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Abstract Many different constructions of proofreading tile sets have been proposed in the
literature to reduce the effect of deviations from ideal behaviour of the dynamics of the
molecular tile self-assembly process. In this paper, we consider the effect on the tile as-
sembly process of a different kind of non-ideality, namely,imperfections in the tiles them-
selves. We assume a scenario in which some small proportion of the tiles in a tile set are
“malformed”. We study, through simulations, the effect of such malformed tiles on the self-
assembly process within the kinetic Tile Assembly Model (kTAM). Our simulation results
show that some tile set constructions show greater error-resilience in the presence of mal-
formed tiles than others. For example, the 2- and 3-way overlay compact proofreading tile
sets of Reif et al. (2005) are able to handle malformed tiles quite well. On the other hand, the
snaked proofreading tile set of Chen and Goel (2005) fails toform even moderately-sized
tile assemblies when malformed tiles are present. We show how the Chen-Goel construction
may be modified to yield new snaked proofreading tile sets that are resilient not only to
errors intrinsic to the assembly process, but also to errorscaused by malformed tiles.

Keywords kinetic Tile Assembly Model· malformed tiles· snaked proofreading tile sets

1 Introduction

Molecular self-assembly is a process of bottom-up fabrication of complex structures from
simple parts. The tile assembly models introduced by Erik Winfree (Winfree 1998a,b) are
widely used mathematical models of this process. The modelssuitably extend Wang’s tiling
model (Wang 1961) by taking into account some of the thermodynamic aspects of molecular
self-assembly. The building blocks in this model are squaretiles with labels and “glues” on
the edges. In theabstract Tile Assembly Model (aTAM), tiles attach to each other along
edges with matching labels, provided the strength of the attachment (determined by the
glues) exceeds a certain threshold. Tiles attaching to eachother according to these rules of
attachment form large assemblies. This process can be used to carry out computation, by
encoding data and computational rules in the tile edge labels and glues.
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The kinetic Tile Assembly Model (kTAM) augments aTAM with a stochastic model of
self-assembly dynamics, yielding a more realistic model ofmolecular self-assembly. The
dynamics of kTAM allow tiles to attach to each other in violation of the attachment rules of
aTAM. This can result in assembly errors,i.e., departures from ideal growth of the assembly.
One means of controlling such assembly errors is throughproofreading tile sets, construc-
tions of which have been suggested by Winfree and Bekbolatov(2004), Chen and Goel
(2005), Reif et al. (2005), and Soloveichik and Winfree (2006). Each of these constructions
has its strengths and weaknesses, as discussed by Soloveichik and Winfree (2006).

In this paper, we consider a completely different type of error, one arising not due to im-
perfections in the process of assembly, but rather due to imperfections in the process of tile
set fabrication. We assume a scenario in which, at the time offabricating tiles out of DNA
molecules, some small proportion of the tiles is imperfectly created. This could happen, for
example, due to the denaturing of molecules caused by chemical or environmental effects,
or simply due to human error in the fabrication process. We use the termmalformed tiles
to denote these imperfectly created tiles. We consider a model of malformed tile creation
in which some of the tile edges receive labels different fromthe designed (correct) labels.
We then ask the following question: how do tile sets containing a small proportion of mal-
formed tiles deviate from their designed assembly behaviour under kTAM? To the best of
our knowledge, the behaviour of tile assemblies in the presence of malformed tiles has not
been previously studied in the literature.

We present extensive simulation results comparing error rates in assemblies with and
without malformed tiles. In our simulations, carried out within the Winfree group’s tile as-
sembly simulator,xgrow1, we considered a range of different tile sets, including several
different constructions of proofreading tile sets. As expected, assembly-error rates in tile
sets with malformed tiles exceeded those in tile sets without such tiles. Also predictably,
the extent of resilience to malformed tile errors varies from one tile set to another. Most
notably, the snaked proofreading tile set of Chen and Goel (2005) performed very poorly
in simulations. In the presence of malformed tiles, this tile set showed a tendency to fatally
stall, failing to even form moderately sized tile aggregates2. While looking for an explana-
tion for this phenomenon, we discovered two new snaked proofreading tile set constructions
that counter the effect of malformed tiles quite well. Thesenew constructions are significant
because they retain the “snaked” order of growth of the original Chen-Goel construction,
which also makes them resistant to growth and facet errors intrinsic to the self-assembly
process.

The rest of the paper is organized as follows. In Section 2, weprovide brief descriptions
of aTAM and kTAM, and of the various proofreading tile set constructions we consider
in this paper. Section 3 describes our model for malformed tiles, Section 4 contains our
simulation results, and Section 5 discusses malformed snaked proofreading tile sets and our
new constructions of snaked proofreading tile sets. We makesome concluding remarks in
Section 6.

2 Background

We provide here a brief description of Winfree’s tile assembly models sufficient for our
purposes; for more details, the reader may refer to any of several detailed explanations of

1 Available online athttp://www.dna.caltech.edu/Xgrow
2 In this paper, we use the terms “aggregate” and “aggregation”to mean an assembly of tiles.
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the model that exist in the literature (Chen and Goel 2005; Reif et al. 2005; Rothemund et
al. 2004; Winfree 1998b).

2.1 The abstract and kinetic Tile Assembly Models

The basic building block of aTAM is a squaretile, which has four edges, and which belongs
to one of finitely manytile types. The collection of tile types allowed in the model is called
the tile set. A tile is not allowed to be rotated, and hence, the four sidesof a tile have fixed
directions — in clockwise order, north, east, south, west — assigned to them. Two edges,
not necessarily belonging to the same tile, are calledopposite edges if they are either a
north-south pair or an east-west pair.

