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Upper Bounds on the Size of
Grain-Correcting Codes

Navin Kashyap Gilles Zémor

Abstract—In this paper, we re-visit the combinatorial error
model of Mazumdar et al. that models errors in high-density
magnetic recording caused by lack of knowledge of grain bound-
aries in the recording medium. We present new upper bounds
on the cardinality/rate of binary block codes that correct errors
within this model. All our bounds, except for one, are obtained
using combinatorial arguments based on hypergraph fractional
coverings. The exception is a bound derived via an information-
theoretic argument. Our bounds significantly improve upon
existing bounds from the prior literature.

Index Terms—fractional coverings, grain-correcting codes,
high-density magnetic recording,

I. INTRODUCTION

The combinatorial error model studied by Mazumdar et
al. [6] is a highly simplified model of an error mechanism
encountered in a magnetic recording medium at terabit-per-
square-inch storage densites [5], [7], [10]. In this model, a one-
dimensional track on a magnetic recording medium is divided
into evenly spaced bit cells, each of which can store one bit
of data. Bits are written sequentially into these bit cells. The
sequence of bit cells has an underlying “grain” distribution,
which may be described as follows: bit cells are grouped into
non-overlapping blocks called grains, which may consist of
up to b adjacent bit cells. We focus on the case b = 2, so that
a grain can contain at most two bit cells. We define the length
of a grain to be the number of bit cells it contains.

Each grain can store only one bit of information, i.e., all
the bit cells within a grain carry the same bit value (0 or 1),
which we call the polarity of the grain. We assume, following
[6], that in the sequential write process, the first bit to be
written into a grain sets the polarity of the grain, so that all
the bit cells within this grain must retain this polarity.1 This
implies that any subsequent attempts at writing bits within this
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1Considering the physics of the write process, it would make more sense
to assume that the last bit to be written within a grain sets the polarity of
the grain, thus overwriting all other bits previously stored in the bit cells
comprising the grain. However, mathematically, this is completely equivalent
to the polarity-set-by-first-bit model; see also [5, Section III-C].

grain make no difference to the value actually stored in the
bit cells in the grain. If the grain boundaries were known to
the write head (encoder) and the read head (decoder), then
the maximum storage capacity of one bit per grain can be
achieved. However, in a more realistic scenario where the
underlying grain distribution is fixed but unknown, the lack of
knowledge of grain boundaries reduces the storage capacity.

Constructions and rate/cardinality bounds for codes that
correct errors caused by an underlying grain distribution have
been studied in the prior literature [3], [4], [6], [8], [9]. In this
paper, we derive improved rate/cardinality bounds for such
codes. More precisely, following [6], we define a t-grain-
correcting code to be a code that can correct errors caused by
a fixed but unknown underlying grain distribution consisting
of at most t length-2 grains. We derive upper bounds on
the cardinality of t-grain correcting codes of blocklength n.
Furthermore, in the regime of t being a constant fraction of
n, we present upper bounds on the rate achievable by such
codes, asymptotically in n. Our upper bounds on cardinality
are derived using the fractional covering technique previously
used in a different context by Kulkarni and Kiyavash [2].
Standard asymptotic analysis allows us to translate these cardi-
nality bounds to bounds on the maximum rate asymptotically
achievable. We also use an alternative, information-theoretic
approach to obtain a different upper bound on this rate.
Comparing our bounds with those from the prior literature [6],
[8], [9], we find that our bounds improve significantly upon
the existing bounds, although the gap to the best known lower
bounds remains large (except at some small blocklengths).

The paper is organized as follows. In Section II, we provide
the necessary definitions and notation, and derive some basic
results needed for the subsequent development. The fractional
covering technique from [2] is described in Section III, and
to illustrate the use of this technique, an upper bound on the
cardinality of t-grain-correcting codes is proposed. A stronger
upper bound, also based on the fractional covering method,
is conjectured in Section IV. We can prove that the stronger
bound indeed holds for t = 1, 2, 3; the details of the proof
are in Appendix A. The fractional covering technique is also
used in Section V to obtain an upper bound on the maximum
rate asymptotically achievable by codes correcting a constant
fraction of grain errors. An information-theoretic upper bound
on the same quantity is derived in Section VI. We conclude in
Section VII with some remarks concerning the bounds. The
current state-of-the-art on upper bounds on the maximum rate
asymptotically achievable, including the bounds derived in this
paper, is summarized in Figures 2 and 3. Some of the technical
proofs from Sections IV and V are given in appendices.
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II. PRELIMINARIES

A. Definitions and Notation

Let Σ = {0, 1}, and for a positive integer n, let [n] denote
the set {1, 2, . . . , n}. A track on the recording medium consists
of n bit cells indexed by the integers in [n]. The bit cells on
the track are grouped into non-overlapping grains of length at
most two. A length-2 grain consists of bit cells with indices
j − 1 and j, for some j ∈ [n]; we denote such a grain by the
pair (j − 1, j). Let E ⊆ {2, . . . , n} be the set of all indices
j such that (j − 1, j) is a length-2 grain. Since grains cannot
overlap2, E contains no pair of consecutive integers.

A binary sequence x = (x1, . . . , xn) ∈ Σn to be written
on to the track can be affected by errors only at the indices
j ∈ E. Indeed, what actually gets recorded on the track is the
sequence y = (y1, . . . , yn), where

yj =

{
xj−1 if j ∈ E
xj otherwise.

(1)

For example, if x = (000101011100010) and E =
{2, 4, 7, 9, 14}, then y = (000001111100000).

Note that the set E completely specifies the positions and
locations of all the grains (both length-1 and length-2) in the
track. We will call this set the grain pattern. It is assumed
that the grain pattern is unknown to both the write head and
the read head. The effect of the grain pattern E on a binary
sequence x ∈ Σn defines an operator φE : Σn → Σn, where
y = φE(x) is as specified by (1) above.

For integers n ≥ 1 and t ≥ 0, let En,t denote the set of all
grain patterns E with |E| ≤ t. In other words, En,t consists of
all subsets E ⊆ {2, . . . , n} of cardinality at most t, such that
E contains no pair of consecutive integers. For an x ∈ Σn,
we define

Φt(x) = {φE(x) : E ∈ En,t}.

Thus, Φt(x) is the set of all possible sequences that can be
obtained from x by the action of some grain pattern E with
|E| ≤ t. Two sequences x1 and x2 are t-confusable if Φt(x1)∩
Φt(x2) 6= ∅. A binary code C of length n is said to correct t
grain errors, or be a t-grain-correcting code, if no two distinct
vectors x1,x2 ∈ C are t-confusable. Let M(n, t) denote the
maximum cardinality of a t-grain-correcting code of length
n. Also, for τ ∈ [0, 1

2 ], the maximum asymptotic rate of a
dτne-grain-correcting code is defined to be

R(τ) = lim sup
n→∞

1

n
log2M(n, dτne). (2)

We note here that in an optimal t-grain-correcting code of
blocklength n, the codewords that start with a 0 and those that
start with a 1 must be equal in number. In particular, M(n, t)
is always an even number. To see why this is the case, consider
a t-grain-correcting code C = C0 ∪ C1, where, Cb, b ∈ {0, 1},
is the subcode of C consisting of codewords that start with a
b. Without loss of generality, assume that |C0| > |C1|. Delete
C1 from C, and replace it with C0 = {c : c ∈ C0}, where c is
the binary sequence obtained by complementing each bit of c.

