNDERLINED TABLE ENTRIES ARE KNOWN TO BE EXACT VALUES OFXm,s.

D. A List-Decoding Lower Bound less than or equal to

We briefly venture into the territory of list-decoding in shi nf MO\ (i (TN
section, and give a lower bound on the achievable coding rate (L 4 1) < on )
of a list-L-decodable code. Recall that in the list-decoding t AN L1
setting, the decoder is allowed to produce a list of up_.to < (M (n _ Z)) —nk
codewords. Formally, a code is list-L ¢-grain-correcting if i=0 !

for any vectorz € {0,1}", {c€C:x € &, ,(c)}| < L. In
words, for any received vectar € {0,1}", there are at most
aangd:\r/;?gcri(ésethgt could get transformedatdy the action of there exists a code of siz& in which all the (L + 1)-
P o it ) L ) _ tuples of codewords are good. This implies the lower bound
We will find the following definition useful in what is to on M(n,t; L)
follow. For ¢ € ®,., let ey be the vector(es,....en) € The bound onR(r; L) follows from the observation that

{0,1}™, with e¢; = 1 iff ¢ has a length-2 grain beginning at/n—i increases withi for i < - (5n — 3 502

i _ , L(5n—3—/b6nZ+10n+9).
the (j — 1)th bit cell. Define€,, = {e, : ¢ € ,,}. Note '(I'hlu) o g/ < 1 0(%n o n+f )th
that &, + consists of all binary “error vectors” of length s, as long ag/n < 5 — 5, the asymptotics of the

Take M = 2nE/(L+D/S™ (")) then the ensemble-

7

average number of bad. + 1)-tuples is less than 1. Therefore

2 10
- £ (n—iy : —t
and Hamming weight at mostsuch that the first coordinate SUmMMation>_; _, (";") is determined by the terrf";"). o

is always0 and no twol’s are adjacent. An easy counting We do not at present have a useful upper bound on
argument shows that M(n,t; L).

t .
|Ent] = Z (n n Z). (14) V. GRAIN PATTERN KNOWN TO ENCODERDECODER
’ 1

=0 In this section, we assume that the user of the recording

Denote byM (n, t; L) the maximum size of a list- t-grain-  system is capable of testing the medium and acquiring infor-
correcting code of length, and define fol0 < 7 < 1/2, mation about the structure of its grains. This informatisn i

logy, M (n, |n7; L) used for the writing of the data on the medium or performing

R(7; L) = liminf the decoding. Specifically, we assume again a medium with

neee n n bit cells and at most grains of length 2, but now the
N locations of the grains are available either to the decodeér b
Proposition 8 We have not the encoder of the data (Scenario 1) or, conversely, ¢o th
onL/(L+1) encoder but not the decoder (Scenario II). Accordingly, let
M(n,t; L) > > M;(n,t),i = 1,2, be the maximum number of messages that
> i=o ( i ) can be encoded and decoded without error in each of the two
and hence, scenarios. Also, fof) < 7 < 1/2, let
L T logy M;(n, |nT])
R(rL)> —— —(1— h( ) (1) = lim inf 282 i (7))
R(t;L) > 11 (1-7) 1—- R;(7) hglilgf . , i=1,2
forr<1— V5~ 0.2764. be the coding rate achievable in each situation whgnows

2w proportionally withn, with constant of proportionality.

For the analysis to follow, we need to recall the definition

Proof : For a vectorz € {0,1}" let us define X
of &, from Section III-D, and the fact (14) that, ;| =

B(x)={z€{0,1}" :x € ®,,4(2)}. ZE:O (nl—7)
Note thatB(z) C {zx de : e € &,,}, so that|B(z)| <
Enal =2 ("79)- A. Scenario |

Let us construct the code by choosing codewords ran-  Here, we assume that the locations of the grains are known
domly and uniformly with replacement frof0,1}". For a to the decoder of the data but are not available at the time of
fixed vectory € {0,1}", call the choice of any. + 1 code- writing on the medium. A cod€ is said to correct grains
words ¢y, ...,cr+1 ‘bad’ if ¢y,...,cr+1 € B(y). Clearly, known to the receiver it)(x1) # ¢(x) for any two distinct
the expected number of bad choices for a random ¢bée vectorsz,,zs € C and anyy € ®,, ;.



An obvious solution for the decoder is to consider as Given a messageé € {1,...,M} to be transmitted, the
erasures the positions that could be in error, so the encaater transmitter will use knowledge of the grain pattetn(with
rely on at-erasure-correcting code. Therefore, by the argumesf € £, ;) to encodei using a suitably chosen vector from a

of the Gilbert-Varshamov bound\f; (n,t) > %, and set of binary vectorst® = {z} : j = 1,...,n}. A vectorz
hence,R,(r) > 1 — h(r). However, this lower bound can be'S said to begoodfor e € &, if for any i # i’ and for any
improved, as our next proposition shows. j" we have,

Proposition 9 We have dp (x5 © e, @) < du(z; © e, @),

on wheredy (-, -) denotes Hamming distance. The family of sets
= X' i=1,...,M, is goodif for any i € {1,..., M} and for
> im0 ( i ) anye € &, ,, there exists a vectat;'- € X' that is good fore.
HenceR,(t) > 1—(1—7)h(:Z) forT < L - \1/705 ~ 0.2764. A good family of setst?, i = 1,..., M, enables the encoder
) N to transmit any message i1, ..., M} with perfect recovery
Proof : We shall construct a code of size at leas2™ /|, | by the decoder. Indeed, given the grain pattesthe encoder

by a greedy procedure. We begin with an empty set, chogsg,ses for transmission of message vector inX* that is
an arbitrary vectorr; and include it inC. Having picked