Associated with each tile is atile label taken from some finite alphabet. The edges of
tiles may be givenedge labels, and each edge label has a non-negative integer called the
glue strength associated with it. The tile label, edge labels, and glue strengths for a tile
are completely determined by the tile type to which it belongs. Two opposite edges from
distinct tiles are calledmatching edges when they both have the same edge label. Matching
edges can attach to each other to formbonds, the strength of the bond being equal to the
glue strength of either edge in the matching pair forming thebond. Bonds of strength 0, 1,
and at least 2, are callednull, weak, andstrong bonds, respectively. Assembly occurs by
the iterative addition of tiles to an existing aggregate, initialized by a specialseed tile. In
aTAM, a tile can be legally added to a position at the border ofan existing aggregate if the
total strength of the bonds formed by the matching edges in that addition is greater than
or equal to a system parameter calledtemperature, which is always a positive integer. The
arrangement of tile labels obtained from an assembly of tiles is called apattern.

Figure 1 shows an example of thebasic Sierpinski tile set. This tile set consists of four
kinds ofrule tiles, two kinds ofboundary tiles, and one seed tile. If the system temperature
is set to 2, which means that each addition of a new tile to an existing aggregate requires
at least two weak bonds or one strong bond, then upon initialization by the seed tile, the
Sierpinski tile set forms the Sierpinskipattern shown in Figure 2. This assembly consists
of a “reverse-L” shaped frame consisting of the seed tile at the corner and boundary tiles
along the arms of the reverse L, to which the rule tiles attachforming the internal part
of the assembly. The assembly grows in a bottom-right to top-left fashion, determining an
orientation on the tiles in the tile set. The orientation of arule tile is from itsinput sides to
its output sides, as depicted by the dashed arrows in Figure 1. The input sidesof each rule
tile are the right (east) and bottom (south) edges, while theoutput sides are the top (north)
and left (west) edges. By convention, a boundary tile has only one input side and one output
side; the edges labelledb in boundary tiles, as depicted in the figure, are not considered to
be input/output sides. The basic Binary Counter tile set (Figure 3) is another simple tile set
which has the same number of rule and boundary tiles as the Sierpinski tile set.

The kTAM is an augmentation of aTAM that includes aforward rate for tiles to associate
to the growing assembly, and areverse rate for tiles to detach themselves from the assembly.
The forward rate of attachment of a tile depends only on the overall concentration of tiles in
the ambient solution, and is given byrf = ke−Gmc , whereGmc is the negative logarithm
of tile concentration, andk is a constant that sets the time scale. The rate at which a tile
dissociates from the assembly depends on how strongly the tile is attached to the assembly.
The dissociation rate is given byrr,b = ke−bGse , wherek is the same constant as above,b

is the total strength of the bonds between the tile and the assembly, andGse denotes the free
energy of breaking a single bond. Thus, for example, a tile that attaches itself to an existing
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Fig. 1 The basic Sierpinski tile set. The edge labels with glue strength 1 are denoted bya or b. Double lines
denote edges with glue strength 2, all of which have edge label x. Tile labels (0/1) have been placed at the
centre of each rule tile. The orientation of a tile from its input sides to its output sides is depicted by a dashed
arrow.
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Fig. 2 An initial fragment of the Sierpinski pattern formed by the basic Sierpinski tile set. The seed tile,
boundary tiles, and rule tiles labelled ‘1’ have been shadedgrey, while rule tiles labelled ‘0’ have been left
unshaded.
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Fig. 3 (a) The basic Binary Counter tile set. The edge labels with strength 1 are denoted bya or b. Double
lines denote edges with glue strength 2, all of which have edge labelx. Tile labels (0/1) have been placed at
the centre of each rule tile. (b) An initial fragment of the Binary Counter pattern formed by the tile set in (a).

assembly with a total bond strength of 2 is more likely to dissociate from the assembly than
a tile attaching to the assembly with bond strength 3. This observation plays a key role in
our analysis of the phenomenon of stalling observed in certain tile assemblies, which we
discuss in Section 5.1.

If we set Gmc

Gse
= b − ǫ, for small0 < ǫ < 1, and consider a tile attaching to a position

with a total bond strength ofb, we will have rf

rr,b
= eǫGse > 1, so that tile addition is more

likely to happen than not. On the other hand, if we consider a tile attaching to a position
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with a total bond strength ofb − 1, we will have kf

kr,b
= e−(1−ǫ)Gse ≪ 1, and this addition

is not likely to occur. Based on this, one may reasonably infer that the ratioGmc

Gse
plays the

same role in kTAM as the system temperature in aTAM. Thus, an attachment that is legal in
aTAM is also favored to happen in kTAM.

However, it can happen within kTAM (but not within aTAM) thata tile attaches to the
perimeter of the aggregate with insufficient bond strength,but before it falls off, another
tile attaches next to it as a legal addition, resulting in a stable assembly overall. The initial
insufficient attachment may be due to mismatched edges (growth error), or may be due to
the attachment of an isolated tile at a facet of the aggregate(facet error3). Such errors remain
“frozen” within the assembly, and may cause further errors,resulting in a final assembly that
differs from the designed (correct) final assembly.