2An overlapping grains model has also been considered in the literature
[3], [4], [8], [9].

Since codewords beginning with a 0 are not confusable with
those beginning with a 1, it follows that C0∪C0 is also t-grain-
correcting. Moreover, it should be clear that |C0 ∪ C0| > |C|.

A grain pattern E changes a sequence x to a different
sequence y iff xj−1 6= xj for some j ∈ E, i.e., the length-2
grain (j−1, j) straddles the boundary between two successive
runs in x. Here, a run is a maximal substring of consecutive
identical symbols (0s or 1s) in x. A run consisting of 0s (resp.
1s) is called a 0-run (resp. 1-run). The number of distinct runs
in x is denoted by r(x).

A convenient means of keeping track of run boundaries in
x is via its derivative sequence, x′: for x = (x1, . . . , xn), the
sequence x′ = (x′2, . . . , x

′
n) is defined by x′j = xj−1 ⊕ xj ,

j = 2, . . . , n, where ⊕ denotes modulo-2 addition. The 1s in
x′ identify the boundaries between successive runs in x. Thus,
ω(x′) = r(x)−1, where ω(·) denotes the Hamming weight of
a binary sequence. We define the support of x′ to be the set
supp(x′) = {j : x′j = 1}; note that supp(x′) ⊆ {2, . . . , n}.

Example 1. Taking x = (000101011100010), as in the
example given after (1), we have x′ = (00111110010011),
with supp(x′) = {4, 5, 6, 7, 8, 11, 14, 15}. Observe that the
grain pattern E = {2, 4, 7, 9, 14} has the same effect on x as
the grain pattern Ê = {4, 7, 14}, which is the intersection of
E with supp(x′). Note also that the grain patterns having the
maximum effect on x are {4, 6, 8, 11, 14} and {4, 6, 8, 11, 15},
which are obtained by fitting into the support of x′ the largest
possible number of integers, no two of which are consecutive.

B. Counting |Φt(x)|
For x ∈ Σn, the sequences y ∈ Φt(x) are in one-to-one

correspondence with the different ways of selecting at most
t non-consecutive integers3 from supp(x′) to form a grain
pattern E ∈ En,t. Thus, |Φt(x)| counts the number of ways
of forming such grain patterns.

Example 1 (cont’d). We saw above that there are two grain
patterns of cardinality 5 that fit into supp(x′). To system-
atically count the number of grain patterns of cardinality 4
that can fit into supp(x′), we note that there are three 1-runs
in x′, which have supports S1 = {4, 5, 6, 7, 8}, S2 = {11}
and S3 = {14, 15}. To form a grain pattern of cardinality 4,
we can do one of the following: (a) pick 3 non-consecutive
integers from S1 and 1 integer from S2; (b) pick 3 non-
consecutive integers from S1 and 1 integer from S3; or (c) pick
2 non-consecutive integers from S1 and 1 integer each from S2

and S3. There is 1 way of doing (a), 2 ways of doing (b), and
6×2 = 12 ways of doing (c). Thus, there are 1 + 2 + 12 = 15
grain patterns of size 4 that are subsets of supp(x′).

In general, the count can be obtained as follows. Let
`1, `2, . . . , `m denote the lengths of the distinct 1-runs in x′,
and define the set

T =
{

(t1, . . . , tm) ∈ Zm+ :

m∑
j=1

tj ≤ t
}
, (3)

3A sequence or set of non-consecutive integers is one that does not contain
a pair of consecutive integers.
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where Z+ denotes the set of non-negative integers. In the
above expression, tj represents the number of integers from
the support of the jth 1-run that are to be included in a
grain pattern E being formed. The number of distinct ways
in which tj non-consecutive integers can be chosen from the
`j consecutive integers forming the support of the jth 1-run
is, by an elementary counting argument, equal to

(
`j−tj+1

tj

)
.

Thus,

|Φt(x)| =
∑

(t1,...,tm)∈T

m∏
j=1

(
`j − tj + 1

tj

)
. (4)

Simplified expressions can be obtained for small values of t.

Proposition II.1. For x ∈ Σn, let ω = ω(x′) denote the
Hamming weight of the derivative sequence x′. Also, let m be
the number of 1-runs in x′.
(a) |Φ1(x)| = 1 + ω = r(x).
(b) |Φ2(x)| = 1 +m+

(
ω
2

)
.

(c) |Φ3(x)| = 1 +m1 +m(ω − 3) +
(
ω
3

)
−
(
ω
2

)
+ 2ω, where

m1 denotes the number of 1-runs of length 1 in x′.

Proof: (a) While the expression for |Φ1(x)| can be
directly obtained from (4), it is simpler to observe that the
set Φ1(x) consists of the sequence x itself, and the ω distinct
sequences in the set

{
φE(x) : E = {j} for some j ∈

supp(x′)
}

.
(b) For t = 2, it is easy to see that the expression in (4)

simplifies to

|Φ2(x)| = 1 +

m∑
j=1

`j +

m∑
j=1

(
`j − 1

2

)
+

∑
(i,j):i<j

`i`j .

Writing
∑
j `j as m +

∑
j(`j − 1), and using the fact that

(`j − 1) +
(
`j−1

2

)
=
(
`j
2

)
, we obtain

|Φ2(x)| = 1 +m+

m∑
j=1

(
`j
2

)
+

∑
(i,j):i<j

`i`j

= 1 +m+
1

2

m∑
j=1

(`2j − `j) +
∑

(i,j):i<j

`i`j

= 1 +m+
1

2

 m∑
j=1

`2j +
∑

(i,j):i 6=j

`i`j −
m∑
j=1

`j


= 1 +m+

1

2

( m∑
j=1

`j

)2

−
m∑
j=1

`j


= 1 +m+

(
ω

2

)
,

the last equality being due to the fact that ω =
∑m
j=1 `j .

(c) For t = 3, the expression in (4) can be written as

|Φ3(x)| = |Φ2(x)|+
∑

(i,j,k):i<j<k

`i`j`k

+

m∑
i=1

(
`i − 1

2

)(∑
j:j 6=i

`j

)
+

m∑
i=1

(
`i − 2

3

)
.

From here on, straightforward algebraic manipulations lead to
the expression given in the statement of the proposition. We

omit the details, noting only that m1 enters the picture when
we write the last term above as

m∑
i=1

(`i − 2)(`i − 3)(`i − 4)

6
+
∑
i:`i=1

1.

The extra term
∑
i:`i=1 1, which equals m1, accounts for the

fact that the expansion of
(
`i−2

3

)
as (`i−2)(`i−3)(`i−4)

6 is invalid
when `i = 1; by convention,

(
a
b

)
= 0 when a < 0.

We will also find the following simple lower bound on
|Φt(x)|, valid for any t ≥ 1, to be useful.

