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Abstract Many different constructions of proofreading tile setsénheen proposed in the
literature to reduce the effect of deviations from ideal ébur of the dynamics of the
molecular tile self-assembly process. In this paper, wesicen the effect on the tile as-
sembly process of a different kind of non-ideality, nametyperfections in the tiles them-
selves. We assume a scenario in which some small proportitrediles in a tile set are

“malformed”. We study, through simulations, the effect o€ls malformed tiles on the self-
assembly process within the kinetic Tile Assembly ModelAKT). Our simulation results

show that some tile set constructions show greater ersiiengce in the presence of mal-
formed tiles than others. For example, the 2- and 3-way ayerbmpact proofreading tile
sets of Reif et al. (2005) are able to handle malformed tileteqgvell. On the other hand, the
snaked proofreading tile set of Chen and Goel (2005) faifoim even moderately-sized
tile assemblies when malformed tiles are present. We showtte® Chen-Goel construction
may be modified to yield new snaked proofreading tile sets dha resilient not only to

errors intrinsic to the assembly process, but also to ecaused by malformed tiles.

Keywords kinetic Tile Assembly Model malformed tiles snaked proofreading tile sets

1 Introduction

Molecular self-assembly is a process of bottom-up fabdoabf complex structures from
simple parts. The tile assembly models introduced by Erikfie (Winfree 1998a,b) are
widely used mathematical models of this process. The matétisbly extend Wang’s tiling
model (Wang 1961) by taking into account some of the thermaric aspects of molecular
self-assembly. The building blocks in this model are sqtiee with labels and “glues” on
the edges. In thabstract Tile Assembly Model (aTAM), tiles attach to each other along
edges with matching labels, provided the strength of thechthent (determined by the
glues) exceeds a certain threshold. Tiles attaching to et according to these rules of
attachment form large assemblies. This process can be assdry out computation, by
encoding data and computational rules in the tile edge $adoad glues.
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Thekinetic Tile Assembly Model (KTAM) augments aTAM with a stochastic model of
self-assembly dynamics, yielding a more realistic modeinofecular self-assembly. The
dynamics of KTAM allow tiles to attach to each other in viadatof the attachment rules of
aTAM. This can result in assembly errorg,, departures from ideal growth of the assembly.
One means of controlling such assembly errors is thrqugbfreading tile sets, construc-
tions of which have been suggested by Winfree and Bekbolgt004), Chen and Goel
(2005), Reif et al. (2005), and Soloveichik and Winfree @0&ach of these constructions
has its strengths and weaknesses, as discussed by SolkeidiVinfree (2006).

In this paper, we consider a completely different type obemmne arising not due to im-
perfections in the process of assembly, but rather due terifagtions in the process of tile
set fabrication. We assume a scenario in which, at the tinfabwicating tiles out of DNA
molecules, some small proportion of the tiles is imperfecteated. This could happen, for
example, due to the denaturing of molecules caused by chéori@nvironmental effects,
or simply due to human error in the fabrication process. Wethe termmalformed tiles
to denote these imperfectly created tiles. We consider aefrafdnalformed tile creation
in which some of the tile edges receive labels different fthedesigned (correct) labels.
We then ask the following question: how do tile sets contajra small proportion of mal-
formed tiles deviate from their designed assembly behavioder KTAM? To the best of
our knowledge, the behaviour of tile assemblies in the presef malformed tiles has not
been previously studied in the literature.

We present extensive simulation results comparing ertesren assemblies with and
without malformed tiles. In our simulations, carried outhim the Winfree group’s tile as-
sembly simulatorxgr ow!, we considered a range of different tile sets, includingessv
different constructions of proofreading tile sets. As extpd, assembly-error rates in tile
sets with malformed tiles exceeded those in tile sets witsaah tiles. Also predictably,
the extent of resilience to malformed tile errors variesrirone tile set to another. Most
notably, the snaked proofreading tile set of Chen and Gd&¥5p performed very poorly
in simulations. In the presence of malformed tiles, this $&t showed a tendency to fatally
stall, failing to even form moderately sized tile aggregat®Vhile looking for an explana-
tion for this phenomenon, we discovered two new snaked peading tile set constructions
that counter the effect of malformed tiles quite well. Thee® constructions are significant
because they retain the “snaked” order of growth of the palgChen-Goel construction,
which also makes them resistant to growth and facet errarssic to the self-assembly
process.

The rest of the paper is organized as follows. In Section Zyneeide brief descriptions
of aTAM and kTAM, and of the various proofreading tile set stvactions we consider
in this paper. Section 3 describes our model for malformied,tiSection 4 contains our
simulation results, and Section 5 discusses malformedeshatoofreading tile sets and our
new constructions of snaked proofreading tile sets. We rsakee concluding remarks in
Section 6.

2 Background

We provide here a brief description of Winfree’s tile assgnmodels sufficient for our
purposes; for more details, the reader may refer to any afrabdetailed explanations of

1 Available online aht t p: / / www. dna. cal t ech. edu/ Xgr ow
2 In this paper, we use the terms “aggregate” and “aggregatiniean an assembly of tiles.



the model that exist in the literature (Chen and Goel 200%; &el. 2005; Rothemund et
al. 2004; Winfree 1998b).

2.1 The abstract and kinetic Tile Assembly Models

The basic building block of aTAM is a squatie, which has four edges, and which belongs
to one of finitely manyile types. The collection of tile types allowed in the model is called
thetile set. A tile is not allowed to be rotated, and hence, the four safestile have fixed
directions — in clockwise order, north, east, south, westssigned to them. Two edges,
not necessarily belonging to the same tile, are catigobsite edges if they are either a
north-south pair or an east-west pair.