Recall that the arrangement of tile labels in an aggregate forms a pattern. A pattern
corresponding to an error-free aggregate is acorrect pattern. The arrangement of tile labels
in an aggregate that contains errors may still form the correct (designed) pattern, but it is
more likely that such an aggregate results in awrong pattern, i.e., an arrangment of tile
labels that is different from the designed pattern.

2.2 Proofreading tile sets

Proofreading tile sets are a means of controlling errors in the tile assembly process. Loosely
speaking, the idea behind such schemes is to start with a basic tile set (such as the Sierpinski
tile set in Figure 1), and modify it by introducing redundantinformation into the edge labels
of tiles, which can then act as an error-control mechanism. The first example of such a tile
set construction was due to Winfree and Bekbolatov (2004), who replaced each tile of the
basic tile set withk2 proofreading tiles arranged in ak × k block. The edge labels internal
to eachk × k block are all unique to that block. Figure 4(b) shows an example of a2 × 2

proofreading construction. However, the overall error rate for this scheme did not scale well
with k, because such proofreading tile sets, while being able to control growth errors, were
largely ineffective against facet errors. Chen and Goel (2005) introduced thek × k snaked
proofreading tile set that modified the Winfree-Bekbolatov construction by changing the
glue strengths on some of the internal edges of the constituent tiles within eachk × k block.
By appropriately introducing strength-0 and strength-2 edges into the constituent tiles, they
were able to control the manner in which the constituent tiles assembled to form ak × k

block. This allowed them to successfully deal with facet errors (as well as growth errors),
and they were able to show that error rates in their assemblies decreased exponentially with
k. Figure 4(c) shows the construction of a2 × 2 snaked proofreading block.

Both the constructions mentioned above reduce error rates at the cost of scaling up the
size of the final assembly by a factor ofk2. Reif et al. (2005) showed that certain basic
tile sets (such as the Sierpinski and Binary Counter tile sets) could be transformed into
compact proofreading tile sets that lowered error rates without scaling up the size of the
final assembly. They gave two specific constructions — a “2-way overlay” construction and
a “3-way overlay” construction — in which each edge label of aproofreading tile encodes
two or three bits of partially redundant information. For the Sierpinski and Binary Counter
patterns, the 2-way and 3-way overlay constructions resulted in tile sets with 8 rule tiles
and 16 rule tiles, respectively. The constructions of Reif et al. do not appear to be easily
generalizable to an “n-way overlay” construction.

3 This was called “nucleation error” by Chen and Goel (2005).
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Fig. 4 2 × 2 proofreading tile sets: (a) Original tile (from basic Sierpinski tile set); (b) Winfree-Bekbolatov
construction; (c) Chen-Goel snaked construction, with order of growth of the2×2 block depicted by a dotted
line. Dashed lines, single lines, and double lines depict edges with glue strength 0, 1, and 2, respectively.

Soloveichik and Winfree gave a different construction, which they attribute to Paul
Rothemund and Matthew Cook (see Soloveichik and Winfree 2006, Appendix B), of a gen-
eraln-way overlay compact proofreading tile set, in which each edge label of a proofreading
tile encodesn bits of information. Meng (2009) has shown that for the Sierpinski pattern,
the n-way overlay construction results in a tile set withn2 + 3n + 4 rule tiles. It should
again be stressed that, while the number of tiles in any of these compact proofreading tile
sets is larger than that in the original Sierpinski or BinaryCounter tile set, the size of the
final assembly required to produce anN ×N Sierpinski or Binary Counter pattern is exactly
the same as that for the original tile set.

3 Malformed Tile Sets

As stated in the introduction, the object of this paper is to consider a problem different
from the one tackled by proofreading tile set constructions. The scenario that motivates us
is one in which errors affect the process of tile set fabrication, resulting in abnormalities
or imperfections in some small proportion of the tiles. Thus, in our set-up, malformed tiles
are simply deformations of normal tiles. In fact, since the only sort of tile abnormalities that
influence the assembly process are imperfections in tile edges, we will assume that abnormal
tiles are created by modifying the edges of normal tiles.

So, suppose that we are given anormal tile set T consisting of tile types that we consider
to benormal tile types. A malformed tile type is obtained by modifying some (or all) of the
edge labels of some normal tile type. The edges in the malformed tile type whose labels
differ from the normal edge labels will be calledmalformed edges. A malformed tile set
derived fromT is a collection of tile types consisting of the (normal) tiletypes inT along
with some malformed tile types derived from the tile types inT.

We now describe certain simplifying assumptions we make in our model for malformed
tile sets. Our first assumption is based on an understanding that edge imperfections do not
transform one normal edge label into another normal edge label.

Assumption 1 Malformed edges always receive labels that are distinct from all the edge
labels of normal tile types.

We do not specify at this point whether or not distinct malformed edges can receive the
same edge label. We will consider two extreme cases in our simulations — one in which
no pair of distinct malformed edges receives the same edge label, and another in which all
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malformed edges receive identical edge labels. In the former case, any malformed tile in the
interior of a tile assembly must have a mismatched edge with at least one of its neighbours.

The next assumption is consistent with the fact that malformed tile types are obtained
from normal tile types only through edge modifications.

Assumption 2 A malformed tile type has the same tile label as the normal tile type from
which it is formed.

Note that this assumption allows for the possibility that a tile assembly based on a malformed
tile set may contain mismatched edges and still produce the same (correct) pattern as an
assembly obtained from the normal tile set. We will see the effect of Assumption 2 being
manifested in our simulation results in the next section.

Assumption 3 A malformed tile type contains exactly one malformed edge.

