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Abstract—We study the problem of secure bidirec-
tional relaying in the presence of an “honest but
curious” relay. We consider the setting where all
links between nodes are additive white Gaussian noise
(AWGN) channels, and show that using nested lattice
codes, it is possible to obtain strong secrecy. A ran-
domized encoder based on probability mass functions
obtained by sampling the Gaussian function is used,
and we show that the mutual information between
the secret messages and the vector received by the
relay is arbitrarily small for large block lengths. We
determine sufficient conditions for secure and reliable
communication, and find achievable rates. We then
extend the results to the case of secure relaying in a
multi-hop network with K + 1 hops.

I. Introduction
Consider the bidirectional relay problem, where two

nodes, A and B (called the user nodes) wish to exchange
messages via an intermediate relay node, R. All nodes op-
erate in the half-duplex mode, and all links between nodes
are additive white Gaussian noise (AWGN) channels.

We will use the compute-and-forward protocol [13], [14]
for this problem. In this protocol, communication takes
place in two phases: the multiple-access phase and the
broadcast phase. In the multiple-access phase, both user
nodes encode their messages and simultaneously transmit
to the relay. Let X (resp. Y ) be the message possessed
by user A (resp. B). The messages are independent, and
uniformly distributed over the set of all messages, say X.
The encoder at node A (resp. B) stochastically maps the
message X (resp. Y ) into a d-dimensional real vector u
(resp. v), which is sent to the relay. The relay receives

w = u + v + z, (1)

where z denotes independent zero-mean AWGN with vari-
ance σ2. We assume that the channel gains from the user
nodes to the relay are equal to 1, and the general case is
left as future work. An average transmit power constraint
of P is imposed on the user nodes, i.e.,

1
d
E‖u‖2 ≤ P, and 1

d
E‖v‖2 ≤ P, (2)

the expectations being taken over u and v, respectively.
From w, the relay R is required to compute X ⊕Y , for an
appropriately chosen binary operator ⊕ on X which makes
X a finite Abelian group. In the broadcast phase, R encodes

X ⊕ Y into a d-dimensional real vector, and broadcasts it
to the user nodes. Our focus for the rest of this paper lies
exclusively on the multiple-access phase, and we will not
consider the broadcast phase hereafter.

Our measure of secrecy at the relay is the mutual infor-
mation between X (resp. Y ) and u + v, i.e., I(X; u + v)
(resp. I(Y ; u + v)), and we want to make this arbitrarily
small as the number of channel uses increases. Note that
since the noise z is independent of everything else, this also
means that I(X; w) and I(Y ; w) become arbitrarily small.
This is referred to as strong secrecy in the literature [12].

The problem of secure bidirectional relaying was earlier
studied in [7] under a weak secrecy constraint, where only
the mutual information rate, 1

dI(X; w), goes to zero. The
results were extended to strong secrecy in [8], where it
was shown that a rate of 1

2 log2
( 1

2 + P
σ2

)
− 1 can be

obtained with strong secrecy using nested lattice codes
and universal hash functions.

We here propose a scheme that uses nested lattice codes
and randomized encoding to achieve strong secrecy. For a
given message, the user node transmits a lattice point at
random, according to a probability mass function which
is obtained by sampling and appropriately normalizing
a Gaussian function, e−

‖u‖2
2P . We will prove that such a

scheme guarantees strong secrecy, and we will then study
achievable rates. The novelty of our scheme is that given a
pair of nested lattices, we specify exactly what probability
mass function (pmf) is used to randomize at the encoder
to achieve secure communication. We also show that the
rate of convergence to zero of I(X; u+v) and I(Y ; u+v)
is exponential in d. A similar scheme was studied earlier
in [9], [10], wherein a pmf obtained by sampling a den-
sity function having a compactly supported characteristic
function was used. It was shown there that perfect secrecy,
i.e., I(X; u + v) = I(Y ; u + v) = 0, could be obtained.
However, in that case, we were only able to achieve a
transmission rate of 1

2 log2
( P
σ2

)
− log2(2e). Employing a

signalling scheme that uses sampled Gaussians allows us to
improve the achievable rate to 1

2 log2
( 1

2 + P
σ2

)
− 1

2 log2(2e).
Sampled Gaussian functions have been previously used in
the context of the wiretap channel [11], and we will make
good use of the techniques developed there.