Associated with each tile is e label taken from some finite alphabet. The edges of
tiles may be giveredge labels, and each edge label has a non-negative integer called the
glue strength associated with it. The tile label, edge labels, and gluengths for a tile
are completely determined by the tile type to which it benbvo opposite edges from
distinct tiles are callednatching edges when they both have the same edge label. Matching
edges can attach to each other to fdvomds, the strength of the bond being equal to the
glue strength of either edge in the matching pair formingtibed. Bonds of strength 0, 1,
and at least 2, are calledll, weak, andstrong bonds, respectively. Assembly occurs by
the iterative addition of tiles to an existing aggregatéjdtized by a speciateed tile. In
aTAM, atile can be legally added to a position at the bordearoéxisting aggregate if the
total strength of the bonds formed by the matching edgesanatdition is greater than
or equal to a system parameter caltedhperature, which is always a positive integer. The
arrangement of tile labels obtained from an assembly of tHealled gattern.

Figure 1 shows an example of thasic Serpinski tile set. This tile set consists of four
kinds ofruletiles, two kinds ofboundary tiles, and one seed tile. If the system temperature
is set to 2, which means that each addition of a new tile to dstieg aggregate requires
at least two weak bonds or one strong bond, then upon izidin by the seed tile, the
Sierpinski tile set forms the Sierpinsgattern shown in Figure 2. This assembly consists
of a “reverse-L" shaped frame consisting of the seed tildhatdorner and boundary tiles
along the arms of the reverse L, to which the rule tiles atfachming the internal part
of the assembly. The assembly grows in a bottom-right tdeftfashion, determining an
orientation on the tiles in the tile set. The orientation ofike tile is from itsinput sides to
its output sides, as depicted by the dashed arrows in Figure 1. The input sideach rule
tile are the right (east) and bottom (south) edges, whileotitput sides are the top (north)
and left (west) edges. By convention, a boundary tile hag oné input side and one output
side; the edges labellddlin boundary tiles, as depicted in the figure, are not consitity
be input/output sides. The basic Binary Counter tile sejyfé 3) is another simple tile set
which has the same number of rule and boundary tiles as thei@&i tile set.

The KTAM is an augmentation of aTAM that include®award rate for tiles to associate
to the growing assembly, andeverseratefor tiles to detach themselves from the assembly.
The forward rate of attachment of a tile depends only on tlegalconcentration of tiles in
the ambient solution, and is given by = ke~ Cme whereG.,. is the negative logarithm
of tile concentration, and is a constant that sets the time scale. The rate at which a tile
dissociates from the assembly depends on how stronglyl¢his tittached to the assembly.
The dissociation rate is given by, = ke~?Cs wherek is the same constant as abote,
is the total strength of the bonds between the tile and trenalsly, andGs. denotes the free
energy of breaking a single bond. Thus, for example, a td¢ d@ftaches itself to an existing
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Fig. 1 The basic Sierpinski tile set. The edge labels with gluengiite 1 are denoted kg or b. Double lines
denote edges with glue strength 2, all of which have edgd babEle labels (0/1) have been placed at the
centre of each rule tile. The orientation of a tile from itpu sides to its output sides is depicted by a dashed
arrow.

Fig. 2 An initial fragment of the Sierpinski pattern formed by the ibeSierpinski tile set. The seed tile,
boundary tiles, and rule tiles labelled ‘1’ have been shagtegl, while rule tiles labelled ‘0’ have been left
unshaded.
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Fig. 3 (a) The basic Binary Counter tile set. The edge labels witmgth 1 are denoted kayor b. Double
lines denote edges with glue strength 2, all of which havesdalgelx. Tile labels (0/1) have been placed at
the centre of each rule tile. (b) An initial fragment of the &ip Counter pattern formed by the tile setin (a).

assembly with a total bond strength of 2 is more likely to disate from the assembly than
a tile attaching to the assembly with bond strength 3. Thigeolation plays a key role in
our analysis of the phenomenon of stalling observed in itetii@ assemblies, which we
discuss in Section 5.1.

If we set%;: =0b—¢ forsmall0 < € < 1, and consider a tile attaching to a position
with a total bond strength df, we will have% = ¢“¥sc > 1, so that tile addition is more
likely to happen than not. On the other hand, if we consideleaattaching to a position



with a total bond strength df— 1, we will have% = ¢~ (179Gse « 1, and this addition
is not likely to occur. Based on this, one may reasonablyr itifat the ratio% plays the

same role in KTAM as the system temperature in aTAM. Thusttctament that is legal in
aTAM is also favored to happen in KTAM.

However, it can happen within KTAM (but not within aTAM) thattile attaches to the
perimeter of the aggregate with insufficient bond strength,before it falls off, another
tile attaches next to it as a legal addition, resulting inadlet assembly overall. The initial
insufficient attachment may be due to mismatched edgesvih error), or may be due to
the attachment of an isolated tile at a facet of the aggredéiet error®). Such errors remain
“frozen” within the assembly, and may cause further ern@sllting in a final assembly that
differs from the designed (correct) final assembly.

Recall that the arrangement of tile labels in an aggregateda pattern. A pattern
corresponding to an error-free aggregate ésraiect pattern. The arrangement of tile labels
in an aggregate that contains errors may still form the coii@esigned) pattern, but it is
more likely that such an aggregate results imrang pattern, i.e,, an arrangment of tile
labels that is different from the designed pattern.

