
On the Design of Codes for DNA Computing⋆

Olgica Milenkovic1 and Navin Kashyap2

1 University of Colorado, Boulder, CO 80309, USA.
Email: olgica.milenkovic@colorado.edu

2 Queen’s University, Kingston, ON, K7L 3N6, Canada.
Email: nkashyap@mast.queensu.ca

Abstract. In this paper, we describe a broad class of problems arising
in the context of designing codes for DNA computing. We primarily fo-
cus on design considerations pertaining to the phenomena of secondary
structure formation in single-stranded DNA molecules and non-selective
cross-hybridization. Secondary structure formation refers to the tendency
of single-stranded DNA sequences to fold back upon themselves, thus
becoming inactive in the computation process, while non-selective cross-
hybridization refers to unwanted pairing between DNA sequences in-
volved in the computation process. We use the Nussinov-Jacobson algo-
rithm for secondary structure prediction to identify some design criteria
that reduce the possibility of secondary structure formation in a code-
word. These design criteria can be formulated in terms of constraints on
the number of complementary pair matches between a DNA codeword
and some of its shifts. We provide a sampling of simple techniques for
enumerating and constructing sets of DNA sequences with properties
that inhibit non-selective hybridization and secondary structure forma-
tion. Novel constructions of such codes include using cyclic reversible
extended Goppa codes, generalized Hadamard matrices, and a binary
mapping approach. Cyclic code constructions are particularly useful in
light of the fact we prove that the presence of a cyclic structure reduces
the complexity of testing DNA codes for secondary structure formation.

1 Introduction

The field of DNA-based computation was established in a seminal paper by Adle-
man [2], in which he described an experiment involving the use of DNA molecules
to solve a specific instance of the directed travelling salesman problem. DNA se-
quences within living cells of eukaryotic species appear in double helices (alter-
natively, duplexes), in which one strand of nucleotides is chemically attached to
its complementary strand. However, in DNA-based computation, only relatively
short single-stranded DNA sequences, referred to as oligonucleotides, are used.
The computing process simply consists of allowing these oligonucleotide strands

⋆ This work was supported in part by a research grant from the Natural Sciences and
Engineering Research Council (NSERC) of Canada. Portions of this work were pre-
sented at the 2005 IEEE International Symposium on Information Theory (ISIT’05)
held in Adelaide, Australia.

2

to self-assemble to form long DNA molecules via the process of hybridization.
Hybridization is the process in which oligonucleotides with long regions of com-
plementarity bond with each other. The astounding parallelism of biochemical
reactions makes a DNA computer capable of parallel-processing information on
an enormously large scale. However, despite its enormous potential, DNA-based
computing is unlikely to completely replace electronic computing, due to the
inherent unreliability of biochemical reactions, as well as the sheer speed and
flexibility of silicon-based devices [30]. Nevertheless, there exist special applica-
tions for which they may represent an attractive alternative or the only available
option for future development. These include cell-based computation systems for
cancer diagnostics and treatment [3], and ultra-high density storage media [17].
Such applications require the design of oligonucleotide sequences that allow for
operations to be performed on them with a high degree of reliability.

The process of self-assembly in DNA computing requires the oligonucleotide
strands (codewords) participating in the computation to selectively hybridize in
a manner compatible with the goals of the computation. If the codewords are
not chosen appropriately, unwanted (non-selective) hybridization may occur. For
many applications, even more detrimental is the fact that an oligonucleotide se-
quence may self-hybridize, i.e., fold back onto itself, forming a secondary struc-
ture which prevents the sequence from participating in the computation process
altogether3. For example, a large number of read-out failures in the DNA storage
system described in [17] was attributed to the formation of hairpins, a special
secondary structure formed by oligonucleotide sequences. The number of com-
putational errors in a DNA system designed for solving an instance of a 3-SAT
problem [5] were reduced by generating DNA sequences that avoid folding and
undesired hybridization phenomena. Similar issues were reported in [4], where a
DNA-based computer was used for breaking the Digital Encryption Standard.

Even if hybridization can be made error-free and no detrimental folding of
sequences occurs, there remain other reliability issues to be dealt with. One such
issue is DNA duplex stability [6],[18]: here, a hybridized pair of sequences has to
remain in a duplex formation for a sufficiently long period of time in order for
the extraction and sequence “sifting” processes to be performed accurately. It
was observed in [6] that the stability of duplexes depends on the combinatorial
structure of the sequences, more precisely, on the combination of adjacent pairs
of bases present in the oligonucleotide strands.

It must be pointed out that the problem of designing sets of codewords that
have properties suitable for DNA computing purposes can be considered to be
partially solved from the computational point of view. There exist many software
packages, such as the Vienna package [29] and the mfold web server [32], that can
predict the secondary structure of a single-stranded DNA (or RNA) sequence.
But such procedures can often be computationally expensive when large numbers
of sequences are sought, or if the sequences are long. Furthermore, they do not

3 This is not a problem with all DNA-based systems; there exist DNA-based computer
logic circuits for which specific folding patterns are actually required by the system
architecture itself [25].

3

provide any insight into the combinatorial nature of the problems at hand. Such
insight is extremely valuable from the perspective of functional genomics, for
which one of the outstanding principles is that the folding structure of a sequence
is closely related to its biological function [7].

Until now, the focus of coding for DNA computing [1],[8],[10],[14],[18],[23] was
on constructing large sets of DNA codewords with fixed base frequencies (con-
stant GC-content) and prescribed minimum distance properties. When used in
DNA computing experiments, such sets of codewords are expected to lead to
very rare hybridization errors. The largest families of linear codes avoiding hy-
bridization errors were described in [10], while bounds on the size of such codes
were derived in [18] and [14]. As an example, it was shown in [10] that there exist
94595072 codewords of length 20 with minimum Hamming distance d = 5 and
with exactly 10 G/C bases. In comparison, without disclosing their design meth-
ods, Shoemaker et al. reported [24] the existence of only 9105 DNA sequences of
length 20, at Hamming distance at least 5, free of secondary structure at tem-
peratures of 61 ± 5 oC. Since ambient temperature and chemical composition
have a significant influence on the secondary structure of oligonucleotides, it is
possible that this number is even smaller for other environmental parameters.

The aim of this paper is to provide a broad description of the kinds of prob-
lems that arise in coding for DNA computing, and in particular, to stress the
fact that DNA code design must take secondary structure considerations into
account. We provide the necessary biological background and terminology in
Section 2 of the paper. Section 3 contains a detailed description of the sec-
ondary structure considerations that must go into the design of DNA codes.
By studying the well-known Nussinov-Jacobson algorithm for secondary struc-
ture prediction, we show how the presence of a cyclic structure in a DNA code
reduces the complexity of the problem of testing the codewords for secondary
structure. We also use the algorithm to argue that imposing constraints on the
number of complementary base pair matches between a DNA sequence and some
of its shifts could inhibit the occurrence of sequence folding. In Section 4, con-
sider the enumeration of sequences satisfying some of these shift constraints.
Finally, in Section 5, we provide a sampling of techniques for constructing cyclic
DNA codes with properties that are believed to limit non-selective hybridization
and/or self-hybridization. Among the many possible approaches for code design,
those resulting in large families with simple descriptions are pursued.

