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Abstract

The input-constrained erasure channel with feedback isidered, where the binary input sequence
contains no consecutive ones, i.e., it satisfies(lheo)-RLL constraint. We derive the capacity for this
setting, which can be expressed @s = maxg<,<1 %, wheree is the erasure probability and
H,(-) is the binary entropy function. Moreover, we prove that eprknowledge of the erasure at
the encoder does not increase the feedback capacity. Thbdee capacity was calculated using an
equivalent dynamic programming (DP) formulation with anim@al average-reward that is equal to the
capacity. Furthermore, we obtained an optimal encodingemare from the solution of the DP, leading
to a capacity-achieving, zero-error coding scheme for etting). DP is thus shown to be a tool not
only for solving optimization problems such as capacitycakdtion, but also for constructing optimal
coding schemes. The derived capacity expression alsossasvihe only non-trivial upper bound known

on the capacity of the input-constrained erasure chanribbwi feedback, a problem that is still open.
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Fig. 1. System model for an input-constrained memorylessiichl with perfect feedback.

Memoryless channels have been the focus of research wativinformation theory since
they were introduced in 1948 by Shannon [1]. The capacity afeanoryless channel has an
elegant, single-letter expressiofi, = sup,,, [(X;Y’), and this can be calculated for a broad
range of channels [2], [3]. When considering a memorylessighl with input that is constrained,
the capacity is given by the maximum mutual information rag#ween the input and output
sequences. The capacity calculation of such channelsvies@ calculation of the entropy rate
of a Hidden Markov Model (HMM), since the transmission of axstwained sequence through
a memoryless channel results in an output sequence thasdsiloled by an HMM. This makes

the capacity of input-constrained memoryless channefgulif to compute [4]-[7].

Constrained coding arises naturally in many communicagiod recording systems [8], [9];
a common constraint that is useful in magnetic and opticabnding is the(d, k)-runlength
limited (RLL) constraint. A binary sequence satisfies thohstraint if the number of zeros
between any pair of successive ones is at léastd at most. This constraint has also recently
appeared in code designs for energy harvesting systemsewbmmunication is used not only
for information transfer but also for charging the recewdattery [10]. In this paper, we focus
on the special case of th@&, co)-RLL constraint, in which no consecutive ones are allowed.

It is well known that feedback does not increase the capadfitg memoryless channel, as
shown by Shannon [11]. However, Shannon’s argument doeappy to memoryless channels
with constrained inputs, and special tools are requireceterchine the capacity of such channels

with or without feedback.

We consider ar(1, o0)-RLL input-constrained binary erasure channel (BEC) wihdback,
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Fig. 2. Erasure channel with erasure probabitity

represented pictorially in Fig. 1, with the channel demateFig. 2. Based on the messatjeand
the previous channel outpuig, !, the encoder chooses the inpyt such that the input constraint
is satisfied. The mechanism of the BEC is simple: each tratesbit is transformed into an
erasure symbol with probability or received successfully with its complementary probghili
The decoder estimates the messagevith low probability of error as a function of the output
sequence&’™. In this paper, we derive the explicit expression for thedbeek capacity of the
(1, 00)-RLL input-constrained BEC.

The feedback capacity that is derived here also serves apar tbound on the capacity
of the (1, 00)-RLL input-constrained BEC without feedback, a problemt tisastill open. A
lower bound on the capacity of the non-feedback setting vegizetl in [12] by considering an
input that is restricted to first-order Markov process (fosler capacity). The lower bound in
[12] and our feedback capacity are presented in Fig. 3, amdritbe seen that maximal gap
is attained at = 0.71, where the first-order capacity is 0.2354 while the feedback capacity
is ~ 0.2547. Based on the plots in Fig. 3, it is tempting to conjecturd fieadback does not
increase capacity in this input-constrained setting, ivewave have not managed to answer this
interesting question and this will be discussed in Sectidih V

The relation between feedback-capacity calculation andanhyc programming (DP) first
appeared in Tatikonda’s thesis [13]. Subsequent worksuded the formulation of capacity
as DP for channels where the state is a function of the inptit [Markov channels [15] and
power-constrained Gaussian noise channels with memory To6apply algorithms from DP,
such as value and policy iteration, quantization is reagijisnd therefore, only lower bounds
were derived in the above papers.

In [17] and [18], the feedback-capacities of the trapdoal lmg channels, respectively, were
found by solving their corresponding Bellman equationse idea is that the feedback capacity
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Fig. 3. Lower and upper bounds on the capacity of the inpostained BEC without feedback.

is equal to the optimal reward of the DP, and therefore, ificed to find a solution which
satisfies the Bellman equation [19]. Besides reward optiynerification, the Bellman equation
also establishes a mechanism for optimal policy verifieatiwhich is a significant additional
benefit.

The novelty in our work is the derivation of the optimal inmlistribution from the Bellman
equation solution. The optimal solution of the DP is therlizdgd to understand how the
dynamic program evolves under an optimal policy. We showdbaverting the DP solution into
channel coding terms results in a straightforward inteégti@n of optimal encoding procedure.
This encoding procedure led us to an innovative and zewr-ewding scheme for our input-
constrained setting. This establishes that DP as a toolad got only for solving optimization
problems, but also for deriving optimal coding schemes.

We also consider an input-constrained BEC where the endaumws ahead of time if there
is an erasure in the channel. Clearly, this non-causalngetti superior in terms of capacity
compared to the feedback setting. We have managed to showhthaapacity of this setting
coincides with our feedback capacity expression, and tberea priori knowledge of the erasure
in the channel does not increase the feedback capacityodgdth this finding and the coding
scheme for the feedback setting are sufficient for the fegddbapacity derivation, we argue that
the capacity-achieving coding scheme is hard to constritbiowt the DP solution.

The remainder of the paper is organized as follows. Seclimtludes notation and description



of the problem. Section Il states the main results of thipgpaln Section IV, we provide a
brief review of infinite-horizon DP and present the DP foratidn of the feedback capacity.
In Section V, the DP for the erasure channel is calculatedluated numerically and, finally,
we prove that the Bellman equation is satisfied. In Sectionvid present the derivation of the
optimal scheme from the solution of the DP. In Section VII, degive the capacity of non-causal

input-constrained BEC. Finally, the paper is concluded ect®n VIII.