The rationale behind Assumption 3 is that, among malformed tiles, those with more than
one malformed edge have a negligible impact on the assembly process, as they are unlikely
to form stable attachments with an existing aggregate.

The definitions and assumptions we have made up to this point remain valid for an arbi-
trary normal tile set. However, to make our subsequent discussions easier, we will from now
on restrict ourselves only to the normal tile sets covered byour simulations, namely, the ba-
sic Sierpinski tile set (Figure 1), the basic Binary Countertile set, and various proofreading
tile sets derived from these basic tile sets. There are threekinds of tile types in these tile sets
— a unique seed tile, boundary tiles, and rule tiles.

We will assume that only rule tiles can be modified to form malformed tiles. This is be-
cause malformed edges on the seed tile or on boundary tiles either do not influence the tile
assembly process at all or cause the process to come to a standstill. To illustrate this more
clearly, we take the example of the Sierpinski tile set in Figure 1. Note that imperfections
in the strength-0 edges of the seed or boundary tiles would have no influence on the tile
assembly process. On the other hand, a malformed strength-2edge in a seed tile or bound-
ary tile would make the formation of a stable assembly highlyunlikely. Boundary tiles in
this tile set also have strength-1 edges, imperfections in which would have an influence on
the assembly process. However, the effect of such a malformed edge can be equivalently
modelled by modifying the matching strength-1 edge in the rule tile that must attach to it.
We are thus justified in making the following assumption.

Assumption 4 Malformed tiles are obtained by modifying rule tiles only.

Rule tiles have two input edges (bottom and right) and two output edges (top and left).
To differentiate between the effects of malformed input edges and malformed output edges,
we categorize malformed tile sets into three classes:

(1) Input-side malformed (IM) tile sets, in which the malformed tile types consist of all tile
types obtainable by modifying one input edge of a normal ruletile.

(2) Output-side malformed (OM) tile sets, in which the malformed tile types consist of all
tile types obtainable by modifying one output edge of a normal rule tile.

(3) Input/output-side malformed (IOM) tile sets, in which the malformed tile types consist
of all possible IM tile types and OM tile types.

Figure 5 contains a depiction of these malformed tile types.In our simulations, we deal
separately with each of the above classes of malformed tile sets.
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Fig. 5 The tile on the left is a normal rule tile, the two tiles in the middle represent IM tile types, and the two
tiles on the right represent OM tile types. Malformed edges are denoted by the labelm.

4 Simulation Results

The simulations results reported in this section provide a broad comparison of the perfor-
mance of various kinds of tile sets in the presence of malformed tiles. The tile sets we have
simulated produce either the Sierpinski pattern or the Binary Counter pattern. For the Sier-
pinski pattern, our simulation results cover the followingtile sets: the basic Sierpinski tile
set (Figure 1), Winfree and Bekbolatov’s2 × 2 proofreading tile set (Winfree and Bekbola-
tov 2004), the 2- and 3-way overlay compact proofreading tile sets of Reif et al. (2005), and
the generaln-way overlay construction attributed to Rothemund and Cook(Soloveichik and
Winfree 2006, Appendix B). While we also ran simulations forthe snaked proofreading tile
set of Chen and Goel (2005), we found this tile set to perform very poorly in the presence
of malformed tiles, as we explain in more detail in the next section. The tile sets covered in
our simulations for the Binary Counter pattern are: the basic Binary Counter tile set (Fig-
ure 3), the2 × 2 proofreading tile set, and the 2- and 3-way overlay compact proofreading
tile sets of Reif et al. We did not run simulations for malformed tile sets derived from the
Rothemund-Cookn-way overlay construction for the Binary Counter. The reason for this
is that, forn = 1, 2, 3, the error rate obtained with then-way overlay tile set, even without
malformed tiles, is larger than that for the basic Binary Counter tile set. While the error
rates do decline asn increases, the number of tiles in these tile sets increases exponentially
with n, so that forn ≥ 4, the number of tiles is large enough that it becomes infeasible to
simulate the corresponding malformed tile sets withinxgrow.

All simulations were performed within thexgrow tile assembly simulator. The values
of the parametersGmc andGse were set to 17 and 8.6, respectively, in keeping with the
principle expounded by Winfree (1998b) that the ratio ofGmc to Gse should be kept slightly
below 2. For each type of rule tile, the tile concentration value was set to [0.9]; for each
malformed tile type, the tile concentration value was set to[0.05]; the seed tile concentration
was [0.1], and the concentration of each boundary tile type was [0.3]. We ran 50 simulations
for each tile set. Unless explicitly specified otherwise, our malformed tile sets have the
property that malformed edges in distinct malformed tile types receive distinct edge labels
(see the remarks following Assumption 1).

Table 1 A comparison of the number of errors in a 128× 128 assembly, averaged over 50 runs.

Basic tile set IM tile set OM tile set IOM tile set
Sierpinski 7.36 8.14 9.78 11.74

Binary Counter 7.16 8.62 14.82 15.38

Table 1 above compares the performance of the basic Sierpinski and Binary Counter tile
sets to that of the malformed tile sets derived from them. Theperformance measure here
is the number of errors in a 128× 128 tile assembly, averaged over 50 runs. As expected,
malformed tile sets perform worse than the normal tile sets,Furthermore, tile sets containing
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Table 2 A comparison of various malformed proofreading tile sets for the Sierpinski pattern. The first number
in each table entry is the proportion, out of 50 tile aggregations, of aggregations that contain mismatched-edge
errors. The second number, which is in parentheses, is the proportion of aggregations that fail to produce a
correct128 × 128 block of the Sierpinski pattern.