2.2 Proofreading tile sets

Proofreading tile sets are a means of controlling errors in the tile assembly pmdesosely
speaking, the idea behind such schemes is to start with atilasiet (such as the Sierpinski
tile set in Figure 1), and modify it by introducing redundaribrmation into the edge labels
of tiles, which can then act as an error-control mechanigme. first example of such a tile
set construction was due to Winfree and Bekbolatov (2004} veplaced each tile of the
basic tile set withk? proofreading tiles arranged inkax k block. The edge labels internal
to eachk x k block are all unique to that block. Figure 4(b) shows an exampa2 x 2
proofreading construction. However, the overall erroe fat this scheme did not scale well
with k, because such proofreading tile sets, while being ablernitralogrowth errors, were
largely ineffective against facet errors. Chen and Goebd%30ntroduced thé: x & snaked
proofreading tile set that modified the Winfree-Bekbolatov construction by chiagghe
glue strengths on some of the internal edges of the constitiles within eachk x k block.
By appropriately introducing strength-0 and strength-@esxinto the constituent tiles, they
were able to control the manner in which the constituens @ssembled to form &a x k
block. This allowed them to successfully deal with facebesr(as well as growth errors),
and they were able to show that error rates in their assesnidiereased exponentially with
k. Figure 4(c) shows the construction of & 2 snaked proofreading block.

Both the constructions mentioned above reduce error ratbe @ost of scaling up the
size of the final assembly by a factor kf. Reif et al. (2005) showed that certain basic
tile sets (such as the Sierpinski and Binary Counter tile)sebuld be transformed into
compact proofreading tile sets that lowered error rates withoutisgaup the size of the
final assembly. They gave two specific constructions — a “g-aeaerlay” construction and
a “3-way overlay” construction — in which each edge label giraofreading tile encodes
two or three bits of partially redundant information. Foe tBierpinski and Binary Counter
patterns, the 2-way and 3-way overlay constructions redditt tile sets with 8 rule tiles
and 16 rule tiles, respectively. The constructions of Re#éledo not appear to be easily
generalizable to ani-way overlay” construction.

3 This was called “nucleation error” by Chen and Goel (2005).
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Fig. 4 2 x 2 proofreading tile sets: (a) Original tile (from basic Siegki tile set); (b) Winfree-Bekbolatov
construction; (c) Chen-Goel snaked construction, witleoaf growth of the2 x 2 block depicted by a dotted
line. Dashed lines, single lines, and double lines depigesdvith glue strength 0, 1, and 2, respectively.

Soloveichik and Winfree gave a different construction, ebhthey attribute to Paul
Rothemund and Matthew Cook (see Soloveichik and Winfre®28ppendix B), of a gen-
eraln-way overlay compact proofreading tile set, in which eadaheddbel of a proofreading
tile encodes: bits of information. Meng (2009) has shown that for the Sieski pattern,
the n-way overlay construction results in a tile set with + 3n + 4 rule tiles. It should
again be stressed that, while the number of tiles in any dfetftempact proofreading tile
sets is larger than that in the original Sierpinski or Bin@gunter tile set, the size of the
final assembly required to produce &nx N Sierpinski or Binary Counter pattern is exactly
the same as that for the original tile set.

3 Malformed Tile Sets

As stated in the introduction, the object of this paper is @asider a problem different
from the one tackled by proofreading tile set constructidree scenario that motivates us
is one in which errors affect the process of tile set fabiacgtresulting in abnormalities
or imperfections in some small proportion of the tiles. THour set-up, malformed tiles
are simply deformations of normal tiles. In fact, since thiyort of tile abnormalities that
influence the assembly process are imperfections in tilegdge will assume that abnormal
tiles are created by modifying the edges of normal tiles.

So, suppose that we are givenamal tile set € consisting of tile types that we consider
to benormal tile types. A malformed tile type is obtained by modifying some (or all) of the
edge labels of some normal tile type. The edges in the madfdrtite type whose labels
differ from the normal edge labels will be calledalformed edges. A malformed tile set
derived from¥ is a collection of tile types consisting of the (normal) tiyges inT along
with some malformed tile types derived from the tile type€in

We now describe certain simplifying assumptions we makaimmoodel for malformed
tile sets. Our first assumption is based on an understandaigtige imperfections do not
transform one normal edge label into another normal edgs.lab

Assumption 1 Malformed edges always receive labels that are distinct from all the edge
labels of normal tile types.

We do not specify at this point whether or not distinct matfed edges can receive the
same edge label. We will consider two extreme cases in owlations — one in which
no pair of distinct malformed edges receives the same edigd land another in which all



malformed edges receive identical edge labels. In the focase, any malformed tile in the
interior of a tile assembly must have a mismatched edge withaat one of its neighbours.

The next assumption is consistent with the fact that maléatiile types are obtained
from normal tile types only through edge modifications.

Assumption 2 A malformed tile type has the same tile label as the normal tile type from
which it is formed.

Note that this assumption allows for the possibility thatkeassembly based on a malformed
tile set may contain mismatched edges and still produceah® gcorrect) pattern as an
assembly obtained from the normal tile set. We will see tiiecebf Assumption 2 being
manifested in our simulation results in the next section.

Assumption 3 A malformed tile type contains exactly one malformed edge.

