ON MINIMAL TREE REALIZATIONS OF LINEAR CODES

NAVIN KASHYAP

ABSTRACT. A tree decomposition of the coordinates of a code is a mapping from threlinate
set to the set of vertices of a tree. A tree decomposition can be extendetet® realizationi.e.,

a cycle-free realization of the code on the underlying tree, by specifyistgte space at each edge
of the tree, and a local constraint code at each vertex of the tree. oftstraint complexity of a
tree realization is the maximum dimension of any of its local constraint collaseasure of the
complexity of maximume-likelihood decoding for a code is its treewidth, whidhésleast constraint
complexity of any of its tree realizations.

It is known that among all tree realizations of a linear code that extend&a gee decomposi-
tion, there exists a unique minimal realization that minimizes the state spacesiimat each vertex
of the underlying tree. In this paper, we give two new constructions sktinginimal realizations.
As a by-product of the first construction, a generalization of the statgfing procedure for trellis
realizations, we obtain the fact that the minimal tree realization also minimiededhl constraint
code dimension at each vertex of the underlying tree. The secontiwciien relies on certain code
decomposition techniques that we develop. We further observe thaédveidth of a code is related
to a measure of graph complexity, also called treewidth. We exploit thiseotion to resolve a
conjecture of Forney’s regarding the gap between the minimum trelligredmscomplexity and the
treewidth of a code. We present a family of codes for which this gap eantitrarily large.

1. INTRODUCTION

Graphical models of codes and the decoding algorithms associated with theravaa major
focus area of research in coding theory. Turbo codes, low-dergittygcheck (LDPC) codes, and
expander codes are all examples of codes defined, in one way oegrmthunderlying graphs.
A unified treatment of graphical models and the associated decoding afgeritbgan with the
work of Wiberg, Loeliger and Koetter [32],[33], and has since beestrabted and refined under
the framework of the generalized distributive law [1], factor graphg,[@4d normal realizations
[71,[8]- The particular case of graphical models in which the underlyiaglys are cycle-free has a
long and rich history of its own, starting with the study of trellis representatibesdes; see.qg,
[31] and the references therein.

Briefly, a graphical model consists of a graph, an assignment of syrabiables to the vertices
of the graph, an assignment of state variables to the edges of the graph, specification of
local constraint codes at each vertex of the graph. The full behafitre model is the set of all
configurations of symbol and state variables that satisfy all the locatreamts. Such a model is
called a realization of a codgif the restriction of the full behavior to the set of symbol variables
is preciselyC. The realization is said to be cycle-free if the underlying graph in the makehb
cycles. A trellis representation of a code can be viewed as a cycledadigation in which the
underlying graph is a simple path.

A linear codeC has a realization on a graghthat is not connected if and only f can be ex-
pressed as the direct sum of the codes that are individually realized motimected components
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of G [7]. Thus, there is no loss of generality in just focusing, as we do, orcélse of realiza-
tions on connected graphs. In this paper, we will be concerned withdedizations — cycle-free
realizations in which the underlying cycle-free graph is conneciedis a tree.

Itis by now well known that the sum-product algorithm on any tree realizgirovides an exact
implementation of maximum-likelihood (ML) decoding [1],[7],[21],[32]. A goodtial estimate
of the computational complexity of such an implementation is given by the cortstaimplexity
of the realization, which is the maximum dimension of any of the local constramgscin the
realization. Now, distinct tree realizations of the same code have, in dedistinct constraint
complexities. The treewidth of a code is defined to be the least constraintedtypf any of its
tree realizations. Thus, treewidth may be taken to be a measure of the Mdinigcomplexity of
a code.

Since trellis realizations are instances of tree realizations, the treewidttodéacan be no larger
than the minimum constraint complexityf any of its trellis realizations. In the abstract of his paper
[8], Forney claimed that “the constraint complexity of a general cyde-firaph realization can be
[strictly] less than that of any conventional trellis realization, but not by vaeuch.” While he
substantiated the first part of his claim by means of an example, he left thdyrnvery much”
part as a conjecture [8, p. 1606, Conjecture 2]. But he also admittedhdhat of the arguments
he gave in support of his conjecture “is very persuasive,” and thatdtually plausible that [8,
Conjecture 3] there exists no upper bound on the gap between the tre@iidtbode and the
minimum constraint complexity of any of its trellis realizations.