Proposition II.2. For x ∈ Σn and t ≥ 1, we have

|Φt(x)| ≥
t∑

j=0

(
r(x)− j

j

)
.

Proof: Consider the number of different ways of choosing
exactly j non-consecutive integers from supp(x′). This number
is smallest when supp(x′) consists of consecutive integers,
e.g., supp(x) = [r(x) − 1]. The number of different ways of
choosing exactly j non-consecutive integers from [r(x) − 1]
is, by an elementary counting argument, equal to

(
r(x)−j

j

)
.

III. THE FRACTIONAL COVERING METHOD

In this section, we explore the applicability to grain-
correcting codes of a technique used by Kulkarni and Kiyavash
[2] to derive upper bounds on the cardinalities of deletion-
correcting codes. This approach was independently used by
Gabrys et al. [3], [4] to derive upper bounds on the size of
codes within the overlapping grains model.

A hypergraph H is a pair (V,X ), where V is a finite set,
called the vertex set, and X is a family of subsets of V . The
members of X are called hyperedges. A matching of H is a
pairwise disjoint collection of hyperedges. A (vertex) covering
of H is a subset T ⊆ V such that T meets every hyperedge
of H, i.e., T ∩X 6= ∅ for all X ∈ X . The matching number
ν(H) is the largest size of a matching of H, while the covering
number, τ(H), is the smallest size of a covering of H.

The problems of computing the matching and covering
numbers can be expressed as a dual pair of integer programs.
This is done via the vertex-hyperedge incidence matrix, A,
of H, which is defined as follows. Let v1, v2, . . . , v|V | and
X1, X2, . . . , X|X | be a listing of the vertices and hyperedges,
respectively, of H. Then, A = (Ai,j) is the |V | × |X | matrix
with 0/1 entries, with Ai,j = 1 iff vi ∈ Xj . It is easy to verify
that

ν(H) = max{1T z : z ∈ {0, 1}|X |, Az ≤ 1} (5)

and

τ(H) = min{1Tw : w ∈ {0, 1}|V |, ATw ≥ 1}, (6)

where 1, w and z are column vectors, with 1 in particular
denoting an all-ones vector. Note that the linear programming
(LP) relaxations of (5),

νf (H) = max{1T z : z ≥ 0, Az ≤ 1}, (7)
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and (6),

τf (H) = min{1Tw : w ≥ 0, ATw ≥ 1}, (8)

where 0 denotes an all-zeros vector, are duals of each other.
By strong LP duality, we have νf (H) = τf (H), and hence,

ν(H) ≤ νf (H) = τf (H) ≤ τ(H). (9)

The quantities νf (H) and τf (H) are called the fractional
matching number and fractional covering number, respec-
tively, of the hypergraph H. Any non-negative vector w such
that ATw ≥ 1 is called a fractional covering4 of H. To put it
in another way, a fractional covering is a function w : V → R+

such that
∑
v∈X w(v) ≥ 1 for all X ∈ X . The value of a

fractional covering w is defined to be |w| :=
∑
v∈V w(v).

From the inequality ν(H) ≤ τf (H) in (9), we see that
ν(H) ≤ |w| for any fractional covering w of H. We use this
to suggest an upper bound on the largest size, M(n, t), of a
t-grain-correcting code of blocklength n.

Consider the hypergraph Hn,t = (V,X ), where V = Σn,
and X = {Φt(x) : x ∈ Σn}. Note that ν(Hn,t) = M(n, t);
thus, fractional coverings of Hn,t yield upper bounds on
M(n, t). Bounding the size of packings in this way has been
extensively used in combinatorics, see e.g. [1]. As a first
attempt, taking inspiration from [2], we consider the function
wt : Σn → R+, defined for x ∈ Σn as

wt(x) =
1

|Φt(x)|
. (10)

For t = 1, 2, 3, we can prove that wt is a fractional covering of
Hn,t, and conjecture that this is in fact the case for all t ≥ 1.

Conjecture III.1. For all positive integers n and t, the
function wt defined in (10) is a fractional covering of Hn,t,
i.e., for all x ∈ Σn, ∑

y∈Φt(x)

1

|Φt(y)|
≥ 1. (11)

Therefore,

M(n, t) ≤ |wt| =
∑
x∈Σn

1

|Φt(x)|
. (12)

We do not give a proof of the conjecture for t = 1, 2, 3
here, as these cases are implied by the stronger Theorem IV.1
of the next section. We instead suggest a possible approach to
proving Conjecture III.1 for general t. To prove (11), it would
be enough to show that for each x ∈ Σn,∑

y∈Φt(x)

[|Φt(y)| − |Φt(x)|] ≤ 0.

Indeed, the above inequality is equivalent to showing that the
arithmetic mean 1

|Φt(x)|
∑

y∈Φt(x) |Φt(y)| is at most |Φt(x)|.
If this is true, then by convexity of the function f(x) = 1

x ,
we would have

1

|Φt(x)|
∑

y∈Φt(x)

1

|Φt(y)|
≥ 1

1
|Φt(x)|

∑
y∈Φt(x)

|Φt(y)|
≥ 1

|Φt(x)|
,

4A fractional matching is correspondingly defined, but we will have no
further use for this concept.

which is the desired inequality (11).

IV. A STRONGER UPPER BOUND ON M(n, t)

Our second attempt at finding a fractional covering for Hn,t
involves the cardinality, V (n, t), of a Hamming ball of radius
t in Σn:

V (n, t) =

t∑
j=0

(
n

j

)
.

Note that for any x ∈ Σn, we have |Φt(x)| ≤ V (ω(x′), t),
where ω(x′) is the Hamming weight of the derivative sequence
x′. This is because V (ω(x′), t) counts the number of ways that
a pattern of up to t length-2 grains could affect x if the grains
were not constrained to be non-overlapping.

We conjecture that the function w̃t : Σn → R+, defined by

w̃t(x) =
1

V (ω(x′), t)
(13)

is a fractional covering of the hypergraph Hn,t. Note that

|w̃t| =
∑
x∈Σn

1

V (ω(x′), t)
= 2

n−1∑
ω=0

(
n− 1

ω

)
1

V (ω, t)
,

since 2
(
n−1
ω

)
is the number of sequences x ∈ Σn whose

derivative sequence x′ has Hamming weight ω.

Conjecture IV.1. For all positive integers n and t, and for
all x ∈ Σn, we have∑

y∈Φt(x)

1

V (ω(y′), t)
≥ 1. (14)

Therefore,

M(n, t) ≤ 2

n−1∑
ω=0

(
n− 1

ω

)
1

V (ω, t)
. (15)

Clearly, (15) is tighter than (12), since |Φt(x)| ≤
V (ω(x′), t). Thus, Conjecture IV.1 implies Conjecture III.1.
We can prove that these conjectures hold for t = 1, 2, 3.

Theorem IV.1. For any positive integer n and t = 1, 2, 3, we
have

M(n, t) ≤ 2

n−1∑
ω=0

(
n− 1

ω

)
1

V (ω, t)
.

