MAXIMIZING THE SHANNON CAPACITY OF CONSTRAINED
SYSTEMS WITH TWO CONSTRAINTS*
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Abstract. In this paper, we consider the problem of finding the set {A,B} C {0,1}™ that
maximizes, among all 2-subsets of {0, 1}"*, the Shannon capacity, H(A, B), of a constrained system of
binary sequences that do not contain A or B as a contiguous subsequence. This problem is motivated
by the problem of finding a pair of length-m binary sequences, called markers, that achieves the
maximum rate, R(2,m,n), of a (2, m,n) periodic prefix-synchronized (PPS) code. A (2,m,n) PPS
code is a binary block code with two length-m markers A, B, and codewords of length n that inserts
A and B alternately at regular intervals in the encoded bitstream, with the additional constraint
that A and B may not appear anywhere in the encoded bitstream other than where inserted. We
show that for any m > 2, limp— oo R(2,m,n) = max{H(A,B) : {A,B} C {0,1}™} = logs pm—1,
where p,,—1 is the largest-magnitude zero of the polynomial z™~1 — zm~2 — ... — 1. Moreover,
we completely characterize the sequences A and B that achieve max H(A, B), as well as those that
achieve R(2,m,n) for all sufficiently large n.

Key words. Shannon capacity, constrained codes, periodic prefix-synchronized codes, shifts of
finite type

AMS subject classifications. 68P30, 94A45, 94A55, 37B10

1. Introduction. We begin by defining the notion of Shannon capacity [1],[13]
of a constrained system of binary sequences. Given a constraint set (or forbidden set)
F of finite-length binary sequences, we define the corresponding constrained system,
S(F), to be the set of finite-length binary sequences that do not contain any member
of F as a contiguous subsequence. The Shannon capacity of the constrained system
S(F) is defined as H(F) = lim,_,o n~'log, gr(n), where gr(n) is the number of
length-n sequences in S(F). In this paper, we shall be concerned with constraint sets
F C {0,1}™ containing binary sequences of a fixed length m, and for the most part,
sets F of cardinality 2. The main contribution of this paper is a complete solution to
the problem of finding the set {4, B} that maximizes H (A, B)! among all 2-subsets
of {0,1}™.

The motivation for this problem comes from two sources. The first source is the
area of symbolic dynamics [10], where the problem may be reformulated in terms of
characterizing those shifts of finite type that have the maximum entropy among all
shifts that forbid 2-subsets of {0,1}"™. Indeed, a related problem was considered by
Lind [11], who provided computable bounds on the change in the entropy of a shift of
finite type when an extra sequence is added to the original set of forbidden sequences.

The second source for the problem is a closely related question that arises in the
context of periodic prefix-synchronized codes which were introduced recently [8] as a
family of sync-timing codes. Sync-timing codes are needed in most communication
systems where data synchronization is needed (cf. [12]), i.e., when a sequence of data
symbols must be encoded into bits and transmitted across a channel that can make
arbitrary insertion, deletion and substitution errors. These codes not only enable the
decoder to resynchronize rapidly upon cessation of such errors to correctly reproduce
data symbols, but also allow the decoder to produce estimates of the time indices of
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the decoded data symbols, in order to determine their positions in the original source
sequence.

Periodic prefix-synchronized (PPS) codes are binary block codes that insert syn-
chronizing markers at regular intervals (see Fig. 1). They are characterized by positive
integers p, m, n, distinct binary length-m sequences called markers My, ..., M, and
codebooks C1,...,Cp. Each C; contains all binary codewords of length n > m, with
the following properties: (i) each codeword begins with the marker M;, and (ii) if

M; = agi) ...ag,?, 1 =1,2,...,p, and agi)...aﬁ)bl...bn,m is a codeword from Cj,
then none of the markers My,..., M, can be found as a contiguous subsequence of

agi) .y ...bn,magﬂ) . ..ag:ll) (the superscript (p + 1) is to be interpreted as
the superscript (1)). The idea here is that if a codeword from C; were to be followed
by one from C;;1, then no marker can appear at any place except at the beginning
of each codeword. A specific PPS code with period p and markers of length m, whose
codebooks contain sequences of length n, will be referred to as a (p,m,n) PPS code.

The sequence of data symbols (which we assume to be binary) to be encoded
is first divided into blocks of length K = Y7 | k;, where k; = [log, |C;|], with |C;]
denoting the cardinality of C;. Each such block is then encoded by the PPS code
as follows: the first k1 data symbols are encoded using the codebook Ci, the next
ko> data symbols are encoded using C, and so on until the last k, data symbols are
encoded using Cp. Since the encoding procedure has a block structure with input
blocklength K and output blocklength N = pn, the rate of the code is R = K/N.
Note that R < 1 since K < N, and it is desirable to have codes with rates as close to
1 as possible, so as to minimize the redundancy introduced.

Due to the constraints on the codewords, it is clear that markers can only appear
at specific places in the sequence of encoded bits, and hence any marker can be used by
the decoder to recover synchronization. The idea behind inserting multiple markers in
a periodic manner in the encoded sequence is that, as explained in [8], this periodicity
allows the decoder to estimate the time index of each decoded data symbol, relative
to the beginning of the “period” to which it belongs, without compromising on the
delay in recovering synchronization.

For p = 1, the above description is simply that of a prefix-synchronized code, first
studied by Gilbert [3] and further analyzed by Guibas and Odlyzko [4]. The PPS
code with markers M; = 000, M> = 111, and codebooks C; = {0001100,0001010},
C> ={1110011,1110101}, is an example of a (2,3,7) PPS code.

Let us define R(p,m,n) to be the maximum rate achievable by a (p, m,n) PPS
code, if such a code exists, and to be zero otherwise. To find R(p, m,n), it is necessary
to find markers Mi,..., M, that maximize the sizes of the codebooks Ci,...,C,
subject to the constraints defining the code. Due to the similarity of the constraints
involved, it is reasonable to expect that, asymptotically in n, R(p,m,n) is closely
related to Hp,, = maxz H(F), with the maximum being taken over all p-subsets
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F c{0,1}™.

The work of Gilbert [3], along with that of Guibas and Odlyzko [4],[5], showed
that such a relationship does indeed hold for p = 1, i.e., for prefix-synchronized codes.
Specifically, using generating functions, Gilbert showed that if m > 1 is fixed, then
for all sufficiently large n, R(1,m,n) is achieved by choosing the single marker, M,
in the code to be either the length-m all-zeros sequence, 0™, or the length-m all-ones
sequence, 1™. It also follows from his results that lim,,_, ., R(1,m,n) = log, pm, where
pm is the largest-magnitude zero of the polynomial 2™ — z™~1 — ... — 1. Guibas and
Odlyzko subsequently used generating functions to show (among other things) that
for any A € {0,1}™, H(A) < H(1™) = log, pm with equality iff A = 0™ or 1™. Thus,
we see that for m > 1, limy, oo R(1,m,n) = Hi m = logy pm.

In this paper, we derive a corresponding relationship for the case when p = 2.
The major part of this derivation lies in a proof of the fact that for all m > 2,
Hs,;m =1085 pm—1, where p,, 1 is the largest-magnitude zero of the polynomial 2™~ —
2™~2 — ... — 1. This fact is then used to show that lim,, ., R(2,m,n) = logy pm_1
as well. Moreover, we identify (Theorem 1) all the pairs of length-m sequences that
achieve Hy p,, as well as those (Theorem 2) that achieve R(2,m,n) for all sufficiently
large n. We also provide a partial result (Theorem 18) for p = 3, for which we
show that Hjs , = log, pm—1 as well, and is achieved by the set {10™~1 0™~ 11 0™},
However, this set of sequences cannot be used as markers in a (3, m,n) PPS code, as
any codeword that begins with 0™ must have an occurrence of 0™ or 0™11 starting
at the second bit, which violates the constraints defining the code. Hence, it may not
be true that lim, .o R(3,m,n) = Hs .

For higher values of p, not even H, ,, is known, although we conjecture that
if p = 2% for any k > 0, then for m > k + 1, Hp ., = 108y pm—k, Where pp_p
is the largest-magnitude zero of the polynomial 2™~ % — ... — 1. This conjecture
is based on the following observation. Let Fo = {0™ *(i), : i = 0,1,...,2k1}
where (i), denotes the k-bit binary representation of ¢. Also, define the functions
1,9,%3 : {0,1}" — {0,1}", where {0,1}" denotes the set of all finite-length binary
sequences, as follows: for bibs...b, € {0,1}",

W1 (biba...bp) = biby...by 1
¢2(b1b2 B bn) = b2b3 .. bn
’Lp3(b1b2 e bn) =C1C3...Cp—1

where ¢; = b; @ bj+1, ® being modulo-2 addition. Note that each ; is a two-to-
one function. Now, numerical evidence seems to suggest that when p = 2%, for any
p-subset F C {0,1}", gr(n) < qx,(n) for all n, with equality (for all n) if and
only if F = ¢i_11 o i;l o... ozpi_kl(Om_k) or wi_ll oz/zi_; o ...ogbi_kl(lm_k), for any
i1,92,..-,0r € {1,2,3}. It is a simple matter to verify that when F is of the above
form, we have gr(n) = 2%ggm-»(n —k), so that H(F) = H(0™*) = log, pm_k, which
leads us to the statement of the conjecture.