One of the main contributions of this paper is an example that affirms the validigroky’s
Conjecture 3. We present, in Section 6, a family of codes for which therelifte between the
minimum trellis constraint complexity and the treewidth grows logarithmically with thettheaf)
the code. Our construction of this example is based upon results fromeathle tireory and matroid
theory literatures that connect the notions of treewidth and trellis complexiycofde to certain
complexity measures defined for graphs.

This paper makes two other contributions, both relating to minimal tree realizafianapping
of the set of coordinates of a codeo the vertices of a tree is called a tree decomposition. A tree
decomposition may be viewed as an assignment of symbol variables to theveiftite tree. Itis
known that given a cod@, among all tree realizations Gfthat extend a given tree decomposition,
there is one that minimizes the state space dimension at each edge of theingdezty[7]. This
minimal tree realization, an explicit construction of which was also given inig7linique up to
isomorphism.

We give two new constructions of minimal tree realizations. The first cortgtruinvolves a
generalization of the idea of state merging that can be used to construct mirghiglealizations
[31, Section 4]. We show that any tree realization of a code can bertedie a minimal realization
by a sequence of state merging transformations. The state space atndinbosde dimensions do
not increase at any step of this process. From this, we obtain the faatrtiaimal realization also
minimizes the constraint code dimension at each vertex of the underlying tree.

Our second construction of minimal tree realizations uses extensions ajdeelecomposition
techniques that were presented in [18]. The main advantage of this wdiwstris its recursive
nature, which makes it suitable for mechanical implementation. Also, it is rdiasitraightforward
to estimate the computational complexity of this construction. We show that the odtypte
polynomial in the length and dimension of the code, as well as in the size of deslyimg tree, but
is exponential in the state-complexity of the minimal realization, which is the maximunmdiore
of any state space in the realization.

Lin the context of trellis realizations, constraint complexity is usually refeto as “branch complexity” or “edge com-
plexity”. We make it a point to avoid this usage, so as not to cause confudien we define the “branchwidth” of a
code later in our paper.
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The paper is organized as follows. In Section 2, we provide the negdsaekground on tree
realizations of linear codes. The construction of minimal realizations by nuastate merging
is presented in Section 3. Code decomposition techniques are developectionS!, and used
in Section 5 to derive a recursive construction of minimal tree realizatiomsof$ of some of
the results from Sections 2-5 and an example relevant to Section 3 areeddfeappendices to
preserve the flow of the exposition. Treewidth and related complexity messwe defined in
Section 6, which also establishes connections between these code compkegiyres and certain
complexity measures defined for graphs. These connections are udedvid the example of a
code family for which the gap between minimum trellis constraint complexity anevidée is
arbitrarily large. We also touch upon the subject of codes of boundexblesity, observing that
many hard coding-theoretic problems become polynomial-time solvable whieictezbto code
families whose treewidth is bounded. Section 7 contains a few concludingkema

2. BACKGROUND ON TREE REALIZATIONS

Our treatment of the topic of tree realizations in this section is based on thsiteapof Forney
[71.[8]; see also [9].

We start by establishing some basic notation. We take be an arbitrary finite field. Given a
finite index setl, we have the vector spadé = {x = (z; € F, i € I)}. Forx ¢ Fl andJ C I,
the notationx| ; will denote theprojection(z;, ¢ € J). Also, forJ C I, we will find it convenient
to reserve the use of to denote the set differende— J = {i € I : i ¢ J}.