The proof of the theorem is presented in Appendix A. We
remark here that w̃t can easily be shown to be a fractional
covering for the hypergraph analogous to Hn,t in the overlap-
ping grains model. Thus, Conjecture IV.1 and, in particular,
the inequality (15) hold for that model [4, Theorem 1].
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For t = 1, the summation in the above theorem can be
expressed in closed form. Indeed, we have

2

n−1∑
ω=0

(
n− 1

ω

)
1

V (ω, 1)
= 2

n−1∑
ω=0

(
n− 1

ω

)
1

1 + ω

= 2

n∑
r=1

(
n− 1

r − 1

)
1

r

(a)
= 2

n∑
r=1

1

n

(
n

r

)
=

2

n
(2n − 1).

Equality (a) above uses the identity 1
r

(
n−1
r−1

)
= 1

n

(
n
r

)
. Thus,

we have the following corollary to Theorem IV.1.

Corollary IV.2. M(n, 1) ≤ 1
n (2n+1 − 2) for all positive

integers n.

n t = 1 t = 2 t = 3 n t = 1 t = 2 t = 3

11 372 168 126
2 2 (2) 12 682 280 198
3 4 (4) 13 1260 476 312
4 6 (6) 6 (4) 14 2340 814 496
5 12 (8) 10 (8) 15 4368 1406 800
6 20 (16) 14 (10) 14 (8) 16 8190 2448 1300
7 36 (26) 24 (16) 22 (16) 17 15420 4302 2132
8 62 (44) 38 (22) 34 (18) 18 29126 7612 3528
9 112 62 52 (32) 19 55188 13560 5892
10 204 102 80 20 104856 24306 9920

TABLE I
SOME NUMERICAL VALUES OF THE UPPER BOUND ON M(n, t) OF

THEOREM IV.1, ROUNDED DOWN TO THE NEAREST EVEN INTEGER.
WITHIN PARENTHESES ARE THE CORRESPONDING LOWER BOUNDS FROM

TABLE II OF [9].

Table I lists the numerical values of the bound in Theo-
rem IV.1, evaluated for some small values of n and rounded
down to the nearest even integer5. The corresponding best
known lower bounds, taken from Table II of [9], are given in
parentheses. Two other upper bounds on M(n, t) exist in the
prior literature, namely Corollary 6 of [6] and Theorem 3.1 of
[9]. Numerical computations for n ≤ 20 show that our bounds
are consistently better than the bounds obtained from [9,
Theorem 3.1]. On the other hand, the bound of [6, Corollary 6]
may be better than our bound for small values of n: for
example, the bound in [6] yields M(10, 2) ≤ 92. However,
our bound is better for all n sufficiently large: for t = 1, our
bound is better for all n ≥ 8; for t = 2, our bound wins for
n ≥ 12; for t = 3, it wins for n ≥ 17.

V. AN UPPER BOUND ON R(τ)

Were they to be proved, Conjectures III.1 and IV.1 would
yield upper bounds on the asymptotic rate R(τ), as defined in
(2). Instead, a slightly different approach can be used to obtain
a fractional covering that does result in a provable upper bound
on R(τ).

5As explained in Section II-A, M(n, t) is always an even number.

Suppose that for any fixed n, t, we could find a lower bound
ϕn,t(r) on |Φt(x)|, x ∈ Σn, that depends on x only through
r = r(x), the number of distinct runs in x. Furthermore,
suppose that the function ϕn,t(r) is non-decreasing in r [9,
Section III]. Then, it is straightforward to see that the function
x 7→ 1

ϕn,t(r(x)) is a fractional covering of the hypergraph Hn,t
for all positive integers n and t. Indeed, by Lemma A.1, we
have∑
y∈Φt(x)

1

ϕn,t(r(y))
≥

∑
y∈Φt(x)

1

ϕn,t(r(x))
=
|Φt(x)|

ϕn,t(r(x))
≥ 1.

Thus, for any such ϕn,t, we have

M(n, t) ≤
∑
x∈Σn

1

ϕn,t(r(x))
= 2

n∑
r=1

(
n− 1

r − 1

)
1

ϕn,t(r)
.

(16)

Theorem V.1. For all positive integers n and t, the upper
bound (16) holds with

ϕn,t(r) =

t∑
j=0

(
r − j
j

)
(17)

Proof: The expression on the right-hand side of (17)
is clearly non-decreasing in r, and by Proposition II.2,
ϕn,t(r(x)) is a lower bound on |Φt(x)| for any x ∈ Σn and
t > 0.

The bound of Theorem V.1 is weaker than that of Theo-
rem IV.1 for t = 1, 2, 3. However, it has the advantage of being
provably true for all values of n and t. It can therefore be used
to derive an upper bound on R(τ) by studying the asymptotics
of ϕn,t(r) as n→∞, with t = dτne and r = dρne for fixed
τ ∈ [0, 1

2 ] and ρ ∈ (0, 1]. The following theorem is proved in
Appendix B.

Theorem V.2. Let φ = 1+
√

5
2 (the golden ratio), and define

θ = 1√
5φ(φ+1)

= 1
5+2
√

5
. For τ ∈ [0, 1

2 ], we have

R(τ) ≤

 max√
5φτ≤ρ≤1

[
h(ρ)− (ρ− τ) h

(
τ
ρ−τ

)]
if τ < θ

log2 φ if τ ≥ θ

Numerically, θ ≈ 0.1056, and log2 φ ≈ 0.6942.

Figure 2 contains a plot of the above upper bound. The
figure shows that this is the best known upper bound for values
of τ up to about 0.1103, beyond which it is beaten by the
bound of the next section.

VI. AN INFORMATION-THEORETIC UPPER BOUND ON
R(τ)

In this section, we use an information-theoretic approach
to derive an upper bound on R(τ). For every even n, by
grouping together adjacent coordinates, we can view any code
C ∈ {0, 1}n as a code of blocklength n/2 over the alphabet
{00, 01, 10, 11}. Let us say that a binary n-tuple, alternatively
an n/2-tuple over the quaternary alphabet, has quaternary
distribution (or simply distribution) (f00, f11, f01, f10) if it
has f00n/2 symbols 00, f11n/2 symbols 11, f01n/2 symbols
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Fig. 1. A DMC whose effect can be mimicked by grain patterns

01 and f10n/2 symbols 10. We will say that a code has
constant distribution if each of its codewords has the same
quaternary distribution (f00, f11, f01, f10). Our goal is to find
upper bounds on the rate of dτne-grain-correcting codes of
constant distribution: since the number of possible quaternary
distributions for a code of length n is O(n3), which is sub-
exponential in n, the maximum of these upper bounds on
constrained codes will yield an unconstrained upper bound.

Let us introduce the following notation:

Rf (τ) = lim sup
n→∞

1

n
log2M(n, f, dτne)

where M(n, f, t) denotes the maximum cardinality of a t-
grain error correcting code of length n and constant quaternary
distribution f .

Our strategy is the following: for any given distribu-
tion f = (f00, f11, f01, f10), we associate to it a discrete
memoryless channel (DMC) with input and output alphabets
{00, 01, 10, 11} such that any infinite family of dτne-grain-
correcting codes of constant distribution f achieves vanishing
error-probability when submitted through this channel. By
a standard information-theoretic argument, this implies that
the asymptotic rate R of any family of dτne-grain-correcting
codes of constant distribution f is bounded from above by
half the mutual information between the channel input with
probability distribution f and the channel output.