Before stating our main result, we define some notation that is used throughout
this paper: (01), and (10), denote the two length-m sequences of alternating 0’s
and 1’s. The main contribution of this paper is a proof of the following result:

THEOREM 1. If A, B are distinct binary sequences of length m > 5, then

H(A, B) < log, pm-1
3



with equality if and only if {A, B} or {A,B} is one of the following: {0™,1™},
{(01),,(10), .}, {0™,10m~1}, {0™,0™~'1} and {10™~1,0™~11}. (A, B are the se-
quences obtained by complementing each bit of A, B.)

In the terminology of symbolic dynamics, this theorem shows that the entropy
of a shift of finite type that forbids some 2-subset F C {0,1}™ is at most logy py—1-
This maximum is achieved precisely when F is one of the sets listed in the statement
of the theorem.

The approach we use to prove the above theorem is based on a generating function
for the number, g45(n), of length-n binary sequences that do not contain A or B as a
contiguous subsequence. This generating function can be expressed in a simple form,
based on the concept of correlation between two binary strings, which we now define.

The correlation between two binary sequences A and B (not necessarily distinct),
denoted by A o B, is a binary sequence of the same length as A. The ith bit (from
the left) of A o B is determined as follows: place B under A in such a way that the
first bit of B lies under the ith bit of A; if the segments that overlap are identical,
then the ith bit of Ao B is 1, else it is 0. Note that if A and B have the same length,
then the first bit of Ao B is a 1 if and only if A = B. For example, if A = 110001 and
B = 1000, then Ao B = 010001, Bo A = 0000, Ao A = 100001, and B o B = 1000.
The correlation of a sequence A with itself is also called the autocorrelation of A.

If Ao B = (cocy ---cn_1) is the correlation between two sequences A and B, then
we define the corresponding correlation polynomial

n—1
1) $ap(z) =) cz™
i=0

With A and B as in the previous example, we have ¢ap(2) = 2* + 1, ¢pa(z) =
0, paa(z) = 2° + 1, and ¢pp(z) = 23. For the sake of notational simplicity, it
shall henceforth be tacitly understood that correlation polynomials are functions of
the complex variable z, and so the argument z will be dropped from their notation
whenever deemed necessary.

Guibas and Odlyzko [5] showed that given two distinct sequences A, B € {0,1}"™,
the generating function for gap(n), defined by Qap(2) = Y o, qap(n)z~", can be
expressed using correlation polynomials as

2(pa49BB — PABOBA)
(2 —2)(¢aadBB — PABOBA) + aa + ¢BB — P4aB — $BA

(2) QaB(z) =

Thus, the generating function Q 4p(z) is a rational function, and we show that it
always has a positive real pole, pag, that is larger in magnitude than any other pole.
It then follows from the theory of complex variables® (see e.g., [14], Chap. 5) that
gap(n) = c(n) (pap)™ (1 + o(1)) for some c(n) depending polynomially on n (c(n)
is a constant if p4p is a simple pole). This shows that H(A, B) = log, pap, and a
careful analysis thereafter shows how psp varies with A and B, and what choice of
A, B maximizes p4p-

To connect the above theorem with R(2,m,n), we use a rational generating func-
tion for the number, fap(k), of length-k sequences that begin with A, end with B,
but do not contain A or B anywhere else. Using Guibas and Odlyzko’s methods, it is

2We need the largest pole here because we define Q 4 B(2) as a power series in 2L,
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shown in [9] that if A and B are distinct length-m binary sequences, then for & > m,
fap(k) is the coefficient of z=* in the expansion of

1 (2 =2)pap +1
z

(3) Fap(z) = (2 = 2)(PaadBB — dABPBA) + daa + OB — daB — PBA

as Fap(z) = Y peoukz F. Note that we can use fap(k) to define the rate of a
(2,m,n) PPS code with markers M; = A and M = B as follows:

(4) R(A, B,n) = llogy fap(m +n)] 2—2 llog, fea(m +n)]

Hence, R(2,m,n) = maxa g E(A,B,n), the maximum being taken over all pairs
of distinct sequences A, B € {0,1}". By showing that in most cases, the largest-
magnitude pole of Fap(z) is the same as that for Qap(2), we are able to prove the
following result:

THEOREM 2. If A, B are distinct binary sequences of length m > 5, then

lim R(A,B,n) <10gy pm_1

n— oo
with equality if and only if {A,B} = {0™,1™} or {(01),,,(10),,}. Consequently,
lim, oo R(2,m,n) = logy prm—1-

This theorem shows that when m > 5, for all sufficiently large n, R(2,m,n) is
cither R(0™,1™, n) or ﬁ((Ol)m, (10),,,n). In fact, we show further that for nearly all
(if not all) values of n, E(Om, 1™, n) = E((Ol)m, (10),,,m).

The remainder of this paper is devoted to the proofs of the above results. In §2,
we show that @ 4p(2) has a real largest-magnitude pole, pag, by demonstrating that
the poles of Qap(z) are actually eigenvalues of a certain non-negative matrix, which
allows us to utilize the powerful Perron-Frobenius theory. Theorem 1 is proved in §3
by studying the behavior of pap as A and B vary. In §4, we explore the relationship
between H(A, B) and R(A, B,n), and prove Theorem 2.

2. Walks on Graphs. In this section, we show that Q 45(z) has a positive real
pole that is largest in magnitude among all poles of Q4p(z). It is well known that
gag(n) is precisely the number of walks of length n—m+1 on a certain directed graph
Gap obtained by removing a pair of edges from the de Bruijn graph G{™=1 of order
m —1. G™=Y is a directed graph with vertex set {v; : i = 0,1,...,2™" 1 — 1} (see
Fig. 2). If we label each vertex v; with the (m — 1)-bit binary representation of 4, then
G(m=1) has a directed edge from v; to v; if and only if there exists a binary m-sequence
(b1, b2, ...,by) whose first m — 1 bits forms v;’s label, and whose last m — 1 bits forms
v;’s label. Moreover, this directed edge is labeled with the bit b,,. Thus, each walk of
length n—m+1 on G~ has a unique binary n-sequence associated with it, namely
the sequence formed by concatenating the label of the initial vertex with the labels
of the n — m + 1 edges constituting the walk. In fact, this establishes a one-to-one
correspondence between walks of length n —m +1 on G{™~1) and binary n-sequences.
Since the edges of the graph are themselves walks of length 1, there is a one-to-one
correspondence between the edge set of G(™~1) and the set of binary m-sequences.
Defining Gap to be the graph obtained by removing the edges corresponding to the
sequences A and B from G(™~1 it is not hard to see that for n > m, gap(n) is equal
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F1G. 2. The de Bruijn graph G3.

to the number of walks of length n —m + 1 on Gap. Note that for 0 <n <m —1,
gas(n) = 2™, as all the binary sequences of length n do not contain A or B.

Let A be the adjacency matrix of Gap. It is easy to show that the number of
walks of length n — m + 1 on Gap is given by the sum of the entries of A?~™t!,
Therefore, gap(n) = 1T A?~™+11 for n > m, where 1 is a column vector of ones.
Now if A = SJS™!, where J is the Jordan canonical form of A, then gap(n) =
17ggn—m+ig-11 = xT jn=m+ly  for some column vectors x and y. Utilizing the
special structure of Jordan forms and working through the details, it can be shown
that for n > m,

(5) qAB sz 1,

where Ay, ..., A, are the distinct non-zero eigenvalues of 4, and each p; is a polynomial
(possibly zero) of degree strictly less than the algebraic multiplicity of A;. Since A is
a non-negative matrix, the Perron-Frobenius theorem cite[Theorem 8.3.1]horn shows
that it has a real positive eigenvalue, say A1, such that |A;| < A; fori =1,...,7. Note
that A\; > 1 because if 0 < A; < 1, then (5) shows that we would have 0 < g4p(n) <1
for some sufficiently large n. The case Ay = 1 is of little interest, as gap(n) then
grows polynomially with n, which shows that H(A,B) = 0. Therefore, we shall
henceforth focus on the case when A; > 1. We next show that in this case, A; is the
unique largest-magnitude eigenvalue of A, i.e., |\;] < A1 for i # 1, and is algebraically
simple. This will then imply that p;(n) is a non-zero constant.

It is easy to see that since Gap is obtained by removing two edges from g<m—1>,
it is either irreducible (i.e., it has a path connecting every ordered pair of vertices),
or it has one vertex with either no incoming edges or no outgoing edges while the rest
of the graph is irreducible. It is also a straightforward exercise to show that in the
former case, G4p is aperiodic as well (i.e., the greatest common divisor of the lengths
of all the cycles in the graph is 1), because it either contains a loop (an edge that
connects a vertex to itself), or it contains two cycles of lengths 2 and 3 respectively.
Therefore by Theorem 4.5.11 in [10], A has a unique largest-magnitude eigenvalue
which is also algebraically simple. In the case when G4p has an isolated vertex, if
we let g AB be the subgraph of Gap obtained by removing that vertex and all the
edges attached to it, then Q 4B is also aperiodic as it always contains a loop. If A is
the adjacency matrix of G AB, then A has a unique largest eigenvalue which is also
algebraically simple. Now, the eigenvalues of A4 are precisely the eigenvalues of A,
along with the eigenvalues of the adjacency matrix of the subgraph of G4p formed
by the isolated vertex and any edges connecting that vertex to itself [10, Section 4.4].
Since the latter adjacency matrix contains only one element, which is either 0 or 1,
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the only eigenvalue it contributes to A is 0 or 1. Hence, as A; > 1, it must come
from A and so it is the unique largest-magnitude eigenvalue of 4 and is algebraically
simple.