I[I. NOTATION AND PROBLEM DEFINITION

Throughout this paper, random variables will be denoted jyeu-case letters, such as,
while realizations or specific values will be denoted by lowase letters, e.gs. Calligraphic
letters will denote the alphabets of the random variableg, &. Let X" denote then-tuple
(Xy,...,X,). For any scalarx € [0,1], & stands fora = 1 — «. Let H,(«)) denote the binary
entropy for scalawy € [0,1], i.e., Hy(a) = —alog, o — alog, a. Let Hy., (v, g, cvg) denote
the ternary entropy for scalars,, oy, a3 € [0, 1] such thatd . a; = 1, i.e., Hye, (a1, g, a3) =
> —a;logy oy

The communication setting of a memoryless channel withlfaeki is described in Fig. 1. A
messagé/ is drawn uniformly from the sefl, . .., 2"%} and made available to the encoder. The
encoder at time knows the message and the feedback samplgs!, and produces a binary
output,z; € {0,1}, as a function ofn andy*~'. The sequence of encoder outputsyszs . . .,
must satisfy the(1, co)-RLL input-constraint of the channel, namely, no two consige ones
are allowed. The channel is memoryless in the sense thatutipatoat timei, given the existing

information in the system, depends only on the current inpei,

p(yila’, y' ) = plyilz), Vi 1)

We focus on the erasure channel, shown in Fig. 2. The inpiitabkgt isX = {0, 1}, while
the output can take values J = {0, 1, 7}. The probability for erasure in the channeleisind

can take any value i, 1].

Definition 1. A (n, 2" (1,00)) codefor a constrained-input channel with feedback is defined

by a set of encoding functions:

fio {1, 2"y < Yt s A i =1, n,



satisfying f;(m,y"™ 1) = 0 if f;_1(m,y"?) =1 for all (m,y*"'), and a decoding function:
U Yr = {1,..., 2"

In addition, we define the non-caugal co)-RLL BEC. For this setting, all definitions remain
the same as in the previous setting, but the encoder knovedatfetime whether there is an
erasure in the channel. Formally, defifheas the indicator that corresponds to erasure in the
channel at time, namely,d; = 0 if z; = y; andf; = 1 otherwise. The set of encoding functions

for this setup is then defined as:
fio {1, 2"y x Y < {01} = A&, i =1,...,n,

satisfying f;(m, y*=1,0;) = 0 if fi_1(m,y"2,0,_1) =1 for all (m,y*"%, 6, 1,0,).

The average probability of erroffor a code is defined ag™ = Pr(M # U(Y™)). A rate
R is said to be(1, oo)-achievablef there exists a sequence 0f, 2", (1, 00)) codes, such that
lim,,_o P\ = 0. The capacity C, defined to be the supremum over &ll, co)-achievable
rates, is a function of the erasure probabilityLet C"® denote the capacity for the non-causal
(1,00)-RLL BEC. From operational considerations of the encodumgcfions for both settings,
it is clear thatC"e > C™,

[1I. M AIN RESULTS
The following is our main result concerning the capacityled t1, co)-RLL constrained BEC

with feedback.

Theorem 1. The capacity of thél, co)-RLL input-constrained erasure channel with feedback

is

P = max ) 2)

0<p<i P+ T
Furthermore, the capacity is achieved by an explicit zarorecoding scheme that is presented

in Section VI-B, in Algorithm 1 and Algorithm 2.

In Fig. 4, the feedback capacity is evaluated for differegitigs of erasure probability As
can be seen, the capacity is a decreasing function for aeastrg value ot. For e = 0, the

capacity isC? ~ 0.6942, which can be represented lag, ¢, where¢ is the golden ratio and is
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Fig. 4. The capacity’™, as a function of, of the (1, c0)-RLL input-constrained BEC with feedback.

known as the entropy rate of a binary source with no consexuatnes. Foe = 1, the capacity
value isC™ = 0, as expected.

The capacity of the non-constrained BEC can be expressatha(;sgpgé Hb%(”) = 1—e¢. Note
that the only difference between this term and our capagityession in (2) is the denominator.
This fact hints that the capacity expressions of other inartstraints may share a common
structure.

The next theorem states that the non-cagsado)-RLL input-constrained BEC has the same
capacity as the feedback setting.

Theorem 2. Non-causal knowledge of erasures does not increase thédekdapacity, i.e.,
C«nc — Cfb.
Next, we show the properties of the capacity expression (2).

Lemma 1. Define the functiory.(p) = Iﬁ’% wherep € [0, 1]. The following properties hold
for fe(p):
« The functionf.(p) is concave ono0, 1], for anye > 0.

. The functionf.(p) has only one maximum i, 1], which is the only real solution of the

equationp = (1 — p)'*%. This maximum lies if0, 1.



. Denote byp, the argument that achieves the maximunygp). The capacity can also be

expressed by,
o — — logy (pe)
S

The proof of Lemma 1 is presented in Appendix A.

IV. FEEDBACK CAPACITY AND DYNAMIC PROGRAMMING

The normalized, directed information was introduced by $4gsin [20] as} (X" — Y") =
L3 I(X% YY), Massey showed that the maximum normalized directed irdGion
upper bounds the capacity of channels with feedback, andeguiently, it was proved that
this expression indeed characterizes the feedback cgfacia broad class of channels [15],
[21]-[24]. Of most relevance to our work is the feedback ci#yaof the unifilar finite state
channel that was characterized in [17]. The next theoreihovisl from Theoreml in [17], by

substitutingS;_; = X;_; as the channel state at time

Theorem 3 (Theorem 1, [17]) The capacity of ar(1, co)-RLL input-constrained memoryless

channel with feedback can be written as:

N
1
C:b = sup lim inf — E (X, Xooq; YY), (3)
=1

N—ooco N
t
where the supremum is taken with respeditor;|z; 1, y' 1) : p(z; = 1z = 1, y"71) = 0}

Having written the capacity of the input constrained chamnth feedback as (3), we proceed

to show that calculating the capacity can be formulated aavarage-reward DP.