We also extend these results to the problem of relaying



messages in a multi-hop line network with K + 1 hops,
where the relays are independent, passive eavesdroppers.
This problem was studied in [7], and achievable rates
were found under a weak secrecy constraint. We use the
same protocol as in [7], and show that strong secrecy can
be achieved using our scheme. In comparison to [7], the
transmission rates obtained using our scheme is lower by
around 0.11 bits, but we obtain strong secrecy.

The paper is organized as follows. In Section II, we
describe our coding scheme, and state the main result
(Theorem 1) for the bidirectional relay. The theorem is
proved in Section III, with some of the details given in an
appendix. Finally, in Section IV, we extend the results to
the multi-hop scenario.

II. Coding scheme
We first establish some notation. The set of real

numbers and the set of integers are denoted by R and
Z, respectively. For a d-dimensional real vector x, the `2
norm of x is denoted by ‖x‖. If X is a random variable,
then E[X] denotes the expected value of X.

Let {v1,v2, . . . ,vk} be a set of k linearly independent
vectors in Rd. The set of all integer-linear combinations of
the vi’s is called a lattice in Rd [2], and k is called the rank
of the lattice. In this work, we will consider only full-rank
lattices, i.e., k = d. For any x, z ∈ Rd, and real κ > 0, we
define

fκ,x(z) := 1
(
√

2πκ)d
e−
‖z−x‖2

2κ2 , (3)

and for any lattice Λ in Rd,

fκ,x(Λ) :=
∑
λ∈Λ

fκ,x(λ). (4)

For ease of notation, fκ(z) will mean fκ,0(z), and fκ(Λ)
will mean fκ,0(Λ).

The coding scheme used in the sequel is described below:
Code: We use a (Λ(d),Λ(d)

0 ) nested lattice code. It
consists of a pair of full-rank nested lattices, Λ(d) and Λ(d)

0 ,
with Λ(d)

0 ⊆ Λ(d) ⊆ Rd. The lattice Λ(d)
0 is called the coarse

lattice, and Λ(d) is called the fine lattice. The messages are
chosen from the quotient group, G(d) := Λ(d)/Λ(d)

0 , and ⊕
will be the addition operation on G(d).

Encoding: Let V(Λ(d)
0 ) denote the fundamental Voronoi

region1 of Λ(d)
0 . For any coset Λj in Λ(d)/Λ(d)

0 , we can
choose a unique representative lattice point for Λj from
Λ(d)∩V(Λ(d)

0 ). Call this λj . Observe that Λj = Λ(d)
0 +λj :=

{λ + λj : λ ∈ Λ(d)
0 }. Fix a κ > 0. If node A possesses

message (coset) Λj , then it transmits a random lattice
point, u, chosen from the coset Λj according to the pmf

pj(u) =


fκ(u)

fκ,−λj (Λ(d)
0 )

, if u ∈ Λ(d)
0 + λj

0, otherwise.
(5)

1For a lattice Λ in Rd, and any x ∈ Rd, let QΛ(x) =
arg minλ∈Λ‖x − λ‖ be the map that sends x to the closest lat-
tice point. Then, the fundamental Voronoi region of Λ is the set
{x ∈ Rd : QΛ(x) = 0}.

Similarly, if node B possesses message Λk, then it transmits
a random lattice point according to pk(v).

Decoding: The relay uses a lattice decoder. Let w,
given by (1), be the vector received by R. Then, the relay
estimates Λj ⊕ Λk to be coset represented by the closest
point in Λ(d) to w.

Achievable power-rate pair: We say that a power-rate
pair (P,R) is achievable with strong secrecy if for every
δ > 0, there exists a sequence of (Λ(d),Λ(d)

0 ) nested lattice
codes such that for all sufficiently large d,
• The average transmit power, defined to be 1

dE‖u‖
2 =

1
dE‖v‖

2, is less than P + δ;
• The transmission rate, which is defined as

1
d log2 |G(d)|, is greater than R− δ;

• The average probability of decoding X⊕Y incorrectly
from u + v + z is less than δ; and

• The mutual information, I(X; u + v) = I(Y ; u + v)
is less than δ.