Since p;(n) has degree strictly less than the algebraic multiplicity of A\, we see
that pi(n) is a constant ¢;. Now, it is known that the number of length-n walks on
any graph is at least as large as ¢ (Amax)", Where Apax is the largest eigenvalue of the
adjacency matrix of the graph, and c is some positive constant. Therefore, we have
gag(n) > c¢(A\1)". Since A\; > 1 is the unique largest-magnitude eigenvalue of A, (5)
now shows that p;(n) = ¢; > 0. (At this point, we would like to remark that even if
A1 = 1, then it can be argued that p;(n) is non-zero, but not necessarily a constant,
but we omit the argument as this fact is not essential for our results.)

Let us now define the function Q op(z) = Yoo mdaB(n)z~™. Since gap(n), n >
m, can be expressed in the form given in (5), using the formulae for summation of
infinite series, it is easy to see that @ ap(z) is a rational function whose non-zero
poles are eigenvalues of A, and the multiplicity of the pole at A; is precisely one larger
than the degree of p; (if p; = 0, then we take deg(p;) to be —1, which implies that
there is no pole at A;). Since for Ay > 1, deg(p1) = 0, there is always a simple
pole at A;. Note that Qap(z) = 3277 272" + Qap(z), but Y7 2"2~" cannot
contribute any non-zero poles to @ 4p(z). Therefore, the non-zero poles of Qp(z)
are the same as those of Q B(2). In particular, \; is a pole of @ 4p(2), and is in fact
the unique largest-magnitude pole. (We further remark that in the case when A\; =1,
this argument would show that A; is a largest-magnitude pole of Q4p(z), but it may
not be a simple pole).

To summarize, we have shown that Q ap(z) always has a real largest-magnitude
pole pap > 1. If pgp > 1, then it is the unique largest-magnitude pole and is also
simple, and hence as explained previously, H(A, B) = log, pap. On the other hand,
if pap = 1, then H(A,B) = 0. Thus, in order to maximize H(A, B), we need to
maximize pap. In the next section, we study how p4p behaves as A and B vary.

3. Maximizing H(A, B). Note that if we define Dap(z) = (2 — 2)(¢aadBB —
dABDPBA) + dan + dBB — daB — PBA, then by adding a zero at 2 to D 4p, we obtain
a polynomial A 4p that is easier to handle. More precisely,

(6) Aap(z) = (2 —2)DaB(2) = YAAYBB — YABYBA

where v, is the polynomial defined by V.« (2) = (2 — 2)@4x(2) + 1. Thus, the behavior
of Dyp(z) is intimately connected with the behavior of the polynomials 7., making
it necessary to gain some understanding of the behavior of 7.

We shall also find it convenient to define the polynomials py(2) = zF—2F—1—.. .1,
for k =1,2,.... It is known [15] that for k£ > 2, p; has exactly one root, which is a
simple root, in the region 1 < z < 2, and all its other roots lie within the unit circle
(for k£ = 1, the only root of py is 1). We shall denote the largest root of py by pg. It
is also known that pj increases with k, and 2(1 —27%) < p < 2 for k > 2. We use
these facts about pg and py extensively in all that follows.

To any polynomial ¢ with coefficients 0 and 1, we can associate a ~y-polynomial
defined by v(2) = (z — 2)¢(2) + 1. Since y(z) > 1 for z > 2, all the real zeros of
must be less than 2. Moreover, if ¢ is not identically zero, then « has a real zero in
[1,2) because (1) = —¢(1) + 1 < 0. Thus, the largest positive zero of v lies in [1,2).
We now provide some more results concerning these y-polynomials.



LEMMA 3. Let ¢1, ¢2 be polynomials in z with coefficients 0 and 1, with ¢2(2) =
¢1(2) + 1. Let v1, 2 be the corresponding y-polynomials. Let k be the largest integer
such that the coefficients of 2* in ¢1 and @2 are different. If k = 0, then v1(2) > Y2(2)
forall 2 < 2, and if k > 1, then v1(2) > 72(2) for pr < z < 2, with equality iff z = py.

Proof: Note that the sequence formed by the coefficients of each ¢; is the binary
representation of the integer ¢;(2). Therefore, it is convenient to identify each ¢; with
the binary sequence formed by its coefficients. Since ¢; and ¢- are identified with
sequences that are binary representations of successive integers, it can be seen that
the coefficient of z* in ¢, is 1, while that in ¢; is 0. Moreover, for each j < k, the
coefficient of 27 in ¢ is 0, while that in ¢ is 1. Therefore, ¢2(2) — ¢1(2) = 1if k =0,
and if k > 1, ¢2(2) —p1(2) = 2F —2F"1 — .. — 1.

If £ = 0, we have v2(2) — 11(2) = (2 — 2)(¢2(2) — ¢1(2)) = z — 2, which is negative
for z < 2. If k > 1, then y2(2) — 11 (2) = (2 — 2)(¢2(2) — ¢1(2)) = (2 — 2) pg. Since pg
is the largest root of py and pg(2) = 1, we must have pg(z) > 0 for pr < 2z < 2, from
which the result follows. 0

LEMMA 4. Let ¢1, ¢2 be non-zero polynomials with coefficients 0 and 1, and let
Y1, Y2 be the corresponding y-polynomials. Let r1 and ro be the largest positive roots
of 11 and 7y respectively. Suppose that ¢1(2) < ¢2(2). Then, 11 < ry with equality
iff 01(2) = 2™ L+ 2" 2 4 ..+ 1 and ¢2(2) = z™ for some m > 1. Moreover, for
ra <z <2, 71(2) > 72(2).

Proof: Tt suffices to consider the case when ¢2(2) — ¢1(2) = 1. The general case
then follows by induction on ¢2(2) — ¢1(2). Let k be the largest integer such that the
coefficients of z* in ¢; (2) and ¢o(z) differ. Note that 1(2) = %(2) =1 > 0. If k =0,
then by the previous lemma, since r; < 2, we have v2(r1) < v1(r1) = 0, which shows
that 2 has a real root in (r1,2). Therefore, ry > r1.

If k > 1, then define ¢y(2) = 2°~1 + ... + 1, ¢s(2) = z*. The corresponding
y-polynomials are 41 (2) = zF —2F~1 — . —1, and 4a(2) = (z—1)(zF =21 —.. . —1).
It is clear that if ¢; = <5z-, 1 =1,2, then ry =1y = py.

Now, suppose that ¢; # ¢1, in which case since $2(2) = ¢1(2) + 1, we must have
¢2 # &2 as well. Note that for i = 1,2, we have v;(2) = 4;(2) + (2 — 2)(¢(2) — 6(2)).
Since all the coefficients of 23, j <k, in ¢; are the same as those in ngSi, we see that
¢i(2) — ¢i(2) is itself a non-zero polynomial with coefficients 0 and 1. Therefore, at
2 = pg, 4 vanishes and ¢; — ¢; is positive, which implies that v;(py) < 0. Hence, we
must have r1,72 > pg. Now, again by the previous lemma, we have g2(r1) < g1(r1) =
0, which shows that ro > r;.

The fact that 1 (2) > ¥2(2) for ro < z < 2 also follows from the previous lemma,
since we have shown that r2 > py. a

LEMMA 5. Let f(z) = (2 — 2)p(z), where p(z) is a non-zero polynomial of degree
m with non-negative coeﬂicz’ents.. Then, f'(z) >0 for z > 2(1 — mL_H)

Proof: Let p(z) = > iy aiz’, with a; > 0 for i = 0,1,...,m — 1, and a,, > 0.
Then, f(z) = Y it ai(z—2)z". Therefore, f'(z) = > 1w, ai((i+1)2* —2iz'~1). Noting
that (i + 1)z — 2iz'~" > 0 for z > 2(1 — 77), the lemma follows. |

LEMMA 6. Let ¢ be a polynomial of degree m > 2 with coefficients 0 and 1, and
let v be the corresponding ~y-polynomial. Then, v has exactly one real root r in the
interval (1,2). Moreover, r is a simple root, v(z) <0 for 1 < z <r, and g(z) > 0 for
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r<z<2.

Remark: Tt is easily verified that the conclusions of the lemma are also valid for
¢(z) = z + 1. However, if ¢(z) = z, 1 or 0, then ~ has no roots in (1,2).

Proof : Define ¢(z) = 2™, and 4(z) = (z—2)z™+1 = (z—1)(z™—z™ 1 —...—1).
If ¢ = qS, then v = 4 has exactly one root, p.,, in (1,2), and it is simple. Since p,,
is a simple root, 4(z) must undergo exactly one sign change in (1,2). Therefore,
noting that 9(2) = 1 > 0, we must have 4(z) > 0 for p,, < z < 2, and 4(z) < 0 for
1<2<pm-

If ¢ # $, then ¢(z) — (z) > 0 for z > 0. Therefore, y(z) —4(z) = (z — 2)($(z) —
$(z)) < 0 for 0 < z < 2. Therefore, v(z) < 4(z) < 0 for 1 < z < pp,, which shows
that v has no roots in (1, py)-

Now by the previous lemma, 4'(2) > 0 for z > 2(1 — -15). Hence, if v has a
root in this range, it must be unique (since v is strictly increasing), and it must have
multiplicity 1 (since 7'(z) # 0). Now by Lemma 4, v has a root r larger than the
largest r00t, pm, of 4(2). But as mentioned earlier, pp, > 2(1 —27™) > 2(1 — 17).
The negative and positive regions for v(z) are determined using arguments identical

to those used above for 4(z). O

We next prove a theorem that locates the largest positive zero of D4p, which is
the denominator of Qap in (2).