A. Average-Reward Dynamic Programs
Each DP is defined by the tupl€, U, W, F, P, P,, g). We consider a discrete-time dynamic
system evolving according to:

Zt:F(thl,Ut,wt% t= 172,... (4)

Each statez;, takes values in a Borel spaék each actiony,, takes values in a compact subset
U of a Borel space, and each disturbaneg,takes values in a measurable spaeThe initial

state,z, is drawn from the distributio®,, and the disturbancey;, is drawn fromP,, (-|z;_1, u;).



The history,h; = (zo, w1, ..., w;—1), sSummarizes all the information available to the controlle
at timet. The controller at time chooses the actiony, by a functiony, that maps histories to
actions, i.e.u; = u¢(h). The collection of these functions is called a policy and ésated as
m = {1, po, . .. }. Note that given a policyy, and the historyh,;, one can compute the actions
vector,u!, and the states of the system, 25, ..., 2.

Our objective is to maximize the average reward given a bedmeward functiory : ZxU —
R. The average reward for a given poligyis given by:

1
» = liminf —E,
p imin N

N—oo

> 9(Ziy, Mt(ht))] :

where the subscript indicates that actions; are generated by the poliay The optimal average

reward is defined as

p = Sup pr.

B. Formulation of the feedback capacity as DP

The state of the dynamic programming, {, is defined as the conditioned probability vector
Bi—1(ri—1) = p(xi_1|yt™1). The action spacdd, is the set of stochastic matrices,r;|x; 1),
satisfying the(1, co)-RLL constraint. For a given policy and an initial state, g#recoder at time
t —1 can calculate the statg;_(z;_1), since the tuplg/~! is available from the feedback. The
disturbance is taken to be the channel outpyt= y;, and the reward gained at tinte- 1 is
chosen ad (V;; X;, X;_1|y*"1). The formulation is summarized in Table I.

Existence of System\We need to show that for a given policy,= {p1, po, ... }, the state

z; can be calculated from the tuple;_1, u;, y;). Consider,

Bi(wy) = p($t|yt)

= Zp(ffta zialy')

Tt—1
B D P 1, vy )
- p(yely=1)
e Py (e e,y (Y T 2 )
a th,xt_l (Y, T, w1 |y™)
@ vy P@ea Y@ o1,y )p(yel2e)
> ey D@y =)@z, vy ) p(yd )
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th,l Be—1(ze—1)ue(we, 20-1)p(Ye| 1)

- 5
> e ns Bt (o1 e (@, 1 )p(yelze) )

where(a) follows from the memoryless property (1). Therefore, thexists a function/’, such
that 8;(w;) = F(Bi—1(@1—1), ue (T, T4—1), wy).

TABLE |

FORMULATION OF CAPACITY ASDP

Input-constrained memoryless chanﬁel Dynamic Programming
plre—1]y"™") 21, State at time — 1
Constrainedy(z¢|zi—1) u¢, action taken at time — 1
Yt we, disturbance generated at time
Equation (5) 2zt = F(zi—1, us, we), System equation
I(Yy; Xoy Xeoay'™h) g(zi—1,us), reward gained at time — 1

Disturbance: Let us show that the disturbance distribution depends orctneent state and

action only, with no dependence on past information, peu;|w!™!, 2= u?) = p(wq|ze_1, uy).

p(wt|wt_1,zt_1,ut) — p(ytIyt_l,Bt_l,ut)

= Z Py, w, maly™, B W)

Tt,Tt—1

= Y plaaly™ B @,y B ) p (e, i, B 0ty

Tt,Tt—1

(a)
= Z P(x-1|Bi—1, ue)p(@e|Te—1, Bim1, ue)p(ye| 1)

Tt,Tt—1

Z P, Ty T | Br—1, i)

Tt,Tt—1

= p(yt|ﬁt717 Ut)

= p<wt|zt717ut)a

where (a) follows from the fact that the value of(x; ,|y'!, 571, u!) is determined bys;_,,

the fact thatr, depends only on the triplét:, 1, 5,1, u,), and finally, the fact that the channel
is memoryless.
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Reward: We need to show that the rewarlY;; X;, X; 1|y'!), that is achieved at time— 1
is a function of the current statg; ;(z;_;), and of the chosen action. Note that the term of
the reward depends on the conditional distributigm;, z;, z,_1|y*~") only.

For an initial statez, and a given policyr = {u1, p0, - .. }, the termp,_; is determined by
y'~1. Let us show that the reward achieved at time 1 depends on the current state, action
and the channel characterization,

_1, (a) _ _
e, v, w1 [y ) = pl@ey' ™ )p(@e]memr, v )p(ye|ze)

= B (xtfl)ut(xta xH)p(ytlxt),

where (a) follows from the chain rule and the memoryless property Récall that the term
p(ye|z¢) is given by the channel characterization, and thus, thertedepends on the staté, |,

and the chosen action,. Therefore, the reward at time— 1 can be written as:

Q(thla Ut) = [(Y;; Xthletfl, Ut)-

It then follows that the optimal average reward of the DP is:
1 N
ot = sup lim inf ; LYy Xy, XY,

where the subscript indicates that the mutual information is calculated witBpect to the
policy =. This term is the capacity for an input-constrained menesylchannel with feedback
as presented in Theorem 3, and we conclude that the optinesh@e reward is equal to the

capacity.

V. SOLUTION FOR THE ERASURE CHANNEL

This section is organized as follows: Section V-A formusateedback capacity of the BEC
as DP using the notation from Section IV-B. In Section V-B, &luate a numerical solution
using the value iteration algorithm, and finally, in Sect\&&€, we present the Bellman equation
and its solution for the BEC. The solution of the Bellman dguaconcludes the derivation of

the feedback capacity expression in Theorem. 1.
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A. Formulation of the erasure channel as DP

The state of the DP at time— 1, z;_,, is the probability vectofp(z;_; = 0|y*™!), p(xs_1 =
1|y*~1)]. With some abuse of notation, we refer from now oo, = p(z,_; = Oly*~!) as the
first component of the vector, which also determines therst@@mponent, since they sum to

1. Each actiony,, is a constraine@ x 2 stochastic matrixp(z;|z;_,), of the form:

p(zy = 0|z =0) p(ay = 1]z = 0)
1 0

Uy =

The disturbancey, is the channel output;, and can take values if0, 1, 7}. With the above

definitions and (5), the system equation can be expresseallawd:

1 |f Wy = O7
=9 1=z +2z0u(l,1) if w =7, (6)

At this point, to simplify notations we note that— 2, | + z;_;u,(1,1) can be written as
1 — z_1u(1,2) . We denotes, = z_,u,(1,2), and this implies the constraift< 6, < z_,,
sincew,, by definition, must be a stochastic matrix. Furthermoregnvimvestigating the relation
of DP and encoding procedures, has to be recovered frod}, given z;_,. This calculation
is trivial for z;_; # 0, while for z;_; = 0, we note that(1,2) has no effect on the DP, and
therefore,u,(1,2) can be fixed to zero.