2 Background and Notation

We start by introducing some basic definitions and concepts relating to DNA
sequences. The oligonucleotide4 sequences used for DNA computing are oriented
words over a four-letter alphabet, consisting of four bases — two purines, adenine
(A) and guanine (G), and two pyrimidines, thymine (T) and cytosine (C). A

4 Usually, the word ‘oligonucleotide’ refers to single-stranded nucleotide chains consist-
ing of a few dozen bases; we will however use the same word to refer to single-stranded
DNA sequences composed of any number of bases.

4

DNA strand is oriented due to the asymmetric structure of the sugar-phosphate
backbone. It is standard to designate one end of a strand as 3′ and the other as
5′, according to the number of the free carbon molecule. Only strands of opposite
orientation can hybridize to form a stable duplex. A DNA code is simply a set
of (oriented) sequences over the alphabet Q = {A,C,G,T}.

Each purine base is the Watson-Crick complement of a unique pyrimidine
base (and vice versa) — adenine and thymine form a complementary pair, as do
guanine and cytosine. We describe this using the notation A = T, T = A, C =
G, G = C. The chemical ties between the two WC pairs are different — C and
G pair through three hydrogen bonds, while A and T pair through two hydrogen
bonds. We will assume that hybridization only occurs between complementary
base pairs, although certain semi-stable bonds between mismatched pairs form
relatively frequently due to biological mutations.

Let q = q1q2 . . . qn be a word of length n over the alphabetQ. For 1 ≤ i ≤ j ≤
n, we will use the notation q[i,j] to denote the subsequence qiqi+1 . . . qj . Further-
more, the sequence obtained by reversing q, i.e., the sequence qnqn−1 . . . q1, will
be denoted by qR. The Watson-Crick complement, or reverse-complement, of q

is defined to be qRC = qn qn−1 . . . q1, where qi denotes the Watson-Crick com-
plement of qi. For any pair of length-n words p = p1p2 . . . pn and q = q1q2 . . . qn
over the alphabet Q, the Hamming distance dH(p, q) is defined as usual to be the
number of positions i at which pi 6= qi. We further define the reverse Hamming
distance between the words p and q to be dR

H(p,q) = dH(p,qR). Similarly, their
reverse-complement Hamming distance is defined to be dRC

H (p,q) = dH(p,qRC).
For a DNA code C, we define its minimum (Hamming) distance, minimum reverse
(Hamming) distance, and minimum reverse-complement (Hamming) distance in
the obvious manner:

dH(C) = min
p,q∈C,p 6=q

dH(p,q), dR
H(C) = min

p,q∈C
dR

H(p,q)

dRC
H (C) = min

p,q∈C
dRC

H (p,q)

We also extend the above definitions of sequence complements, reversals, dH , dR
H

and dRC
H to sequences and codes over an arbitrary alphabet A, for an appropri-

ately defined complementation map from A onto A. For example, for A = {0, 1},
we define complementation as usual via 0 = 1 and 1 = 0.

Hybridization between a pair of distinct DNA sequences is referred to as
cross-hybridization, to distinguish it from self-hybridization or sequence folding.
The distance measures defined above come into play when evaluating cross-
hybridization properties of DNA words under the assumption of a perfectly rigid
DNA backbone. As an example, consider two DNA codewords 3′−AAGCTA−
5′ and 3′ − ATGCTA − 5′ at Hamming distance one from each other. For
such a pair of codewords, the reverse complement of the first codeword, namely
3′−TAGCTT− 5′, will show a very large affinity to hybridize with the second
codeword. In order to prevent such a possibility, one could impose a minimum
Hamming distance constraint, dH(C) ≥ dmin, for some sufficiently large value of
dmin. On the other hand, in order to prevent unwanted hybridization between two

5

DNA codewords, one could try to ensure that the reverse-complement distance
between all codewords is larger then a prescribed threshold, i.e. dRC(C) ≥ dRC

min.
Indeed, if the reverse-complement distance between two codewords is small, as
for example in the case of the DNA strands 3′ − AAGCTA − 5′ and 3′ −
TACCTT−5′, then there is a good chance that the two strands will hybridize.

Hamming distance is not the only measure that can be used to assess DNA
cross-hybridization patterns. For example, if the DNA sugar-phosphate back-
bone is taken to be a perfectly elastic structure, then it is possible for bases
not necessarily at the same position in two strands to pair with each other.
Here, it is assumed that bases not necessarily at the same position in two
strands can pair with each other. For example, consider the two sequences 3′ −

A
(1)
1 A

(1)
2 C

(1)
1 C

(1)
2 A

(1)
3 G

(1)
1 A

(1)
4 A

(1)
5 −5′ and 3′−G

(2)
3 G

(2)
2 T

(2)
3 T

(2)
2 A

(2)
1 G

(2)
2 G

(2)
1

T
(2)
1 − 5′. Under the “perfectly elastic backbone” model, hybridization between

the subsequences of not necessarily consecutive bases, 3′−A
(1)
2 C

(1)
1 C

(1)
2 A

(1)
3 A

(1)
4 −

5′ and 5′−T
(2)
1 G

(2)
1 G

(2)
2 T

(2)
2 T

(2)
3 −3′, is plausible. The relevant distance measure

for this model is the Levenshtein distance [15], which for a pair of sequences p

and q, is defined to be smallest number, dL(p,q), of insertions and deletions
needed to convert p to q. A study of DNA codes with respect to this metric
can be found in [8]. The recent work of D’yachkov et al. [9] considers a distance
measure that is a slight variation on the Levenshtein metric, and seems to fit
better in the DNA coding context than the Hamming or Levenshtein metrics.

Another important code design consideration linked to the process of oligonu-
cleotide hybridization pertains to the GC-content of sequences in a DNA code.
The GC-content, wGC(q), of a DNA sequence q = q1q2 . . . qn is defined to be
the number of indices i such that qi ∈ {G,C}. A DNA code in which all code-
words have the same GC-content, w, is called a constant GC-content code. The
constant GC-content requirement assures similar thermodynamic characteristics
for all codewords, and is introduced in order to ensure that all hybridization op-
erations take place in parallel, i.e., roughly at the same time. The GC-content
is usually required to be in the range of 30–50% of the length of the code.

One other issue associated with hybridization that we will mention is that
of the stability of the resultant DNA duplexes. The duplexes formed during
the hybridization phase of the computation process must remain paired for the
entire duration of the long “post-processing” phase in which the sequences are
extracted and sifted through to determine the result of the computation. As
observed in [6], the stability of DNA duplexes depends closely on the sequence
of bases in the individual strands; thus, it should be possible to take duplex
stability into account while designing DNA codes. We will, however, not touch
upon this topic further in this paper.