THEOREM 7. Let A and B be distinct binary sequences of length m > 5. Then,
Dap(z) has its largest positive real root p in (1,2). Moreover, max{rap,rga} <
p < min{raa,rsp}, where r.. denotes the largest real root of Vix, and the following
statements are all equivalent:

(a) p=min{raa,reB}

(b) p=max{rap,rea}

(c) daa(z) or dp(2) = 2™ L, and pap(z) or ppa(z) =22 +2" 3 +...+1
(d) {A,B} or {A, B} = {10m~1 0™}, {10m~1 0™~ 11} or {O™, 0™ 11}.

(A, B are the sequences obtained by complementing each bit of A, B.)

Remark: If ¢pap (or ¢pa) = 0, then yap (or yp4) = 1, in which case we arbi-
trarily define r4p (or rg4) to be 0.

Proof: Observe first that since the correlations Ao A and BoB begin with 1, while
AoB and Bo A begin with 0, we have ¢44(2) —¢ap(2) > 1 and ¢pp(2)—dBa(2) > 1.
Hence, for any z > 2, we have D4p(z) > 2 > 0, so that all the real roots of Dag
must be less than 2. Recall that Aap(z) = (2 — 2)D(2) = YaaYBB — YABYBA-

Our first goal is to show p > max{rap,rpa}. Since deg(daa),deg(¢pp) > 4,
Lemma 6 shows that r44 and rpp are the unique roots of gaa and ggp in (1,2).
We first consider the case when max{rap,rpa} € (1,2). By Lemma 6, this is the
case when max{deg(¢ap),deg(dpa)} > 2. It can also be verified that this is the
case when either ¢pap(z) or ¢pa(z) is z + 1. Without loss of generality, suppose
rap > rpa. Note that by Lemma 4, rap < r44, rBB, and hence by Lemma 6, we
must have gaa(rag) < 0. A similar argument shows that ggp(rap) < 0. Therefore,
Aap(rap) > 0, which implies that Dag(rap) < 0, and since Dygp(2) > 2 > 0, we
must have p > r4p.

It remains to consider the case when the possible choices for p4p(z) and dpa(2)
9



are 0, 1 and z. In all these cases, we have 0 < g45(1.5)9p4(1.5) < 1. Now,
gaa(z) < (z=2)z"" +1=-0.5(15)"" +1

for z = 1.5. Hence for m > 5, g44(1.5) < —1, and similarly, ggp(1.5) < —1, so that
gaa(1.5)gpp(1.5) > 1, Therefore, Aap(1.5) > 0, which shows that D4p(1.5) < 0,
and hence p > 1.5.

We now proceed to show that p < min{rsa,rpp}. Without loss of generality,
assume 744 < rpp. In the region 2 > 2 > rpp = max{raa,7BB,7aB,rBA}, all the
~’s are positive. Moreover, Lemma 4 shows that for any z in this region, v44(z) <
v4B(2) and vpg(2) < vBa(2). Therefore, Aap(z) < 0 for all z € (rgp,2) which
means that p ¢ (rgp,2).

Ifrqa <rpp and r44 < z < rpp, then we must have v44(2), vaB(2), vBa(z) >
0, and vgp(z) < 0. As a result, Agp(z) < 0 in this region, which means that
p & (raa,rep). Hence, p <raa.

It only remains to show that the statements (a), (b), (¢) and (d) are all equivalent
to one another. We first show that (a) = (b). Let p = min{raa,rpp} which means
that either v44(p) or v8B(p) is 0. Therefore, 0 = Aap(p) = —vaB(p)yBA(p). Thus,
we must have p = r4p or rpa. In either case, max{rap,rpa} > p. The reverse
inequality is trivial since max{rap,rpa} < min{raa,rsp}.

(b) = (a) is proved by a similar argument.

We next show that (a) < (c). Note first that p = min{raa,rpp} iff r44 or rpp is
aroot of Aap. Since Aap(raa) = —vaB(raa)ysa(raa), we see that r44 is a root of
Aap iff rag or rga = raa. But by Lemma 4, raa = rap or rga iff paa(z) = 2™ !
and ¢ap(z) or ppa(z) = 2™ 2+2m3+...+1. A similar argument shows that rgp
is a root of Aap iff ppp(2) = 2™ ! and ¢ap(2) or ppa(z) = 2™ 2 +2" 3+ ...+ 1.

Finally, we show that (c) < (d). Now, Ao B = 01" (i.e., ¢pap(z) = 2™ 2 +
2™73 4 ...+1) can happen if and only if the longest proper suffix of A is either 0™~!
or 17! and is the same as the longest proper prefix of B. Moreover, Ao A = 10™~!
(i.e., paa(z) = z™1) implies that the first and last bits of A are different. Therefore,
it easily follows that the correlations listed above can arise if and only if {4, B} or
{A, B} is one of the sequence pairs listed in the statement of the proposition. a

Observe that in the above proof, the fact that the polynomials ¢4, ¢BB, dan
and ¢p4 are correlation polynomials for certain sequences is only used in showing that
the statement (d) is equivalent to (¢). The rest of the proof continues to work even
if we only assume that ¢a4, ¢BB, dap and ¢p4 are polynomials with coefficients 0
and 1, with deg(¢aa) = deg(dpp) = m — 1 > 4, and deg(pap),deg(dpa) < m — 1.
Therefore, the conclusions of the theorem, apart from statement (d), remain valid for
any set of four polynomials ¢p44, ¢BB, PaB and ¢p4 that satisfy the properties listed
above. We will, in fact, utilize this observation later.

The following corollary is the first important consequence of the previous theorem.

COROLLARY 8. For m > 5, the largest pole (in terms of absolute value) of QB
in (2) is precisely the largest positive real oot of Dap.

Proof: We have already seen earlier that the largest-magnitude pole of Q 4 is real
and positive. Note that all the poles of () 4 must be roots of D 45. Suppose that the
largest positive real root p of D 4p is not a pole of Q 4. Then, p must be a root of the
numerator polynomial of Q4p, i.e., we must have ¢44(p)dpB(p) = dan(pP)dBA(P)-
But then, since D4p(p) = 0, we also have ¢a4(p) + ¢5B(p) = ¢an(p) + ¢BA(P)-
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Now, if we have real numbers a, b, ¢ and d such that a+b = c¢+d and ab = cd, then
the polynomials (z — a)(z — b) and (z — ¢)(z — d) must be identical. This implies that
{a7 b} = {C, d} Thus, we have {¢AA(p)a¢BB(p)} = {¢A3(p)a¢BA(p)}7 and hence,
{va4(p),v8B(P)} = {7aB(p),7BA(P)}-

By the previous theorem, p € (1,2) and max{rap,7Ba} < p < min{raa,7BB}-
Therefore, by Lemma 6, we must have y44(p), v8B(p) <0, and vaB(p), vBa(p) > 0.
Hence, {v44(p),v8B(p)} = {7aB(p),7BA(p)} iff all of them are 0, i.e., p = raa =
rBp = rAB = rpa. But by Lemma 4, this is possible iff the correlations A o A and
BoBare10™ !, and Ao B and B o A are 01™!. However, it is easily seen that no
pair of sequences A and B can have this set of correlations, leading to a contradiction
that proves the result. O

From now on, we shall denote by pap the largest-magnitude pole of Qap, which
(at least for m > 5) is also the largest positive root of D 4. Since pap > 1 for m > 5,
pap must be a simple pole of Q45(z), and hence is a simple root of Dp(z). Using
the fact that H(A, B) = log, pap, we now identify a pair of sequences that minimizes
H(A, B) among all pairs of binary m-sequences {A, B}.

PROPOSITION 9. For m > 5, min{H(A,B): A,B € {0,1}", A # B} is achieved
by A = 1102, B = 110m 10,

Proof: We shall show that if A\,E is any pair of binary m-sequences, and A =

110m2, B = 110™ *10, then p;5 > pap. Observe first that ¢ga4(z) = ¢pp(z) =
2™ 1, and ¢ap = ¢4 = 0. Thus, Asp = ya42 — 1. Since pap < raa, and 744 is
the unique root of y44 in (1,2), we must have y44(pap) < 0.
__ Now, for any pair of m-sequences A\,B, since the correlations A o A and B o
B must always begin with 1, we have ¢44(2), ¢55(2) > 2™ ! = ¢aa(z) for all
z > 1. Therefore, v;4(2), v55(2) < vaa(z) for all z € [1,2]. In particular, we
have v 4(paB), Y55(PaB) < vaa(pap) < 0. Therefore, v;;(paB)V55(paB) >
(vaa(pan))®.

On the other hand, since ¢ 45, ¢34 > 0, we see that v;5(2), 754(2) < 1 for all
z € [1,2], and in particular at z = pgp. Therefore,

A;p(paB) > (vaalpas))’ — 1= Aup(pas) =0

which shows that D ;5(paB) < 0. Since D 45(2) > 2 > 0, we have p ;5 > pas. O
The next lemma, which yields a lower bound to the minimum value of H(A, B),
is crucial to the proof of the important theorem that follows it.