To calculate the reward, the conditional distributign;, z; 1, y;|z:_1, u;) iS described in Table

[l, and it follows that the reward is:

g(thla Ut) = [(Yt; Xtathl‘thlaut)

= H(Yt|2t—h Ut) - H(Yt|Xt> X1, 21, Ut)

Y (1= 6,)8, €, 0,6) — Hy(e)

b
O Hy(e) + eHy(5,) — Hy(e)

— EHb((;t),
where (a) follows from the marginal distributiop(y;|z;_1, ;) in Table Il and the definition of
5, while (b) follows from an easily verifiable identityf,.,.(ab, ab, b) = Hy,(b) + bH,(a), for all
a,b e [0,1].
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TABLE I

THE CONDITIONAL DISTRIBUTION p(Z¢, Tt—1, Yt|2t—1, Ut)

o] w=0 [ w=r | w=1
0 0 ze—1ue(1,1)€ | ze—1ue(1,1)e 0
1 0 0 ze—1ue(1,2)e | ze—1ue(1,2)€
0 1 (1 —zi—1)€ (1—2¢—1)e 0

To apply the value iteration in the next subsection, it isvemment to define the operator of
the DP:

(Th)(z) =supg(z,u)+ / Py (dw|z,u)h(F(z,u,w)), @)

uel
for all functionsh : Z — R.
For our case, the operator of the DP takes the form of
(The)(z) = sup €Hy(d) + (1 — 0)€h(1) + eh (1 — 9) + d€h.(0), (8)
0<6<z

for all k. : [0,1] — R, where the subscript indicates that,. depends on the parameter

B. Numerical evaluation

Now, that we have the DP formulation for our problem, we caplyphe value iteration
algorithm to estimate the optimal average reward. The igduation algorithm is simply applying
the DP operator from (8) successively, and it has the fbg) = (T'h,—1)(z) with hy(z) = 0.
The state of the DP and the values in the action matrices amg@noous, which cannot be
implemented by a finite-precision computer. To this end, antjaation of5000 points in the
unit interval for bothz;, andd;, was performed, and the results after 20 iterations are prege
in Fig. 5 for erasure probability = 0.5.

We also simulated the system with the estimated optimab@adty,. The initial statez,, was
chosen to be zero and the action was taken according, tavhich led to a gained reward. The
disturbance was generated randomly according to the inddisgribution from Table II. Having
in hand the current state, action and disturbance, the n&t® atas calculated and the process
was repeated(°® times. This simulation led to an approximate average rewéfd4056 and the

histogram of the states is shown in Fig. 6. The significantartgnce of a discrete histogram
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Fig. 5. Value iteration evaluation for the erasure chann#i w= 0.5. The algorithm was implemented with 20 iterations and

quantization of 5000 points for both action and state.

will be discussed in Section VI, where it is explained how B simulation leads us to derive

an optimal coding scheme for our channel setting.
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Fig. 6. Histogram of system states afté’® runs.

C. The Bellman Equation

In dynamic programming, the Bellman equation suggests ficguft condition for average

reward optimality. This equation establishes a mechanismvérifying that a given average



15
reward is optimal. The next result encapsulates the Bellagaration and can be found in [25].

Theorem 4 (Theorem 6.1, [25])If p € R and a bounded functioh : Z — R satisfies for all
z € Z:

p+ h(z) =supg(z,u) + / Py (dw|z, w)h(F(z,u,w)), 9

ueU
thenp = p*. Furthermore, if there is a functiop : Z — U such thatu(z) attains the supremum

for eachz, thenp, = p* for m = {uo, p1, ... } with . (hy) = p(z_1) for eacht.
For our DP, substituting (8) into (9) yields the next Bellmeguation:
he(z) + pe = sup €Hy(6) + €(1 — 6)he(1) + €h (1 — 6) + €h.(0), (10)
0<6<z

for all functionsh,. Let us denote two constant$ andp.,

pe — Imax 1
0<p<3 P+ 1=
H,
Pe = arg max b(pl) , (11)
o<p<t Pt 1=
and a bounded function,

EHy(2) — et it 0 < 5 < De

hi(z) = P (12)
Hb(pe) 1
pet oL if pe <z<1.

We proceed to show the DP solution by solving (10).

Theorem 5. The constanp; and the functiom}(z) given in(11) and (12), respectively, satisfy

the Bellman equatioif10) for eache. Therefore,p? is the optimal average reward.

As p* is equal to the capacity expression (2), Theorem 5 concltigeproof for the first part

of Theorem 1. The proof of Theorem 5 is presented in Appendix B

VI. DERIVATION OF THE CAPACITY-ACHIEVING CODING SCHEME FROM THEDP SOLUTION

In this section, we derive the optimal coding scheme usiegOR solution and finally show
that this leads to a capacity-achieving coding scheme. Tathad comprises recovering the

optimal constrained input distributioq®(x;|x;_1,y" ') }+>1 from the solution of the DP.
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Fig. 7. State diagram of the DP for the input-constrained REGer an optimal policy.

A. Relation of the Coding Scheme to Dynamic ProgrammingI|®esu

The histogram fore = 0.5, in Fig. 6, shows that under an optimal poligy, the system
evolves between three steady states. Moreover, the solafithe Bellman equation indicates
that there exists an optimal stationary policy, and theeefwe look at the stationary phase of
the DP. The states;, take values in the finite sel0,1 — p, 1}, with p = p, (EqQ. (11)); the
subscripte is omitted for convenience, but all details are discussedffixede € [0, 1] and its
corresponding.. For each state, the optimal poliay;, is known from the Bellman equation
and arrows can be drawn between the states as a function dfsttoebance. The state diagram
for our DP is presented in Fig. 7.