2.1. Codes. A linear codeoverT, defined on the index sét is a subspacé C F!. We will only
consider linear codes in this paper, so the terms “code” and “linear auitldde used interchange-
ably. The dimension, ovér, of C will be denoted bydim(C). An [n, k] code is a code of length
n and dimensiork. If, additionally, the code has minimum distangethen the code is ajm, k, d]
code. The dual code @fis denoted bfi, and is defined on the same index sefas

Let J be a subset of the index sét The projectionof C onto J is the codeC|; = {c|; :

c € C}, which is a subspace @. We will useC; to denote theross-sectiorof C consisting of
all projectionsc|; of codewordsc € C that satisfyc|; = 0. To be preciseC; = {c|; : ¢ €
C,cl7 = 0}. Note thatC; C C|;. Also, sinceC; is isomorphic to the kernel of the projection map
7 : C — C|5 defined byr(c) = c|5, we have thatlim(C;) = dim(C) — dim(C|5). Furthermore,
projections and cross-sections are dual notions, in the sensgCthat = (C1),;, and similarly,
(€)=,

If C; andC, are codes ovdr defined on mutually disjoint index sefsand /s, respectively, then
theirdirect sumis the code& = C; @ C; defined on the index sét U I, such that;, = C|[1 =C
andCy, = C|;, = Cq. This definition naturally extends to multiple codes (or subspaggsyhere
« is a code identifier that takes values in someAeRAgain, it must be assumed that the codgs
are defined on mutually disjoint index sdts « € A. The direct sum in this situation is denoted

by B.c4Ca-

2.2. Trees. Atree is a connected graph without cycles. Given a freeve will denote its vertex
and edge sets by (T) and E(T), respectively, or simply by and E if there is no ambiguity.
Vertices of degree one are callkzhves and all other vertices are call@aternal nodes Given a
v € V, the set of edges incident withwill be denoted byF (v).

Removal of an arbitrary edgefrom 7" produces a disconnected grdph-e, which is the disjoint
union of two subtrees, which we will denote By andT, of T. Note thatV (7..) andV (T.) form
a partition of V(7).

2.3. Tree Realizations. Let C be a code oveF, defined on the index sét To eachi € I, we
associate aymbol variableX;, which is allowed to take values in
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FIGURE 1. A depiction of a tree decompositidfi’, w). Vertices of the tred” are
represented by squares. Edges are incident with two vertices, whitedgst are
incident with only one vertex. The vertex has no half-edges incident with it,

indicating thatv=!(vy) = 0, while the vertex,; has two half-edges incident with
it, which means thato =1 (v;)| = 2.

1
-

A tree decompositioof [ is a pair(T,w), whereT is a tree {.e., a connected, cycle-free graph)
andw : I — V' is a mapping fronT to the vertex set df". Pictorially, a tree decompositidfi’, w)
is depicted as a tree with an additional feature: at each versexch thato—!(v) is non-empty, we
attach special “half-edges”, one for each indexint (v); see Figure 1.

At this point, we introduce some notation that we will consistently use in the fésegaper.
Given a tree decompositiofi’,w) of an index set/, and an edge < FE, we defineJ(e) =
w I (V(T,)) andJ(e) = w1 (V(T.)). Thus,J(e) and.J(e) are the subsets dfthat get mapped
by w to vertices inT, andT ., respectively. Clearly/(e) and.J (e) form a partition off.

Recall thatE'(v), v € V, denotes the set of edges incident witin 7. Consider a tuple of the
form (T, w, (Se, e € E), (Cy, v € V)), where

e (T,w) is atree decomposition df
e foreache € I, S, is a vector space ovéft called astate space

e for eachv € V, C, is a subspace df* ' (*) @ (@eeE(v) Se>, called alocal constraint
code or simply, alocal constraint

Such a tuple will be called tiee model The elements of any state spateare calledstates The
index sets of the state spac8s e € FE, are taken to be mutually disjoint, and are also taken to
be disjoint from the index sdt corresponding to the symbol variables. Finally, to each E, we
associate atate variableS, that takes values in the corresponding state sgsace

A global configuratiorof a tree model as above is an assignment of values to each of the symbol
and state variables. In other words, it is a vector of the fotm € IF, i € 1), (s. € S, e € E)).
A global configuration is said to bealid if it satisfies all the local constraints. Thu$z; € IF, ¢ €
I),(sc € Se, e € E)) is avalid global configuration if for eache V, ((z;, i € w™(v)), (se, € €
E(v))) € C,. The set of all valid global configurations of a tree model is calleduléehavior
of the model.