The main result of this paper can be stated as follows:

Theorem 1. Over the bidirectional relay, for any P ≥
4eσ2, a power-rate pair of(

P, 1
2 log2

(
P
σ2

)
− 1

2 log2 2e
)

is achievable with strong secrecy.

The achievable rate can be improved using random
dithering and MMSE equalization at the relay [5], [13].
An argument as in [13] yields that a power-rate pair of(

P, 1
2 log2

(
1
2 + P

σ2

)
− 1

2 log2 2e
)

is achievable with strong secrecy.

III. Proof of Theorem 1
Consider the coding scheme described in Section II,

taking the parameter κ in (5) to be equal to
√
P. To prove

strong secrecy, we use a technique from [11]. Let pU+V (·)
denote the pmf of u + v. For any coset Λj of Λ(d)

0 in Λ(d),
having λj as its coset representative in Λ(d) ∩ V(Λ(d)

0 ), let
pU+V |X(·|λj) denote the pmf of u + v conditioned on the
event {X = Λj}. We will first show that for every x in
Λ(d) ∩ V(Λ(d)), the variational distance,

V(pU+V , pU+V |X(·|x)) :=
∑

w∈Λ(d)

|pU+V (w)−pU+V |X(w|x)|

goes to zero exponentially (in d) as d goes to infinity. We
will then use the following basic result, which bounds from
above the mutual information I(X; u + v) in terms of the
average variational distance

dV :=
∑

x
V(pU+V , pU+V |X(·|x))pX(x)

between the distributions pU+V and pU+V |X .

Lemma 1 ([4], Lemma 1). For |G(d)| ≥ 4, we have
I(X; u + v) ≤ dV

(
log2 |G(d)| − log2 dV

)
.



Given a lattice Λ in Rd, we define vol(Λ) to be the
volume of V(Λ). For any κ > 0, the flatness factor, εΛ(κ),
is defined [1], [11] as

εΛ(κ) =
maxx∈V(Λ) |

(∑
λ∈Λ fκ,λ(x)

)
− 1/vol(Λ)|

1/vol(Λ) . (6)

The following theorem gives a bound on the variational
distance in terms of the flatness factor. A proof is sketched
in the appendix.

Theorem 2. If the sequence of nested lattice pairs,
(Λ(d),Λ(d)

0 ) is such that the flatness factor, ε(d) :=
εΛ(d)

0

(√
P/2

)
is less than 1/2, then the variational dis-

tance is bounded from above as

V(pU+V , pU+V |X(·|x)) ≤ 216ε(d). (7)

Therefore, if the hypothesis of the above theorem holds,
then by Lemma 1, we have

I(X; u + v) ≤ 216ε(d)(log2 |G(d)| − log2 216ε(d)).

As we will see below in Section III-B, we can choose nested
lattices (Λ(d),Λ(d)

0 ) such that |G(d)| grows exponentially
in d, while ε(d) goes to zero exponentially in d. Thus, the
mutual information I(X; u+v) (and similarly I(Y ; u+v))
goes to zero exponentially as d goes to infinity, thereby
guaranteeing strong secrecy.

A. Average transmit power
The average transmit power is given by 1

dE‖u‖
2 =

1
dE‖v‖

2 = 1
d

∑
λ∈Λ(d) ‖λ‖2pU (λ). Using inequalities (16)

and (17) from the appendix, we can bound the average
transmit power on either side as follows:(

1− ε(d)

1 + ε(d)

)
1
d

∑
λ∈Λ(d)

‖λ‖2
f√P(λ)
f√P(Λ(d))

≤ 1
d
E‖u‖2 ≤

(
1 + ε(d)

1− ε(d)

)
1
d

∑
λ∈Λ(d)

‖λ‖2
f√P(λ)
f√P(Λ(d))

. (8)

Now, Lemma 6 from [11] shows that as d → ∞, the
term 1

d

∑
λ∈Λ(d) ‖λ‖2

f√P(λ)
f√P(Λ(d)) converges to P, provided

εΛ(d)(
√
P/2)→ 0. We thus have the following lemma.

Lemma 2. As d→∞, if the flatness factors εΛ(d)
0

(
√
P/2),

and εΛ(d)(
√
P/2) both converge to zero, then the average

transmit power, 1
dE‖u‖

2 = 1
dE‖v‖

2, converges to P.