Normal tile set IM tile set OM tile set IOM tile set
Basic Sierpinski tile set 1 (1) 1 (1) 1 (1) 1 (1)

2 × 2 proofreading 0 (0) 0.56 (0.02) 0.76 (0.44) 0.94 (0.48)
Reif et al. 2-way overlay 0 (0) 0.3 (0.06) 0.42 (0.14) 0.58 (0.2)
Reif et al. 3-way overlay 0 (0) 0.18 (0) 0.24 (0.04) 0.30 (0.04)

Rothemund-Cook 1-way overlay 0 (0) 0.26 (0.06) 0.34 (0.1) 0.58 (0.16)
Rothemund-Cook 2-way overlay 0 (0) 0.36 (0) 0.38 (0.02) 0.52 (0)
Rothemund-Cook 3-way overlay 0 (0) 0.26 (0) 0.44 (0.02) 0.56 (0.02)

OM tile types perform worse than IM tile sets, a trend that is consistent across all simulation
results reported in this section. This phenomenon has a straightforward explanation. Con-
sider any open position in the growing asembly where a normaltile can stably attach itself
(by forming two weak bonds). An OM tile derived from the same normal tile has an equal
chance of attaching itself to that position, as the input edges of the malformed tile are the
same as those of the normal tile. On the other hand, an IM tile has one malformed input
edge, so its attachment to the open position must happen withinsufficient bond strength.
This makes the attachment of the IM tile less likely to occur in kTAM than the attachment
of a normal tile. This explains why the proportion of malformed tiles attaching to an aggre-
gation in an OM or IOM tile set is higher than that in an IM tile set. However, we are unable
to satisfactorily explain why the performance gap between the IM and the OM/IOM tile sets
is much larger for the Binary Counter pattern than for the Sierpinski pattern.

The influence of malformed tiles on various proofreading tile set constructions for the
Sierpinski pattern is tabulated in Table 2. The entries in the table attempt to measure the
ability of several different malformed tile sets to form a 128 × 128 block of the Sierpinski
pattern. In the case of malformed tile sets derived from the2 × 2 proofreading tile set,
this requires the formation of a 256× 256 aggregate of tiles; but in all other cases, only a
128×128 tile aggregate is required. Each entry of the table consistsof a decimal number
followed by another such number in parentheses. The first number gives the proportion,
out of a total of 50 aggregations, of aggregations that contain mismatched-edge errors. The
second number (the one in parentheses) represents the proportion, out of 50, of aggregations
that result in a wrong 128× 128 pattern. Recall that, by virtue of Assumption 2, it is possible
for an assembly formed from malformed tile sets to produce the correct pattern even if the
assembly contains mismatched edges. Thus, the second number in any of the entries in the
Table 2 can never exceed the first number in that entry. In fact, in many of the entries, the
second number is much lower than the first. This is especiallytrue of the malformed tile sets
derived from the Rothemund-Cook 2- and 3-way overlay tile sets.

Among the malformed tile sets considered in Table 2, those derived from the2 × 2

proofreading tile set produce the least number of error-free aggregations. This is entirely
reasonable, since these tile sets are required to produce larger assemblies than the other tile
sets listed in the table.

The most number of error-free aggregations is produced by the 3-way overlay tile set of
Reif et al. Interestingly, the malformed Rothemund-Cook 2-way and 3-way overlay tile sets
are remarkably consistent in producing correct 128× 128 blocks of the Sierpinksi pattern
almost all the time. This observation induced us to study theperformance of these tile sets
over a larger assembly size of 256× 256 tiles. We restricted our attention to the worst-
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Table 3 A comparison of IOM tile sets derived from the Rothemund-Cookn-way overlay tile sets for the
Sierpinski pattern. Target aggregate size is 256× 256.

n = 1 n = 2 n = 3 n = 4

Average number of errors in a 256× 256 aggregate 5.28 4.02 3.06 3.12
Proportion of aggregates with errors 0.98 0.96 0.92 0.94

Proportion of aggregates forming wrong patterns 0.84 0.4 0.22 0.32

Table 4 A comparison of various malformed proofreading tile sets for the Binary Counter pattern. The
first number in each table entry is the proportion, out of 50 tile aggregations, of aggregations that contain
mismatched-edge errors. The second number, which is in parentheses, is the proportion of aggregations that
fail to produce a correct128 × 128 block of the Binary Counter pattern.

Normal tile set IM tile set OM tile set IOM tile set
2 × 2 proofreading 0 (0) 0.76 (0.02) 0.86 (0.34) 0.98 (0.36)
Reif 2-way overlay 0 (0) 0.26 (0.04) 0.34 (0.06) 0.5 (0.1)
Reif 3-way overlay 0 (0) 0.24 (0) 0.28 (0.04) 0.52 (0.04)

case IOM tile sets only. Fifty (50) simulation runs were performed on each of the IOM
tile sets derived from the Rothemund-Cookn-way overlay construction, forn = 1, 2, 3, 4.
The results of these simulations are presented in Table 3. These results show that despite
the fact that almost all the 256× 256 tile aggregates produced by these IOM tile sets have
mismatched-edge errors in them, the proportion of aggregates that fail to produce the correct
256× 256 Sierpinski pattern block is (at least forn = 2, 3, 4) much smaller.