Converting the state diagram in Fig. 7 into channel codingn$e using the formulation
described in Table I, results in an encoding procedure asrides in Fig. 8. Specifically, the
statesp(z,_; = 0]y''), take values from{0, 1 — p, 1}. Each state has its corresponding action,
p(z; = 1lz,—1 = 0), and the encoding procedure evolves as a function of theubytpRecall

that p(x; = Olz,—y = 1) = 1, and therefore, the actiop(z; = 1|x;_; = 0) is sufficient to
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determine the transfer matrix betweén_, and X,.

plzy =1z, =0)=0 plr, =1z =0)=p
Yt = 0/?

Yy ="

Fig. 8. Optimal encoding procedure for the input-consediBEC. This encoding procedure was achieved from Fig. 7 by

converting states, actions and disturbances into theresponding channel coding terms.

Let us explain how the encoding procedure evolves. We refthé state)(x; ; = 0|y'!) =1
as theground state since this indicates that’ was received at the decoder and, therefore, the
encoder is allowed to transmit any input to the channel. Ferground state, the next transmitted
bit is distributed according to Bé#) and it is shown to be the optimal action.

Upon receivingy; = 0 at the decoder, the system remains at the ground state aedc¢bding
procedure starts over again. When the outpu; is 1, the system moves to the stater;, ; =
0ly*~1) = 0. At this state, since the last input was necessdiily the encoder is forced to
transmit’0’. Therefore, the decoder knows thét is the only legitimate input, and the system
returns to the ground state regardless of whether the inpatesased or not.

The remaining scenario to examine begins at the ground atatas followed byy; =7. The

optimal action at the lower statg(z; ; = 0|y*~!) = 1 —p, suggests that if)’ is erased, the new
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transmitted bit should be distributed according to B&f). The term:2_ is in the unit interval,
sincep < % Additionally, the input constraint implies that'if’ was erased theft)’ should be
transmitted. Upon consecutive erasures, the encodemo@stito transmit bits according to this
policy. When an output is not an erasure, the system retortiset ground state, and this might
take one or two time instances, depending on whether thegsed) output bit is0" or '1’.

The main challenge is to understand how this encoding proeedan be interpreted as
transmitting a message by the encoder. Let the messagesiits pothe unit interval, i.e.,
messages take values in the set 2 {;5;}2"7~1. At each time instance, the unit interval
contains sub-intervals with labels that can’feor '1’, and the input to the channel is simply
the label of the sub-interval containing the message. Suchsaociation of messages into a
specified interval has been done before in [26]-[29].

The partition into sub-intervals will be according to pagiersp andq £ ﬁ as described
in Fig. 8. When performing a partition at the ground state,ltwer interval is labelled)’ while
the upper interval is labelletl’. Before providing the precise encoding algorithm, it wi# b
convenient to understand the labelling process in the eladgscribed in Fig. 9.

As can be seen in Fig. 9, all the proposed partitions in Figal lze encapsulated into two
possible labellings. We denote the labellingtat 1 as L;, and the labelling at = 2 as L,.
The initial labelling at the ground state is chosenZasand upon erasure, the current labelling
will be replaced with the other labelling. Note that champthe labellingL; with L; for i # j
preserves the input constraint and can be done simply byaegihg the labels ofpg, p) and
[p, 1), while the label of|0, pg) remains'0’.

To summarize at this point, at each time instant, we have tessiple labellings (which
depend on the value @) of the unit interval which define uniquely the mapping fronessages
to the channel input. The current labelling is determinety diy the output tupley®~*, and

therefore, the decoder and encoder both agree on the latter.

B. Capacity-achieving Coding Scheme

At time instancet — 1, the set of possible messagés defined asM; ; = {m € M :
p(m|y*=1) > 0}, with My, = M. The conditional distributiorp(m|y*~!) is calculated using
Bayes’ rule, using the fact that the encoding procedure anld labellings are revealed to all
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{ O’ ‘ 1’
Legend: t=1 «;:;—:::—::;—::;—::;—:::—::;—:::—.—:::—::;—'::;—::;—:::—::;—:::—::;—:::—
O Messages 0
p
@ Transmitted message
Partition n=r
‘0’ ‘1 ‘o v [ v2=0/1) y3=0/1
t=2 (O g e — —';—:ﬁ;—:ﬁ;—.—:ﬁ;—:ﬁ;—': —————— —_—
0 __ _
pq p
Yo =7
{ OI { o' { 1’ ‘ '
t=3 «:j:—:j:—fj:—fj3—fji—l:j:—fj:—:ji—.—:j:—fj:—':j‘;—':j‘;—:;‘;—':j‘;—:j‘;—fj;—:j‘;—
0 __ _
rq p

Fig. 9. Example for transmitting the black-dot messagegstie encoding procedure in Fig. 8 fditime instances. The initial
partition at the ground state is accordinggtoand the encoder transmit8’ since the black-dot message falls witHn p).

Upon a successful transmission, the encoder moves bacletgrtdund state and a new procedure begins. In case of erasure,
we move tot = 2, and the interval that was labelléd is partitioned according tg = ﬁ The input constraint is preserved
since the intervalp, 1), that was labelled1’, is now flipped to’0’. The encoder transmitd’ since the message falls within
[p@,p). In case of another erasure, a partitiongo$hould be performed for the intervals that are labell&d These intervals

are [0, pg) and [p, 1), which are sum up td — p. Sinceq = 12, we simply change the label ¢p, 1) (which has length of

p) to '1’, and the label of0, pg) remains’0’. The input-constraint is preserved sirigg, ) is re-labelled as0’. Upon another
erasures, the labelling will be exchanged between the oresepted it = 2 and¢ = 3 until a successful transmission. Note

that the labelling at = 1 and¢ = 3 are essentially the same.

parties before transmission begins. Note that the set dfilplesmessages can also be calculated

at the encoder, since the output tupé,!, is available from the feedback.