B. Achievable rate
We choose our sequence of nested lattices, (Λ(d),Λ(d)

0 )
so as to satisfy the following properties:

(L1) The sequence of coarse lattices, Λ(d)
0 , is good for cover-

ing, MSE quantization, and AWGN channel coding2.
2For the definitions of lattices good for covering, MSE quantiza-

tion, and AWGN channel coding, and discussions involving these, see
e.g. [6].

(L2) The sequence of fine lattices, Λ(d), is good for AWGN
channel coding.

(L3) The flatness factor εΛ(d)
0

(
√
P/2) goes to zero expo-

nentially as d goes to infinity.
(L4) The flatness factor εΛ(d)(

√
P/2) goes to zero exponen-

tially as d goes to infinity.
From [13], we know that for any R > 0, a sequence of

nested lattices (Λ(d),Λ(d)
0 ) can be chosen to satisfy (L1)

and (L2), with 1
d log2 |G(d)| = 1

d log2
vol(Λ(d)

0 )
vol(Λ(d)) → R as d→

∞. Theorem 3 and Proposition 4 of [11] show that such
a sequence of nested lattices can also be made to satisfy
(L3) if (

vol(Λ(d)
0 )
)2/d

2π(P/2) < 1, (9)

and (L4) if (
vol(Λ(d))

)2/d
2π(P/4) < 1. (10)

In order to satisfy (9), let us choose
(

vol(Λ(d)
0 )
)2/d

=
πP − δ for some arbitrary δ > 0. Using vol(Λ(d)) =
vol(Λ(d)

0 )/|G(d)|, we see that for (10) to hold, the trans-
mission rate has to satisfy

1
d

log2 |G(d)| > 1/2 + 1
2 log2

(
1− δ

πP

)
. (11)

Thus, if the above holds, then we can have properties (L3)
and (L4), and hence, by Lemma 2, we can have the average
transmit power converging to P.

Since the sequence of fine lattices is good for AWGN
channel coding, the probability of error in decoding X⊕Y
from u + v + z can be made to decay to zero as d→∞ if(

vol(Λ(d))
)2/d

2πeσ2 > 1. (12)

We have vol(Λ(d)) = vol(Λ(d)
0 )/|G(d)|, and we have chosen

(vol(Λ(d)
0 ))2/d = πP − δ. Putting these into (12), and

observing that δ is arbitrary, we see that if
1
d

log2 |G(d)| < 1
2 log2

(
P
σ2

)
− 1

2 log2 2e, (13)

then the probability of error can be made to go down to
zero as d goes to infinity.

If P ≥ 4eσ2, then the right-hand side of (13) ex-
ceeds that of (11). Hence, we can find a sequence of
nested lattice codes that achieves a power-rate pair of(
P, 1

2 log2
( P
σ2

)
− 1

2 log2 2e
)

with strong secrecy, thus prov-
ing Theorem 1.

Remark. The strongly secure scheme proposed by He
and Yener in [8] also used nested lattice codes as we
have done here. They obtain strong secrecy using universal
hash functions, and show the existence of a suitable linear
hash function that ensures that the mutual information
decays exponentially in d. On the other hand, we have



used a sampled Gaussian pmf for randomization at the
encoder, and hence, for a given pair of nested lattices, we
explicitly specify the distribution used for randomization.
Even using our scheme, the mutual information goes down
to zero exponentially in d. But unlike [8], which was valid
under a maximum power constraint at each node, the
codebook we use is unbounded, so our scheme can only
satisfy an average power constraint. Also, the achievable
rate in the scheme of He and Yener is slightly higher (by
1
2 log2

e
2 bits per channel use). Our scheme has these two

drawbacks but is still attractive because unlike [8], which is
only an existence result, we give an explicit randomization
technique for security. The scheme in [8] was coupled with
an Algebraic Manipulation Detection (AMD) code [3] for
Byzantine detection, and it was shown that the probability
of a Byzantine attack being undetected could be made
to decay to zero exponentially in d. We remark that our
coding scheme can also be extended to this scenario, and
be used as a replacement for the nested lattice code in [8].