It is interesting to note from the results presented in Table3 that the malformedn-way
overlay tile sets improve in performance asn increases from 1 to 3, but the improvement
stops atn = 3. Two things happen in the normaln-way overlay tile sets asn increases:
(a) the amount of redundant information encoded in each edgelabel increases, and
(b) the total number of tile types increases — as mentioned inSection 2.2, the tile set has

n2 + 3n + 4 rule tiles.
These two factors seem to affect the performance of the derived malformed tile sets in op-
posite ways. Increased redundancy in the edge labels appears to mitigate, to some extent,
the effect of malformed tiles. On the other hand, the number of tile types in a normal tile
set seems to adversely affect the performance of malformed tile sets derived from it. Indeed,
evidence can be found even in Table 2 for the fact that the number of tile types in a nor-
mal tile set plays a role in determining the performance of derived malformed tile sets. The
2-way overlay tile set of Reif et al., and the Rothemund-Cook1-way overlay tile set have
eight tiles each, and the malformed tile sets derived from them display remarkably similar
performance.

Turning now to Binary Counter tile sets, we provide in Table 4a performance compar-
ison analogous to that in Table 2 for Sierpinski tile sets. Asmentioned at the beginning of
this section, we did not run simulations for malformed tile sets derived from the Rothemund-
Cookn-way overlay construction for the Binary Counter. Thus, Table 4 only compares the
malformed tile sets derived from the2 × 2 proofreading tile set, and the 2-way and 3-way
overlay compact proofreading tile sets of Reif et al. The target aggregate size is 256× 256
for the malformed2 × 2 proofreading tile sets, and 128× 128 for the others. The simula-
tion results again indicate that the proportion of assemblies producing the correct pattern
is a much more useful indicator of malformed tile set performance than the proportion of
assemblies having mismatched edges.

Our last collection of simulation results compares the performance of malformed tile sets
in which malformed edges from distinct tile types receive distinct labels to those in which
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Table 5 The number of mismatched-edge errors in a 128× 128 tile assembly, averaged over 50 runs.

Basic Sierpinski
IOM tile set

Basic Binary Counter
IOM tile set

Distinct malformed edges
receiving distinct labels

11.74 15.38

Distinct malformed edges
receiving same labels

9.64 10.40

Table 6 The proportions of aggregates containing errors, and (within parentheses) of aggregates producing
wrong patterns, for IOM tile sets derived from the Rothemund-Cookn-way overlay tile sets for the Sierpinski
pattern. The proportions are calculated over 50 aggregates, each of size 128× 128.

n = 1 n = 2 n = 3

Distinct-label IOM tile set 0.58 (0.16) 0.52 (0) 0.56 (0.02)
Same-label IOM tile set 0.70 (0.82) 0.60 (0.12) 0.50 (0.08)

all malformed edges receive the same label. We refer to the former variety of malformed tile
sets asdistinct-label, and the latter assame-label. While a same-label tile set is probably
not a very realistic model for malformed tiles, it will serveas a control for our experiments
on distinct-label malformed tile sets. Observe that we onlyneed to focus on IOM tile sets
here, as it is only these tile sets that can benefit (or not) from the potential of a malformed
input edge in one tile matching with a malformed output edge of another. Note also that if
malformed input and output edges receive distinct edge labels (as happens in a distinct-label
tile set), then the glue strengths assigned to those edges play no role within kTAM. However,
if malformed input and output edges are allowed to have the same edge labels, then it does
matter what glue strength is assigned to those labels. If allpairs of matching malformed
edges have glue strength 0, then the resulting effect withinkTAM is the same as that of
distinct-label tile sets. So, in our simulations, to be ableto truly distinguish the effect within
kTAM of same-label IOM tile sets from that of distinct-labelIOM tile sets, we set the glue
strength to be equal to 1 for all malformed edges in our same-label tile sets.

The results of these simulations are presented in Tables 5 and 6. As usual, the results
are for 50 simulation runs for each tile set shown in the tables, and a target assembly size
of 128× 128 tiles. Table 5 indicates that the number of mismatched-edge errors in a tile
assembly is smaller, on average, for same-label IOM tile sets than for distinct-label ones, as
one would expect. On the other hand, it can be seen from Table 6that same-label tile sets
tend to produce more incorrect patterns than distinct-label tile sets. This is readily explained
by the fact that in assemblies formed by distinct-label tilesets, a tile attaching itself to a
position in the growing assembly is much more likely than notto be either the correct tile
for that position, or a malformed tile derived from the correct tile. Tiles other than these
have a much lower chance of being “frozen” within the assembly by the addition of further
tiles. Thus, tiles attaching to positions in the growing assembly are highly likely to have
the correct tile label for that position, which makes it quite probable that the final pattern
produced by the assembly is correct.

5 Snaked Proofreading Tile Sets

At the beginning of the previous section, we mentioned the fact that malformed tile sets
derived from the snaked proofreading tile sets of Chen and Goel (2005) performed very
poorly in simulations. We investigate this phenomenon in detail in this section, and propose
some solutions to the problem.
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Fig. 6 Xgrow simulation screen shots of (a) a4 × 4 snaked proofreading OM tile set, and (b) a4 × 4

(non-snaked) proofreading OM tile set. In both cases, the target assembly size is64 × 64.

5.1 Stalling in Malformed Snaked Proofreading Tile Assemblies

The simulations we undertook focused on malformed tile setsobtained from the 4× 4
snaked proofreading tile set generating the Sierpinski pattern. On the one hand, IM tile
sets were able to form 256× 256 aggregations, but these aggregations were riddled with
mismatched-edge errors. On the other hand, OM and IOM tile sets failed to even produce
aggregations of this size. In our simulations, OM tiles caused the tile assembly process to
stall repeatedly and frequently.