Any received symbol at the decoder might reduce the set oénpal messages, and a
successful transmissiosidefined as a transmission where the size of the set of pessdssages
is changed, namelyM;| < |M;_;|. Specifically, a successful transmission can occur in one
of two scenarios; the first ig; = 1, and the second is wherg = 0 andy, ; # 1. Upon
a successful transmission, the set of possible messagedcidated and expanded uniformly
to the unit interval. To be precise, the messages in theMettake values in{ﬁ}'ﬁg“l
This transmission procedure continues repeatedly urgis#t of possible messages contains one

message. The detailed encoding and decoding procedurelescebed in Algorithms 1 and 2.
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Algorithm 1 Encoding Procedure
while Set of possible messages contains more than one medsage

Label the unit interval according tb; .
Transmit the label of the sub-interval containing the mgssa
while Received symbol is an erasuie
Exchange the labels dfg, p) and[p, 1).
Transmit the label of the sub-interval containing the mgssa
end while
if Received symbol i4)’ then
Denote the messages within sub-intervals which are labé&lieas the set of possible
messages.
else
Denote the messages within sub-intervals which are labélieas the set of possible
messages
Transmit’(’.
end if
Expand the set of possible messages to the unit interval.

end while

Rate Analysis: The main feature of this coding scheme is that the length efstib-interval

that is labelled by1’ is p. This property is recorded as Lemma 2.

Lemma 2. At any step of the message transmission process, the leoigtihe sub-intervals that
are labelled by'1’ sum up top.

Proof: Throughout transmission, there are two possible label|ifay L, the interval[p, 1)

that is labelled1’ has length ofp, while for L,, the interval[pg, p) has length ofpg =p. =

From Lemma 2, we note that the encoder transtit§ message falls within sub-interval that
has length ofp. However, the messages are discrete points and a partitigint fiall between
two messages. This implies that the transmitted bit is idisied as Bep + ¢;), wheree; is a

correction factor. In Appendix C, it is shown that the cofi@t factor has a negligible effect
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Algorithm 2 Decoding Procedure
while Set of possible messages contains more than one medsage

Label the unit interval according tb; .
while Received symbol is an erasuie
Exchange the labels dfg, p) and[p, 1).
end while
if Received symbol i4)’ then
Denote the messages within sub-intervals which are labé&lieas the set of possible
messages.
else
Denote the messages within sub-intervals which are labélieas the set of possible
messages.
Ignore the next received symbol.
end if
Expand the set of possible messages to the unit interval.
end while

on the rate of the coding scheme. To simplify the derivatioase, with some loss of accuracy,

we say that each transmitted bit is distributed accordinBeap).

In the next lemma, we show that each successful transmisstuces the expected number

of bits that is required to describe the set of possible ngessy H,(p).

Lemma 3. With each successful transmission, the expected numbetsahbt describe the set

of possible messages is reduced Ay p).

Proof: Assume that the set of possible messages is oftsimpon a successful transmission,
if ‘0" is received then the new set of possible messages hagisiaad if'1’ is received then its
new size ispk. The expected number of bits that is required to describaéve set of possible
messages iglog,(pk) + plog,(pk) = log, k — Hy(p). u

The next step is to calculate the expected number of charsesl for acomplete procedure

We define a complete procedure to consist of all transmisdignthe encoder starting at some
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time ¢ at which it is in the ground state, and ending at the first time ¢ at which it returns to
the ground state. In other words, a procedure is completezhvai0’ or ‘1’ is received at the
decoder, including one extra channel use in the case whErhas been received and has to be
followed by’0'.

Let N be a random variable corresponding to the number of charses within a complete
procedure. The expected value &fwill be calculated by the law of total expectation. Define

an indicator function
0 if the received bit iS(/
1 if the received bit is1’,

and consider,

where (a) follows from the law of total expectatiorip) follows from the fact that channel is
memoryless and, therefor(?li—e is the expected value of time to receive a symbol which is not
an erasure, an¢:) follows from E[¢] = Pr(6 = 1).

Finally, we prove the second part of Theorem 1, specific#ilg, rate of this coding scheme
can be arbitrary close to the capacity expressidh,

Proof: It follows from the law of large numbers that the rate of oudiog scheme can be
arbitrarily close to the expected number of received bitdiwia complete procedure divided
by the expected number of channel uses within a completeeduve. In Lemma 3, we showed
that within a successful transmission, the expected numbezrceived bits isH,(p). Moreover,
the expected number of channel uses within a complete pnoeésiE[N] = -+ p. Therefore,
the rate of the code can be arbitrarily closeRc= ;f—(ff) [ |

l1—e

The above proof and Theorem 5 conclude the proof of our maunlrd&heorem 1.

VII. NON-CAUSAL CAPACITY

Hy(p)
P+

In this section, we prove Theorem 2 by showing théf = MAaX)c )< 1 . Operational

considerations of non-causal and feedback capacitieslré¢ie trivial inequalityC™ > C™.
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Furthermore, we derive in this section an upper-bound’8f which is equal taC™, and this
concludes the proof of Theorem 2 witt{** = C™.

The next lemma shows that it is sufficient to consider encodérich transmit0’ if erasure
occurs, i.e.;x; = 0 if §; = 1. The intuition behind this lemma is that replacing eraseesonith

zeros does not effect the output sequence, while the imataint is not violated.

Lemma 4. For any (1,2"% (1,00)) code C with probability of error P™ there exists a

(n,2"E (1, 00)) codeC’ with probability of error P\", satisfying
By 0= 1) = 0.6 = L,y

Proof: For any (1,2"% (1,00)) codeC consisting of encoding functiond,f;(-)}™,, and
a decoding functionl(-) with probability of error P\, define a new sequence of encoding

functions as follows:

Fm g1, = { HO0TL00 020 (13)
0 if 0, =1,
for all (m,y~') andi = 1,...,n. We argue thaf f;(-)}"_, and the original decoding function
U(-) determine a new code with the same probability of et®St. First, the set of encoding
functions, { f;(-)}~,, satisfies the input constraint, since we replaced ones zeitbs. Further,
the output sequence is not affected by our modification,esine replaced only bits that are
erased, and therefore, our new code also has probabilityrof 108 [ |
We introduce(1, oo, Ber(e))-RLL encoder which outputs sequences” that satisfies two

constraints:

1) The(1,c0)-RLL constraint.
2) X;=0Iif §; =1 (the constraint induced by Lemma 4).