IV. Multi-hop relaying

In this section, we apply our coding scheme to the
scenario of multi-hop relaying. A multi-hop line network
with K + 1 hops consists of K + 2 nodes: a source
(node 0), a destination (node K + 1), and K relay nodes,
labelled by 1, 2, . . . ,K. The nodes are laid out in a straight
line, in increasing order of their labels. All nodes are
half-duplex. Each node can communicate only with its
immediate neighbours, and communication is by broad-
cast of messages to the neighbours. All links between
nodes are identical, zero mean, variance σ2 AWGN chan-
nels. The source has to send M independent messages,
X1, X2, . . . , XM , to the destination across the network.
The relays act as passive eavesdroppers, but do not co-
operate with each other, i.e., the information available at
a relay is not shared with the other relays. We use the
scheme proposed by He and Yener [7] for relaying, except
that each node in the network employs the coding scheme
described in Section II. The communication takes place in
2M + K + 1 phases. Each phase requires d channel uses.
An average power constraint is imposed at the nodes3. If
vi[t] denotes the vector transmitted by the ith node in
phase t, then 1

dE‖vi[t]‖ ≤ P (d), for 0 ≤ i ≤ K + 1 and
1 ≤ i ≤ K + 2M + 1. The rate of the scheme, R(d)

M , is
the number of bits of information transmitted per channel
use by the source in order to send M messages to the
destination, i.e., R(d)

M := M
d(K+2M+1) log2 |G(d)|.

We say that a power-rate pair of (P,R) is achievable
for M -message transmission with strong secrecy in a
multi-hop line network with K + 1 hops, if for every
δ > 0, there exists a sequence of (Λ(d)

0 ,Λ(d)) nested
lattice codes such that for all sufficiently large d, we

3He and Yener [7] use a slightly different power constraint than
the one defined here, and hence their expression for achievable rate
is different.

have P (d) < P + δ, R(d)
M > R − δ, the probability

of the destination decoding X1, X2, . . . , XM incorrectly,
η(d) < δ, and the mutual information between the mes-
sages and all variables available at the kth relay is at
most δ for each k. It can be shown that a power-rate
pair of

(
P, M

2(K+2M+1)
[
log2

( P
σ2

)
− log2 2e

])
is achievable

for M -message transmission with strong secrecy using this
scheme. We omit the details due to lack of space. Letting
the number of messages, M , go to infinity, we have

Theorem 3. For P ≥ 4eσ2, a power-rate pair of(
P, 1

4 log2

(
P
σ2

)
− 1

4 log2 2e
)

is achievable with strong secrecy in a multi-hop network.

Appendix: Proof of Theorem 2
The following lemma from [11] will be used in the proof.

Lemma 3 ([11], Lemma 4). Let Λ be a lattice in Rd. Then,
for all z ∈ Rd, and κ > 0,

1− εΛ(κ)
1 + εΛ(κ) ≤

fκ,z(Λ)
fκ(Λ) ≤ 1.

For ease of notation, we will suppress the index d in ε(d),
Λ(d)

0 and Λ(d). For a message X chosen at node A, let x
be the coset representative of X from Λ ∩ V(Λ0). For any
subset S ⊆ Rd, let 1S(·) denote the indicator function of
S, i.e., 1S(u) is 1 if u ∈ S, and 0 otherwise. From (5),
with κ =

√
P, we have

pU |X(u|x) =
f√P(u)

f√P,−x(Λ0)1Λ0+x(u). (14)

Let GX := Λ ∩ V(Λ0), and N := |G(d)| = |GX |. Since
the messages are uniformly distributed,

pU (u) =
∑

x∈GX

f√P(u)
f√P,−x(Λ0)

1(Λ0+x)(u)
N

. (15)

Now, we can bound pU in terms of εΛ0(κ) as follows.
Since the flatness factor, εΛ0(κ), is a decreasing function
of κ [11], we have εΛ0(

√
P) < εΛ0(

√
P/2) = ε. Hence,

writing f√P(u)
f√P,−x(Λ0) in (15) as f√P(u)

f√P(Λ0)
f√P(Λ0)

f√P,−x(Λ0) , we get via
Lemma 3,

f√P(u)
Nf√P(Λ0) ≤ pU (u) ≤

f√P(u)
Nf√P(Λ0)

(
1 + ε

1− ε

)
. (16)

Re-arranging, we obtain(
1− ε
1 + ε

)
pU (u)Nf√P(Λ0) ≤ f√P(u) ≤ pU (u)Nf√P(Λ0).