Afl (n, t) Z

‘ good fore.
1,...,®;—1, for some; > 1, we chooser; so that Thus, we only need to show that fav/ satisfying (15)
i—1 there exists a good family of sefs’ = {27 : j = 1,...,n},
; ; : Enit} L n>M i i
w; ¢ U{w] be:ecin i=1,...,M. There are2"" ™ families of M setsX?, each
j=1

containing at most binary vectors of lengthn. Of these, the

We stop when such a choice is not possible. At that point, viaimber of families that araot good does not exceed
will have constructed a code that satisfie§C| - |E,,¢| > 2™. n o oon2(M—

We claim thatC correctst grains knowi ‘to|the‘receiver. M- [En] - (M = 1)nfn )" - 27 70,
Suppose not; then there exists a grain patterne @, ; If M satisfies (15) with equality, then this number is less than
such thatg(x;) = ¢(x;) for somex;, x; € C, i > j. 27°M_ Therefore, there exists a good family of sats
Equivalently,z; ® e = x; @ €’ for some error vectorg,e’  The argument for the lower bound dby(7) is the same as
with supge), supge’) C supfe,), where supp) denotes the that given forR, () in the proof of Proposition 9, since the
support of a vector. We then havwe = x; @ (e @ €’) with  extra multiplicative factor of.- does not affect the asymptotic
ed e €&, , which contradicts the construction 6f behavior. 1

As in the proof of Proposition 8, the bound aR,(7) To summarize, we obtain a lower bound &) (7), i = 1
follows from the observation that whein < 1 — V5 the or 2, of the form

X 2 10’
asymptotics of the summatiol’_, ("-%) is determined b
ymp Rizo ("7 y (r) = max {05, 1— (1 = 1)h(—)}.
1—71
This is because the rat¢z code R,, defined in (1) is still

the term(";"). n
. o . o _viable in the context of Scenarios | and Il. A straightfordiar
This scenario is similar in spirit to the channel Wltl’hpper boundg, (r) < 1— follows from the fact tha\/; (n, ¢)
localized errorsof Bassalygo et al. [1]. In that setting, bothy,q My (n t)icannot exceed”—, which is simply the one-
the transmitter and the receiver know that all byiositions bit-per-gréin upper bound. ’

of the codevector will remain error-free, and the coordisat

of the ¢ positions which can (but need not) be in error are V. CAPACITY OF THE GRAINS CHANNEL
known _to the transmitter but not the receiver. Thus, in our Thus far in this paper, we have considered a combinatorial
Scenario Il, the encoder may rely on codes that correg;\

R,

2

B. Scenario Il

t . . . .
. : . . odel of the one-dimensional granular medium, and given
localized errors, which according to [1] gives the boun 9 v

. . : arious bounds on the rate ofgrain-correcting codes. We
LBy(7) 2 1= h(r). Again, this bound can be improved. will now switch to a parallel track by defining a natural

Proposition 10 We have probabilistic model of a channel corresponding to the one-
1 on dimensional granular medium with grains of length at most 2
Ma(n,t) > %72? (nfi) : (the “grains channel”). This is a binary-output channet tan
=0 i

make an error only at positions where a length-2 grain ends.
Hence.R,(t) > 1—(1—7)h(:Z) forT < %_ \1/705 ~ 0.2764. In fact, error events are data-dependent: an error occuas at
Proof : We show that when the encoder knows the err@osition where a length-2 grain ends if and only if the channe
|Ocati0nsy then it can Successfu”y transmit input at that pOSition differs from the preViOUS ChanneIUhp
Our goal is to estimate the Shannon-theoretic capacityhier t
1 27 . e
> —— (15) grains channel model. Let us proceed to formal definitions.
20 [En il Supposer = x12s..... andy = y1y-.. ... denote the input
messages to the decoder, which proves the claimed loveerd output sequence respectively, withy; € {0,1} for all 7.
bound onM;(n,t). We follow the proof of Theoren8 of We further define the sequenee= wjus....., whereu; = 1
[1]. (resp.u; = 0) indicates that a length-grain ends (resp. does



not end) at position. We takewu to be a first-order Markov operational meaning in the usual Shannon-theoretic sense —
chain, independent of the channel input having transition see Theorems 4.6.2 and 5.9.2 in [3].

probabilities P(u;|u;—;) as tabulated below (for some € The upper and lower capacities coincide for a large class

[0,1]): of channels known amdecomposablehannels. Roughly, an
\ u;=0 wu; =1 indecomposable DFSC is a DFSC in which the effect of the
w1 =0] 1—p P (16) initial states, dies away with time. Formally, lef(s, | =", so)
w1 =1 1 0 denote the conditional probability that theh state iss,,,
The grains channel makes an error at positigie., z; # y;) 91Ven the input sequence” = (z,...,x,) and initial state
if and only if u; = 1 andz; # =,_,. To be precise, so. Evidently, q(s,, | ™, s0) is computable from the channel
statistics. A DFSC is indecomposable if, for any 0, there
Yi = T © (1 D Ti-1) Uy, (17) exists ann, such that for alln > ng, we have
}/vh(talre the operations are being performed modulo 2. Equiva- lq(sn | 2", 50) — q(sn | ", 55)| < €
ently, _
. if w =0 for all s,,, ™, sp ands(,. Theorem 4.6.3 of [3] gives an easy-
Yi = 1 i 1 _1 (18) to-check necessary and sufficient condition for a DFSC to be
Ti-r MU =L indecomposable: for some fixedand eache”, there exists a
We will find it useful to define the error sequenee = choice fors, (which may depend or™) such that
21, 22,23, . - ., Wherez; = x; @ y;. Thus, min (s, | 2", s5) > 0. (20)
Z2i = ui(xi D xi—l)- (19) ’