LEMMA 10. For A =110m"2, B = 110™*10, H(A, B) > log, pm_3, where py,_3
is the largest zero of 2™ 3 — z™ 4 — .. — 1.
Proof: With A, B as above, we have

2

Aap(2) = (=22 41 1= (- 22"z - 22" +2]

using a® — b®> = (a + b)(a — b). Therefore, the largest positive zero pap of Dap
is the largest positive zero of the polynomial p(z) = (2 — 2)2™ ! + 2. Observe that
p(z) = (z=1)(M 1—2zm 22— —1)+1=(2=-1)[2(zm 3 —2m 4= . —1)—2-1]+1.
Therefore,

P(pm—3) = —(pm-3 — 1)(pm—3 +1) +1
11



=2- (pm—3)2 <2- (p2)2

145\
() <o

the first inequality arising from the fact that p,,—3 > p2 for m > 5. Since p(2) =2 > 0,
we must have pap > pm—3. 0

At this point, we introduce a means of comparing two correlation sequences,
which will make it easier to comprehend our next result which is a theorem of fun-
damental importance. Given two correlation sequences A o B = (coc¢y - - -€Cm—1) and
AoB= (ol - - cm 1) of the same length, we say that AoBis stronger than Ao B,
and denote it by AoB > Ao B, if ¢; > ¢; for the smallest ¢ such that ¢; # c¢;
(this is simply a lexicographic ordering of the correlation sequences). Equivalently,
AoB > AoBiff $ip(2) > dap(2). We also define Ao B > Ao B in the obvious way.
We now show that if all the correlations between sequences Aand B are stronger than
the corresponding correlations between sequences A and B, then H (A B) > H(A, B).

THEOREM 11. Let A, B, A B be binary sequences of length m > 5 such that

AOA > Ao A, BoB > Bo B, Ao B > Ao B and Bo A > Bo A. Then

(A B) > H(A, B), with equality zﬁ all the above correlation inequalities hold with
equality.

Instead of directly proving this theorem, we shall find it easier to prove a more
general result, which yields the above theorem as a special case. The more general
result is easier to state if we introduce the following definition.

Definition: A quadruple of polynomials (¢, @2, @3, ¢4), each @; having coeffi-
cients 0 and 1, is called an admissible m-quadruple if deg(¢;) = deg(¢s) = m and
deg(¢s3), deg(¢s) < m.

Observe that if A, B are binary m-sequences, then (¢paa,dBB,PaB,PBA) is an
admissible (m — 1)-quadruple. As observed previously, Theorem 7 is essentially a
result on the largest positive root p of the polynomial

(7) D(2) = (2 = 2)(p1$2 — ¢3da) + b1 + 2 — ¢3 — ¢

where (¢1, @2, P3, ¢4) is an admissible m-quadruple. The proof of that theorem shows
that for m > 4, p lies in (1,2) and max{rs,r4} < p < min{ry,ro}, where r; is
the largest positive root of 7;, the y-polynomial associated with ¢;. Moreover, the
equivalence of the corresponding statements (a), (b) and (c) is also established. Fur-
thermore, it clearly follows from the proofs of Proposition 9 and Lemma 10 that for
m >4, p > pm_2 (pm_2 being the largest zero of the polynomial z™~2 — ... — 1).
These facts will be needed to prove our next result, which covers Theorem 11 as a
special case.

THEOREM 12. Let (¢1, 2, d3, ¢4) and (¢1, 2, 3, d4) be admissible m-quadruples,
m > 4, such that ¢;(2) < ¢;(2) fori =1,2,3,4. Let D and D be the corresponding
polynomzals defined via (7), and let p and p be their respective largest posztwe roots.

Then p < p, with equality iff either ¢;(2) = qb,( ) fori=1,2,3,4, or ¢i(2) = (;5,( )=
12
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2™ fori=1o0r2 and ¢;(z) = ¢i(z) = 2™ L+ 2" 2+ ...+ 1 fori=3 ord.

Proof: It should be clear that the following four propositions, when patched
together, yield the theorem:

1. If ¢1(2 )<<]31( )and $:(2) = ¢i(2) for i = 2,3, 4, then p < j with equality iff
$2(2) = ¢2() d(ﬁ():(fb()—zml—k .+1fori=3or4
2. If¢2(2)<¢2(2) 0i(2) = ¢;(2) for i = 1, 3,4, then p < j with equality iff
$1(2) = d1(2) = d¢()A:<;AS()—z"’1+ .+ 1fori=3or4.
3. If¢3(2)<¢3(2)andq§,():¢()forz_124thenp<pw1thequahty1ff
d)i()—éﬁi():szorz:lo 2 and ¢4(2) = a(2) = 2™ 1 +... + 1.

4. If $4(2) < $4(2) and ¢;(2) = ¢;(2) for i = 1,2,3, then p < p with equality iff
#i(2) = ¢i(z) = 2™ fori = 1 or 2 and ¢3(2) = p3(2) = 2™ 1 +... + 1.

We shall prove the first proposition alone, as the other propositions can be proved
analogously. For the proof of the first proposition, we assume that ¢1(2) = ¢1(2) +1
and ¢;(2) = $;(2) for i = 2,3, 4. The general case follows by induction on ¢, (2)—¢ (2).
As usual, note that D(2), ﬁ(2) > 2> 0. Let v;,%; be the v-polynomials corresponding
to ¢, qAﬁi, i =1,2,3,4, and define the polynomials A and A analogous to (6).

We first prove the proposition based on the claim that 41 (p) < v1(p), deferring
the proof of this claim until later. Note that since p cannot exceed the largest positive
root, 79, of 2, Lemma 6 shows that v»(p) < 0 with equality iff p = ry. Therefore,

F1(P)2(p) > 711(p)12(p), and hence,

A(p) =91(p)32(p) = F3(P)F4(p) = F1(P)12(p) = ¥3(P)74(p)

> 11(p)12(p) — v3(p)va(p) = Alp) = (p—2)D(p) =0
with equality holding iff p = r,. Hence, ﬁ(p) < 0 which implies that p > p, with
equality iff p = ro. Now, as shown in the proof of Theorem 7, p = 7y iff ¢a(2) = 2™
and ¢3(z) or da(z) = 2™ L+ 2m 2+ 41,

It only remains to prove the claim that 41(p) < 71(p). As observed prior to the
statement of the theorem pm—2 < p < 2 for m > 4. Let k be the largest integer such
that the coefficients of z* in ¢1 and <;51 are different. If £ = 0, then Lemma 3 shows
that 41(p) < m(p) as p < 2. If 1 < k < m — 2, then Lemma 3 again shows that
Y1(p) < 71(p), since p > prm_s > pi.

The case k = m — 1 arises only when ¢;(z) = 2™ + 2™ 24+ 2™ 34+ ...+ 1 and
$1(2) = 2™ + 2™ 1. Therefore, it will suffice to show that for any admissible m-
quadruple (¢1, ¢2, @3, ¢4) with ¢1(2) = 2™+ 2™ 2+ 2™ 3+ ... +1, the corresponding
p exceeds pp,—1. Now, an argument similar to the proof of Proposition 9 can be used
to show that the p corresponding to such an admissible m-quadruple is at least as large
as the p corresponding to the quadruple (¢; (2), 2™,0,0), with ¢ as above. Therefore,
it is sufficient to show that when ¢, is as above, ¢2(z) = 2™ and ¢3 = ¢4 = 0, then
the largest positive zero of D(z) exceeds p,,—1. In this case, we have

Yo(2) = (2 =2)z2"+1=(z— 1) [z(z™ ' — 2™ 2 — ... —1) - 1]
which shows that y2(pm—1) = (pm—1 — 1)(—1). We also have

M) =(=-22"+z-2)"?+...+1)+1
=y(2) =14+ (™t =2m2 - —1)
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which means that v1(pm—1) = —pm—1. Therefore,

Alpm-1) = pm-1(pm-1—1) =1 = (Pm—1)2 —pm-1—1

which is strictly positive for m > 4, as 22 — z — 1 > 0 for z > py. This means that
D(pm-1) <0, and 80 p > py,—1, thus concluding the proof of the claim and hence the
theorem. O

As mentioned previously, Theorem 11 is a special case of Theorem 12. Therefore,
the proof of Theorem 11 will be complete if we show that under its hypotheses, we
can have a situation where Ao A or Bo B = 10™"! and Ao B or Bo A = 01™7!,
only if all the correlation inequalities are satisfied with equality.

Consider the case when Ao A = 10™ ! and Ao B = 01™ ! (we can dispose of
the other cases similarly). For Ao A > Ao A and Ao B > Ao B to be true, we
must have 4o A = 10! and 4 o/\ﬁ/\: 01™"! as well. But now, we must have
(up to complementation of A, B or A,B) A = 10™"!, B =0m™"1p, A = 10™~! and
B = 0m~1p, for some b,b € {0,1}. It is easily verified that if b # b, then either
BoB>BoBorBoA>Bo A\, both of which contradict the hypotheses of the
theorem. This completes the proof of Theorem 11.