Consider the channel depicted in Figure 1. Let C be a
member of a family of dτne-grain-correcting codes of length
n and constant distribution f . Suppose that

(f10 + f01)pn/2 ≤ τn(1− ε),

where p is the transition probability shown in Figure 1. When
a binary n-tuple, equivalently a word of length n/2 over the
alphabet {00, 01, 10, 11}, is transmitted over the channel, then
with probability tending to 1 as n goes to infinity, the number
of transitions 01→ 00 plus the number of transitions 10→ 11
is not more than dτne. Since these transitions are of the kind
caused by grain errors, if there are no more than dτne such
transitions, then the errors they cause are correctable by any

dτne-grain-correcting code. Therefore, for any ε > 0, any
family of dτne-grain-correcting codes of constant distribution
f can be transmitted over the above channel with vanishing
error probability after decoding. By a continuity argument we
conclude that:

Rf (τ) ≤ 1

2
I(X;Y ) (18)

where X is the channel input with probability distribution
p(X) = f , and Y is the corresponding output of the channel
with parameter

p =
2τ

f10 + f01
. (19)

It remains to compute the mutual information I(X;Y ).
Since p ≤ 1, (19) implies that we can write

f10 + f10 = 2τ + x (20)
f00 + f11 = 1− 2τ − x (21)

with x non-negative. Now, for every distribution satisfying (20)
and (21) we have

H(Y |X) = (2τ + x) h

(
2τ

2τ + x

)
,

where h(·) is the binary entropy function defined by h(ξ) =
−ξ log2 ξ − (1 − ξ) log2(1 − ξ), for ξ ∈ [0, 1]. This implies
that I(X;Y ) = H(Y ) − H(Y |X) is maximum under the
constraints (20) and (21) when H(Y ) is maximum, i.e., under
the distribution:

P (Y = 10) = P (Y = 01) =
x

2
,

P (Y = 00) = P (Y = 11) =
1− x

2
.

Therefore, we obtain

I(X;Y ) ≤ 1 + h(x)− (2τ + x) h

(
2τ

2τ + x

)
, (22)

which together with (18) gives

Rf (τ) ≤ 1

2

[
1 + h(f10 + f01 − 2τ)

− (f10 + f01) h

(
2τ

f10 + f01

)]
.

The right hand side of (22) is maximized for x = 1/2−τ , thus
yielding the unconstrained upper bound stated in the theorem
below.

Theorem VI.1. For τ ∈ [0, 1
2 ], we have

R(τ) ≤ 1

2

(
1 + h

(
1

2
− τ
)
−
(

1

2
+ τ

)
h

(
2τ

1
2 + τ

))
.

The upper bounds of Theorems V.2 and VI.1 are plotted in
Figure 2. For comparison, also plotted are upper and lower
bounds from [6, Figure 1], and the upper bound of Sharov
and Roth [9, Theorem 3.2], which were the best bounds in
the prior literature. The bounds of Theorem V.2 and VI.1
improve upon the previous bounds. For τ ∈ [0, 0.1103], the
bound of Theorem V.2 beats all the other upper bounds, and
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Clique partition bound of [6]

Theorem 3.2 of [9]
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Theorem V.2
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Fig. 2. The upper bounds of Theorems V.2 and VI.1, along with bounds from
[6] and [9].

for τ ∈ [0.1104, 0.5], the bound of Theorem VI.1 takes over as
the best upper bound. However, all upper bounds still remain
far from the lower bound plotted. It should be pointed that a
slightly better lower bound was found by Sharov and Roth [9,
Theorem 2.1]. Unfortunately, the improvement is only minor:
the lower bound of [9] remains above 0.5 only in the interval
[0, 0.0566], and in that interval, the improvement does not
exceed 0.012 [9, Section II-C].

VII. CONCLUDING REMARKS

In this paper, we derived upper bounds on the maximum
cardinality, M(n, t), of a binary t-grain-correcting code of
blocklength n, and also on the asymptotic rate R(τ ). In nearly
all cases, the gap between the upper bound and the best
known lower bound remains significant. A natural question
to ask is whether the putative upper bounds on M(n, t) in
Conjectures III.1 and IV.1 would yield a better bound on R(τ).

0 0.1 0.2 0.3 0.4 0.5

0.5

0.6

0.7

0.8

0.9

1

τ

R
(τ

)

 

 

 Theorem VI.1

 Theorem V.2

 Conjecture IV.1

Fig. 3. The upper bounds of Theorems V.2 and VI.1 compared with the
asymptotic bound obtained from Conjecture IV.1.

The bound in Conjecture IV.1 is the stronger of the two
conjectured bounds, and its asymptotics are straightforward to
analyze. Let M(n, t) = 2

∑n−1
ω=0

(
n−1
ω

)
1

V (ω,t) denote the up-
per bound in (15), and let R(τ) = limn→∞

1
n log2M(n, nτ).

Conjecture IV.1 implies that R(τ) ≤ R(τ). By standard
asymptotic analysis, we obtain

R(τ) = max
0≤ν≤1

[h(ν)− η(ν)],

where η(ν) equals ν if ν ≤ 2τ , and equals νh(τ/ν) otherwise.
Thus,

R(τ) = max

{
max

0≤ν≤2τ
[h(ν)− ν], max

2τ≤ν≤1
[h(ν)− νh(τ/ν)]

}
.

Using elementary calculus to solve the two maximization
problems within the braces in the above equation, and com-
paring the solutions (details of these calculations are omitted),
we obtain the following:

R(τ) =

{
h(ν∗)− ν∗h(τ/ν∗) if τ < 1/6

h(1/3)− 1/3 if τ ≥ 1/6
(23)

where ν∗ = 1
4 (τ +1+

√
τ2 − 6τ + 1). Numerically, h(1/3)−

1/3 ≈ 0.5850. This bound is compared with the bounds of
Theorem VI.1 in Figure 3. The plot shows that the conjectured
upper bound (23) is (expectedly) better than the bound of
Theorem V.2, and improves upon the bound of Theorem VI.1
for τ < 0.214.

APPENDIX A

In this appendix, we give a proof of Theorem IV.1. The
idea, of course, is to show that for t = 1, 2, 3, the function w̃t
defined in (13) is a fractional covering of Hn,t, i.e., that (14)
holds. For this, we need to understand how, for y ∈ Φt(x),
the distribution of 1s changes in going from x′ to y′.

A. Effect of Grains on the Derivative Sequence

Recall that 1s in x′ correspond to run boundaries in x. We
say that a (length-2) grain acts on a 1 in x′ if it straddles
the corresponding run boundary in x. We need to distinguish
between two types of 1s in the derivative sequence x′. A
trailing 1 is the last 1 in a 1-run, while a non-trailing 1 is
any 1 that is not a trailing 1. Grains act on trailing 1s in a
manner different from non-trailing 1s.