_ o We note here that the channels we consider in the subsequent
The casei = 1 is not covered by the above definitions. Wesections are indecomposable except in very special cases. F
will include it once we define a finite-state model of the gsainthese special cases, it can still be shown tHat C holds.
channel. _ _ _We make a few comments about DFSCs for whi¢h= C'
The grains channel as we have defined above is a spegiglds. We denote bg' the common value of' andC'. ThisC,
case of a somewhat more general “write channel” modghich we refer to simply as theapacityof the DFSC, can be

considered in [4]. expressed alternatively. If we assign a probability disttion
_ o to the initial state, so that, becomes a random variable, then
A. Discrete Finite-State Channels C = lim,,_.., C,, where
For easy reference, we record here some important facts 1
. .« . . . .y n n
about discrete finite-state channels. The material in #itien Cn = — max I(z";y" | so). (21)

is substantially based upon [3, Section 4.6]. e

A stationary discrete finite-state channel (DFS®gs an Clearly,C,, < (), < C), for all n, so thatC, as defined above,
input sequencer = x1, 2, 3,..., an output sequencg = is indeed the common value @ and C. Note that this is
Y1,%2,Y3,. .., and a state sequenee= s, s, 53,.... Each independent of the choice of the probability distributiom o
x, IS a symbol from a finite input alphabet, eachy, is so.

a symbol from a finite output alphabgt, and each state, A further simplification to the expression for capacity is
takes values in a finite set of stat8sThe channel is describedpossible. Sincel(x™;y™) — I(x™;y" | so)| < log, |S| (see,
statistically by specifying a conditional probability &gsment for example, [3, Appendix 4A, Lemma 1]), we in fact have
P(Yn, 5n|Zn, Sn_1), Which is independent of. It is assumed 1

that, conditional onr,, ands,,_,, the pairy,, s,, is statistically C= lim = max, I(z";y"). (22)
independent of all inputs;, j < n, outputsy;, j < n, and

statess;, j < n—1. To complete the description of the channel, The capacity of a DFSC is difficult to compute in general.
an initial states,, also taking values i, must be specified. A useful lower bound that is sometimes easier to compute (or

For a DFSC, we define thiewer (or pessimisti} capacity at least estimate) is the so-callesgmmetric information rate
C = lim,,_, C,,, and upper (or optimistig capacityC = (SIR) of the DFSC:

lim,, . C,,, Where 1
R= lim ~I(z":y"), (23)

=n~' max min I(x";y" | s0)

N

B ) Qn (@) s0€s where the input sequenceis an i.i.d. Bernoulli/2) random
Cn=n"" max max I(2";y" | so). sequence.

In the above expressiond,(z™;y™ | so) is the mutual
information between the length-input ™ = (z1,...,2,)
and the length: outputy™ = (y1,...,y.), given the value of
the initial statesy, and the maximum is taken over probability It is easy to see that the grains channel is a DFSC, where
distributions@™(x™) on the inputz™. The limits in the above the nth states,, is the pair (u,, z,,), which takes values in
definitions of C andC' are known to exist. Clearlyy, < C,, the finite setS = {(0,0),(0,1),(1,0),(1,1)}. Again, for

for all n, and thusC < C. The capacitie® andC have an completeness, we assume an initial stafehat takes values

B. First results



inS.t 7, and a ternary output sequenge = yi,¥2,¥s, ..., With
y; € {0,1,¢} for all 4, wheree is an erasure symbol. The

Proposition 11 The grains channel is indecomposableifer  input-output relationship is determined by a binary segaen

1. u = uy,us,us, - . ., Which is a first-order Markov chain, inde-

o pendent of the input sequenag with transition probabilities
Proof : We must check that the condition in (20) holds. W¢(Ui|ui71) as in (16). We then have

taken = 1 ands; = (0,21). Then, ming, ¢(s1 | =1, $0) =
minje o1y P(ur =0 ug=j) =1—p>0. 8 y__{xi if w; =0

25

As a consequence of the above proposition, the equality
C = C holds for the grains channel when< 1. In fact, this Since P(u; = 1 | u;_; = 1) = 0, adjacent erasures do not
equality also holds for the grains channel wher 1, as the occur, so we term this channel the binary-input no-adjacent
following result shows. erasures (BINAEras) channel. To describe the channel com-

N ] ] pletely, we define an initial state, taking values in{0, 1}.
Proposition 12 For the grains channel with = 1, we have 1 BINAETas channel is a DFSC for which = C holds,
C=C=1 and its capacity, which we denote ¥ (p), can be computed
Proof : We have, with probability 1, explicitly.

U = Ui, U2, U3, Uq, U5, UG, - - -
) Theorem 13 For the BINAEras channel with parameterc
_ 0,1,0,1,0,1,... If ug =1 [O,l],wehav@:C:C’E(p)éﬁ.
1,0,1,0,1,0,... if ug=0.
is fixed, the output Intuitively, the average erasure probability of a symbalag
& = 115> and the capacity(p) equalsl —p. A formal proof
is given in Appendix A.