It is natural to compare the snaked proofreading tile set with the Winfree-Bekbolatov
(non-snaked) proofreading tile set (Winfree and Bekbolatov 2004), as the former is basi-
cally a modification of the latter. We ran simulations on OM tile sets derived from4 × 4

proofreading tile sets of both kinds. Under identical simulation conditions, the Winfree-
Bekbolatov4 × 4 proofreading OM tile set was able to produce a complete256 × 256 tile
aggregation in a very short time, while the4×4 snaked proofreading OM tile set was unable
to form an aggregation of this size even after several hours of uninterrupted simulation runs.

We provide here an explanation for the stalling phenomenon described above. Figure 6
shows two screen shots of the growing assemblies of a4 × 4 (non-snaked) proofreading
OM tile set and a4 × 4 snaked proofreading OM tile set. Note that the growth front of the
proofreading OM tile set is smooth, whereas that of the snaked OM tile set is uneven and
jagged. From careful observations of the manner in which these assemblies grow, we found
that tile addition in a snaked proofreading assembly occursin a block-by-block fashion,
while in a proofreading assembly, the addition of new tiles is not strictly correlated to the
formation of blocks. More precisely, in a snaked proofreading assembly, once a new4 × 4

block starts forming, further tiles are added in a manner that favours the completion of that
block over the initiation of the growth of other blocks (see Figure 6(a)). Furthermore, once
a block is completed, that block tends to remain stable, withonly a very small chance of
tiles falling off from that block according to the dynamics of kTAM. On the other hand, in a
(non-snaked) proofreading assembly, the growth front constantly renews itself through the
process of tiles adding and falling off, and this is largely independent of the formation of
complete4 × 4 blocks.

We noticed that stalling in an OM snaked proofreading tile assembly almost always
occurred in situations when a complete 4× 4 block was formed, but there were OM tiles
frozen within the output-side (top and left) edges of the complete block. The frozen OM
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Fig. 7 4×4 proofreading constructions: (a) the Chen-Goel snaked proofreading construction, (b) the Winfree-
Bekbolatov (non-snaked) construction. Dashed edges, single edges, and double edges depict strength-0,
strength-1, and strength-2 bonds, respectively. The numbering of the tiles shows the order in which tiles
attach to form the4 × 4 block. The circles identify the last tiles to attach in a block.

tiles hindered the formation of the next4 × 4 block, and it took an exceedingly long time
for them to fall off according to the dynamics of kTAM, causing the stall. The reason for
this is that, as noted by Chen and Goel (2005), all the tiles onthe output sides of a4 × 4

snaked proofreading block (see Figure 7(a)) are held by bonds of total strength at least 3.
So, whenever such a block is completely assembled, it is unlikely that any of the tiles within
the block will fall off, and be replaced by other tiles. In particular, if any of the tiles on the
output sides of a completed4×4 block are OM tiles (with malformed edges facing outside),
these are likely to remain frozen within the block. Note thatthis is not as much of a problem
with the (non-snaked) proofreading tile assemblies, whereat any time during the formation
of a 4 × 4 block, there are always tiles within the block that are attached to the rest of the
assembly with bonds of total strength at most 2; see Figure 7(b).

5.2 New Snaked Proofreading Constructions

To alleviate the problem of stalling, we propose two new snaked proofreading constructions,
referred to as Construction A and Construction B, which are depicted in Figure 8(a) and
Figure 8(b), respectively. Both constructions follow the same principles as the Chen-Goel
construction, but differ from the latter construction in the positions of the null bonds and
strength-2 bonds. Construction A changes some of the outer edges in the Chen-Goel4 × 4

snaked proofreading block to null bonds, and some of the inner edges to strength-2 bonds.
Construction B is the same as the Chen-Goel snaked proofreading construction within the
bottom-right3 × 3 sub-block. The novelty in the construction is that the tilesin the fourth
row and column of a block have only strength-1 edges. The ideaof this construction is to
combine a3×3 snaked proofreading construction with a row and a column of the non-snaked
proofreading construction.

Note that in both the new constructions, the last tile to attach within a block (identifiable
by the circles drawn in Figure 8) is held to the assembly by bonds of total strength 2. Thus,
if the assembly were to stall after a complete4 × 4 block is formed, the chances of the last
tile falling off — and hence, allowing other tiles to fall offas well — are higher in these
constructions than in the Chen-Goel construction.

As with any proofreading constructions that rely upon the formation of4 × 4 blocks,
Constructions A and B can certainly reduce growth errors. Construction A also preserves
the “snaked” order of growth of the Chen-Goel construction,which has been shown to be
effective in countering the influence of facet errors (Chen and Goel 2005). Construction B
preserves the snaked order of growth of the Chen-Goel construction only within the first
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Fig. 8 4×4 Snaked proofreading constructions: (a) Construction A, (b) Construction B. Dashed edges, single
edges, and double edges depict strength-0, strength-1, andstrength-2 bonds, respectively. The numbering of
the tiles shows the order in which tiles attach to form the4 × 4 block. The circles identify the last tiles to
attach in a block.

3 × 3 sub-block. As a result, it too can reduce facet errors, but perhaps not as much as the
Chen-Goel construction and Construction A.

The advantage of Construction B over Construction A is that it uses a lot fewer null
bonds and strength-2 bonds, particularly on the outer edgesof a block. We have observed
in our simulations that the self-assembly process finds it easier to assemble4 × 4 blocks of
Construction B than of Construction A.