A segment of x′ that contains a trailing 1 is of the form
∗10∗, or ∗1 in case the trailing 1 is a suffix of x. Up to
complementation, the corresponding segment of x is of the
form ∗011∗ or ∗01. A grain acting on the trailing 1 in x′

straddles the 01 run boundary in x. In the sequence y obtained
through the action of this grain, the segment under observation
becomes ∗001∗ or ∗00, and the corresponding segment of the
derivative sequence y′ is ∗01∗ or ∗0.

On the other hand, a non-trailing 1 in x′ belongs to a
segment of the form ∗11∗; the first 1 shown is the non-
trailing 1 under consideration. Again, up to complementation,
the corresponding segment in x is of the form ∗010∗. A grain
acting on the non-trailing 1 in x′ straddles the 01 run boundary
shown in x. This grain causes the segment being observed to
become ∗000∗ in y, and hence ∗00∗ in y′.

To summarize, the action of a grain on a trailing 1 converts
a segment of the form ∗10∗ or ∗1 in x′ to ∗01∗ or ∗0 in y′,
and a grain acting on a non-trailing 1 converts a segment of
the form ∗11∗ in x′ to ∗00∗ in y′. It should be clear that the
bits depicted by ∗s on either side of these segments remain
unchanged by the action of the grain. Note, in particular, that
a grain acting on a 1 in x′ does not increase the Hamming
weight of x′. A grain acting on a trailing 1 either leaves the
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Hamming weight of x′ unchanged, or reduces it by 1; in the
case of a non-trailing 1, the Hamming weight of x′ is always
reduced by 2.

Finally, when dealing with a grain pattern containing t >
1 length-2 grains, since the grains are non-overlapping, the
actions of individual grains can be considered independently.
Thus, the discussion above immediately implies the following
useful fact.

Lemma A.1. For any y ∈ Φt(x), we have ω(x′) − 2t ≤
ω(y′) ≤ ω(x′), or equivalently, r(x)− 2t ≤ r(y) ≤ r(x).

B. Proof of Theorem IV.1 for t = 1

Note first that for any y ∈ Φ1(x), we have

V (ω(y′), 1) = 1 + ω(y′)
(a)
≤ 1 + ω(x′)

(b)
= |Φ1(x)|,

where (a) above is by Lemma A.1, and (b) is by Proposi-
tion II.1(a). Therefore,∑

y∈Φ1(x)

1

V (ω(y′), 1)
≥

∑
y∈Φ1(x)

1

|Φ1(x)|
= 1,

which proves (14) for t = 1.

C. Proof of Theorem IV.1 for t = 2

Fix x ∈ Σn, and let ω = ω(x′). Lemma A.1 tells us that for
any y ∈ Φ2(x), the Hamming weight of y′ must lie between
ω − 4 and ω. For j = 0, 1, 2, 3, 4, let Aj be the number of
sequences y ∈ Φ2(x) such that ω(y′) = ω − j.

Lemma A.2. Let m denote the number of 1-runs in x′, and
let m1 be the number of these that are of length 1. Then,
(a) A0 +A1 = 1 +m+

(
m
2

)
;

(b) A2 +A3 = (ω −m)(m+ 1)− (m−m1);
(c) A4 =

(
ω−m

2

)
− (ω −m) + (m−m1).

Proof: Let y = φE(x) for some E ∈ En,2. Write x′ =
(x′2, . . . , x

′
n). Note that x′ contains m trailing 1s and ω −m

non-trailing 1s.
(a) We have ω(y′) = ω or ω−1 iff each j ∈ E acts upon a

trailing 1 of x′. Let J = {j ∈ {2, . . . , n} : x′j is a trailing 1}
be the positions of the trailing 1s in x′. Thus, |J | = m, and
J does not contain consecutive integers. The sequence y is
counted by A0 + A1 iff E ⊆ J . The number of such grain
patterns E is precisely 1 +m+

(
m
2

)
.

(b) We have ω(y′) = ω− 2 or ω− 3 iff exactly one j ∈ E
acts upon a non-trailing 1 in x′. Thus, for a grain pattern
E ∈ En,2 to contribute to A2 + A3, exactly one grain in the
pattern must act on a non-trailing 1. The number of such grain
patterns E with |E| = 1 is precisely ω−m. It remains to count
the number of grain patterns E of cardinality 2 that contribute
to A2+A3. Let E = {i, j}, where i and j are the grains acting
on a trailing 1 and a non-trailing 1, respectively. If i acts on
an “isolated” 1, i.e., a 1-run of length 1, then j can act on any
of the ω−m non-trailing 1s. On the other hand, if i acts on a
trailing 1 from a 1-run of length at least 2, then j can be any of
the non-trailing 1s except for the 1 at position i−1. It follows

that the number of grain patterns of cardinality 2 contributing
to A2 +A3 equals m1(ω−m)+(m−m1)(ω−m−1). Thus,

A2 +A3 = (ω −m) +m1(ω −m)

+ (m−m1)(ω −m− 1)

= (ω −m)(m+ 1)− (m−m1).

(c) This part follows from the fact that A4 = |Φ2(x)| −∑3
j=0Aj , using the expression for |Φ2(x)| given in Proposi-

tion II.1(b).
We are now ready to prove (14). For convenience, we use

V (a) to denote 1 + a+
(
a
2

)
. We start with∑

y∈Φ2(x)

1

V (ω(y′), 2)
≥ A0 +A1

V (ω)
+
A2 +A3

V (ω − 2)
+

A4

V (ω − 4)

= 1−
1
2 (ω −m)(ω +m+ 1)

V (ω)

+
A2 +A3

V (ω − 2)
+

A4

V (ω − 4)
. (24)

The equality above simply uses the fact that V (ω)−V (m) =
1
2 (ω −m)(ω + m + 1). Now, note that A2+A3

V (ω−2) + A4

V (ω−4) is
lower bounded by

(ω −m)(m+ 1)

V (ω − 2)
+

(
ω−m

2

)
− (ω −m)

V (ω − 4)
,

which equals

(ω −m)(m+ 1)

V (ω − 2)
+

1
2 (ω −m)(ω −m− 3)

V (ω − 4)
.

Therefore, carrying on from (24), we have∑
y∈Φ2(x)

1

V (ω(y′), 2)

≥ 1 + (ω −m)

[
m+ 1

V (ω − 2)
+

1
2 (ω −m− 3)

V (ω − 4)

−
1
2 (ω +m+ 1)

V (ω)

]
(25)

≥ 1 + (ω −m)

[
m+ 1 + 1

2 (ω −m− 3)

V (ω − 2)

−
1
2 (ω +m+ 1)

V (ω)

]
= 1 +

1

2
(ω −m)

[
ω +m− 1

V (ω − 2)
− ω +m+ 1

V (ω)

]
= 1 +

1
2 (ω −m)

V (ω − 2)V (ω)
[ω2 + 2mω − (m+ 3)].

(26)

If ω = m, then (25) proves (14). Else, if ω ≥ m+ 1, then
the term within square brackets in (26) can be further bounded
as follows:

ω2 + 2mω − (m+ 3) ≥ (m+ 1)2 + 2m(m+ 1)− (m+ 3)

= 3m2 + 3m− 2,

which is positive for m ≥ 1. Thus, again, we have (14), which
completes the proof of the t = 2 case.
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D. Proof of Theorem IV.1 for t = 3

The approach is the same as that for t = 2, but the
computations are more cumbersome. So, let x ∈ Σn be fixed,
and let ω = ω(x′). The Hamming weight of y′, for any
y ∈ Φ3(x), lies between ω− 6 and ω. For j = 0, 1, . . . , 6, let
Bj be the number of y ∈ Φ3(x) such that ω(y′) = ω − j.