Thus, once the initial statey = (ug, xo)
y of the grains channel is a deterministic function of the inp

.
We claim that the grains channel is a stochastically degrade
Y=Y1,Y2,Y3:Y4,Y5, Y65 - - - BINAEras channel. Indeed, the grains channel is obtained by
{J;l’xhx&x& T, @5, ... if so= (1, 20) ga?ca(;ing tr;e”BINAELas .channel with a ternary-input channe
= , ; _ i efined as follows: the input sequenge = y1,¥2,¥3,.- -
Z0, 22,2, T4, 24, T, 50.= (0, 20). yi € {0,1,¢}, is transformzd to '?he O?Jetputysegueyry’e:
Therefore, for any fixeds € S, we haveH (y" | z",s0 = Y1, V5, Y5, ... according to the rule
s) =0, and hence](x";y" | so = s) = H(y" | so = ). If ,
x" is a sequence of i.i.d. Bernoullig) random variables, then Yl = {yl ff vi#e (26)
minges H(y" | so = s) = H(y™ | so = (0,20)) = |n/2]. yi-1 ify=e¢

It follows that €', > L%, so thatC > 1/2. On the other 14 ¢over the case whep, = ¢, we sety, equal to some
hand, for:;\ny input distributio)” ("), and anys € ‘rs;j/;"]’e arbitrary yo € {0,1}. It is straightforward to verify, via (25),
have H(y" | so = s) < [n/2]. ConsequentlyC, < “5=,  (26) and the fact thaP(u; = 1 | u,_y = 1) = 0, that
and hence(’ < 1/2. We conclude thal’ = C' = 1/2. & the cascade of the BINAEras channel with the above channel

In view of the two propositions above, the capacity of thBas an input-output mapping, — y; given by the equation
grains channel is defined by (22). From here onward, v@tained by replacing; with y; in (18). This immediately
denote this capacity bgs, and use the notatiofs(p) when leads to the following theorem.
the dependence gnneeds to be emphasized. It is difficult to
compute the capacitg’® exactly, so we will provide useful
upper and lower bounds. We note here for future reference tHaeorem 14 Forp € [0, 1], we haveC®(p) < C*(p) = -

trivial bound obtained from Proposition 12:
Remark:We remark that any code that corre¢tsonadjacent

Ce(p) =2 C¥(1) = 1/2. (24)  substitution errors (bit flips) also correctsgrain errors. It
is therefore tempting to bound from below the capacity of
C. Upper Bound: BINAEras the grains channel by the capacity of the binary channel with

Consider a binary-input channel similar to the binary erdlonadjacent errorsSuch a channel is defined similarly to the

sure channel, except that erasures in consecutive p@itiggNAEras channel: the channel noise is controlled by a first-

are not allowed. Formally, this is a channel with a binar§rder Markov channel (16), andy; = z; ©, for all 7 > 1.
input sequencer = 1,22, 73, ..., With z; € {0,1} for all he capacity of this channel is computed as in the BINAEras
case and equals — h(p)/(1 + p), where h(p) denotes the

7o be strictly faithful to the granular medium we are modeliwg,should binary entropy function. However, this does not constitate
restrictso to take values only if{(1,0), (1,1)}, so thatup = 1. Thiswould  ygjid lower bound forC®(p): for example, wherp is close
imply »; = 0, meaning that no length-2 grain ends at the first bit cell of th? h 3 | bei | hil
medium, corresponding to physical reality. But this makes rtergince to  1© 1, We havel — (p)/(l + p) also being close ta, while
the asymptotics of the channel, and in particular, to the chlcapacity. C8(1) < 1/2 according to Theorem 14.
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D. Lower Bound: The Symmetric Information Rate ﬁ}g‘(p)

In this section, we derive an exact expression for the SIR of
the grains channel, which gives a lower bound on the capacity 0-9
of the channel. In accordance with the definition of SIR (23), 08l
assume that: is an i.i.d. Bernoulli{/2) random sequence. With '
this assumption, the state sequence a first-order Markov 0.7
chain. Also, each output symbg), is easily verified to be a

Bernoulli(t/2) random variable (buy,, is not independent of 06

yn—l)- 0.5 .
We also assume that the initial statg is a random

variable distributed according to the stationary distitou T s . p

0.2 0.4 0.6 0.8 1.0

(a) Bounds onC®(p). The gray area shows the gap between the
lower bound of Theorem 17 and the upper bound of Theorem 14.

of the Markov chain, so that the sequengeis a station-
ary Markov chain. It follows that the output sequenge
is a stationary random sequence, so that the entropy rate
H(Y) :=lim, .o, + H(y") exists. It is also worth noting here RI(p)

n

that the initial distribution assumed oy causes the Markov 1.0
chain« to be stationary as well. In particular, the random \
variablesu;, i > 0 all have the stationary distribution given 7
by P(uz = 0) - 1+p (uz = 1) = 1+p 0.8}
We have ’
1 0.7
R® = lim — I(x™;y" 27 ,
Jim —I(@";y") @7) 061
I(@"y") = Hy") - H(y"|a") = H(y") - H(z"[2") 05|
O —

(28) i

As noted aboveH (Y) = lim, .o = H(y") exists. In fact, 02 04 06 08 10"

we can give an exact expression fAf(Y") in terms of an (b) The symmetric information rat&® (p).

infinite series.