Having Theorem 11 in hand, we are in a position to begin our search for the binary
m-sequences A and B that maximize H(A, B). At this point, it should be noted that
if there existed A and B such that AcA=BoB=1"and AoB=BoA=01""1,
then Theorem 11 would imply that A and B are the sequences for which H(A, B) is
a maximum. However, it is a simple exercise to show that no pair of sequences can
have these correlations.

In order to prove our next important result, which reduces the search space signif-
icantly, we need a couple of preliminary lemmas. Recall that (01),  and (10),, denote
the two length-m sequences of alternating 0’s and 1’s.

LEMMA 13. The only length-m autocorrelation sequence A o A stronger than
(10), s 1™,

Proof: If (boby ...by,—1) is an autocorrelation sequence (so that by = 1), then
it is easily seen that whenever b; = 1 for some j € [1,m — 1], then b; = 1 for any
k € [1,m — 1] that is a multiple of j. Moreover, the GCD rule for autocorrelation
sequences ([6], Theorem 3.1) states that if b; = by = 1 for some j, k € [1,m — 1] such
that j +k < m + 1, where | = ged(j, k), then b = 1 as well.

Note that any autocorrelation sequence (bgby - .. by,—1) stronger than (10), must
have either by = 1 or by = 1. In the first case, we must have by = 1 for all k < m — 1.
Thus, the only autocorrelation sequence with by = 1 is 1. On the other hand, if
by = 1, then b; = 1 for all even 4. In addition, if by = 1 for some odd k, then by the
GCD rule applied to the pair of indices (2, k), we must have b; = 1, and hence by = 1
for all £ < m — 1. Thus, any autocorrelation sequence with bo = 1 must either be
(10),, or 1. O

LEMMA 14. The only correlation sequence A o B, between distinct binary m-
sequences A and B, that is stronger than (01),  is 01™ 1.

Proof: Let Ao B = (cocy...Cm—1), with ¢cg = 0. If Ao B > (01), , then ¢; must
be 1. Therefore, it follows that (¢; . ..c,—1) must be the autocorrelation sequence for
B', where B’ is the sequence obtained from B by deleting its last bit. As a result, for
Ao B > (01),, to be true, we must have B' o B’ > (10),,_, which, by the previous
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lemma, is possible only if B’ o B' = 1™~L, 0

We now have the requisite tools to prove a result that considerably simplifies the
problem of finding the pair of m-sequences (A4, B) that maximizes H(A, B). Recall
that Hy ,, = max{H(A,B):A,B € {0,1}", A # B}

PROPOSITION 15. For m > 5, if A,B ¢ {0™,1™}, then H(A,B) < log, pm—1
with equality iff {A, B} = {{01), ,( ) b, {01m=1 1m=10} or {10™~1,0m11}. Con-
sequently, Hy ,, = max{H(1™,B) : B € {0,1}", B # 1™}.

Proof: Fix A = (01),,, B= (10),,,, so that AoA=BoB= (10),,, and AoB=
Bo A=(01), . It is easily verified using (2) that

2l am=2 4 41
Qan(?) = gm-l—m=2_ 1

and hence H(A, B) = logy pm_1. Therefore, we have H, m > 10gs pm_1.

Let A, B ¢ {0™,1™} be a pair of distinct binary m-sequences. Then, we either
have A o A > Ao A, BoB > Bo B, Ao B > AoB and Bo A > Bo A, or
at least one of these correlation 1nequa11t1es is not satisfied. In the former case,
Theorem 11 shows that H(A B) > H(A, B) with equality iff AcA=BoB = (10)m
and Ao B = BoA=(01),,, which can happen iff {4, B} = {(01), ,(10),,}.

We next deal with the case when AoB > Ao B which, by Lemma 14, means that
AoB = 01™~1. Therefore, up to complementation of A and B, we must have {4, B} =
{01m=1,1m=10}, {011, 1™} or {1™,1™~10}. Our assumption that 4, B ¢ {0™,1™}
eliminates the last two sequence pairs, along with their complements. When {4, B} =
{01™m~1,1m~10}, it can be verified that Dap(z) = (z—1)z™ 1 (zm 1 —zm 2 . . —1),
so that H(A, B) = log, Pm—1 = H(A, B). This shows that when Ao B > Ao B, we
must have H(A, B) = H(A, B) = log, pm—1. The case when Bo A > Bo A is similar,
and leads to the same conclusion. A A

We are left with the case when we have Ao A > Ao Aor BoB > Bo B, so
that by Lemma 13, either Ao A or Bo B is 1™, i.e., A or B = 1™ or 0™. But this is
not possible, as we assumed that A, B ¢ {0™,1™}. Therefore, one of the previously
considered cases must hold, and hence H(A, B) < log, pm—1 with equality iff {A, B}
is one of the pairs listed in the statement of the proposition.

Finally, it is easily verified that Qomim(2) = @ ;5(2), and hence H(0™,1™) =
H (j, ﬁ) = logy pm—1. Therefore, if the inequality Ha n > logy pm—1 is actually an
equality, then one of the maximizing pairs {4, B} contains 1™. On the other hand,
if this inequality is strict, then any of the sequence pairs that achieve the maximum
must include either 1™ or 0™. But since H(A, B) = H(A, B), where A and B are
the sequences obtained by complementing each bit of A and B, at least one of the
maximizing pairs includes 1™, which concludes the proof of the proposition. O

We have thus reduced the problem of maximizing H(A, B) to the problem of
finding the sequence B # 1™ that maximizes H(1™, B). We tackle this problem by
considering the following two cases separately: (i) B begins or ends with a 0, and (ii)
B begins and ends with a 1. In fact, as explained below, it is possible to reduce the
search space even further in each of these cases.

Given a sequence A = (a1as . ..a, 1a,), let A® denote the sequence obtained by
reversing A, i.e., A" = (ana,_1...a2a1). It is clear that if Z is a sequence counted
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by ¢,(A, B) for some A, B, then Z is a sequence counted by g, (A, BF). Therefore,
we must have H(A, B) = H(A®, BF). This conclusion can also be reached from the
observation that A o B = Bf o A®. In particular, H(1™, B) = H(1™, B®). Thus, if
B has a longer run of ones at the end than at the beginning, then the situation is
reversed for BE, but the resulting Shannon capacity is the same in both cases. As a
result, for case (i), it suffices to consider only those sequences B that end with a 0,
and for case (ii), it is enough to consider sequences that begin with a run of ones that
is at least as long as the final run of ones. We deal with case (i) first.

LEMMA 16. If B is a binary sequence of length m > 5 that begins or ends with a
0, then H(1™, B) <log, pm_1 with equality iff B = 110, 01™ ! or 0™.

Proof: Tt suffices to show that if B ends with a 0, then H (1™, B) < log, pm—1
with equality iff B = 1™10 or 0™. Suppose that B = 1™150, where b is a binary
sequence of length m — m; — 1 that begins with a 0, and 0 < m; < m — 1. Setting
A=1" we see that Ao A =1 Ao B =0"""1™ and Bo A = 0™. Moreover,
B o B must end in a run of m; zeros, because that is when, in the procedure used to
determine B o B, one of the initial m; 1’s in B overlaps with the final 0. Thus, we
have pga(z) = 2" L+ 2™ 24+ ...+ 1, dap(z) = 2™ L+ 2™72 4+ +1, s =0,
and ¢pp(2) = 2™ 4+ 2k 4 2k2 4+ 2k for some ki, ko, ...k, > my.

Using the fact that yp4 = 1, we see that

Aap(2) = YaaYBB — YAB = Yaa[(z — 2)¢BE + 1] — YaB
= (2 —2)y44 ¢BB + Y44 — VAB
= (2 —2)[yaa¢BB + (paa — daB)]

Therefore, D = Y44 08B + (044 —daB)- Now, paa(z) —pap(z) = 2™ L +2m 24
...+ 2™ = ¢pp(z) + ¢(z) for some polynomial ¢ with coefficients 0 and 1, since the
coefficient of 2%, 0 < k < m; — 1, in ¢pp(2) is zero. Hence, we can write

Dag = (yaa+1)¢pp+ ¢

Now, yaa(z) = 2™ —2zm 1 — ... —1=2(z™"1t —2zm2— .. —1)— 1. Therefore,
vaa(z) > =1 for all z > p,,—1, with equality iff 2 = p,,—1. Hence for any z > pp—1,
we have

Dagp(z) > ¢(2) with equality iff z = p,—1
>0 with equality iff ¢ =0

This shows that if 2 > p,,_1, then D 45(z) # 0, since the first of the above inequalities
is strict. Therefore, pap < pm—1, which shows that H(A, B) = log, paB < 1085 prm—1-

The above inequalities also show that Dap(pm-1) = 0 (i.e. paB = pm—1) iff
¢ = 0. Tt is easily verified that with B = 1™~10 or 0™, we obtain ¢ = 0. Conversely,
if » = 0, then we must have ¢pp(z) = 2™ 1 + 2™~2 + ... 4+ 2™ or equivalently,
BoB =1m ™™, Now, we can either have m; = m—1or 0 <m; < m—1. In the
former case, B must be 1™~10. In the latter case, since B o B begins with two 1’s,
as shown in the proof of Lemma 13, we must have B o B = 1™, which means that B
must be 0™. Therefore, if ¢ = 0, then B can only be 110 or 0™. This shows that if
B ends in a zero, then H(1™, B) = logy py,—1 iff B = 1™710 or 0™, which concludes
the proof of the lemma. O
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The only case remaining is when B begins and ends with a 1. We now show that
no such B distinct from 1™ can maximize H (1™, B).