We report here the results of our simulations comparing the two new snaked proofread-
ing constructions with the Chen-Goel construction. All oursimulations were run inxgrow
under the growth conditions obtained by settingGmc = 17 andGse = 8.6.

The first experiment compares assemblies formed by the normal tile sets for the three
snaked proofreading constructions. Each normal tile set was able to successfully complete
a 256 × 256 block of tiles (i.e., a64 × 64 block of the Sierpinski pattern). Tabulated below
is the number of correct aggregates (and thus correct patterns) formed in 50 simulation runs
by the normal tile sets for the three constructions.

Chen-Goel Construction A Construction B
50 43 48

It is interesting to note that while the two new snaked proofreading constructions are not
always able to form correct aggregates, Construction B is more consistent at forming a
correct aggregate than Construction A.

We next compare the performances of the OM tile sets obtainedfrom the three construc-
tions. The concentration of each malformed tile is equal to[.005], compared to a concentra-
tion of [0.9] for each normal rule tile. Fifty simulation runs were performed on each OM tile
set, with a target assembly size of256 × 256 tiles. Simulations were run in batches of25

parallel runs on a standard desktop computer, with each batch allowed to run uninterrupted
for 30 hours. The entries in the table below record the numberof runs, out of 50, that result
in a complete256 × 256 tile assembly, and (within parentheses) the number of runs that
result in a complete and correct64 × 64 block of the Sierpinski pattern.

Chen-Goel Construction A Construction B
0 (0) 30 (29) 36 (33)

It is clear from the simulation results that the two new snaked proofreading constructions
significantly improve upon the performance of the Chen-Goelconstruction in the presence
of OM tiles. In particular, they are able to avoid the stalling phenomenon observed in the
Chen-Goel snaked proofreading OM tile assembly. Also, a large proportion of the complete
Construction A and Construction B aggregates yield correctSierpinski patterns.
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(c)(a) (b)

Fig. 9 Snaked proofreading constructions of6 × 6 blocks: (a) Chen-Goel construction, (b) Construction A,
(c) Construction B. Dashed, single, and double lines represent strength-0, strength-1, and strength-2 bonds,
respectively.

The new4× 4 snaked proofreading constructions presented above can be generalized to
2k × 2k blocks, for anyk ≥ 2. In the descriptions that follow,Ti,j denotes the tile in rowi
and and columnj of a2k × 2k block. Here, rows are indexed1, 2, . . . , 2k, starting with the
bottom row, and the columns are indexed1, 2, . . . , 2k, starting with the rightmost column.

The2k × 2k Construction A snaked proofreading block is described as follows:

1. The west sides of tilesT1,2i−1 are null bonds, wherei = 1, 2, . . . , k − 1.
2. The north sides of tilesT2i,1 are null bonds, wherei = 1, 2, . . . , k − 1.
3. Edges on the north sides of tilesT2i,2i+1 have strength 2, wherei = 1, 2, . . . , k − 1.
4. Edges on the west sides of tilesT2i,2i−1 have strength 2, wherei = 1, 2, . . . , k.
5. The edges on the north sides of tilesT2k−1,1 andT2k−2,2k have strength 2.
6. The edges on the west sides of tilesT2k−1,1 andT1,2k−2 have strength 2.
7. The west side of tileT2k−2,2k−1 is a null bond.
8. The north sides of tilesT2k,2k−1 andT2k,2k are null bonds.
9. The west sides of tilesT2k−1,2k andT2k,2k are null bonds.

10. The south sides of tilesT1,2k−1 andT1,2k are null bonds.
11. The east sides of tilesT2k−1,1 andT2k,1 are null bonds.
12. All other edges have strength 1.

The2k × 2k Construction B snaked proofreading block is constructed asfollows:

1. The west sides of tilesT1,2i−1 are null bonds, wherei = 1, 2, . . . , k − 1.
2. The north sides of tilesT2i,1 are null bonds, wherei = 1, 2, . . . , k − 1.
3. Edges on the north sides of tilesT2i,2i+1 have strength 2, wherei = 1, 2, . . . , k − 1.
4. Edges on the west sides of tilesT2i,2i−1 have strength 2, wherei = 1, 2, . . . , k − 1.
5. All other edges have strength 1.

In both the constructions described above, the edge labels internal to each2k×2k block
are unique to that block.

Figure 9 shows the three different snaked proofreading constructions for6 × 6 blocks.
Observe that the6× 6 block of Construction A (resp. Construction B) has the same bottom-
right 4 × 4 (resp.5 × 5) sub-block as the6 × 6 block of the Chen-Goel construction. This
observation generalizes naturally to the2k × 2k constructions, as may be verified by com-
paring the general descriptions of the new constructions given above to the corresponding
description given by Chen and Goel (2005).
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6 Conclusion

In this paper, we studied through simulations the effect of malformed (i.e., imperfectly-
fabricated) tiles on the performance of various tile sets producing the Sierpinski and Binary
Counter patterns. A significant contribution of this paper is the development of two new
snaked proofreading tile set constructions that provide examples of tile sets that are robust
with respect to errors intrinsic to the assembly process, and also with respect to malformed
tiles.

It should be pointed out that in this paper, we restricted ourattention to proofreading
tile sets in which the error-control mechanism consists of the introduction of redundancy
into the edge labels of tiles. Alternative error suppression mechanisms have indeed been
proposed in the literature (for example, Fujibayashi et al.2008) and it would be of interest
to study how malformed tiles affect these kinds of proofreading mechanisms.
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