Fig. 2. Plots of the upper and lower bounds on the capacityhefdgrains
Proposition 15 The entropy rate of the output process of thehannelC(p), and the SIR of the grains channg¥ (p), as functions op.
grains channel is given by

> Eh— quence, we have
H(Y) Z h(B H 1= By, - ,
— _ J
j72 =2 lim H(z" |x™) 1! +p/ Z (7) )
where n—o0 = 1+p
Bi=Prlyjp1=1]y;=yj-1=-=y2=0,y1 = 1]
is given by the following recursion, — %(1 p), and for Together, (27), (28), and Propositions 15 and 16 provide an

exact expressiofor the SIR of the grains channel. This, along
1/1—(1+p)Bi with the trivial bound (24), yields the following lower bodn
9 ( 1*—@1 ) (29)  on the capacityCs.

The lengthy proof of this proposition is given in Appendix BTheorem 17 The capacityC%(p) > max(1/2, R%(p)), where
Re(p) is the SIR of the grains channel and is given by the
following expression:

Jj =3,
Bj ==

Remark: The following explicit expression fop;,j > 2
can be proved by induction from (29):

o 2((9-)" = (94)") o > ! B

Bi B1Bin0) —(G-BipW.) (30)  R:(p) = 1+p ;{ (8;) kl‘[zu Br)

whered, =1 — 128 and B = \/p? + 6p + 1. 2+Ph(1(P)j)}
21 1+p '

Our next result shows théitm,, .., H(z" | ") also exists, with 3; as in (29) or (30).
and gives an exact expression for it, again in terms of an

infinite series. Appendix B contains a proof of this result. In Figure 2, we plot the upper and lower bounds@(p)

stated in Theorems 14 and 17 as well as the valu&)
Proposition 16 When x is an i.i.d. uniform Bernoulli se- from Theorem 17. Observe that the SIR is a strict lower bound
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on the capacity, at least far56 < p < 1, as R8(p) < 1/2 We have thus proved the following result.
within this range ofp.

The plots are obtained by numerically evaluatifRg(p) b . . . .
. . ) . Proposition 19 Consider a grains channel with parameter
truncating its infinite series at some large valuej ofVe give
u g 1S nfini ' ge valug gV 0. If the /nlt/al statesq is such thatPr[u1 = 1] > 0, then

here a somewhat crude, but useful, estimate of the errorﬁgﬁ n/2J otherwise,Ro(n) — (”/ﬂ
of 0 pos .

truncating this series at some indgx J, with J > 2. Define , ,
. In any case the zero-error capacity of the channélyis=
the partial sums )
lim,, o0 Ro(n) = 1/2.

J .
S, — 11++1’/2 ZQ*jh(ilzi*p)J) (31)
b= P APPENDIXA: PROOF OFTHEOREM 13
J j—1
T; = ﬁ Z h(B;) H(l — Br) (32) Observe first that the BINAEras channel is inqgcomposable
P) iz k=2 for p < 1. Indeed, for this channel, the condition in (20)

reduces to showing that for some fixed there exists a
choice foru,, such thatmin,,, P(u,|ug) > 0. This condition
clearly holds forn = 1 andu; = 0: minjecg,13 P(u; = 0 |

up = j) = 1 —p > 0, providedp < 1. We deal with the
indecomposable case in this appendix; wipea 1, the proof

and note that the/th partial sum of theR2(p) series is
preciselyT; — S;.

Proposition 18 The error R (p) — (Ty — Sy)| in truncating
the R#(p) series at an index= J, with J > 2, is at most

for C = = 1/2 follows, mutatis mutandisthe proof of
1 (1+p/2)2~7 +2—L(.]+1)/2J} _ Proposmon 12. o B
I+p When the channel is mdecomposable we have C = C.
In particular, for any € [0, 1], the truncation error is at mostWe will show thatC' = 1. Choose the distribution on
9—7 49— L(J+1)/2], to be the statlonary d|str|but|on of the Markov processso
that P(up = 0) = +—— and Plup=1) = p . Consequently,
We defer the proof to Appendix B. u is a stationary process and in partlcular fordalt 1, we

The plot of RY(p) in Figure 2(a) was generated usidg= have P(u; = 0) = Tp andP(u; = 1) = -
15 terms of the infinite series, so the plotted curve is within Opserve that
0.004 of the trueR® curve for allp.

+p'

I(x";y" [uo) = H(y" [uo) — H(y" | 2", uo)

E. Zero-Error Capacity @ H(y"™ | up) — H(u" | 2", up)

We end with a few remarks on the zero-error capacity of the ® H(y" | uo) — H(u"
grains channel. We are interested in the maximum zero-error _ _
information rate,Ry(n), achievable over the grains channefVith equality (a) above due to the fact that, giveft, the
with parametep € [0, 1] and inputz™. The case whep = 0 sequgncesy” and u" u_nlquely determine each other, and
is trivial (the channel introduces no errors), so we considgquality (b) because™ is independent ofe™. Furthermore,
p>0. sincew is a stationary first-order Markov process, we have

n e h

The zero-error analysis depends on the initial statef the H(u™ |ug) = 30y H(up | up—1) = nH(uy | ug) = n%-

channel. Suppose thag is such thatPr[u; = 1] > 0. Then, Hence,

|’U,0),

the state sequence™ = 1,0,1,0,...,(n mod 2) is realized (p)

- " ” : - Cp=n"" max H(y"|up) — ~22 (33)
with some positive probab|I|ty. Corresponding to this stat T o) Yy o 1+p
sequence, we havg" = xq, 72,72, T4,...,T2|n/2/. THUS,

at most|n/2| bits can be transmitted without error across Now, H(y" | uo) = 2?21 H(yi | y'~', uo). Sincey'!
this realization of the channel. Henc&(n) < L |[n/2]. completely determines’~!, we have by the data processing
This zero-error information rate can actually be achievethequality [2, Theorem 2. 8. 1],