The rationale behind Assumption 3 is that, among malforrites, those with more than
one malformed edge have a negligible impact on the assemiitggs, as they are unlikely
to form stable attachments with an existing aggregate.

The definitions and assumptions we have made up to this pimin valid for an arbi-
trary normal tile set. However, to make our subsequent digous easier, we will from now
on restrict ourselves only to the normal tile sets coveredunsimulations, namely, the ba-
sic Sierpinski tile set (Figure 1), the basic Binary Coutilerset, and various proofreading
tile sets derived from these basic tile sets. There are H#ingls of tile types in these tile sets
— a unigue seed tile, boundary tiles, and rule tiles.

We will assume that only rule tiles can be modified to form madfed tiles. This is be-
cause malformed edges on the seed tile or on boundary tiler €io not influence the tile
assembly process at all or cause the process to come to atitamd illustrate this more
clearly, we take the example of the Sierpinski tile set inuFégl. Note that imperfections
in the strength-0 edges of the seed or boundary tiles would ha influence on the tile
assembly process. On the other hand, a malformed strengige2in a seed tile or bound-
ary tile would make the formation of a stable assembly highilikely. Boundary tiles in
this tile set also have strength-1 edges, imperfectionshiclhwwould have an influence on
the assembly process. However, the effect of such a malfbedge can be equivalently
modelled by modifying the matching strength-1 edge in tHe tile that must attach to it.
We are thus justified in making the following assumption.

Assumption 4 Malformed tiles are obtained by modifying ruletiles only.

Rule tiles have two input edges (bottom and right) and twpuiuédges (top and left).
To differentiate between the effects of malformed inputesdgnd malformed output edges,
we categorize malformed tile sets into three classes:

(1) Input-side malformed (IM) tile sets, in which the malformed tile types consist of all tile
types obtainable by modifying one input edge of a normal tilde

(2) Output-side malformed (OM) tile sets, in which the malformed tile types consist of all
tile types obtainable by modifying one output edge of a ndmula tile.

(3) Input/output-side malformed (IOM) tile sets, in which the malformed tile types consist
of all possible IM tile types and OM tile types.

Figure 5 contains a depiction of these malformed tile typesur simulations, we deal
separately with each of the above classes of malformeddite s
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Fig. 5 The tile on the left is a normal rule tile, the two tiles in the diElrepresent IM tile types, and the two
tiles on the right represent OM tile types. Malformed edgesdanoted by the labeh.

4 Simulation Results

The simulations results reported in this section providecadh comparison of the perfor-
mance of various kinds of tile sets in the presence of makéartiles. The tile sets we have
simulated produce either the Sierpinski pattern or the Biounter pattern. For the Sier-
pinski pattern, our simulation results cover the followiilg sets: the basic Sierpinski tile
set (Figure 1), Winfree and Bekbolatow@sx 2 proofreading tile set (Winfree and Bekbola-
tov 2004), the 2- and 3-way overlay compact proofreadirgstts of Reif et al. (2005), and
the generak-way overlay construction attributed to Rothemund and G&utoveichik and
Winfree 2006, Appendix B). While we also ran simulationstfoe snaked proofreading tile
set of Chen and Goel (2005), we found this tile set to perfoeny poorly in the presence
of malformed tiles, as we explain in more detail in the nextisa. The tile sets covered in
our simulations for the Binary Counter pattern are: theb&snary Counter tile set (Fig-
ure 3), the2 x 2 proofreading tile set, and the 2- and 3-way overlay compemtfpeading
tile sets of Reif et al. We did not run simulations for malfeuitile sets derived from the
Rothemund-Coolk.-way overlay construction for the Binary Counter. The reafw this
is that, forn = 1,2, 3, the error rate obtained with theway overlay tile set, even without
malformed tiles, is larger than that for the basic Binary tteu tile set. While the error
rates do decline as increases, the number of tiles in these tile sets increagementially
with n, so that forn > 4, the number of tiles is large enough that it becomes infémasib
simulate the corresponding malformed tile sets withgm ow.

All simulations were performed within thegr owtile assembly simulator. The values
of the parameteré&/,,. and G, were set to 17 and 8.6, respectively, in keeping with the
principle expounded by Winfree (1998b) that the ratia:gf. to G s should be kept slightly
below 2. For each type of rule tile, the tile concentratiofugavas set to [0.9]; for each
malformed tile type, the tile concentration value was s§d105]; the seed tile concentration
was [0.1], and the concentration of each boundary tile tyag [@.3]. We ran 50 simulations
for each tile set. Unless explicitly specified otherwiser malformed tile sets have the
property that malformed edges in distinct malformed tileety receive distinct edge labels
(see the remarks following Assumption 1).

Table 1 A comparison of the number of errors in a 128128 assembly, averaged over 50 runs.

Basic tile set| IMtile set | OMtile set | IOM tile set
Sierpinski 7.36 8.14 9.78 11.74
Binary Counter 7.16 8.62 14.82 15.38

Table 1 above compares the performance of the basic Sikrpind Binary Counter tile
sets to that of the malformed tile sets derived from them. géidormance measure here
is the number of errors in a 128 128 tile assembly, averaged over 50 runs. As expected,
malformed tile sets perform worse than the normal tile $aighermore, tile sets containing



Table2 A comparison of various malformed proofreading tile sets ferSkerpinski pattern. The first number
in each table entry is the proportion, out of 50 tile aggrieget, of aggregations that contain mismatched-edge
errors. The second number, which is in parentheses, is thmgian of aggregations that fail to produce a
correct128 x 128 block of the Sierpinski pattern.