Lemma A.3. Let m denote the number of 1-runs in x′, and
let mi, i = 1, 2, be the number of these that are of length i.
Then,
(a) B0 +B1 = 1 +m+

(
m
2

)
+
(
m
3

)
;

(b) B2 +B3 = (ω −m)
(
1 +m+

(
m
2

))
−m(m−m1);

(c) B4 + B5 = (1 + m)
[(
ω−m

2

)
− (ω −m)

]
− (ω − 2m −

3)(m−m1)−m2;
(d) B6 =

(
ω−m

3

)
− (ω − m)(ω − m + 1) + (ω − m)(m −

m1) + 4(ω − 2m+m1) +m2.

Proof: Let y = φE(x) for some E ∈ En,3.
(a) This is proved by an easy extension of the proof of

Lemma A.2(a).
(b) For a grain pattern E ∈ En,2 to contribute to B2 +B3,

exactly one grain in the pattern must act on a non-trailing 1.
The number of such grain patterns E with |E| ≤ 2 is equal to
(ω−m)(m+1)−(m−m1) by Lemma A.2(b). Extending the
arguments in the proof of Lemma A.2(b), we determine that
the number of grain patterns of cardinality 3 that contribute to
B2 + B3 is equal to

(
m1

2

)
(ω −m) +m1(m−m1)(ω −m−

1) +
(
m−m1

2

)
(ω −m− 2). Thus,

B2 +B3 = (ω −m)(m+ 1)− (m−m1)

+

(
m1

2

)
(ω −m) +m1(m−m1)(ω −m− 1)

+

(
m−m1

2

)
(ω −m− 2),

which simplifies to (ω −m)
(
1 +m+

(
m
2

))
−m(m−m1).

(c) This part follows from the fact that B4+B5 = |Φ3(x)|−∑3
j=0Bj − B6, using the expression for |Φ3(x)| given in

Proposition II.1(c).
(d) B6 equals the number of grain patterns E ∈ En,3 with

|E| = 3, in which all three grains act on non-trailing 1s of
x′. The sequence x′ has m − m1 1-runs of length at least
2; let `1, . . . , `m−m1

denote the lengths of these runs. Then,
for i = 1, . . . ,m −m1, `−i = `i − 1 denotes the number of
non-trailing 1s in these runs. With this, we can write

B6 =
∑

(i,j,k):i<j<k

`−i `
−
j `
−
k +

m−m1∑
i=1

(
`−i − 1

2

)(∑
j:j 6=i

`−j

)

+

m−m1∑
i=1

(
`−i − 2

3

)
.

From this, straightforward algebraic manipulations yield the
expression in the statement of the lemma. The algebra here is
analogous to that needed to prove Proposition II.1(c).

For convenience, we define U(a) to be 1 + a+
(
a
2

)
+
(
a
3

)
.

We then have∑
y∈Φ2(x)

1

V (ω(y′), 3)
≥

2∑
j=0

B2j +B2j+1

U(ω − 2j)
+

B6

U(ω − 6)
. (27)

The aim is to show, using Lemma A.3, that the right-hand side
of the above inequality is at least 1. We dispose of an easy case
first. If ω = m, then note that we must have m = m1 = ω,
and m2 = 0. With this, Lemma A.3 yields B0 +B1 = U(ω),
and B2 + B3 = B4 + B5 = B6 = 0. Hence, the right-hand
side of (27) simplifies to U(ω)

U(ω) = 1. This proves the desired
inequality (14) when ω = m.

Also, for small values of ω, it can be checked by direct
computation using Lemma A.3 that the right-hand side of (27)
is at least 1. We used a computer to check this for ω ≤ 16
and all valid choices of m, m1 and m2. Here, “valid” means
that these quantities must be realizable as the number of 1-
runs of the appropriate type in a binary sequence of Hamming
weight ω. In particular, m, m1 and m2 must be non-negative
integers constrained by the relations m1 +m2 ≤ m and w ≥
m1 + 2m2 + 3(m−m1 −m2).

Thus, we may henceforth assume that 1 ≤ m ≤ ω − 1 and
ω ≥ 17.

We carry out some more simplifications. The idea is to
justify ignoring the terms that involve m1 and m2 in the
formulae stated in Lemma A.3. When we expand out B2+B3

U(ω−2) +
B4+B5

U(ω−4) + B6

U(ω−6) using Lemma A.3, we obtain an expression
that includes the following terms:

− m(m−m1)

U(ω − 2)
− (ω − 2m− 3)(m−m1) +m2

U(ω − 4)

+
(ω −m)(m−m1) + 4(ω − 2m+m1) +m2

U(ω − 6)
.

Re-write this as

m(m−m1)

[
1

U(ω − 4)
− 1

U(ω − 2)

]
+ [(ω −m)(m−m1) +m2]

[
1

U(ω − 6)
− 1

U(ω − 4)

]
+

3(m−m1)

U(ω − 4)
+

4(ω − 2m+m1)

U(ω − 6)
.

The above expression is a sum of four terms, each of which
is non-negative. (To see that the last term is non-negative,
observe that ω ≥ m1 + 2(m −m1) = 2m −m1.) Therefore,
the sum B2+B3

U(ω−2) + B4+B5

U(ω−4) + B6

U(ω−6) is at least

(ω −m)(1 +m+
(
m
2

)
)

U(ω − 2)
+

(1 +m)
[(
ω−m

2

)
− (ω −m)

]
U(ω − 4)

+

(
ω−m

3

)
− (ω −m)(ω −m+ 1)

U(ω − 6)
,

which can also be expressed as

(ω −m)

[
1 +m+

(
m
2

)
U(ω − 2)

+
1
2 (1 +m)(ω −m− 3)

U(ω − 4)

+
1
6

[
(ω −m)2 − 9(ω −m)− 4

]
U(ω − 6)

]
.

(28)
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Next, we write

B0 +B1

U(ω)
=

U(m)

U(ω)
= 1− U(ω)− U(m)

U(ω)

= 1−
1
6 (ω −m)(ω2 + ωm+m2 + 5)

U(ω)
.(29)

Putting (28) and (29) together, we find that the right-hand
side of (27) is lower bounded by

1 + (ω −m)gω(m), (30)

where

gω(m) =
1 +m+

(
m
2

)
U(ω − 2)

+
1
2 (1 +m)(ω −m− 3)

U(ω − 4)

+
1
6

[
(ω −m)2 − 9(ω −m)− 4

]
U(ω − 6)

−
1
6 (ω2 + ωm+m2 + 5)

U(ω)
.