Consider the binary length-code R,, defined in (1) which
has 21"/2] codewords. When a codeword froR,, is sent
acrossany realization of the grains channel, the bits at eveWe further have

coordinates remain unchanged. Thus,/2]| bits of infor- i1

mation can be transmitted without ilrrér,J which proves that H(y: [ v, uo) < H{yi [ i) .
Ro(n) = 5 [n/2]. = H(yi | w1 = 0)~2— + H(y; | wimy = 1) —

On the other hand, suppose that the initial statés such L+p L+p
thatPr[u; = 1] = 0. Then, the worst-case channel realizatioGivenwu;_; = 1, y, is a binary random variable (sineg = 0
is caused by the state sequeng® = 0,1,0,1,...,(1 + n with probability 1), and thusH (y; | u;—1 = 1) < 1. On the
mod 2). In this case, the channel is such that the first coasther hand, we havé(y; = ¢ | uj—1 = 0) = P(u; = 1 |
dinate of the input sequence is always received withoutrerrg,_; = 0) = p, and so the conditional entrog¥ (y; | u;—1 =
at the output. A slight modification of the preceding argumen) is maximized whenP(y; = 0 | u;—1 = 0) = P(y; = 1 |
now shows thaty(n) = 1 [n/2]. ui—1 = 0) = (1 —p)/2. This yieldsH(y; | w1 = 1) <

H(yi |y uo) < H(y; | '™, ug)



h(p) + 1 —p. Putting all the inequalities together, we find that

H(y" [ uo) = ZH(%‘ [y uo)
i=1

<n( i+ () + 1P 1)
1+ h(p)
(5%,

12

Suppose thay,—; = b; then, with probability 1, we
havey, = b if and only if s, := (ug,zx) = (0,b).

Indeed, even without the assumption gn 1, the “if” part
holds trivially. For the “only if” part, assume that._, = b
andy;, = b. Note that ifu;, = 1, then with probability 1, we
haveu,_; = 0. Hence, by way of (18), we havg, = z;_1 =
yr—1. However,y,_1 # yi, by assumption; so we must have
uy, = 0. Consequentlyy,, = zj, so thatz; = b.

Consider anyb € B;. From the claim, we have

It is not difficult to check that the above in fact holds with

equality when the input sequene# is an i.i.d. sequence of Prly;1 = 1|y’ = b]

Bernoulli(t/2) random variables. Thus,

B 1+h(p).

t max H(y™ | up) = Ty

Q'H. (mn)

n

Plugging this into (33), we obtain that, = ﬁ for all n,
and hence( =

1+4p-°

APPENDIXB: PROOFS OFPROPOSITIONS15, 16AND 18
B.1. Proof of Proposition 15

Sincelim, oo 2 H(y") = lim;_.oc H(yi+1 | y'), we need
show that the latter limit equals the expression in the siatg
of the proposition. We will work with the identity

H(yi |y')= Y, H(yia|y' =b)Prly’ =],
be{0,1}7

From the channel input-output relationship given by (18) an,

the fact that the input is an i.i.d. Bernoulli{/2) sequence, it
is clear thatPr[y’ = b] = Pr[y’ = b], whereb = b+ 1" is

the sequence obtained by flipping each bitbinlt then also
follows that H(y;,1 | y¥* = b) = H(y;41 | y* = b), since
Prlyit1 =1|y" =b] = Pr[y;41 = 0| y* = b]. Hence,

H(yir1 | y') =2 Z H(yis1 |y’ = b)Prly’ = b, (34)
beB

where B = {(b;,...,b1) € {0,1}" : b; = 0} is the set of

Pr((uit1,2it1) = (0,1)]y" = b]
Y2 Prlu;41 = Oy’ = b],
where we have used the fact that,; is independent of)’.

Note that, in the eveny? b, we havey;_j.» = 0 and
Yi—j+1 = 1, so that by the claim again,

Prluip1 = 0y" = b] = Prlujs1 = 0]y’ = b, si—j12 = (0,0)].

Now, given the channel state;_; > = (0,0), the ran-
dom variablesu; 1, vi, Yi—1,-..,¥i—j+2 are conditionally
independent of the past outpyt—7*!. Furthermore, given
si—j+2 = (0,0), the random variabley;_;,o is uniquely
determinedy;_;+2 = 0. Hence,

Priuiy1 =0 y' = b,s; ;12 =(0,0)] =
Priuit1 =0 Uiy, Yimjrs) = 0072 5,10 = (0,0)].

Finally, by the joint stationarity ofy and u, the right-hand
ide above is equal to

Prlu; =0 | (yj-1,yj-2,---,42) = 072, 51 = (0,0)],

which is what we needed to show.

In the statement of Proposition 15, we defingd =
Pr[yj_H =1 | (yjayj—la-- .,yl) = Oj_ll]. Note that if we
seti = j in Lemma 20, we get

5j = 1/2P1"[u]' =0 | (yjflv e va) = 0j72a (ul’xl) = (0’0)]'

(37)

all binary lengthé sequences that have a 0 in the leftmostrom (34)—(37), and Lemma 20, we have

coordinate.
Fix i > 2. Define, for2 < j <1, the events
B; = {yl S (Wi Yim1s s Yimj1) = 0j_11}7

which, together with the everfty’ = 0}, form a partition of
B. Here,0’~11 is shorthand for thg-tuple (0,...,0,1). We
record two facts abouB;. First,

Prly’ € Bj] Pr{(yi, yio1, - yioje1) = 001
Pr{(y;, yj-1,-- 1) = 07711,

the last equality stemming from the fact thatis stationary.
Second, by the following lemma,

H(yi+1 | yi = b) = h(Pr[yH_l =1 | yi = b])

is invariant overB;.