Note that the full behavior is a subspa®eC F/ & (.. S.). As usual,B|; denotes the
projection ofB onto the index sef. If B|, = C, then the mode(T, w, (S, e € E), (Cy, v € V))
is called &linear) tree realizatiorof C. A tree realization T, w, (S, e € E), (Cy, v € V)) of Cis
said toextend(or be an extension of) the tree decompositidhw) of the index set of. Any tree
decomposition of the index set of a code can always be extended to aateation of the code,
as explained in the following example.
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FIGURE 2. A trivial extension of a tree decompositi¢fi, w) of the index set of a
codeC. Atthe vertexv, we haveC,, = C. The state variables at the edges E(v)
are copies of the symbol variables indexed.ky). Dashed ovals represent sub-
trees.

Example 2.1. LetC be a code defined on index detand let(7,w) be a tree decomposition of
I. Pick an arbitraryv € V, and defineC', = C. Now, consider the sefy(v), of edges incident
with v. Removal of any € E(v) produces the two subtreds andT.. We specifyl, to be the
subtree that doesot contain the vertex, and as usual/(e) = w1 (V(T,)). For eache € E(v),

the state spacé, is taken to be a copy @’(¢). The remaining state spaces and local constraints
are chosen so that, for eache E(v), the symbol variables indexed bye) simply get relayed
(unchanged) to the state variabtg; see Figure 2. It should be clear that the resulting tree model
is a tree realization of the cod@ This will be called arivial extension of (T',w). We will present
constructions of non-trivial extensions of tree decompositions a little later.

] ] ] ] ]

FIGURE 3. A simple path on five vertices.

Example 2.2. A simple pathis a tree with exactly two leaves (the end-points of the path), in which
all internal nodes have degree two; see Figure 3. Cdie a code defined on index setand

let (T, w) be a tree decomposition df in whichT is a simple path, and is a surjective map
w: I — V(T). Any tree realization of that extend$T,w) is called atrellis realizationof C.
Whenw is a bijection, then any trellis realization extendifij, w) is called aconventionatrellis
realization. Whew is not a bijection (but still a surjection), a trellis realization that exteri@sw)

is called asectionalizedrellis realization. In trellis terminology, the local constraint codes in a
trellis realization are callecbranch spaced he theory of trellis realizations is well established; we
refer the reader tg31] for an excellent survey of this theory.

Let 98 be the full behavior of a tree modél’, w, (S, e € E),(Cy, v € V)). We will find it
useful to define certain projections 8, other thart8|; for J C I. Letb = ((x;, i € I), (s, € €
E)) be a global configuration i?8. At any givenw € V, thelocal configuratiorof b atwv is defined
as

b|, = ((z;, i € w (W), (se, e € E())).
The set of all local configurations @ at v is then defined a$|, = {b|, : b € B}. Recall
that, by definitionb is a valid global configuration if, for each € V', we haveb|, € C,. Thus,
B|, € C, for eachv € V. Similarly, for ' C E, andb as above, we define the projections
bl = (sc, e € F') andB|, = {b|, : b € B}. Clearly,B| is a subspace &b . S.. If F

2This generalizes the notion of a “trivial trellis” in [23],[24].
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consists of a single edge then we simply denote the corresponding projectionbpyand®3 |, .
The following elementary property of the projectidnis will be useful later; a proof for it is given
in Appendix A.

Lemma 2.1. LetB be the full behavior of some tree realization of a cddelefined on the index
set!, that extends the tree decompositidn w). Suppose thab € B ande € E are such that

A tree model (or realization)T", w, (S, e € E), (Cy, v € V)), with full behavior, is said to
beessentialf B| = S. for all e € E. This definition actually implies something more.

Lemma2.2. Ifthe tree mode|T, w, (S., e € E), (C,, v € V)), with full behavior, is essential,
then®B| = C, forallv e V.

A proof of the lemma can be found in Appendix A.