3 Secondary Structure Considerations

Probably the most important criterion in designing codewords for DNA comput-
ing purposes is that the codewords should not form secondary structures that

6

C GC G

G

GAA

A
C

G CG C

C GC G
A UA U

C

G

C

G

C

G

C

G

A

U

A

U

G

C

G

C

U

A

U

A

C C
C

G

C

G

G

C

G

C

G

U

C

U
UA

U
U

A
A

stem
helical region
stem
helical region

hairpin loophairpin loop

bulge loopbulge loop

unstructured
single strand
unstructured
single strand

internal loopinternal loop

branching loopbranching loop

Fig. 1. DNA/RNA secondary structure model (reprinted from [19]).

cause them to become computationally inactive. A secondary structure is formed
by a chemically active oligonucleotide sequence folding back onto itself by com-
plementary base pair hybridization. As a consequence of the folding, elaborate
spatial structures are formed, the most important components of which are loops
(including branching, internal, hairpin and bulge loops), stem helical regions, as
well as unstructured single strands5. Figure 1 illustrates these structures for an
RNA strand6. It has been shown experimentally that the most important factors
influencing the secondary structure of a DNA sequence are the number of base
pairs in stem regions, the number of base pairs in a hairpin loop region as well
as the number of unpaired bases.

For a collection of interacting entities, one measure commonly used for as-
sessing the system’s property is the free energy. The stability and form of a
secondary configuration is usually governed by this energy, the general rule-of-
thumb being that a secondary structure minimizes the free energy associated
with a DNA sequence. The free energy of a secondary structure is determined
by the energy of its constituent pairings, and consequently, its loops. Now, the
energy of a pairing depends on the bases involved in the pairing as well as all
bases adjacent to it. Adding complication is the fact that in the presence of other
neighboring pairings, these energies change according to some nontrivial rules.

Nevertheless, some simple dynamic programming techniques can be used to
approximately determine base pairings in a secondary structure of a oligonu-
cleotide DNA sequence. Among these techniques, the Nussinov-Jacobson (NJ)
folding algorithm [22] is one of the simplest and most widely used schemes.

5 We do not consider more complicated structures such as the so-called “pseudoknots”;
the general problem of determining secondary structure including pseudoknots is
known to be NP-complete.

6 Oligonucleotide DNA sequences are structurally very similar to RNA sequences,
which are by their very nature single-stranded, and consist of the same bases as
DNA strands, except for thymine being replaced by uracil (U).

7

3.1 The Nussinov-Jacobson Algorithm

The NJ algorithm is based on the assumption that in a DNA sequence q1q2 . . . qn,
the energy of interaction, α(qi, qj), between the pair of bases (qi, qj) is indepen-
dent of all other base pairs. The interaction energies α(qi, qj) are negative quan-
tities whose values usually depend on the actual choice of the base pair (qi, qj).
One frequently used set of values for RNA sequences is [7]

α(qi, qj) =






−5 if (qi, qj) ∈ {(G,C), (C,G)}
−4 if (qi, qj) ∈ {(A,T), (T,A)}
−1 if (qi, qj) ∈ {(G,T), (T,G)}.

The value of −1 used for the pairs (G,T) and (T,G) indicates a certain fre-
quency of bonding between these mismatched pairs. We will, however, focus our
attention only on pairings between Watson-Crick complements. In addition, in
order to simplify the discussion, we will restrict our attention to a uniform inter-
action energy model with α(qi, qj) = −1 whenever qi and qj are Watson-Crick
complements and α(qi, qj) = 0 otherwise.

Let Ei,j denote the minimum free energy of the subsequence qi . . . qj . The
independence assumption allows us to compute the minimum free energy of the
sequence q1q2 . . . qn through the recursion

Ei,j = min

{
Ei+1,j−1 + α(qi, qj),
Ei,k−1 + Ek,j , i < k ≤ j,

(1)

where Ei,i = Ei,i−1 = 0 for i = 1, 2, ..., n. The value of E1,n is the minimum
free energy of a secondary structure of q1q2 . . . qn. Note that E1,n ≤ 0. A large
negative value for the free energy, E1,n, of a sequence is a good indicator of the
presence of a secondary structure in the physical DNA sequence.

The NJ algorithm can be described in terms of free-energy tables, an example
of which is shown in Figure 2. In a free-energy table, the entry at position (i, j)
(the top left position being (1,1)), contains the value ofEi,j . The table is filled out
by initializing the entries on the main diagonal and on the first lower sub-diagonal
of the matrix to zero, and calculating the energy levels according to the recursion
in (1). The calculations proceed successively through the upper diagonals: entries
at positions (1, 2), (2, 3), ..., (n− 1, n) are calculated first, followed by entries at
positions (1, 3), (2, 4), ..., (n−2, n), and so on. Note that the entry at (i, j), j > i,
depends on α(i, j) and the entries at (i, l), l = i, . . . , j−1, (l, j), l = i+1, . . . , n−1,
and (i + 1, j − 1). The complexity of the NJ algorithm is O(n3), since each of
the O(n2) entries requires O(n) computations [19].

The minimum-energy secondary structure itself can be found by the back-
tracking algorithm [22] which retraces the steps of the NJ algorithm (for a de-
scription of the backtracking algorithm, the reader is referred to [19]). Figure 2
shows the minimum-energy structure of the sequence GGGAAATCC, as de-
termined by the backtracking algorithm. The trace-back path through the free-
energy table is indicated by the boldface entries in the table.

From a DNA code design point of view, it would be of considerable interest
to determine a set of amenable properties that oligonucleotide sequences should

8

G G G A A A T C C

G 0 0 0 0 0 0 -1 -2 -3

G 0 0 0 0 0 0 -1 -2 -3

G * 0 0 0 0 0 -1 -2 -2
A * * 0 0 0 0 -1 -1 -1
A * * * 0 0 0 -1 -1 -1
A * * * * 0 0 -1 -1 -1
T * * * * * 0 0 0 0
C * * * * * * 0 0 0
C * * * * * * * 0 0

G

G

G

A

A A

T

C

C

Fig. 2. Free-energy table for the sequence GGGAAATCC, along with its secondary
structure as obtained by backtracking through the table.

possess so as to either facilitate testing for secondary structure, or exhibit a very
low probability for forming such a structure. We next make some straightforward,
yet important, observations about the NJ algorithm that provide us with some
guidelines for DNA code design.

3.2 Testing for Secondary Structure

One design principle that arises out of a study of the NJ algorithm is that DNA
codes should contain a cyclic structure. The key idea behind this principle is
based on the observation that once the free-energy table, and consequently, the
minimum free energy of a DNA sequence q has been computed, the correspond-
ing computation for any cyclic shift of q becomes easy. This idea is summarized
in the following proposition.

Proposition 1. The overall complexity of computing the free-energy tables of a
DNA codeword q1q2 . . . qn and all of its cyclic shifts is O(n3).

Sketch of Proof . It is enough to show that the free-energy table of the cyclic shift
q∗ = qnq1 . . . qn−1 can be obtained from the table of q = q1 . . . qn in O(n2) steps.
The sets of subsequences contained within the positions 1, . . . , n − 1 of q and
within the positions 2, . . . , n of q* are the same. This implies that only entries
in the first row of the energy table of q* have to be computed. Computing each
entry in the first row involves O(n) operations, resulting in a total complexity
of O(n2). ⊓⊔

The above result shows that the complexity of testing a DNA code with M
length-n codewords for secondary structure is reduced from O(Mn3) to O(Mn2),
if the code is cyclic. It is also worth pointing out that a cyclic code structure can
also simplify the actual production of the DNA sequences that form the code.