(39)

(36)

Lemma 20 Forb € B;, Prly;+1 = 1| y* = b] equals
Sy2) =072, (ug, 1) = (0,0)].

Proof : The proof relies upon the following claim :

2Prluj =0 [ (yj-1,Yj—2;--

H(yiv1 | y")

= 2) h(B;) Prllyj---yn) = 0071

Jj=2

+ 2H (yiy1 | Yyl = Oi) Pr[yi = Oi].(38)

The term at the end of the above expression vanishes as

1 — o0, as we show below for completeness.
Lemma 21 lim H(y;11 | y* = 0°) Pr[y’ = 0'] = 0.

Proof : Since0 < H(y;+1 | ¥* = 0°) < 1, it is enough to
show thatPr[y’ = 0] = 0 converges to 0. For this, observe
that for anyy, if y; = 0, then(z;_1,z;) # (1,1). Hence, if
y' = 0¢, then(xq,22) # (1,1), (z3,74) # (1,1), and so on.
Thus, Pr[y’ = 0°] < (3/4)"/2], which suffices to prove the
lemma. 1

So, lettingi — oo in (38), we obtain

H(Y) =2 h(B) Prl(y;,yj-1,-..,51) = 00'1]. (39)
j=2
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The proof of Proposition 15 will be complete once we prove So, letj > 3 be fixed. We start with

the next two lemmas.

Lemma 22 Forj > 2, we have

-

4(1 + p) H(l

k=2

Pr{(yj, yj—1,---,y1) =0j_11] = — B)

Proof : From the definition ofg;, we readily obtain

Pr((y;,....01) = Oj_ll} =

lH(l - ﬂk)] - Pr{(y2, 1) = (0,1)].

k=2

We must show thaPr|[(y2,y1) = (0,1)] =

1
4(14p) -
We write

Pr[(y2,y1) =

>

(a,b)e{0,1}2
x Pr[(ug,u1) =

(0, 1)] =
Pr((y2,91) = (0,1) | (ug, 1) =

(a,b)].

Clearly, Pr{(uz,u1) = (1,1)] = 0. Also, Pr[(y2,y1) = (0,1) |

(uz,u1) = (1,0)] = 0, since, given(ugz,u;) = (1,0) we

must haveys = z; = y, by virtue of (18). Next, given
(ug,u1) = (0,0), we have(ys,y1) = (x2,21), and since
(z2,21) Is independent ofus, u;), we find that

(a,0)]

Pr((y2,41) = (0,1) | (u2,u1) = (0,0)]
= Pr[(z2,71) = (0,1)] = /a.
By a similar argumentPr{(y2,y1) = (0,1) | (u2,u1) =
(0,1)] = 1/4. Hence,
Pr{(ya, 1) = (0.1)] = (/0) Prfus = 0] = .
as desired.n

Lemma 23 (5, = %(1 —p), and forj > 3, 5, satisfies the
recursion in (29).

Proof : From (37), we have

B2 = 12Prlus =0 (u1,21) = (0,0)]
YaPrlug =0 |u; =0 = 1/2(1—p).
For convenience, define, forjy > 2, E; =
{(yjflvyj727"'uy2) = 0']_27 (ulaxl) = (070)}1 SO

that 3; = (Y/2)Prlu; = 0 | Ej] (1/2)(1 — v;), where
~v; = Prlu; = 1| E;]. We shall show that foj > 3,

_p(l=71)
J 1+ 751 .
which is equivalent to the recursion in (29).

(40)

o7 Z Priuj =1]uj_1 =b] Prluj_1 =b| Ej]
be{0,1}
p-Prluj_y =01 Ej]
p-Prluj1 =0y =0,E;]
Prly;1=0]uj—1 =0,E;4](1 —;-1)
! Prly;1 =0 B;_i]
where we have useBr[u;_; =0 |
last equality.
Givenu;_; = 0, we havey;_; = z;_1, and sincex;_;
is independent of.;_; and E;_;, the numerator in the last
expression above evaluatesfo(1 — ;_1). Thus,

Yl =)
Prlyj—1 =0 Ej_1]

Turning to the denominator, we writer[y;_, =0 | E

Ej—l] =1- Vi—1 for the

Vi =P (41)

_1] as

Z Pr[yj,l =0 | ’LL]',1 = b, Ejfl] PI'[’U,j,1 =b | Ejfl]
be{0,1}

Y2(l—=vj-1) + Prlyj1 = 0wy = 1, Ej

1] CYi—-1
(42)

We claim thatPr[y;—1 = 0 | uj—1 = 1, E;_1] = 1. Indeed,
givenu;_; = 1, we havey;_; = z,_». Furthermore, we must
haveu;_» = 0 with probability 1, so that:;_» = y;_>. Thus,
givenu;_; = 1, we must havey;_; = y;_» with probability
1. But note that the ever;_, impliesy;_» = 0: if j = 3, this
follows from (uq,21) = (0,0), and if j > 4, this is contained
within (y;_2,...,y2) = 0773, Thus, givenu;_; = 1 and
E;_1, we havey;_; = y;_o = 0 with probability 1.
So, carrying on from (42), we get

Prlyj—1 =0 Ej1] = Y2(1 = vj—1) +vj-1 = Y/2(1 +vj-1)
Feeding this back into (41), we obtain
Yol +v;-1)

which is the desired recursion (40).
This concludes the proof of Proposition 15.