An arbitrary tree model can always be “essentialized”. To see thig; let (T, w, (S., e €
E), (Cy, v € V)) be a tree model with full behavidB. Recall thatB|, is a subspace af.,
and®B|, is a subspace of’,. Define theessentializatiorof I" to be the tree modess(I') =
(T,w, (B, e € E), (B],, v e V)). Itisreadily verified thaess(I") has the same full behavior
asl'.

2.4. Minimal Tree Realizations. Given a codeC and a tree decompositioff’, w) of its index
set!, there exists an essential tree realizatidh,w, (S}, e € E),(C}, v € V)), of C with the
following property [7],[8]:

if (T,w,(Se, e € E),(C,, veV))isatree realization of that extendsT,w),

then for alle € E, dim(S}) < dim(Se).
This minimaltree realization, which we henceforth denote/b(C; 7', w), is unique up to isomor-
phism. More precisely, if7,w, (5%, e € E), (Cy*, v € V)) is also a tree realization 6fwith the
above property (except tha&f is replaced byS}*), thenS} = SX* for eache € E, andC}; = C*
for eachv € V. We will not distinguish between isomorphic tree realizations.

We outline a construction, due to Forney [8],.0t(C; T, w). For any edge < F, the sets/(e)

andJ(e) form a partition of the index st Set

8: = C/(CJ(e) @ Cj(e))> (1)
and let
S: : C — C/(Cj(e) b Cj(e)) (2)
be the canonical projection map. In other words,da C, s?(c) is the coset + (C () Cj(e))-
Now, letB be the vector space consisting of all global configuratiens*(c)) corresponding to
codewords: € C, wheres*(c) = (s’(c), e € E). Itis worth noting tha®s|, = C, and furthermore,

B = C, sincec = 0 implies thats*(c) = 0.
We can now define for eaehe V, the local constraint
Cy =], = {(cl1y- (i(e) e € Ew)) : cec}. 3)

The minimal realizationM (C; T, w) is the tuple(T', w, (S, e € E),(Cy, v € V)). It may be
verified that3 is the full behavior ofM(C; T, w), so thatM(C; T, w) is indeed an essential tree
realization ofC.

From the definition ofS} in (1), it is clear that for each € E,

dim(87) = dim(C) — dim(Cy¢)) — dim(C5,))- 4)
It is useful to point out thadim (S) may also be expressed as
dim(S7) = dim(C| ;) + dim(Cl7,)) — dim(C), (5)
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FIGURE 4. Figure depicting the perspective about a vettéx a tree decomposi-
tion. Dashed ovals represent subtrees.

a consequence of the fact that for asiyC I, dim(C;) = dim(C) — dim(C|7). Thus, by the
uniqueness of minimal tree realizationsI'if* = (T,w, (S)*, e € E),(C¥*, v € V)) is a tree

e v

realization ofC with the property that for akk € F, dlm(S**) equals one of the expressions in (4)
or (5), then** is in fact M (C; T, w).
Forney [8] also derived an expression for the dimension of the logataintsC;;. Consider
anyv € V. For eache € E(v), we specifyl, to be the component @ — e that doesiot contain
v. As usual,J(e) = w1 (V(T,.)). Then [8, Theorem 1],
dim(Cy) = dim(C) — > dim(Cy (6)
e€E(v)

Forney gave the following bound fetim(C}) [8, Theorem 5]: for any € E(v), dim(S}) <
dim(C}) < len(C}) — dim(Sy¥), where leiC;) denotes the length of the cod&. The upper
bound can be improved slightly.