Example 1. The minimal free energies of the sequence shown in Figure 3(a)
and all its cyclic shifts lie in the range −0.24 to −0.41 kcal/mol. None of these
sequences has a secondary structure. On the other hand, for the sequence in
Figure 3(b), all its cyclic shifts have a secondary structure, and the minimal free

9

G G G A
T

G
G
T
G
A

G
A

A
TTTAGT

T
G

T
A
T
A
A

A
A

A
T
G
A

AG
A

T A
T

T
G G G T A

G
G
A
G

T
GTT

(a) (b)

Fig. 3. Secondary structures of two DNA codewords at a temperature of 37o
C.

energies are in the range −1.05 to −1.0 kcal/mol. The actual construction of
these sequences is described in Example 3 in Section 5.2. Their secondary struc-
tures have been determined using the Vienna RNA/DNA secondary structure
package [29], which is based on the NJ algorithm, but which uses more accurate
values for the parameters α(qi, qj), as well as sophisticated prediction methods
for base pairing probabilities.

3.3 Avoiding Formation of Secondary Structure

While testing DNA sequences for secondary structure is one aspect of the code
design process, it is equally important to know how to design codewords that
have a low tendency to form secondary structures. The obvious approach here
would be to identify properties of the sequence of bases in an oligonucleotide
that would encourage secondary structure formation, so that we could then try
to construct codewords which do not have those properties. For example, it seems
intuitively clear that if a sequence q has long, non-overlapping segments s1 and
s2 such that s1 = sRC

2 , then there is a good chance that q will fold to enable
s1 to bind with sR

2 thus forming a stable structure. Actually, we can slightly
strengthen the above condition for folding by requiring that s1 and s2 be spaced
sufficiently far apart, since a DNA oligonucleotide usually does not make sharp
turns, i.e., does not bend over small regions. In any case, the logic is that a
sequence that avoids such a scenario should not fold. Unfortunately, this is not
quite true: it is not necessarily the longest regions of reverse-complementarity
in a sequence that cause a secondary structure to form, as demonstrated by
the example in Figure 4. The longest regions of reverse-complementarity in the
sequence in the figure are actually the segments of length 7 at either end, which
do not actually hybridize with each other within the secondary structure.

A subtler approach to finding properties that inhibit folding consists of iden-
tifying components of secondary structures that have a destabilizing effect on

10

GCATTGC
AAAA

T
T A

T T T A A
A A T G C

G C A
A
G C T

T
CG

GC
AATGC

Fig. 4. Secondary structure of the sequence CGTAA. . .TTACG.

the structure. Since the DNA sugar-phosphate backbone is a semi-rigid struc-
ture, it is reasonable to expect that long loops (especially hairpin loops) tend
to destabilize a secondary structure, unless they are held together by an even
longer string of stacked base-pairs, which is an unlikely occurrence.

To identify what could induce a hairpin loop to form in a DNA sequence, we
enlist the help of the free-energy tables from the NJ algorithm. As an illustrative
example, consider the table and corresponding secondary structure in Figure 2.
The secondary structure consists of three stacked base-pairs, and a hairpin loop
involving two A’s. The three stacked base-pairs correspond to the three diagonal
steps (−3 → −2, −2 → −1 and −1 → 0) made in the trace-back path indicated
by boldface entries in the table; the hairpin loop corresponds to the vertical
segment formed by the two 0’s in the trace-back path. In general, a vertical
segment involving m ‘0’ entries from the first m upper diagonals indicates the
presence of a hairpin loop of length m. For sufficiently large m, such a loop
would have a destabilizing effect on any nearby stacked base-pairs, leading to an
unravelling of the overall structure.

Thus, if the first m upper diagonals of the free-energy table of a DNA se-
quence q = q1q2 . . . qn contain only zero-valued entries, then a hairpin loop of
size m is necessarily present in the secondary structure. Consequently, it is very
likely that even if base pairing is possible, the overall structure will be unsta-
ble7. It is easy to verify that the first m upper diagonals in the free-energy table
contain only zeros if and only if q and any of its first m − 1 shifts contain no
complementary base pairs at the same positions, i.e., qi 6= qi+j for 1 ≤ j ≤ m−1
and 1 ≤ i ≤ n− j.

Relaxing the above argument a little, we see that from the stand-point of
designing DNA codewords without secondary structure, it is desirable to have
codewords for which the sums of the elements on each of the first few diagonals in

7 The no sharp turn constraint implies that one can restrict its attention only to the
fifth, sixth, ..., m-th upper diagonals, but for reasons of simplicity, we will consider
only the previously described scenario.

11

their free-energy tables are either all zero or of some very small absolute value.
This requirement can be rephrased in terms of requiring a DNA sequence to
satisfy a “shift property”, in which a sequence and its first few shifts have few
or no complementary base pairs at the same positions.

In the following section, we define a shift property of a sequence more rigor-
ously, and provide some results on the enumeration of DNA sequences satisfying
certain shift properties.

4 Enumerating DNA sequences satisfying a shift property

Recall that for q ∈ Q = {A,C,G,T}, q denotes the Watson-Crick complement
of q.

Definition 1. Given a DNA sequence q = q1q2 . . . qn, we define for 0 ≤ i ≤
n − 1, the ith matching number, µi(q), of q to be the number of indices ℓ ∈
{1, 2, . . . , n− i} such that qℓ = qi+ℓ.

A shift property of q is any sort of restriction imposed on the matching
numbers µi(q).

Enumerating sequences having various types of shift properties is useful be-
cause doing so yields upper bounds on the size of DNA codes whose codewords
satisfy such properties. We present a few such combinatorial results here.

Given s ≥ 1, let gs(n) denote the number of sequences, q, of length n for
which µi(q) = 0, i = 1, ..., s. For n ≤ s, we take gs(n) to be gn−1(n).

Lemma 2. For all n > 1, gn−1(n) = 4(2n − 1).

Proof. It is clear that a DNA sequence is counted by gn−1(n) iff it contains no
pair of complementary bases. Such a sequence must be over one of the alphabets
{A,G}, {A,C}, {T,G} and {T,C}. There are 4(2n − 1) such sequences, since
there are 2n sequences over each of these alphabets, of which An, Tn, Gn and
Cn are each counted twice. ⊓⊔

Lemma 3. For all n > s,

gs(n) = 2gs(n− 1) + gs(n− s).

Proof. Let Gs(n) denote the set of all sequences q of length n for which µi(q) =
0, i = 1, ..., s. Thus, |Gs(n)| = gs(n). Note that for any q ∈ Gs(n), q[n−s,n]

cannot contain a complementary pair of bases, and hence cannot contain three
distinct bases. Let E(n) denote the set of sequences q1q2 . . . qn ∈ Gs(n) such
that qn−s+1 = qn−s+2 = · · · = qn, and let U(n) = Gs(n) \ E(n). We thus have
|E(n)| + |U(n)| = gs(n). Each sequence in E(n) is obtained from some sequence
q1q2 . . . qn−s+1 ∈ Gs(n − s + 1) by appending s − 1 bases, qn−s+2, . . . , qn, all
equal to qn−s+1. Hence, |E(n)| = |Gs(n− s+ 1)| = gs(n− s+ 1), and therefore,
|U(n)| = gs(n) − gs(n− s+ 1).