Normaltile set| IMtileset | OMtile set | IOM tile set
Basic Sierpinski tile set 1(1) 1(1) 1(1) 1(1)

2 x 2 proofreading 0 (0) 0.56 (0.02)| 0.76 (0.44) | 0.94 (0.48)

Reif et al. 2-way overlay 0 (0) 0.3 (0.06) | 0.42 (0.14)| 0.58 (0.2)
Reif et al. 3-way overlay 0 (0) 0.18 (0) 0.24 (0.04)| 0.30 (0.04)
Rothemund-Cook 1-way overla 0 (0) 0.26 (0.06) | 0.34 (0.1) | 0.58 (0.16)
Rothemund-Cook 2-way overla 0 (0) 0.36 (0) 0.38 (0.02) 0.52 (0)
Rothemund-Cook 3-way overla 0 (0) 0.26 (0) 0.44 (0.02) | 0.56 (0.02)

OM tile types perform worse than IM tile sets, a trend thabissistent across all simulation
results reported in this section. This phenomenon has m@lsti@rward explanation. Con-

sider any open position in the growing asembly where a notieatan stably attach itself

(by forming two weak bonds). An OM tile derived from the sanoemal tile has an equal

chance of attaching itself to that position, as the inputesdgf the malformed tile are the
same as those of the normal tile. On the other hand, an IM gitedne malformed input
edge, so its attachment to the open position must happeninsitificient bond strength.

This makes the attachment of the IM tile less likely to ocecukTAM than the attachment
of a normal tile. This explains why the proportion of malfedtiles attaching to an aggre-
gation in an OM or IOM tile set is higher than that in an IM tilet sHowever, we are unable
to satisfactorily explain why the performance gap betw&erl¥ and the OM/IOM tile sets

is much larger for the Binary Counter pattern than for the@mneski pattern.

The influence of malformed tiles on various proofreading $iét constructions for the
Sierpinski pattern is tabulated in Table 2. The entries enttible attempt to measure the
ability of several different malformed tile sets to form a812 128 block of the Sierpinski
pattern. In the case of malformed tile sets derived from2he 2 proofreading tile set,
this requires the formation of a 256 256 aggregate of tiles; but in all other cases, only a
128 x 128 tile aggregate is required. Each entry of the table consifsésdecimal number
followed by another such number in parentheses. The firstoeumgives the proportion,
out of a total of 50 aggregations, of aggregations that Gemeésmatched-edge errors. The
second number (the one in parentheses) represents thetwopout of 50, of aggregations
that result in a wrong 128 128 pattern. Recall that, by virtue of Assumption 2, it isgibke
for an assembly formed from malformed tile sets to produeectirrect pattern even if the
assembly contains mismatched edges. Thus, the second nimarg of the entries in the
Table 2 can never exceed the first number in that entry. In iiachany of the entries, the
second number is much lower than the first. This is espediaié/of the malformed tile sets
derived from the Rothemund-Cook 2- and 3-way overlay tits.se

Among the malformed tile sets considered in Table 2, thoswete from the2 x 2
proofreading tile set produce the least number of erra-f&ggregations. This is entirely
reasonable, since these tile sets are required to prodiges Essemblies than the other tile
sets listed in the table.

The most number of error-free aggregations is producedé@-vay overlay tile set of
Reif et al. Interestingly, the malformed Rothemund-Cook&¢ and 3-way overlay tile sets
are remarkably consistent in producing correct 32828 blocks of the Sierpinksi pattern
almost all the time. This observation induced us to studypéirdormance of these tile sets
over a larger assembly size of 256256 tiles. We restricted our attention to the worst-
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Table 3 A comparison of IOM tile sets derived from the Rothemund-Caelay overlay tile sets for the
Sierpinski pattern. Target aggregate size is 25856.

n=1|n=2|n=3| n=4
Average number of errors in a 256256 aggregate 5.28 4.02 3.06 3.12
Proportion of aggregates with errors 0.98 0.96 0.92 0.94
Proportion of aggregates forming wrong patterns 0.84 0.4 0.22 0.32

Table 4 A comparison of various malformed proofreading tile sets fa Binary Counter pattern. The
first number in each table entry is the proportion, out of 50 éigggregations, of aggregations that contain
mismatched-edge errors. The second number, which is in passthis the proportion of aggregations that
fail to produce a correct28 x 128 block of the Binary Counter pattern.

Normal tile set| IMtileset | OMtile set | IOM tile set
2 x 2 proofreading 0 (0) 0.76 (0.02)| 0.86 (0.34)| 0.98 (0.36)
Reif 2-way overlay 0 (0) 0.26 (0.04)| 0.34 (0.06)| 0.5 (0.1)
Reif 3-way overlay 0 (0) 0.24 (0) 0.28 (0.04)| 0.52 (0.04)

case IOM tile sets only. Fifty (50) simulation runs were pemfied on each of the IOM
tile sets derived from the Rothemund-Coekvay overlay construction, for = 1,2, 3, 4.

The results of these simulations are presented in Table &seTtesults show that despite
the fact that almost all the 256 256 tile aggregates produced by these IOM tile sets have
mismatched-edge errors in them, the proportion of aggeedhat fail to produce the correct
256 x 256 Sierpinski pattern block is (at least foe= 2, 3, 4) much smaller.