Lemma 2.3. In the minimal tree realizatiotM (C; T, w), we have, fow € V ande € E(v),

dim(S}) < dim(Cy) < dim(Cl, 1)+ Y, dim(S}).
e'eE(v)—{e}

Proof. The upper bound may be proved as follows. Sidae(C;) = dim(C) — dim(C|) for any
J C I, we may write (6) as

dim(C?) Z dim(Cl3,) = (|E(v)| — 1) dim(C).

e€E(v
Now, lete € E(v) be fixed. We have
dim(C) = dim(Cly) + . (dim(C|j(e,)) - dim(C)) .
e'eE(v)—{e}

However, as can be seen from Figure/4e¢) is the disjoint union ofu=!(v) and the setg/(¢’),
¢’ € E(v) — {e}. Therefore,

d1m(C|j(e)) S d1m(C|w71(U)) + Z dim(C\J(e/)),

e’eE(v)—{e}
and hence,
dim(Cy) < dim(Clya) + Y (dim(C\J(e,)) + dim(Cly ) - dim(C)) .
e'eE(v)—{e}

The lemma now follows from (5). O
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To justify our claim that the upper bound of the previous lemma is an improvampentForney’s
bounddim(C}) < len(C;) — dim(S}) [8, Theorem 5], we note that

dim(C|w_1(U)) =+ Z dlm(S:/) = dlm(C‘w_l(v)) + Z dlm(S:/) — dlm(S:)
e’cE(v)—{e} e’'cE(v)

< Jw )+ )] len(SE) — dim(S))
e’eE(v)
= len(C}) — dim(S;),
the last equality being a consequence of the fact@hais, by definition, a subspace BF )

(@G,GE@) 8:,), Thus, for anyC, w andv such thatdim(C|,-1(,) < lw=t(v)|, we see that the
bound of Lemma 2.3 is strictly better than Forney’s bound.

As already mentioned, among all tree realization§ ektending(7’, w), the minimal realization
M(C; T, w) minimizes state space dimension at each edge of th&trtés natural to ask whether
M(C;T,w) also minimizes local constraint code dimension at each vertgx affe will show in
the next section that1(C; T, w) does in fact have the following property:

if (T,w,(Se, e € E),(Cy,, veV))isatree realization of that extends7,w),
then for allv € V, dim(C}) < dim(C)).

We will deduce this fact from an alternative constructiom\d{C; 7', w) that we present next.

3. A CONSTRUCTION OFM(C; T,w) VIA STATE MERGING

The construction we describe in this section takes an arbitrary tree realizatiwat extends
the tree decompositiofi’, w) — for example, the trivial extension given in Example 2.1 — and
via a sequence of transformations, convért® M (C;T,w). These transformations constitute a
natural generalization of the state-merging process in the context of miniefi@ tealizations;
see, for example, [23] or [31, Section 4]. It would be useful to keepgpecial case in mind while
going through the details of the description that follows. For the readerigemience, we have
also included (in Appendix C) a specific example meant to serve as an aidi¢éostending the
description of state merging in the context of tree realizations.

LetT = (T,w,(S., e € E),(C,, v € V)) be an essentifitree realization of a codé with
index set/, and let®B be the full behavior of’. AsT is essential, we have th&|, = S. for all
e € E (by definition), and8|, = C, for allv € V' (by Lemma 2.2).

Pick an arbitrary edgé € F, and for ease of notation, sét= J(¢) andJ = J(é). LetW be
the subspace &; defined by

W ={seS;: 3b € Bsuchthabl, c C; ®C; andb|, = s}. (7)

We will define a new tree moddl = (T, w, (S, e € E),(Cy, v € V)), such that states in the
same coset dff in S; are represented by a single “merged” stat&in
Let

o:F o (@se) &8 — Fe (@Se) & S/ W
eF#é e#é
be the mapping defined by

é((‘rl? 1€ I)v (SE, € 7é é)v S) = ((xla (&S I)? (Sea e 7& é)’ S+ W) (8)
Define®B = ®(B). Itis clear from the definitions thaB|, = B|, = C, and thatdim(B) <
dim(%B).