12

Now, observe that each sequence q1q2 . . . qn ∈ Gs(n) is obtained by appending
a single base, qn, to some sequence q1q2 . . . qn−1 ∈ Gs(n−1). If q1q2 . . . qn−1 is in
fact in E(n− 1), then there are three choices for qn. Otherwise, if q1q2 . . . qn−1 ∈
U(n− 1), there are only two possible choices for qn. Hence,

gs(n) = 3 |E(n− 1)| + 2 |U(n− 1)|

= 3 gs(n− s) + 2 (gs(n− 1) − gs(n− s))

This proves the claimed result. ⊓⊔

From Lemmas 2 and 3, we obtain the following result.

Theorem 4. The generating function Gs(z) =
∑∞

z=1 gs(n)z−n is given by

Gs(z) = 4 ·
zs−1 + zz−2 + · · · + z + 1

zs − 2zs−1 − 1
.

It can be shown that for s > 1, the polynomial ψs(z) = zs − 2zs−1 − 1 in the
denominator of Gs(z) has a real root, ρs, in the interval (2,3), and s − 1 other
roots within the unit circle. It follows that gs(n) ∼ βs(ρs)

n for some constant
βs > 0. It is easily seen that ρs decreases as s increases, and that lims→∞ ρs = 2.

Theorem 5. Given an s ∈ {1, 2, . . . , n − 1}, the number of length-n DNA se-
quences q such that µs(q) = m, is

(
n−s
m

)
4s3n−s−m.

Proof. Let Bs(n,m) be the set of length-n DNA sequences q such that µs(q) =
m. A sequence q = q1q2 . . . qn is in Bs(n,m) iff the set I = {i : qi = qi−s}
has cardinality m. So, to construct such a sequence, we first arbitrarily pick
q1, q2, . . . , qs and an I ⊂ {s + 1, s + 2, . . . , n}, |I| = m, which can be done in
4s

(
n−s
m

)
ways. The rest of q is constructed recursively: for i ≥ s+1, set qi = qi−s

if i ∈ I, and pick a qi 6= qi−1 if i /∈ I. Thus, there are 3 choices for each i ≥ s+1,
i /∈ I, and hence a total of

(
n−s
m

)
4s3n−s−m sequences q in Bs(n,m).

The enumeration of DNA sequences satisfying any sort of shift property be-
comes considerably more difficult if we bring in the additional requirement of
constant GC-content. The following result can be proved by applying the pow-
erful Goulden-Jackson method of combinatorial enumeration [11, Section 2.8].
The result is a direct application of Theorem 2.8.6 and Lemma 2.8.10 in [11],
and the details of the algebraic manipulations involved are omitted.

Theorem 6. The number of DNA sequences q of length n and GC-content w,
such that µ1(q) = 0, is given by the coefficient of xnyw in the (formal) power
series expansion of

Φ(x, y) =

(
1 −

2x

1 + x
−

2xy

1 + xy

)−1

.

13

5 Some DNA Code Constructions

Having in previous sections described some of the code design problems in the
context of DNA computing, we present some sample solutions in this section.
We mainly focus on constructions of cyclic codes, since as mentioned earlier, the
presence of a cyclic structure reduces the complexity of testing DNA codes for
secondary structure formation, and also simplifies the DNA sequence fabrication
procedure. We have seen that other properties desirable in DNA codes include
large minimum Hamming distance, large minimum reverse-complement distance,
constant GC-content, and the shift properties introduced in Sections 3.3 and 4.
The codes presented in this section are constructed in such a way as to possess
some subset of these properties. There are many such code constructions possible,
so we pick some that are easy to describe and result in sufficiently large codes.
Due to the restrictions imposed on the code design methods with respect to
testing for secondary structure, the resulting codes are sub-optimal with respect
to the codeword cardinality criteria [10].

5.1 DNA Codes from Cyclic Reversible Extended Goppa Codes

The use of reversible cyclic codes for the construction of DNA sequences was
previously proposed in [1] and [23]. Here, we will follow a more general approach
that allows for the construction of large families of DNA codes with a certain
guaranteed minimum distance and minimum reverse-complement distance, based
on extended Goppa codes over GF (22) [28].

Recall that a code C is said to be reversible if c ∈ C implies that cR ∈ C
[16, p. 206]. It is a well-known fact that a cyclic code is reversible if and only
if its generator polynomial g(z) is self-reciprocal, i.e., zdeg(g(z))g(z−1) = ±g(z).
Given an [n, k, d] reversible cyclic code, C, overGF (22) with minimum distance d,

consider the code Ĉ obtained by first eliminating all the self-reversible codewords
(i.e., codewords c such that cR = c), and then choosing one half of the remaining
codewords such that no codeword and its reverse are selected simultaneously. If
r is the number of self-reversible codewords in C, then Ĉ is a nonlinear code with
(4k − r)/2 codewords of length n, and furthermore, dH(Ĉ) ≥ d and dR

H(Ĉ) ≥ d.
The value of r can be determined easily, as shown below.

Proposition 7. A reversible cyclic code of dimension k over GF (q) contains
q⌈k/2⌉ self-reversible codewords.

Proof. If a = a0a1 . . . an−1 is a self-reversible codeword, then the polynomial
a(z) = a0 + a1z + . . . an−1z

n−1 is self-reciprocal. Let g(z) be the generator
polynomial for the code, so that a(z) = ia(z)g(z) for some polynomial ia(z) of
degree at most k − 1. Since g(z) and a(z) are self-reciprocal, so is ia(z). Hence,
ia(z) is uniquely determined by the coefficients of its ⌈k/2⌉ least-order terms zi,
i = 0, 1, . . . , ⌈k/2⌉− 1, and there are exactly q⌈k/2⌉ choices for these coefficients.

⊓⊔

14

The code Ĉ defined above can be thought of as a DNA code by identifying
GF (22) with the DNA alphabet Q = {A,C,G,T}. Let D be the code obtained

from Ĉ by means of the following simple modification: for each c ∈ C, replace
each of the first ⌊n/2⌋ symbols of c by its Watson-Crick complement. It is clear

that D has the same number of codewords as Ĉ, and that dH(D) ≥ d as well. It

can also readily be seen that if n is even, then dRC
H (D) = dR

H(Ĉ), and if n is odd,

then dRC
H (D) may be one less than dR

H(Ĉ). In any case, we have dRC
H (D) ≥ d− 1.

We apply the above construction to a class of extended Goppa codes that
are known to be reversible and cyclic. We first recall the definition of a Goppa
code.

Definition 2. [16, p. 338] Let L = {α1, ..., αn} ⊆ GF (qm), for q a power of a
prime and m,n ∈ Z+. Let g(z) be a polynomial of degree δ < n over GF (qm)
such that g(z) has no root in L. The Goppa code, Γ (L), consists of all words
(c1, ..., cn), ci ∈ GF (q) such that

∑n
i=1

ci

z−αi

≡ 0 mod g(z). Γ (L) is a code of
length n, dimension k ≥ n−mδ and minimum distance d ≥ δ + 1.