LEMMA 17. If B # 1™ is a binary sequence of length m > 5 that begins and ends
with a 1, then H(1™, B) < logy pm—1-

Proof: As observed prior to the statement of the previous lemma, it is sufficient
to consider the case when B is of the form 1™'51™2 with m; > msy > 1, where b is
a binary sequence of length m — m; — mg > 0 that begins and ends with a 0. With
A=1" we have Ac A =1 Ao B =0"""1™ and Bo A = 0™ ™21™2, Thus,
daa(z) = 2™+ 4+ 1, gap(z) = 2™+ ...+ 1and ¢pa(z) = 2™+ ...+ 1.
Now, note that since B # 1™, B o B must begin with 10. Moreover, B o B must
end with 0™17™21™2 as that is when, in the procedure for determining B o B, some
part of the prefix 110 of B overlaps with some part of the suffix 01™2. Thus,
o8B (2) = ¢9(2)+dBa(2), where ¢(z) = Z;'Zol cx 2" is some polynomial with ¢, 1 = 1,
¢m—2 =0, ¢ =0for 0 <k <my — 1, and the remaining c;’s being either 0 or 1.

With the correlation polynomials being as above, we see that ya4(z) = 2™ —
2l — =1 yag(z) = 2™ =™ - — 1, yga(z) = 2™2 — ™2l — .. —1, and
vBB(2) = (2 — 2)¢ + 7A(2). Also, note that

AaB(z) =va4[(z — 2)¢ + vBA] — YABYBA
= (2—=2)v44 9+ (vaa — 7AB)VBA
= (2 = 2)[vaa ¢ + (pa4a — ¢aB)VBA]

which shows that Dap = Y44 ¢ + (044 — PaB)YBA-

Or goal is to show that Dap(z) # 0 for all z > p,,—1. We claim that Dagp is,
in fact, an increasing function of z in this region, and so it will suffice to show that
Dag(pm—1) > 0. To justify this claim, we first note that y44 ¢ = (z — 2)da4 ¢ + ¢.
Since ¢ is a polynomial with coefficients 0 and 1, and ¢ 44 ¢ is a polynomial of degree
2m — 2 with non-negative coefficients, it follows from Lemma 5 that y44 ¢ is an
increasing function of z for z > 2(1 — 2ml—71) Now, pm_1 > 2(1 —2-(m-1)y) >
2(1- ﬁ) for m > 5. Therefore, Y44 ¢ is an increasing function of z for z > p,,_1.
A similar argument shows that (daa — daB)yBA is also increasing in this region,
which proves that D 4p is an increasing function in the region z > pp,—1.

The remainder of the proof just involves finding a positive lower bound for
D 4B(pm—1). From now on, for notational simplicity, we shall drop the subscript from
pm—1- Note first that (paa—dap)(p) = p" " +p™ > +...+p™ = (p™—=p™)/(p—1).
Next, we have

yea(p) = p™2 —pm2 - —1
— pmz—m—l—l(pm—l _ pm—2 - = 1) + p—l + p—2 +... +p—(m—m2—1)
_ p—l _p—(m—mg) _ 1— p—(m—mg—l)
1—p! p—1

Hence, we have

(a4 — daB) vBA(P) = ———— (p™ — p™ — pm2Hl 4 pmatma—(m—1))

— p > [pm _pml m1+m27(m71)(pm7m1 _ 1)]
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1

> — " =™ = ("™ - 1)]
Z 3
(p—1)
the last inequality being a consequence of the fact that m; + ms < m — 1, which
implies that p™+m2=(m—1) < 1 Noting that y44(p) = p(p™ ' —... —1) =1 = —1,
we obtain
1 _
(8) Das(p) > —¢(p) + 5 " —p™ = (P = 1)]
(p—1)
We shall first consider the case when 3 < m; < m — 3. In this case, we see that
L 5™ —p™ = (P = 1)] > ! 5™ —p" P = (p" 1)
(p—1) (p—1)
1 — m— m— m—
Zm[l?m L = (0" 4 1)
m—1 m—2
9) (Y
the last inequality arising from the fact that 2™ 3 —2m"*—...—1 > 0 for 2 > py,_3.
Moreover,
m—3 m—3
(10) $lo) = P+ Y et < I P <
k=0 k=0
since 2™ 2 —2m3 — .. —1> 0 for 2 > py,_». Putting (9) and (10) into (8), we get
1 .
Dag(p) > —(p™ "+ p" %) + P (Pt +p" )
2- P m-1 m—2
=— 0
=) (" P >

This shows that when 3 < my; <m—3, Dap(z) > 0 for 2 = p, and hence for all z > p
as well, which implies that pap < p (= pm-_1)-

It only remains to deal with the cases when my = 1, 2 and m — 2. Suppose that
m1 = m — 2. We then have

P ) = sl )

1 - -
:m[l’m L4 = (p+ 1)

(11) >pm Tt pm - p—1

Now, with m; = m — 2, the only possibility for B is 1™~201, so that ¢pp(z) =
2™~ 1 + 1, and hence ¢(z) = 2™ 1. Putting this and (11) into (8), we see that
Dap(p)>p™ 2 =p—1>p*—p—1>0.

Next, suppose m1 = 2, which implies that B begins with 110, which in turn
means that B o B begins with 100. As a result, we have

(12) ¢(p) S pm_l + pm_4 + pm_5 + - + 1 < pm—l + pm—3

since 2™ 3 —zm~4 — .. —1>0for 2 > p,_3. Note that p™ — p™ — (p™ ™t — 1)
is the same for m; = 2 and m1 = m — 2. Therefore, putting (12) and (11) into (8),
18



we get Dag(p) > p™ 2 —pm 3 —p—1> 0, since 2™ 2 —-2m3—...—1>0 for
2> Pm—2-

Finally, consider m; = 1, in which case we also have ms = 1. Therefore, pap =
¢Ba =1, and hence y4p(2) = vpa(z) = z — 1. Therefore,

(ban —dap)yBa(2) = (™ 1+ 2" 24 +2)(z—1)=2" -2
Also, as in (10), we have ¢(p) < p™~! + p™~2. Therefore, since Dap = Yaa ¢ +
(paa — ¢aB)yBA, and v44(p) = —1, we see that
Dag(p) > —(p"™ "t +p™ ) + o™ —p
=p(p" Tt = pm 2 =" 1)

which is strictly positive for m > 5, because 2™ 1 —2m"2—. . —1=0atz=p = pn_1.
We have thus shown that when B begins and ends with a 1, we have D 45(2) > 0
for all z > p,,,—1, and hence pap < pm—1, which proves the lemma. O

Putting together the last three results, we obtain Theorem 1.

When 2 < m < 4, it can be verified by computing H (A, B) for all possible A, B
of length m, that Theorem 1 remains valid when m = 2 or 4. When m = 3, all but
the “only if” part of the theorem remains true. It turns out that for m = 3, the
maximum Shannon capacity of log, pa is also achieved by two other pairs, namely
{000,010} and its complementary pair {111,101}.

Interestingly, the answer to the problem of maximizing H(A, B) also provides us
with a means of determining the maximum Shannon capacity H(A, B,C) of a con-
strained system that forbids three distinct binary m-sequences A, B and C. Formally,
let gapc(n) denote the number of binary n-sequences that do not contain A, B or C
as a contiguous subsequence, and define H(A4, B, C) = lim,,_,«(log, gaBc(n))/n. We
now show that max H(A,B,C) = rgaétH(A,B) = logy pm—1-

THEOREM 18. For m > 2,
max{H(A,B,C) : A,B,C € {0,1}", A # B,B # C,C # A} = log, pm_1

Proof: 1t is clear that for any three distinct sequences A, B and C, we have
gaBc(n) < gag(n) for all n. Therefore, H(A, B,C) < H(A, B), from which it follows
that maxa g.c H(A,B,C) < maxs g H(A, B), where the maximum on the left is
taken over all triples of distinct binary m-sequences, and that on the right is taken
over all pairs of distinct binary m-sequences.

Now, from Theorem 1 (and, for 2 < m < 4, the remarks following the proof of
Lemma 17), we know that one of the sequence pairs that achieves maxy g H(A, B) =
logy pm—1 is {10m~1,0m=11}. Let A =10m"1, B =0m"'1and C = 0™. For any
F c {0,1}™, we define B,(F) to be the set of all binary n-sequences that do not
contain any element of F as a contiguous subsequence. It is easy to verify that
Bn(A, B) = B, (0m~1) U {0"}. Since the only sequence in B, (A, B) that contains 0™
is the all-zeros sequence, it is clear that By, (A, B,C) = B,(0™1).

Thus, we see that q 4 5(n) = ¢45(n)—1 which shows that H(A,B,C) = H(A, B).
Since H (21\, ﬁ) = logs pm—1, we obtain the following chain of inequalities

10g2 Pm—1 = H(AJBJC) < EE%H(AJBac) < IE?*B?{H(AJ B) = 10g2 Pm—1

which proves the theorem. O
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4. Connection between H(A, B) and E(A,B,n). We now explore the rela-
tionship between the Shannon capacity H(A, B) and the PPS code rate R(A,B,n)
defined in (4). We shall show that for nearly all choices of A, B € {0,1}", H(A,B) =

~

lim, oo R(A,B,n), and as a result, maxa g H(A, B) = lim,_,» R(2,m,n), where
R(2,m,n) is the maximum possible rate of a (2,m,n) PPS code.