It is interesting to note from the results presented in T&8kleat the malformed-way
overlay tile sets improve in performanceasncreases from 1 to 3, but the improvement
stops atr = 3. Two things happen in the normalway overlay tile sets as increases:

(a) the amount of redundant information encoded in each ledbg¢ increases, and
(b) the total number of tile types increases — as mentionedkittion 2.2, the tile set has

n? + 3n + 4 rule tiles.

These two factors seem to affect the performance of theetkrivalformed tile sets in op-
posite ways. Increased redundancy in the edge labels appeanitigate, to some extent,
the effect of malformed tiles. On the other hand, the numib¢iteotypes in a normal tile
set seems to adversely affect the performance of malforiteeskts derived from it. Indeed,
evidence can be found even in Table 2 for the fact that the eurobtile types in a nor-
mal tile set plays a role in determining the performance oivdd malformed tile sets. The
2-way overlay tile set of Reif et al., and the Rothemund-Cihekay overlay tile set have
eight tiles each, and the malformed tile sets derived froemtllisplay remarkably similar
performance.

Turning now to Binary Counter tile sets, we provide in Table gerformance compar-
ison analogous to that in Table 2 for Sierpinski tile setsmfentioned at the beginning of
this section, we did not run simulations for malformed ti#¢sderived from the Rothemund-
Cookn-way overlay construction for the Binary Counter. Thus,|&@abonly compares the
malformed tile sets derived from tleex 2 proofreading tile set, and the 2-way and 3-way
overlay compact proofreading tile sets of Reif et al. Thgeanggregate size is 256256
for the malformed® x 2 proofreading tile sets, and 128 128 for the others. The simula-
tion results again indicate that the proportion of assesshfiroducing the correct pattern
is a much more useful indicator of malformed tile set perfance than the proportion of
assemblies having mismatched edges.

Our last collection of simulation results compares thegrenince of malformed tile sets
in which malformed edges from distinct tile types receivgtidict labels to those in which
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Table5 The number of mismatched-edge errors in a ¥2828 tile assembly, averaged over 50 runs.

Basic Sierpinski Basic Binary Counter
Dislinet mal G ed IOM tile set IOM tile set
istinct malformed edges 11.74 15.38
receiving distinct labels
Distinct malformed edges
receiving same labels 9.64 10.40

Table 6 The proportions of aggregates containing errors, and iwvjihrentheses) of aggregates producing
wrong patterns, for IOM tile sets derived from the Rothem@ubkn-way overlay tile sets for the Sierpinski
pattern. The proportions are calculated over 50 aggregedeh of size 12& 128.

n=1 n=2 n=3
Distinct-label IOM tile set| 0.58 (0.16) | 0.52 (0) 0.56 (0.02)
Same-label IOM tile set | 0.70 (0.82)| 0.60 (0.12) | 0.50 (0.08)

all malformed edges receive the same label. We refer to tinegfiovariety of malformed tile
sets adlistinct-label, and the latter asame-label. While a same-label tile set is probably
not a very realistic model for malformed tiles, it will seras a control for our experiments
on distinct-label malformed tile sets. Observe that we ardgd to focus on IOM tile sets
here, as it is only these tile sets that can benefit (or noth fitee potential of a malformed
input edge in one tile matching with a malformed output edigenmther. Note also that if
malformed input and output edges receive distinct edgdddas happens in a distinct-label
tile set), then the glue strengths assigned to those edggapirole within KTAM. However,

if malformed input and output edges are allowed to have theesadge labels, then it does
matter what glue strength is assigned to those labels. fais of matching malformed
edges have glue strength 0, then the resulting effect wki#iM is the same as that of
distinct-label tile sets. So, in our simulations, to be dbleuly distinguish the effect within
kTAM of same-label IOM tile sets from that of distinct-lad€IM tile sets, we set the glue
strength to be equal to 1 for all malformed edges in our sahettile sets.

The results of these simulations are presented in Tablesl B.aAs usual, the results
are for 50 simulation runs for each tile set shown in the ®lded a target assembly size
of 128 x 128 tiles. Table 5 indicates that the number of mismatcliggeerrors in a tile
assembly is smaller, on average, for same-label IOM tile thein for distinct-label ones, as
one would expect. On the other hand, it can be seen from Tatblat&ame-label tile sets
tend to produce more incorrect patterns than distinctHiélbesets. This is readily explained
by the fact that in assemblies formed by distinct-label s#¢s, a tile attaching itself to a
position in the growing assembly is much more likely than tadbe either the correct tile
for that position, or a malformed tile derived from the catréle. Tiles other than these
have a much lower chance of being “frozen” within the assgrbplthe addition of further
tiles. Thus, tiles attaching to positions in the growingeaiskly are highly likely to have
the correct tile label for that position, which makes it quirobable that the final pattern
produced by the assembly is correct.

5 Snaked Proofreading Tile Sets

At the beginning of the previous section, we mentioned tlo¢ tlaat malformed tile sets
derived from the snaked proofreading tile sets of Chen andl @905) performed very
poorly in simulations. We investigate this phenomenon iritlen this section, and propose
some solutions to the problem.
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snaked OM ftile set proofreading OM tile set

Fig. 6 Xgr ow simulation screen shots of (a)dax 4 snaked proofreading OM tile set, and (b}lax 4
(non-snaked) proofreading OM tile set. In both cases, tyetassembly size B4 x 64.