The polynomial g(z) in the definition above is referred to as the Goppa poly-
nomial. We shall consider Goppa codes derived from Goppa polynomials of the
form g(z) = [(z − β1)(z − β2)]

a, for some integer a. Two choices for the roots
β1, β2 and the corresponding location sets L are of interest: (i) β1, β2 ∈ GF (qm),
L = GF (qm) − {β1, β2}, n = qm − 2; (ii) L = GF (qm), with β1, β2 ∈ GF (q2m),

such that β2 = βqm

1 , β1 = βqm

2 , and n = qm.

It was shown in [28] that for such a choice of g(z) and for an ordering of
the location set L satisfying αi + αn+1−i = β1 + β2, the extended Goppa codes
obtained by adding an overall parity check to Γ (L) in the above cases are re-
versible and cyclic. The extended code has the same dimension as Γ (L), but
the minimum distance is now at least 2a+ 2. Applying the DNA code construc-
tion described earlier to such a family of extended Goppa codes over GF (4), we
obtain the following theorem.

Theorem 8. For arbitrary positive integers a,m, there exist cyclic DNA codes
D such that dH(D) ≥ 2a+ 2 and dRC

H (D) ≥ 2a+ 1, having the following param-
eters:
(i) length n = 4m +1, and number of codewords M ≥ 1

2 (422m−2ma−422m−1−ma);

(ii) length n = 4m − 1, and number of codewords M ≥ 1
2 (422m−2(ma+1) −

422m−1−(ma+1)).

Example 2. Let L = GF (22), with q = 22,m = 1, and let β1 = α, β2 = α4,
for a primitive element α of GF (24). We take the Goppa polynomial to be
g(z) = (z − β1)(z − β2), so that a = 1. The extended Goppa code over GF (22)
obtained from these parameters is a code of length 5, dimension 2 and minimum
distance 4.

We list out the elements of GF (22) as {0, 1, θ, 1 + θ}, and make the iden-
tification 0 ↔ G, 1 ↔ C, θ ↔ T, 1 + θ ↔ A, The DNA code D constructed

15

as outlined in this section has dH(D) = dR
H(D) = 4 and dRC

H (D) = 3, and con-
sists of the following six codewords: CGTTC, CAAAT, CTCCA, GCCTT,
GGAGA, ACTAA.

5.2 DNA Codes from Generalized Hadamard Matrices

Hadamard matrices have long been used to construct constant-weight [16, Chap.
2] and constant-composition codes [26]. We continue this tradition by providing
constructions of cyclic codes with constant GC-content, and good minimum
Hamming and reverse-complement distance properties.

A generalized Hadamard matrix H ≡ H(n,Cm) is an n×n square matrix with
entries taken from the set ofmth roots of unity, Cm = {e−2πi ℓ/m, ℓ = 0, ...,m− 1},
that satisfies HH∗ = nI. Here, I denotes the identity matrix of order n, while
∗ stands for complex-conjugation. We will only concern ourselves with the case
m = p for some prime p. A necessary condition for the existence of general-
ized Hadamard matrices H(n,Cp) is that p|n. The exponent matrix, E(n,Zp),
of H(n,Cp) is the n×n matrix with entries in Zp = {0, 1, 2, . . . , p−1}, obtained

by replacing each entry (e−2πi)
ℓ

in H(n,Cp) by the exponent ℓ.
A generalized Hadamard matrix H is said to be in standard form if its first

row and column consist of ones only. The (n−1)× (n−1) square matrix formed
by the remaining entries of H is called the core of H , and the corresponding
submatrix of the exponent matrix E is called the core of E. Clearly, the first
row and column of the exponent matrix of a generalized Hadamard matrix in
standard form consist of zeros only. It can readily be shown (see e.g., [13]) that
the rows of such an exponent matrix must satisfy the following two properties: (i)
in each of the nonzero rows of the exponent matrix, each element of Zp appears
a constant number, n/p, of times; and (ii) the Hamming distance between any
two rows is n(p − 1)/p. We will only consider generalized Hadamard matrices
that are in standard form.

Several constructions of generalized Hadamard matrices are known (see [13]
and the references therein). A particularly nice general construction is given by
the following result from [13].

Theorem 9. [13, Theorem II] Let N = pk − 1 for p prime and k ∈ Z+. Let
g(x) = c0 +c1x+c2x

2 + ...+cN−kx
N−k be a monic polynomial over Zp, of degree

N −k, such that g(x)h(x) = xN −1 over Zp, for some monic irreducible polyno-
mial h(x) ∈ Zp[x]. Suppose that the vector (0, c0, c1, . . . , cN−k, cN−k+1, . . . , cN−1),
with ci = 0 for N − k < i < N , has the property that it contains each ele-
ment of Zp the same number of times. Then the N cyclic shifts of the vector
g = (c0, c1, . . . , cN−1) form the core of the exponent matrix of some Hadamard
matrix H(pk,Cp).

Thus, the core of E ≡ E(pk,Zp) (and hence, H(pk,Cp)) guaranteed by the
above theorem is a circulant matrix consisting of all the N = pk − 1 cyclic shifts
of its first row. We refer to such a core as a cyclic core. Each element of Zp

appears in each row of E exactly (N + 1)/p = pk−1 times, and the Hamming

16

distance between any two rows is exactly (N + 1)(p− 1)/p = (p− 1)pk−1. Thus,
the N rows of the core of E form a constant-composition code consisting of
the N cyclic shifts of some word of length N over the alphabet Zp, with the
Hamming distance between any two codewords being (p− 1)pk−1.

DNA codes with constant GC-content can obviously be constructed from
constant-composition codes over Zp by mapping the symbols of Zp to the symbols
of the DNA alphabet, Q = {A,C,G,T}. For example, using the cyclic constant-
composition code of length 3k − 1 over Z3 guaranteed by Theorem 9, and using
the mapping that takes 0 to A, 1 to T and 2 to G, we obtain a DNA code D
with 3k −1 codewords and a GC-content of 3k−1. Clearly, dH(D) = 2 ·3k−1, and
in fact, since G = C and no codeword in D contains the symbol C, we also have
dRC

H (D) ≥ 3k−1. We summarize this in the following corollary to Theorem 9.

Corollary 10. For any k ∈ Z+, there exist DNA codes D with 3k−1 codewords
of length 3k − 1, with constant GC-content equal to 3k−1, dH(D) = 2 · 3k−1,
dRC

H (D) ≥ 3k−1. and in which each codeword is a cyclic shift of a fixed generator
codeword g.

Example 3. Each of the following vectors generates a cyclic core of a Hadamard
matrix [13]:

g(1) = (22201221202001110211210200),

g(2) = (20212210222001012112011100).

DNA codes can be obtained from such generators by mapping {0, 1, 2} onto
{A,T,G}. Although all such mappings yield codes with (essentially) the same
parameters, the actual choice of mapping has a strong influence on the sec-
ondary structure of the codewords. For example, the codeword in Figure 3(a)
was obtained from g(1) via the mapping 0 → A, 1 → T, 2 → G, while the code-
word in Figure 3(b) was obtained from the same generator g(1) via the mapping
0 → G, 1 → T, 2 → A.