The second constraint can be viewed as a "random constisimtéd; ~ Ber(e), while the first
constraint is a deterministic constraint. Thus, {Heoo, Ber(¢))-RLL encoder combines both
deterministic and random constraints.

The entropy rate of1, oo, Ber(e))-RLL encoder is measured Biym,, .. >, , H(X;| X", 6%)
since this is the available information at the encoder. Téve temma provides an upper bound

on the entropy rate of sequences that can be generated hyxa Ber(¢))-RLL encoder.
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Lemma 5. The entropy rate of sequences that are generated by, &, Ber(¢))-RLL encoder

Hy(p)
pH

is upper bounded byhaxogpgé

Proof: Recall that the encoder can choose its output Bit,only if z;_; = 6; = 0; we
parameterize this by(z; = 1|z,-1 = 0,6; = 0) = p, wherep € [0,1]. Now, consider the

transition probability matrix of the chaix ™,

€e+ep ep
1 0

Q=
where the transition probability+ ép was calculated by

p(z; = 0z = 0) = Zp(l’z =0,0;|z;—1 = 0).
0;

The stationary distribution of this chain js*(0) *(1)] =[5, 7%]-

Consider the next upper bound for some

‘ ()
H(X;| X710 < H(XG|X-1,6;)

O H(X,| X1, 0: = 0)e

© H(Xi|zio1 = 0,0; = 0)p(z;—1 = 0]6; = 0)¢

D Hy(p)p(zi1 = 0) (14)
where (a) follows conditioning reduces entropgh) follows from H(X;|X;_1,0; = 1) =0, (¢)
follows from H (X;|z,_1 = 1,6, = 0) = 0, and(d) follows from the fact thatX;_; is independent
of #; and substituting the parameter

By substituting the stationary distributign(xz;_; = 0) = z*(0) into (14), we see that the
entropy rate of the chain is upper boundedigﬁg, for somep € [0, 1]. This term can also be
written asng(’;), and the parameter need be maximized only of, 0.5] from Lemma 1. =

The rate of the messag¥ is upper bounded by the entropy rate of sequences that can be

generated by &1, oo, Ber(e))-RLL encoder, and this concludes the proof of Theorem 2 with
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VIIl. CONCLUSIONS

We considered the setup of an input-constrained erasureehwith feedback and found its
capacity using equivalent DP. We then pursued the complemederivation of a simple and
error-free capacity-achieving coding scheme, which wendbusing the strong relation between
optimal policies in DP and encoding procedures in channdingp Moreover, we have shown
that the capacity remains the same even if the erasure isrknow-causally to the encoder.

Following the theorem that feedback does not increase tpacts of a memoryless channel
[11], Shannon also argued that this theorem can be extemdebannels with memory if the
channel state can be computed at the encoder. Our systengdalis into this criteria, since the
previous input of the channel can be thought of as the chasta®d. The proof for Shannon’s
argument was omitted, although not trivial, and still ssad a conjecture.

Following Shannon’s conjecture, it could be interestingdaive the capacity of the input-
constrained erasure channel with delayed feedback, namieén the input to the channel at time
i depends on the message and the tuple’, wherev is the delay of the feedback. Dynamic
programming formulation for the delayed-feedback capaistfeasible and could shed light
on Shannon’s conjecture and on the capacity of the inpustcained erasure channel without
feedback. Furthermore, a model with arbitrary delayedldeell will provide a new upper bound

for the capacity of the input-constrained BEC without fescly a problem that is wide open.

APPENDIX A

PROOF OFLEMMA

Proof of Lemma 1:

« A sufficient condition for the concavity of a functiofip) is that the second derivative is
negative for any value of. We denotek = - and find a condition ork such that the
second derivative is negative. To simplify the derivatione take H,(-) to be the binary
entropy with the natural logarithm base, since multiplmatby a constant does not effect

concavity. Calculation shows that

(ptk)* 1-p) _ _
& (Hp)\ ey 2k 1“( pp) 2n(1 ~p) (15)
dp? \p+k/) P '
It suffices to examine the sign of the numerator, sipée> 0. Define g(p) = % —

2k In (%) — 21In(1 — p). Derivation of the maximum fop(p) shows that it has only one
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maximum, which is ap = 1. Substitutingg() = —4(% + k) + 21In 2. It then follows that
g(p) < 0,¥p € [0,1] if and only if & > \/%E — 1 0.088.

. Derivation of the first derivative of (p) shows that the derivative is equal to zero if and
only if p: = (1—p)**< holds. The uniqueness of the maximum point follows from et f
thatp% increases ag grows, while(1 — p)l"'% decreases with a growing
Now, assume that the maximum pg, € (%, 1]. Symmetry of the binary entropy function
implies H,(p,,) = Hy(pm), and therefore, it is sufficient to examine the denominaorce
both arguments,,, p,, € [0, 1], it then follows thatf (p,,) < f(p.), which is a contradiction.

. This property follows from substituting the relatipn = (1 —p)!* into the functionf (p).

APPENDIX B

PROOF OFTHEOREM 5

The next lemma is technical and will be useful in the proof bkdrem 5.

Lemma 6. The functionf, (=) = éH, () — ze:) is concave or{0, 1] and its maximum is at
Z = Pey WherepE = arg maX0<p<% pﬁb(};) .
<p<d pry L

Proof of Lemma 6:The concavity off.(z) on z € [0, 1] follows from the concavity of the

binary entropy function, and therefore, it suffices to shbat the first derivative of.(z) at p.

is equal to zero. The definition ¢f, (11), and Lemma 1 imply the relatioglg [Zi(j)} 2=p. = 0,
which is equivalent to
/ 1
Hy(pe)(pe + g) — Hy(pe) = 0. (16)
The first derivative off.(z) at the pointp, is:
d _ _Hb<pe) e _Hb(pe)
% €Hb<z) - ZepE T % Z=pe — 6[—Ib(z) - epe T % Z=pe
_ ng;(Z)(pe + %) - EHb(p6>
P+t
@0,
where (a) follows from (16). u

We proceed to the proof of Theorem 5.
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Proof of Theorem 5: Substitutingz = 0 into (10) yieldsp, + h.(0) = h.(1). It can be
shown that ifh.(z) solves (10), then any function of the form(z) + constant also solves this
equation. Therefore, we can fix(0) = 0, which implies thati.(1) = p.. It then follows that

the DP operator with the functioh(z) is:

Hb(pe
€ —l_

~—

(Th?)(z) = sup eH,(d) +€(1 —9) +eh(1=19).