5.1 Stalling in Malformed Snaked Proofreading Tile Assdgtl

The simulations we undertook focused on malformed tile sbtained from the 4x 4
snaked proofreading tile set generating the SierpinskepatOn the one hand, IM tile
sets were able to form 256 256 aggregations, but these aggregations were riddled with
mismatched-edge errors. On the other hand, OM and IOM tikefaded to even produce
aggregations of this size. In our simulations, OM tiles eauthe tile assembly process to
stall repeatedly and frequently.

It is natural to compare the snaked proofreading tile set wie Winfree-Bekbolatov
(non-snaked) proofreading tile set (Winfree and Bekb®l&004), as the former is basi-
cally a modification of the latter. We ran simulations on Ol sets derived from x 4
proofreading tile sets of both kinds. Under identical siation conditions, the Winfree-
Bekbolatov4 x 4 proofreading OM tile set was able to produce a compstex 256 tile
aggregation in a very short time, while the 4 snaked proofreading OM tile set was unable
to form an aggregation of this size even after several hdursiaterrupted simulation runs.

We provide here an explanation for the stalling phenomemseribed above. Figure 6
shows two screen shots of the growing assemblies ©fxa4 (non-snaked) proofreading
OM tile set and at x 4 snaked proofreading OM tile set. Note that the growth frdrihe
proofreading OM tile set is smooth, whereas that of the sth&X#! tile set is uneven and
jagged. From careful observations of the manner in whichdf@ssemblies grow, we found
that tile addition in a snaked proofreading assembly ocguis block-by-block fashion,
while in a proofreading assembly, the addition of new tikesat strictly correlated to the
formation of blocks. More precisely, in a snaked proofragdissembly, once a newx 4
block starts forming, further tiles are added in a mannerfdnaurs the completion of that
block over the initiation of the growth of other blocks (segufe 6(a)). Furthermore, once
a block is completed, that block tends to remain stable, witly a very small chance of
tiles falling off from that block according to the dynamidsk@AM. On the other hand, in a
(non-snaked) proofreading assembly, the growth front tearly renews itself through the
process of tiles adding and falling off, and this is largelgependent of the formation of
complete4 x 4 blocks.

We noticed that stalling in an OM snaked proofreading tilseasbly almost always
occurred in situations when a completex#4 block was formed, but there were OM tiles
frozen within the output-side (top and left) edges of the ptate block. The frozen OM
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Fig. 7 4x4 proofreading constructions: (a) the Chen-Goel snakedirading construction, (b) the Winfree-
Bekbolatov (non-snaked) construction. Dashed edgesl|esigdpes, and double edges depict strength-0,
strength-1, and strength-2 bonds, respectively. The nunter the tiles shows the order in which tiles
attach to form thel x 4 block. The circles identify the last tiles to attach in a idoc

tiles hindered the formation of the nextx 4 block, and it took an exceedingly long time
for them to fall off according to the dynamics of kTAM, caugithe stall. The reason for
this is that, as noted by Chen and Goel (2005), all the tiletheroutput sides of a x 4
snaked proofreading block (see Figure 7(a)) are held by $ofhdbtal strength at least 3.
So, whenever such a block is completely assembled, it ikelglthat any of the tiles within
the block will fall off, and be replaced by other tiles. In paular, if any of the tiles on the
output sides of a completeidk 4 block are OM tiles (with malformed edges facing outside),
these are likely to remain frozen within the block. Note tiféd is not as much of a problem
with the (non-snaked) proofreading tile assemblies, whesmy time during the formation
of a4 x 4 block, there are always tiles within the block that are dttatto the rest of the
assembly with bonds of total strength at most 2; see Figune 7(

5.2 New Snaked Proofreading Constructions

To alleviate the problem of stalling, we propose two new sdgbkroofreading constructions,
referred to as Construction A and Construction B, which apicted in Figure 8(a) and
Figure 8(b), respectively. Both constructions follow tlzene principles as the Chen-Goel
construction, but differ from the latter construction irethositions of the null bonds and
strength-2 bonds. Construction A changes some of the odtggsein the Chen-Godl x 4
snaked proofreading block to null bonds, and some of theriadges to strength-2 bonds.
Construction B is the same as the Chen-Goel snaked proafgeadnstruction within the
bottom-right3 x 3 sub-block. The novelty in the construction is that the titethe fourth
row and column of a block have only strength-1 edges. The éd¢his construction is to
combine & x 3 snaked proofreading construction with a row and a columhefibn-snaked
proofreading construction.

Note that in both the new constructions, the last tile tochttaithin a block (identifiable
by the circles drawn in Figure 8) is held to the assembly bydsaf total strength 2. Thus,
if the assembly were to stall after a compléte 4 block is formed, the chances of the last
tile falling off — and hence, allowing other tiles to fall offis well — are higher in these
constructions than in the Chen-Goel construction.

As with any proofreading constructions that rely upon thenation of4 x 4 blocks,
Constructions A and B can certainly reduce growth errorsistaction A also preserves
the “snaked” order of growth of the Chen-Goel constructiwhich has been shown to be
effective in countering the influence of facet errors (Ched &oel 2005). Construction B
preserves the snaked order of growth of the Chen-Goel eantigtn only within the first
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Fig. 8 4 x4 Snaked proofreading constructions: (a) Construction AC@mstruction B. Dashed edges, single
edges, and double edges depict strength-0, strength-Etemdjth-2 bonds, respectively. The numbering of
the tiles shows the order in which tiles attach to form 4hg 4 block. The circles identify the last tiles to
attach in a block.

3 x 3 sub-block. As a result, it too can reduce facet errors, btligges not as much as the
Chen-Goel construction and Construction A.