5.3 Code Constructions via a Binary Mapping

The problem of constructing DNA codes with some of the properties desirable
for DNA computing can be made into a binary code design problem by mapping
the DNA alphabet onto the set of length-two binary words as follows:

A → 00, T → 01, C → 10, G → 11. (2)

The mapping is chosen so that the first bit of the binary image of a base uniquely
determines the complementary pair to which it belongs.

Let q be a DNA sequence. The sequence b(q) obtained by applying coordi-
natewise to q the mapping given in (2), will be called the binary image of q.
If b(q) = b0b1b2 . . . b2n−1, then the subsequence e(q) = b0b2 . . . b2n−2 will be re-
ferred to as the even subsequence of b(q), and o(q) = b1b3 . . . b2n−1 will be called
the odd subsequence of b(q). Thus, for example, for q = ACGTCC, we have

17

b(q) = 001011011010, e(q) = 011011 and o(q) = 001100. Given a DNA code
C, we define its even component E(C) = {e(p) : p ∈ C}, and its odd component
O(C) = {o(p) : p ∈ C}.

It is clear from the choice of the binary mapping that the GC-content of a
DNA sequence q is equal to the Hamming weight of the binary sequence e(q).
Consequently, a DNA code C is a constant GC-content code if and only if its
even component, E(C), is a constant-weight code. Other properties of a DNA
code can also be expressed in terms of properties of its even and code compo-
nents (for example, see Lemma 11 below). Thus if we have binary codes B1 and
B2 with suitable properties, then we can construct a good DNA code, whose
binary image is equivalent to B1 × B2, that has B1 and B2 as its even and odd
components. We present two such constructions here.

Construction B1 Let B be a binary code consisting of M codewords of
length n and minimum distance dmin, such that c ∈ B implies that c ∈ B. For
w > 0, consider the constant-weight subcode Bw = {u ∈ B : wH(u) = w}, where
wH(·) denotes Hamming weight. Choose w > 0 such that n ≥ 2w + ⌈dmin/2⌉,
and consider a DNA code, Cw, with the following choice for its even and odd
components:

Ew = {ab : a,b ∈ Bw}, O = {abRC : a,b ∈ B, a <lex b},

where <lex denotes lexicographic ordering. The a <lex b in the definition of O
ensures that if abRC ∈ O, then baRC /∈ O, so that distinct codewords in O
cannot be reverse-complements of each other.

The code Ew has |Bw|
2 codewords of length 2n and constant weight n. Fur-

thermore, dH(Ew) ≥ dmin and dR
H(Ew) ≥ dmin, the first of these inequalities

following from the fact that Bw is a subset of codewords in B. To prove the
second inequality, note that for any two distinct codewords ab and cd, we have

dH(ab,dRCcR) = dH(a,dRC) + dH(b, cR) = dH(a,dRC) + dH(c,bRC).

Since b and d both have weight w, it follows that bRC and dRC have weight
n− w. Due to the constraint on the weight w, we have dH(a,dRC) ≥ ⌈dmin/2⌉,
and similarly, dH(c,bRC) ≥ ⌈dmin/2⌉. Therefore, for all a,b, c,d ∈ Bw, we must
have dH(ab,dRCcR) ≥ 2⌈dmin/2⌉ ≥ dmin.

The code O has M(M−1)/2 codewords of length 2n. Clearly, dH(O) ≥ dmin,
since the component codewords of O are taken from B. Similarly, dRC

H (O) ≥ dmin,
to prove which we only have to observe that for any pair of codewords abRC

and cdRC , dH(abRC ,dcRC) = dH(a,d) + dH(c,b) ≥ dmin.
Therefore, the DNA code

C =

wmax⋃

w=dmin

Cw,

with wmax = (n − ⌈dmin/2⌉)/2, has 1
2 M(M − 1)

∑wmax

w=dmin
|Aw|

2 codewords of

length 2n, and satisfies dH(B) ≥ dmin and dRC
H (B) ≥ dmin.

18

The following lemma (whose simple proof we omit) records a trivial result
that is useful for our next construction. For notational ease, given binary words
x = (xi) and y = (yi), we define x⊕y = (xi+yi), the sum being taken modulo-2,
and x ∗ y = (xiyi).

Lemma 11. Let q be a length-n sequence over the DNA alphabet Q. For i ∈
{1, 2, . . . , n − 1}, defining σi = e(q[1,n−i]) ⊕ e(q[i+1,n]), and τi = o(q[1,n−i]) ⊕
o(q[i+1,n]), we have

µi(q) = wH(σi ∗ τi)

where σi denotes the complement of the binary sequence σi.

Construction B2 Let C be the DNA code obtained by choosing the set of
non-zero codewords of a cyclic simplex code of length n = 2m − 1 for both the
even and odd code components. Recall that a cyclic simplex code of dimension
m is a constant-weight code of length n = 2m − 1 and minimum-distance 2m−1,
composed of the all-zeros codeword and the n distinct cyclic shifts of any non-
zero codeword [12, Chapter 8]. It is clear that the DNA code C is a cyclic code
contains (2m − 1)2 codewords of length 2m − 1 and GC-content 2m−1.

We claim that C has the property that for all i ∈ {1, 2, . . . , n− 1} and q ∈ C,
µi(q) ≤ 2m−2. To see this, observe first that for any q ∈ C, σi and τi, defined
as in Lemma 11, are just truncations of codewords from the simplex code. Since
the simplex code is a constant-weight code, with minimum distance 2m−1, each
pair of codewords shares exactly 2m−2 positions containing 1’s. This implies that
for each pair of simplex codewords, there are exactly 2m−2 positions in which
one codeword contains all 1’s, while the other contains all 0’s. Such positions are
precisely what is counted by wH(σi ∗ τi) in Lemma 11 which proves our claim.

Example 4. Consider the DNA code resulting from Construction B2 using the
cyclic simplex code generated by the codeword 1110100. The DNA code contains
49 codewords of length 7. The minimum Hamming distance of the code is 4, and
the codewords all have GC-content equal to 4. A selected subset of codewords
from this code is listed below:

TGGCTCA, TCCGTGA, CACGGTC, TAGCCTG,

CATGGCT, GATCCGT, GGGAGAA, GGAGAAG.

The last two codewords consist of the bases G and A only, and clearly satisfy
µi = 0 for all i ≤ 7. On the other hand, for the first three codewords we have
µ1 = 1, while for the next three codewords we see that µ1 = 2 (meeting the
upper bound claimed in the construction). Evaluation of this code using the
Vienna secondary structure package [29] shows that none of the 49 codewords
exhibits a secondary structure.

As a final remark, we note that the problem of constructing a DNA code that
can be efficiently tested for secondary structure using the NJ algorithm can also
be reformulated in terms of specifications for the even code component. If the

19

even component code is cyclic, and each codeword in the even component is com-
bined with codewords from the odd component, then “approximate” testing can
be performed in the following manner. The codeword from the even component
code x1, . . . , xn, xi ∈ {0, 1} is tested by the NJ algorithm following the steps
outlined in Section 3.1, except that the pairing energies are found according to

α(xi, xj) =

{
−1 if xi xj ∈ {00, 11}

0 if xi xj ∈ {01, 10}.