Vi =

B.2. Proof of Proposition 16

We break the proof into two parts. We first show that

22 T H(uj | wy)
and subsequently, we prove that
o~ L+p/2 x~ oy (1= (=0
279 H(ujlup) = 27 h(————). (44
Z (ujlu) 1+p z_: ( 1+p ) (44)
j=2 j=2
To show (43), we start with

ZH zi| 21y

From (19), it is eV|dent tha:t,- is independent of; for j > 1.

1
lim — H(z"

| ™)
n%oon

(43)

s RZi—1, L )
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Hence, sinceH (uy | u; = 0) = 0. Putting it all together, we find that

H(z"|2")=> H(z|z,...,2 1,2"). > 27 Huy | u)
i=1 j=2
As a result, by the Céso mean theorem, 1 >0 ,
. = (Prfuy = 0] + 5 Prfu = 1)) > 27 H(u; | ug = 0)
lim — H(z" | 2") = lim H(z | 2z1,...,2%_1,2"), j=2
n—oo N, 71— 00
: o 1+p/2 .
provided the latter limit exists. = +p; > 279 H(uj | wy =0).
To evaluateH(zi | 21,...,2i_1,2"), we define the events =2
Ag ={z' 12 = 21}, Finally, observe thafl (u; | u; = 0) = h(%) as it
Aj={x' oA mig = =3 £ T}, can be Sh?\l,v(n,(g?r example by |n.duct|on) tHat(u; = 0 |
. ' . uy = 0) = =2 for all j > 1. This proves (44), and with
for 1 < j <i—-2andA,, = {&' : 2 # w1 = this, the proof of Proposition 16 is complete.

- = z1}. These events partition the spaf@ 1}* to which
x' belongs. Sincer is an i.i.d. uniform Bernoulli sequence,
we havePrjz’ € A;] = (1/2)*! for 0 < j < i —2, and B.3. Proof of Proposition 18
Pr[mi S Aifl] = (1/2)i_1.

Now, if ' € Ay, then by (19), we have;; = 0. is
ConsequentlyH (z; | z1,...,zi_1,2" € Ag) = 0.

The error in truncating th&2(p) series at the index = J

b AN 4 Tor somey € |1,2 — 2], tnén we haver; = u;, < |H(Y) =T, +| lim H(z" ny _ G| (45
Zi—1 = = Zi—j41 = 0, and Zi—j = Uj—j. Therefore, o | ( ) J‘ |”1"H;O (Z | v ) J| ( )

Hzi |21,z @ € Ay It is easy to bound the second term in (45):

= H(U,L |21,...,zi,j,1,ui,j,:ci GA]') |nh_)1'I;oH(Zn |wn)_SJ|
b [%S) ;

@ Hui | wiy) @ H(ugin | w), S L=
Equality (a) above is due to the fact that is a first- L+p j=J+1 I+p
order Markov chain independent af, while equality (b) 1+p/2 & ,
is a consequence of the stationarity ®@f(which is itself a < T+p Z 27
consequence of the stationarity of the state sequehce j=J+1

Finally, for 2’ € A;_,, we only need the fact thaj; := = <1 +p/2) 2=, (46)

H(z | z1,...,2i1,%" € A;_;) lies betweerD and 1. I+p

We thus have Turning our attention to the first term in (45), we see that

Hla| oo 20, 2) H(Y)~1Ty| = Z h(;) H (1= 61
. . =J+1
= Y H(zi|2,...,2i1,@ € Aj) Pr[a’ € Aj]
=0 < Z H (1-Br). (47
2 , - 2(1+p) +p —J+1k=2
= ) H(ujyr |uw) 2777 427 .
= Now, from the recursion (29), we readily get fbr> 3,
Letting i — oo, we obtain (43). |- = 1 (1 -1 —p)ﬁk_1>
It remains to prove (44). For this, note first thAt(u; | 1= B
uy) = H(u; | uy = 0)Pr[uy = 0] + H(u; | uy = 1) Pr[u; = and hence,
1]. Furthermore, since; = 1 impliesuy = 0 with probability 1 1
1, we have, for allj > 2, (1= Be)(1 = Br-1) = 5[1 — (1 =p)fr-] < 9
H(uj | uy =1) = H(uj | ug = 0) = H(uj_y | uy = 0), Consequently, ifi = 2m for somem > 1, then
the last equality following from the stationarity ef. Hence, = o
R gremT Y [Tt =60 = [Tt Borset)(1 = Bar) < (1/2)™
. . k=2 k=1
277 H(u; =1) = 277 H(u,_ =0
jz::z (g =1) ]2:; (1|1 =0) and if j = 2m + 1 for somem > 1, then
1N . me
= §ZQJH(UJ'|U1:0) [T -8 SH 1= Bokg1)(1 = Bag) < (Y2)™ .
Jj=2 k=2 k=1



Upon replacing the bound in (47) by the looser bound

1 %) J—1
2 +p) Z H(l — Br)

j=2[(J+1)/2) k=2

so that the summation starts at an even ingexroutine
algebraic manipulations now yield

1 o0

> (!

m=|(J+1)/2]

_ ( 1 >2L(J+1)/2J.
1+p

Plugging this and (46) into (45), we obtain Proposition 18.

H(Y)-T;] <
HY) =T/ < o
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