The advantage of Construction B over Construction A is thases a lot fewer null
bonds and strength-2 bonds, particularly on the outer edfjaslock. We have observed
in our simulations that the self-assembly process findssiee#o assemblé x 4 blocks of
Construction B than of Construction A.

We report here the results of our simulations comparingwleertew snaked proofread-
ing constructions with the Chen-Goel construction. All simulations were run irRgr ow
under the growth conditions obtained by seti{fig. = 17 andGs. = 8.6.

The first experiment compares assemblies formed by the nailmaets for the three
snaked proofreading constructions. Each normal tile setatie to successfully complete
a256 x 256 block of tiles {.e., a64 x 64 block of the Sierpinski pattern). Tabulated below
is the number of correct aggregates (and thus correct pajtermed in 50 simulation runs
by the normal tile sets for the three constructions.

Chen-Goel | Construction A | Construction B
50 43 48

It is interesting to note that while the two new snaked preafling constructions are not
always able to form correct aggregates, Construction B isengonsistent at forming a
correct aggregate than Construction A.

We next compare the performances of the OM tile sets obtdinedthe three construc-
tions. The concentration of each malformed tile is equ&lo@s], compared to a concentra-
tion of [0.9] for each normal rule tile. Fifty simulation runs were perfigd on each OM tile
set, with a target assembly size 26 x 256 tiles. Simulations were run in batches 25
parallel runs on a standard desktop computer, with each laditmved to run uninterrupted
for 30 hours. The entries in the table below record the nurabains, out of 50, that result
in a complete256 x 256 tile assembly, and (within parentheses) the number of roat t
result in a complete and corre®t x 64 block of the Sierpinski pattern.

Chen-Goel Construction A Construction B
0(0) 30 (29) 36 (33)

Itis clear from the simulation results that the two new sulgk@ofreading constructions
significantly improve upon the performance of the Chen-@oelstruction in the presence
of OM tiles. In particular, they are able to avoid the stajliphenomenon observed in the
Chen-Goel snaked proofreading OM tile assembly. Also,gel@roportion of the complete
Construction A and Construction B aggregates yield coiBéstpinski patterns.
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(@ (b) (©
Fig. 9 Snaked proofreading constructionstok 6 blocks: (a) Chen-Goel construction, (b) Construction A,

(c) Construction B. Dashed, single, and double lines remestrength-0, strength-1, and strength-2 bonds,
respectively.

The new4 x 4 snaked proofreading constructions presented above caereedlized to
2k x 2k blocks, for anyk > 2. In the descriptions that follov; ; denotes the tile in row
and and column of a2k x 2k block. Here, rows are indexad?2, . .., 2k, starting with the
bottom row, and the columns are indexea, . . ., 2k, starting with the rightmost column.

The2k x 2k Construction A snaked proofreading block is described Bs/s:

1. The west sides of tile; »;,—; are null bonds, where=1,2,...,k — 1.
2. The north sides of tiley; ; are null bonds, where=1,2,... k- 1.
3. Edges on the north sides of til&s; 2,41 have strength 2, where=1,2,... k- 1.
4. Edges on the west sides of tilEs ;1 have strength 2, whefie= 1,2, ..., k.
5. The edges on the north sides of tilgg,_; ; andT;_2 o, have strength 2.
6. The edges on the west sides of tilgg_; ; andT; 55 have strength 2.
7. The west side of tild5;,_ 2,1 is a null bond.
8. The north sides of tile®,, 25,1 andTyy, o5 are null bonds.
9. The west sides of tileB,;,_; o andTyy, o5 are null bonds.
10. The south sides of tiles, o5, _; andT; o are null bonds.
11. The east sides of til&$;,_, ; andTyy, ; are null bonds.
12. All other edges have strength 1.
The2k x 2k Construction B snaked proofreading block is constructefdlésws:
1. The west sides of tileg; »;_; are null bonds, where=1,2,...,k — 1.
2. The north sides of tile®,; ; are null bonds, where=1,2,...,k — 1.
3. Edges on the north sides of til&s; 2,41 have strength 2, where=1,2,... k- 1.
4. Edges on the west sides of til&s »;_; have strength 2, whete=1,2,...,k — 1.
5. All other edges have strength 1.

In both the constructions described above, the edge lattelnal to eackk x 2k block
are unique to that block.

Figure 9 shows the three different snaked proofreadingtoaetfons for6 x 6 blocks.
Observe that theé x 6 block of Construction A (resp. Construction B) has the saoten-
right 4 x 4 (resp.5 x 5) sub-block as th& x 6 block of the Chen-Goel construction. This
observation generalizes naturally to ttiex 2k constructions, as may be verified by com-
paring the general descriptions of the new constructionsrmgabove to the corresponding
description given by Chen and Goel (2005).
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6 Conclusion

In this paper, we studied through simulations the effect affonmed (.e., imperfectly-
fabricated) tiles on the performance of various tile set&lpcing the Sierpinski and Binary
Counter patterns. A significant contribution of this papethe development of two new
snaked proofreading tile set constructions that providergtes of tile sets that are robust
with respect to errors intrinsic to the assembly process aso with respect to malformed
tiles.

It should be pointed out that in this paper, we restrictedaitention to proofreading
tile sets in which the error-control mechanism consistshefihtroduction of redundancy
into the edge labels of tiles. Alternative error supprassitechanisms have indeed been
proposed in the literature (for example, Fujibayashi e@08) and it would be of interest
to study how malformed tiles affect these kinds of proofieganechanisms.
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