The result of the NJ algorithm for the even component codeword represents
the worst-case scenario for DNA sequence folding. If the free energy of some
even component codeword, b, exceeds a certain threshold (which can be deter-
mined by a combination of probabilistic and experimental results), all the DNA
sequences q such that e(q) = b are subjected to an additional test by the al-
gorithm. If the free energy of b is below a given threshold, then one can be
reasonably sure that none of the DNA sequences q that have b as their even
subsequence will form a secondary structure.

References

1. T. Abualrub and A. Ghrayeb, “On the construction of cyclic codes for DNA com-
puting,” preprint.

2. L.M. Adleman, “Molecular computation of solutions to combinatorial problems,”
Science, vol. 266, pp. 1021–1024, Nov. 1994.

3. Y. Benenson, B. Gil, U. Ben-Dor, R. Adar and E. Shapiro, “An autonomous molec-
ular computer for logical control of gene expression,” Nature, vol. 429, pp. 423–429,
May 2004.

4. D. Boneh, C. Dunworth, and R. Lipton, “Breaking DES using a molecular com-
puter,” Technical Report CS-TR-489-95, Department of Computer Science, Prince-
ton University, USA, 1995.

5. R.S. Braich, N. Chelyapov, C. Johnson, P.W.K. Rothemund and L. Adleman,
“Solution of a 20-variable 3-SAT problem on a DNA computer,” Science, vol. 296,
pp. 492–502, April 2002.

6. K. Breslauer, R. Frank, H. Blocker, and L. Marky, “Predicting DNA duplex stabil-
ity from the base sequence,” Proc. Natl. Acad. Sci. USA, vol. 83, pp. 3746–3750,
1986.

7. P. Clote and R. Backofen, Computational Molecular Biology – An Introduction,
Wiley Series in Mathematical and Computational Biology, New York, 2000.

8. A. D’yachkov, P.L. Erdös, A. Macula, V. Rykov, D. Torney, C-S. Tung, P. Vilenkin
and S. White, “Exordium for DNA codes,” J. Comb. Optim., vol. 7, no. 4, pp. 369–
379, 2003.

9. A. D’yachkov, A. Macula, T. Renz, P. Vilenkin and I. Ismagilov, “New results on
DNA codes,” Proc. IEEE Int. Symp. Inform. Theory (ISIT’05), Adelaide, Aus-
tralia, pp. 283–287, Sept. 2005.

10. P. Gaborit and O.D. King, “Linear constructions for DNA codes,” Theoretical
Computer Science, vol. 334, no. 1-3, pp. 99–113, April 2005.

11. I.P. Goulden and D.M. Jackson, Combinatorial Enumeration, Dover, 2004.
12. J.I. Hall, Lecture notes on error-control coding, available online at

http://www.mth.msu.edu/∼jhall/.

20

13. I. Heng and C.H. Cooke, “Polynomial construction of complex Hadamard matrices
with cyclic core,” Applied Mathematics Letters, vol. 12, pp. 87–93, 1999.

14. O.D. King, “Bounds for DNA codes with constant GC-content,” The Electronic
Journal of Combinatorics, vol. 10, no. 1, #R33, 2003.

15. V.I. Levenshtein, “Binary codes capable of correcting deletions, insertions, and
reversals,” Dokl. Akad. Nauk SSSR, vol. 163, no. 4, pp. 845–848, 1965 (Russian).
English translation in Soviet Physics Doklady, vol. 10, no. 8, pp. 707–710, 1966.

16. F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes,
North-Holland, Amsterdam, 1977.

17. M. Mansuripur, P.K. Khulbe, S.M. Kuebler, J.W. Perry, M.S. Giridhar and N.
Peyghambarian, “Information storage and retrieval using macromolecules as stor-
age media,” University of Arizona Technical Report, 2003.

18. A. Marathe, A. E. Condon and R. M. Corn, “On combinatorial DNA word design,”
J. Comput. Biol., vol. 8, pp. 201–219, 2001.

19. S. Mneimneh, “Computational Biology Lecture 20: RNA secondary struc-
tures,” available online at engr.smu.edu/∼saad/courses/cse8354/lectures/

lecture20.pdf.
20. O. Milenkovic, “Generalized Hamming and coset weight enumerators of isodual

codes,” accepted for publication in Designs, Codes and Cryptography.
21. O. Milenkovic and N. Kashyap, “DNA codes that avoid secondary structures,”

Proc. IEEE Int. Symp. Inform. Theory (ISIT’05), Adelaide, Australia, pp. 288–
292, Sept. 2005.

22. R. Nussinov and A.B. Jacobson, “Fast algorithms for predicting the secondary
structure of single stranded RNA ,” Proc. Natl. Acad. Sci. USA, vol. 77, no. 11,
pp. 6309–6313, 1980.

23. V. Rykov, A.J. Macula, D. Torney and P. White, “DNA sequences and quaternary
cyclic codes,” in Proc. IEEE Int. Symp. Inform. Theory (ISIT’01), Washington
DC, p. 248, June 2001.

24. D.D. Shoemaker, D.A. Lashkari, D. Morris, M. Mittman and R.W. David, “Quanti-
tative phenotye analysis of yeast deletion mutants using a highly parallel molecular
bar-coding strategy,” Nature Genetics, vol. 16, pp. 450–456, Dec. 1996.

25. M.N. Stojanovic, D. Stefanovic, “A deoxyribozyme-based molecular automaton,”
Nature Biotechnology vol. 21, pp. 1069–1074, 2003.

26. M. Svanström, P.R.J. Östergard and G.T. Bogdanova, “Bounds and constructions
for ternary constant-composition codes,” IEEE Trans. Inform. Theory, vol. 48, no.
1, pp. 101–111, Jan. 2002.

27. S. Tsaftaris, A. Katsaggelos, T. Pappas and E. Papoutsakis, “DNA computing
from a signal processing viewpoint,” IEEE Signal Processing Magazine, pp. 100–
106, Sept. 2004.

28. K.K. Tzeng and K.P. Zimmermann, “On extending Goppa codes to cyclic codes,”
IEEE Trans. Inform. Theory, vol. IT-21, pp. 712–716, Nov. 1975.

29. The Vienna RNA Secondary Structure Package, http://rna.tbi.univie.ac.at/
cgi-bin/RNAfold.cgi.

30. E. Winfree, “DNA computing by self-assembly,” The Bridge, vol. 33, no. 4,
pp. 31–38, 2003. Also available online at http://www.dna.caltech.edu/Papers/

FOE 2003 final.pdf.
31. D.H. Wood, “Applying error correcting codes to DNA computing,” in Proc. 4th

Int. Meeting on DNA Based Computers, 1998, pp. 109–110.
32. M. Zuker, “Mfold web server for nucleic acid folding and hybridization predic-

tion,” Nucleic Acids Res., vol. 31, no. 13, pp. 3406–15, 2003. Web access at
http://www.bioinfo.rpi.edu/∼zukerm/rna/.