For a fixed ω, consider gω as a function of m. Some tedious
computations (some of which were performed with the aid of
Maple) show the following:
• for ω ≥ 6, gω is a convex function, i.e., g′′ω(x) ≥ 0 for

1 ≤ x ≤ ω;
• for ω ≥ 12, g′ω(ω − 1) ≤ 0;
• for ω ≥ 13, gω(ω − 1) ≥ 0.

From this, we obtain the fact that, as long as ω ≥ 13, we have
gω(m) ≥ 0 for 1 ≤ m ≤ ω − 1. Thus, for these values of ω
and m, (30) yields that the right-hand side of (27) is lower
bounded by 1. Recalling that we only needed to show this
for ω ≥ 17, the proof of the t = 3 case in Theorem IV.1 is
complete.

APPENDIX B

We prove Theorem V.2 here. Throughout this appendix, we
set t = dτne and r = dρne for some τ ∈ [0, 1

2 ] and ρ ∈ [0, 1].
The asymptotics of ϕn,t(r) is determined by the largest term

within the summation in (17). Letting ζj =
(
r−j
j

)
, it is easy to

verify that the ratio ζj−1/ζj is at most 1 when j ≤ 1
10 (5r+7−√

5r2 + 10r + 9), and is strictly larger than 1 for 1
10 (5r+7−√

5r2 + 10r + 9) < j ≤ r/2; for j > r/2, we have ζj = 0.
Therefore, setting J = b 1

10 (5r + 7−
√

5r2 + 10r + 9)c, we
see that if t < J , then the dominant term in (17) is ζt; and
if t ≥ J , the dominant term is ζJ . Passing to asymptotics, it
follows that if we define α = 5−

√
5

10 , then

lim
n→∞

1

n
log2 ϕn,dτne(dρne) =

{
(ρ− τ)h

(
τ
ρ−τ

)
if τ ≤ αρ

ρ(1− α)h( α
1−α ) if τ ≥ αρ

(31)
We record in the following lemma some facts about the

constant α = 5−
√

5
10 that will be useful in the sequel. They are

proved by straightforward algebraic manipulations. For ease
of verification, we give a proof of part (c) at the end of this
appendix.

Lemma B.1. Recall that φ = 1+
√

5
2 is the golden ratio.

(a) α−1 =
√

5φ

(b) α
1−α = 1

1+φ

(c) (1− α)h( α
1−α ) = log2 φ.

Resuming the proof of Theorem V.2, from (16), we obtain

R(τ) ≤ max
0≤ρ≤1

[
h(ρ)− lim

n→∞

1

n
ϕn,dτne(dρne)

]
.

Hence, using (31) and Lemma B.1, we have

R(τ) ≤ max{A(τ), B(τ)}, (32)

where

A(τ) = max
0≤ρ≤min{α−1τ,1}

[h(ρ)− ρ log2 φ], (33)

and

B(τ) = max
α−1τ≤ρ≤1

[
h(ρ)− (ρ− τ)h

(
τ

ρ− τ

)]
(34)

For convenience, we define B(τ) = 0 if α−1τ > 1.
Note that the term within square brackets in (34) reduces
to h(α−1τ) − α−1τ log2 φ if we set ρ = α−1τ ; therefore,
h(α−1τ)− α−1τ log2 φ ≤ B(τ).

Now, using elementary calculus to solve the maximization
problem in (33), we obtain

A(τ) =

{
h(α−1τ)− α−1τ log2 φ if α−1τ ≤ 1

1+φ

h
(

1
1+φ

)
− 1

1+φ · log2 φ if α−1τ ≥ 1
1+φ

Somewhat miraculously, the expression h( 1
1+φ )− 1

1+φ · log2 φ
simplifies to log2 φ using parts (b) and (c) of Lemma B.1: re-
place 1

1+φ and log2 φ by α
1−α and (1−α)h( α

1−α ), respectively,
and simplify. Thus, we have

A(τ) =

{
h(α−1τ)− α−1τ log2 φ if α−1τ ≤ 1

1+φ

log2 φ if α−1τ ≥ 1
1+φ

(35)

As a result, when α−1τ ≤ 1
1+φ , we have A(τ) = h(α−1τ)−

α−1τ log2 φ ≤ B(τ). Thus, (32) reduces to R(τ) ≤ B(τ),
which proves one half of Theorem V.2.

To complete the proof of the theorem, we must show that
when α−1τ ≥ 1

1+φ , we have A(τ) ≥ B(τ). This would then
imply that max{A(τ), B(τ)} = A(τ) = log2 φ by (35). The
above clearly holds when α−1τ > 1, since B(τ) = 0 in this
case; so we henceforth assume 1 ≥ α−1τ ≥ 1

1+φ .
We will show that the maximum in the definition of B(τ)

is achieved at ρ = α−1τ . With this, B(τ) = h(α−1τ) −
α−1τ log2 φ ≤ max

0≤ρ≤α−1τ
[h(ρ)− ρ log2 φ] = A(τ).

Define fτ (ρ) = h(ρ) − (ρ − τ)h( τ
ρ−τ ), so that B(τ) =

maxα−1τ≤ρ≤1 fτ (ρ). We want to show that, under the assump-
tion 1 ≥ α−1τ ≥ 1

1+φ , the function fτ (ρ) is monotonically
decreasing in the range α−1τ ≤ ρ ≤ 1. We accomplish
this by showing that f ′τ (α−1τ) ≤ 0, and f ′′τ (ρ) < 0 for
α−1τ ≤ ρ ≤ 1. Here, all derivatives are with respect to the
variable ρ.

f ′τ (α−1τ) ≤ 0: Computing the derivative f ′τ (ρ) by direct
differentiation, then plugging in ρ = α−1τ and simplifying
using Lemma B.1, we obtain

f ′τ (α−1τ) = log2

1− α−1τ

α−1τ
− log2 φ = g′(α−1τ),
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where g is the function defined by g(x) = h(x) − (log2 φ)x.
Observe that g(x) is strictly concave on [0, 1], and attains its
unique maximum at x = 1

1+φ . Hence, for x ≥ 1
1+φ , g′(x) ≤ 0.

In particular, g′(α−1τ) ≤ 0.

f ′′τ (ρ) < 0 for α−1τ ≤ ρ ≤ 1: Routine differentiation
yields

f ′′τ (ρ) = − 1

1− ρ
− 1

ρ
+

τ

(ρ− τ)(ρ− 2τ)
.

For τ ≤ αρ, we have
τ

(ρ− τ)(ρ− 2τ)
≤ αρ

(ρ− αρ)(ρ− 2αρ)

=
α

(1− α)(1− 2α)
· 1

ρ

=
5−
√

5

1 +
√

5
· 1

ρ
,

which is strictly less than 1
ρ . Hence, f ′′τ (ρ) < − 1

1−ρ < 0.

This completes the proof of Theorem V.2, modulo the
promised proof of Lemma B.1(c).

Proof of Lemma B.1(c): We first write (1− α)h
(

α
1−α

)
as

−α log2(α(1− α))− (1− 2α) log2(1− 2α) + log2(1− α).

Using α(1 − α) = 1
5 and 1 − 2α = 1√

5
, the above simplifies

to
1

2
log2 5 + log2(1− α) = log2[

√
5(1− α)].

It is easy to verify that
√

5(1− α) = φ.
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