We know from (3) that Fap(z) = z%‘f&i) and Fpa(z) = zg:;?i) are generating
functions for f4p(k) and fpa(k), respectively. Now as noted previously, for m > 5, the
largest positive root, pag, of Dap(z) is simple. Hence, if we establish that p4p is also
the largest-magnitude pole of Fap(2) and Fpa(z), then it would follow that fap(k) =
cap (paB)¥ (14+0(1)) and fpa(k) = cga (pap)* (1+0(1)) for some constants c4p and
¢ga- This would clearly imply that lim,,_, E(A,B,n) = log, pap = H(A, B). We
shall show that pap is almost always the largest-magnitude pole of both F4p(z) and
Fpa(z), and we shall characterize the exceptional cases.

The first step in this process is to show that pap, which we know is the largest
positive root of D4p(2), is in fact the largest-magnitude root of D ap(z). Recall that
we have previously shown using Perron-Frobenius theory that whenever pap > 1,
pAg is the unique largest-magnitude pole of Q 45 (z) (which is defined by (2)), i.e., if

p is any other pole of Qap(2), then |p| < paB.

LEMMA 19. Form > 5, if p # paB is a root of Dag(z), then |p| < paB.

Proof: We shall first show that pap > 1.7 which, apart from implying that pap
is the unique largest pole of Qap(z), will be important later in the proof. When
m > 5, Proposition 9 shows that H (A, B) is minimized by choosing A = 110™~2 and
B = 110™~*10, and the proof of Lemma 10 shows that for this choice of A and B,
H(A, B) =log, ¢, where ( is the largest real zero of the polynomial (z — 2)2™~! + 2.
Therefore, for any 4,B € {0,1}"", pap > (. For m > 6, Lemma 10 shows that
¢ > p3 ~ 1.84. For m = 5, it can be verified that ¢ ~ 1.816.

Now, suppose that p is a root of D4p(z) such that |p| > pap and p # paB.
We shall first show that p must be real (and hence negative), and then reach a
contradiction by showing that p cannot be less than —pap. Since p cannot be a
pole of Qap(z), it must be a root of the numerator polynomial of Qap(z), i.e.,
da4(p)oBB(p) = daB(p)dBA(P). An argument similar to that in the proof of Corol-
lary 8 now shows that {¢44(p),dBB(p)} = {PaB(p), dBA(P)}. Thus, p must be a root
of one of the polynomials ¢p44 — pap and a4 — ¢p 4, both of which are polynomials
of degree m — 1 whose coefficients take values in the set {0,1, —1}.

A result of Bloch and Polya [2] states that if p(z) is any polynomial whose coeffi-
cients take values in {0, 1, —1}, then for any q € (1, 2), the number N of roots of p(z)
in the region |z| > ¢ can be bounded as follows:

Ve (o) /s (1)

Evaluating this expression with ¢ = 1.7, we see that p(z) has at most one root in the
region |z| > 1.7.

Thus, since pap > 1.7, the polynomials ¢p44 — ¢pap and ¢paa — ¢pa can have at
most one root in the region |z| > pap. Since p is a root of one of these polynomials,
it is the unique root in |z| > pap, and hence must be real. Since pap is the largest
positive root of D 4p, p must be negative. Recall from Proposition 9 and Lemma 10
that pap > pm—3. Thus, we shall reach a contradiction if we can show that no
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negative root of ga4 — dap or a4 — dpa can be less than —p,,_3. We now provide
the sketch of an argument that shows this.

Let (paa—¢an)(z) = 2™ '+ 317 e 2%, with the c’s taking values in {0,1, —1}
(the argument for ¢ 44— @B 4 is identical). Suppose first that m —1is even, and further
that ¢,—2 is 0 or —1. In this case, for any z < —pm,—3, we have

m—3
(paa —daB)(2) > |27 =D |2
k=0
m—4
= |2f* (l"~’|m_3 - |Z|k> — 2] = L+ ]z™?
k=0

> |27~ |2 — 1

with the first inequality holding for any z < 0, and the last inequality holding for
|z| > pm_3. But, |2|™ > —|z| =1 > 0 for m > 5 and |z| > p, which shows that
¢a4 — dap has no zeros less than —p,,, 3.

Next, suppose that m —1 is even and ¢,,,_» = 1. Then, the correlation Ao A must
begin with 11, and hence must be 1™. Therefore, ¢pa4(2) = Z;":_Ol 2*, which means
that ¢, € {0,1} for K =0,1,...,m — 3. We then have for any z < 0,

_ k
(paa—dap)(2) 2 2™ = > |2
1<k<m—2
k odd

m—4
2 -3 k k
1 (w —z|z|>—|z|+ S
k=0

2<k<m—3
>—lzl+ Y 2l

k even
2<k<m—3
k even

with the last inequality holding for |z| > ppm_s. Since |2 7> + || ° +...+|2|> — |2
is clearly positive for m > 5 and |z| > 1, we see that ¢44 — ¢pap has no zeros less
than —p,,,—3 whenever m — 1 is even.

A similar argument as above shows that when m—1is odd, then (¢pa4—¢ag)(z) <
0 for all 2 < —py—3, which completes the proof of the lemma. O

We have thus shown that for m > 5, pap is the unique largest-magnitude root
of Dap. We are now in a position to determine exactly when psp is the largest-
magnitude pole of F4p(z) and Fp4(z). Note that p4p cannot be a pole of both Fap(z)
and Fpa(z) if and only if pap is a root of yap as well as yp4. But by Theorem 7,
this can happen if and only if {A, B} or {4, B} = {10™~! 0™}, {10™~1,0™"!1} or
{0™,0™~11}. This leads us to the following proposition.

PROPOSITION 20. For all m > 5, the following are true: R
(o) If{A,B} or {4,B} ={0™,0m'1} or {0™,10™~'}, then 1i_>m R(A,B,n) =0.

_ ~ 1
(b) If{A,B} or {A,B} = {10m~1,0m 11}, then lim R(A,B,n) = §H(A,B).
(c) For all other pairs of distinct binary m-sequences A, B, ILm ﬁ(A,B,n) =
H(A, B).
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Proof: The discussion preceding the statement of the proposition shows that if
{A, B} or {4, B} is not one of the pairs listed in (a) and (b), then pap is the unique
largest pole, in terms of absolute value, of both Fup(z) and Fpa(z). Therefore,
as noted prior to the statement of Lemma 19, it follows that nlgréo E(A,B,n) =
log, pap = H(A, B), which proves (c).

To prove (a), note that if A = 0™ and B = 0™ '1, then we can have no binary
sequence of length k& > m + 2 that begins with A and ends with B, but does not
contain A or B elsewhere. In other words, fap(k) = 0 for all & > m + 2, and so by
definition, ﬁ(A, B,n) = 0 for all n > m. The other cases can be similarly dismissed.

Finally, if A = 10™~! and B = 0™~'1, then it is clear that the only sequence
that can be counted by fap(k), & > m + 2, is 10c=21. Hence, fap(k) = 1 for all
k > m+ 2. However, fpa(k) = cpa (pan)® (14 0(1)) for some positive constant cp4
because, as can easily be verified, p4p is the unique largest-magnitude pole of Fp4(2)

in this case. As a result, we have li_>m ﬁ(A, B,n) = 3 log, pap, which completes the

proof of the proposition. O

Theorem 2 is an immediate consequence of the above proposition and Theorem 1.
Theorem 2 shows that when m > 5, for all sufficiently large n, R(2,m,n) is ei-
ther R(0™,1™ n) or ﬁ((Ol)m, (10),,,n). In fact, as we show next, |fio1), (10, (k) —
fom1m (k)| < 1for all k, and hence due to the floor function used in defining ]/i\’(A, B,n),
for nearly all (if not all) values of n, ]/%(Om, 1™ n) = ﬁ((Ol)m, (10),,,n). Thus, for
nearly all (if not all) sufficiently large integers n,

R(2,m,n) = R(0™,1™,n) = R((01),,,(10), ,n)
Note that Fio1y 10y, (2) — Fom1m(2) is a generating function for fo1y 10y, (k) —
fom1m (k). Using (3) to get explicit expressions for Fig1y (10y (2) and Fomim(2), we

find after some algebraic manipulations that

if m is even
if m is odd

__ 1
Fu,, 10y, (2) = Fomim (2) = { i

z2m—1

It is easily verified that the coefﬁcients in the power series expansions (in the
variable z~!) of both Z(zm 1y and 2 z2m =L belong to the set {—1,0,1}. Thus, for each
k, f<01)m(10)m( ) — fom1m (k) is either —1, 0 or 1.

For the sake of completeness, we would like to mention that when m = 4, it can
be shown that Theorem 2 remains true in its entirety. When m = 3, the theorem
remains valid if its statement is modified as follows: hm R(A B,n) < log, p2 with
equality if and only if {A,B} = {000,111}, {010, 101} {000,010} or {111,101}.
However, it can be shown that if {A, B} is one of the last two sequence pairs, then
for13(k) — fas(k) = ¢(p2)* (1 + 0(1)), where ¢ is approximately 0.0034. Thus, for
all sufficiently large n, we have E(A,B,n) < }/%(Om,lm,n). Finally, when m = 2,
lim }/f(A, B,n) = 0 for all sequence pairs A, B.

n—oo
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