Since
∑

u∈Λ pU (u) = 1, we see that(
1− ε
1 + ε

)
Nf√P(Λ0) ≤ f√P(Λ) ≤ Nf√P(Λ0). (17)



It can similarly be verified that for any a ∈ Rn,(
1− ε
1 + ε

)
Nf√P

2 ,a
(Λ0) ≤ f√P

2 ,a
(Λ) ≤ Nf√P

2 ,a
(Λ0).

(18)
We establish some more notation for convenience. Let

α(w) :=
f√2P(w)
Nf√P(Λ0)

f√P
2

(Λ0)

f√P(Λ0) , (19)

β(x,w) :=
(
f√P

2 ,
w
2 −x(Λ0)

f√P
2

(Λ0)

)(
f√P,−x(Λ0)
f√P(Λ0)

)−1

. (20)

We can bound pU+V |X and pU+V as follows.

Lemma 4. For any lattice point w ∈ Λ, and any x ∈ GX ,
we have(

1− ε
1 + ε

)
α(w) ≤ pU+V (w) ≤

(
1 + ε

1− ε

)2
α(w) (21)

β(x,w)α(w) ≤ pU+V |X(w|x) ≤
(

1 + ε

1− ε

)
β(x,w)α(w).

(22)

Proof: Let x be any fine lattice point from GX . Then,

pU+V |X(w|x) =
∑

t∈Λ0+x

pU |X(t|x)pV (w− t)

Using (14) and (16) in the above equation, we obtain∑
t∈Λ0+x

f√P(t)
f√P,−x(Λ0)

f√P(w− t)
Nf√P(Λ0) ≤ pU+V |X(w|x) ≤

∑
t∈Λ0+x

f√P(t)
f√P,−x(Λ0)

f√P(w− t)
Nf√P(Λ0)

(
1 + ε

1− ε

)
. (23)

Expanding f√P(t)f√P(w − t) in terms of exponentials,
and some algebraic manipulation reveals that∑

t∈Λ0+x

f√P(t)
f√P,−x(Λ0)

f√P(w− t)
Nf√P(Λ0) =

f√2P(w)
Nf√P(Λ0)

f√P
2 ,

w
2 −x(Λ0)

f√P,−x(Λ0) . (24)

Substituting this in (23), and writing this in terms of
α and β, we obtain (22). Similarly, bounding pU and pV
from above and below using (16), proceeding as above, and
finally using (18) to bound f√P

2 ,
w
2

(Λ), we get (21).
Observe that (20) is a ratio of two terms, both of which

can be bounded using Lemma 3 to get(
1− ε
1 + ε

)
≤ β(x,w) ≤

(
1 + ε

1− ε

)
. (25)

Let pU+V and p
U+V respectively denote the upper and

lower bounds for pU+V in (21), and let pU+V |X and
p
U+V |X respectively denote the upper and lower bounds

for pU+V |X in (22). Then, we can say that |pU+V |X(w|x)−

pU+V (w)| is less than or equal to the maximum of
|pU+V |X(w|x)−p

U+V (w)| and |p
U+V |X(w|x)−pU+V (w)|.

Substituting for |pU+V |X(w|x)− p
U+V (w)|, and noting

that ((1 + ε)/(1− ε))3 ≤ 1 + 64ε for ε < 1/2, we obtain

|pU+V |X(w|x)− p
U+V (w)| ≤ α(w)

(
1− ε
1 + ε

)
64ε. (26)

Similarly, expressing |p
U+V |X(w|x)−pU+V (w)| in terms of

α and β, and using the fact that ((1− ε)/(1 + ε))3 ≥ 1−8ε
for ε < 1/2, we get

|p
U+V |X(w|x)− pU+V (w)| ≤ α(w)

(
1 + ε

1− ε

)2
8ε. (27)

Using (21) and the fact that
∑

w∈Λ pU+V (w) = 1, we have(
1− ε
1 + ε

)2
≤
∑
w∈Λ

α(w) ≤
(

1 + ε

1− ε

)
. (28)

The inequality (7) can now be obtained by combining
(26) and (27), summing over w, and using (28) to bound∑

w∈Λ α(w) from above. Theorem 2 is thus proved.
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