0<6<z

Now, the termh’(1 — 0) is calculated for two cases:

3
=

EH,(8) — (1 — &)eled jf 1 — 5 < p,
A1 — 6) = pete (17)
Holpe) if 1—0>p,.
To complete the proof, we have three cases for calculatiagofferaton7'n})(z):
« Foro <z < p,, the constraind < § < z implies that0 < § < p., and from (17), we have

h*(1 — 6) = 22J | et us show that (10) is satisfied:
p6+7

H,(p. H,(p.
b(pl)Jre b(Pe)
B p5+

(Th!)(z) = sup €Hy(0) + &(1 —0)

0<6<z Pe
Hy(pe) | Hy(pe

= sup €H,(0) — J€ b(p 1) + b(p)
0<6<> Det 7z  DPet

Hy(p)  Hy(pe
e b(pl)Jr b(pl)
ps_}_j pe"‘g

€

A=

@ el () —
= he(z) + pc,

where (a) follows from Lemma 6.
« Forp. <z < 1-p,, the same calculation as for the previous interval shows/tha —¢) =
le) for all § € [0,1 — p. Let us show that (10) is satisfied:
_ _ Hb(pe> Hb(pe
Th*)(z) = sup €Hy(d) +¢€(1 -9 €
(TH)(E) = sup eHu(b) +&(1 = 0); B + e 5

= sup eH,(6) — setope) | Holp)

~—

0<6<z Pet i peti
(a) _ 7Hb De Hb pe)
= €Hy(pe) — pe€ ( 1> + ( :
De + € De + c
_ Hb(ps) + Hb(pe)
Pett  peti

= hi(2) + pf,
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where (a) follows from Lemma 6.
« Forl—p. <z <1, the functionh(1 — 6) can have different terms, and therefore, we

separate:
H, H,
(Th*)(2) = max < sup €Hy() + €1 —9) b(psl) 1 b(pel)7
0<3<1—pe pet:  peti
Hy(pe Hy(pe
sup_et(6) + e(1 - 0)7 20+ etnfa) — (1~ ) L))
1—pe§5§2 pe + g pE + E
(@) Hy(pe) | Ho(pe) _ . Hb(pe))
- + ; 1+ e)Hy(6) +éee(1 -6
e <p6 + % De + % 17§5u§%§z 6( 6) b( ) 66( )p6 -+ %
@ 2Hb<pe)
- 1
De + 2

= hi(2) + pf,

where (a) follows from Lemma 6, andb) follows from

Hb(pe
€ —l_

~—

Hy(pe
sup  &(1+ €)Hy(8) + ee(1 — §) b(pl)g sup  é(1+e)Hy(0)+ sup ee(1— )
1-pe<6<z Pet 7z 1-pe<i<s 1-pe<6<z
Hb(pe

De +

s

=

~—~—

=€(1+e)Hy(1 —pe) +€€(1 — (1 —pe))

a =

Hb(ps)
pe+ =

[2€p. + 1 + €]

APPENDIX C

ACCURATE RATE ANALYSIS

The rate analysis in Section VI was simplified by assuming ¢aah transmitted bit is Bey).
Here, we show precisely that our coding scheme can be agbittase toC™. The idea is to
separate the coding scheme into two parts using a pararhetdrich is a fixed constant. First,
we use the coding scheme from Section VI-B to transmit a lagaber,nR — )\, of message
bits, while a different coding scheme will be used to trartgh®e remaining\ bits. We show that
the rate of the overall scheme is essentially determinechbyrdte of the first coding scheme.

The next lemma will be used for the rate analysis of the firslimp scheme,
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Lemma 7. Each transmitted bit,X;, can be chosen to be distributed as Ber ¢;), where

, 1
0<e < YR

Proof: Assume that at timeg, a procedure begins and its corresponding set of possible
messages i31,_,. According toL,, the number of messages that are labelléds |p|M;_4|],

where || is the floor operator. The resulting input distributionXs ~ Ber(45t=tll), which

can be written also aX; ~ Ber(p — ¢;) sincep — i — < W=l < p,

In case of erasure at timerecall that the number of messages that were labélled L, is

greater than the number of messages labélleédnd thus, we are able to construct the labelling
L, as follows;|p|M,_,|| messages that were labell@dat the previous transmission are flipped
to '1’, and all the remaining messages are labeligdlt is clear that the input distribution is
preserved in this case, and upon consecutive eraslyesnd L, are being exchanged and the
input distribution is not changed. Note that the choicesatelling are made in advance and
both encoder and decoder agree on current labelling. [ |

The encoding procedure occurs repeatedly and is over whersdh of possible messages
is less or equal thag*. Denote bye;,e,,...,e; the correction factors for thé successful
transmissions until the scheme is over. Following the saereations in Section VI, it follows
that the rate isi — = Ho(—ci)

k(1_5+P)—Z§:1 e
For the\ remaining bits, we perform a code where a bit of message lswed by zero and

this pair is transmitted repeatedly until a successfulamasission. Thus, to send the message
bit 0/, the pair’00’ is repeated until00’ or ‘07’ are received, and to send the messagélhit
the bits’10’ are repeatedly transmitted until’# is received. The decoding for this scheme is
straightforward, and calculation of the rate gives tRat <.

To summarize, the average rate for the overall coding schieme
nkR—\\ = A\ -
R = R — | R.
() 7 ()
Consider the next lower bound aR,
R_(nR—A) S Hy(p—e) +(i)1—e
nRk ) k(= +p) - S e nR) 2

> (nR—)\) kmin; Hy(p — ;) N ( A ) 1—¢

nR k(7= +p) — kmin;e; nR) 2
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@ <nR—)\) Hy(p —27%) < A ) 1—e¢
Z 1 + ) )

where (a) follows from Lemma 7, namely; € [0,27*) fori =1,... k.
Lettingn — oo, we see thaf?* = Hb(ﬁ’;f” is achievable. Thus, by choosingo be arbitrarily

1—e

large (but still finite), we can mak&* arbitrarily close to the capacitg™.
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