3This restriction can be dropped by considerasg(I") instead; see Theorem 3.4.
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Consider now the tree modél = (T, w, (Se, e € E),(Cy, v € V)), whereS. = B|, for
eache € E, andC, = B|, for eachv € V. Note thatS; = S;/W, and fore # ¢, we have
Se = B[, = B|, = S.. All states inS; belonging to the same cosetdf, say,s + W, are mapped
to (or merged into) the single state- W in S.. Further note that if) is not one of the two vertices
incident withé, thenC', = B|, = B|, = C,. At the two vertices that are incident wiéhthe local
constraints are appropriately modified to take into account the state-metgidge#. In any case,
we have

dim(S,) = dim(B|,) < dim(B|,) = dim(S.), for eache € E, 9)
and
dim(C,) = dim(B|,) < dim(B|,) = dim(C,), foreachv € V. (10)

We claim thatl is an essential tree realization @f To prove this claim, we must show that
B(T)|, = B|, foralle € E, and thatB(T')|, = C, where®B(T) denotes the full behavior df.
Note that we daot claim thatB(T') = B; indeed, this may not be true.

It is easy to see that the inclusicgh C B(T')|; holds. Indeed, sinc€ = (T,w, (B, e €
E),(B|,, v € V)), itis evident that anp € B satisfies all the local constraints bf and hence is
in B(T). Therefore®B C %B(T'), and in particular® = B|, C B(T)|;.

The reverse inclusio3(T')|,; C C, follows from part (a) of the lemma below.

Lemma 3.1. Letb be a global configuration i®(T). Then,
(@) b|; € C; and
(b) b|, =0ifand onlyifb|, € C; & C5.

We defer the proof of the lemma to Appendix B. Lemma 3.1(a) shows2#taY|, < C, thus
proving thatl is a tree realization of. It remains to show thdf is essentiali.e,, that®B(T)|, =
B|, forall e € E. This is shown by the following simple argument. We have already seen that
B C B(T), and henceB|, C B(T)|, for all e € E. On the other hand, at arye E, B(T)|,
is, by definition, a subspace 6f, = %\e. Hence I is essential, thus proving our original claim,
which we record in the following proposition.

Proposition 3.2. The tree modeT is an essential tree realization 6f

Let us call the process described above of obtaidirfgom I' as thestate-merging process at
edgeé. We use the notation = merge,(I") to denote this transformation. Our goal now is to show
that, starting from an essential tree realization, if we apply the state-menginggs at each edge
of the underlying tree, then we always end up with a minimal realization. Afjfaihis assertion
requires the following technical lemma, whose proof we also defer to Afipé&h

Lemma 3.3. Suppose that there existse E — {¢} such that the full behaviof, of I satisfies
the following property: fob € %5, we haveb|,, = 0 ifand only if b|; € Cy) @® Chier)- Then, for

anyb € B(T), we also have|,, = 0 if and only if b|; € Cj(ery @ C5y.-

We are now in a position to prove the main result of this section, which progidesstruction of
M(C; T, w) via state merging. The reader is referred to Appendix C for an exampl#ltisatates
this construction.

Theorem 3.4. LetT" be a tree realization of that extends the tree decompositifi, w). Let
e1,e2,...,e g be alisting of the edges af. Setl'y = ess(I'), and fori = 1,2,...,|E|, set
I'; = merge, (I';—1). Then,[' g is the minimal tree realizatioM (C; T', w).
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Proof. Let 8 denote the full behavior df (and hence, also @ss(T")), and fori = 1,2,...,|E|,
let B(I";) denote the full behavior df;. By Proposition 3.2, each; is an essential tree realization
of C.
By Lemma 3.1(b), for anp € B(I’;), we haveb|, = 0if and only ifb|; € Cj(,) ® Clen):
Furthermore, by Lemma 3.3, for agy> ¢, B(I';) satisfies the following property:
foranyb € B(I';), we haveb|, = Oifand only ifb|; € Cyc,) & Cj.,)-

In particular,8* dﬁf%(l““;‘) satisfies the following property far=1,2,...,|E|:

foranyb € B*, we haveb|, = 0ifand only ifb[, € C;(,) & Cj,)-
Let us call the above property (P). Property (P) has two importanecpmesices. Firstly, it implies
that if b € B* is such thab|, = 0, thenb|, = 0 for all e € E. This means that the projection
m: B* — C defined byr(b) = b|, is in fact an isomorphism.

For the second consequence of (P), consider, forany”, the homomorphisng, : C — B*|,
defined bys.(c) = (7~1(c))|.. This map is well-defined since is an isomorphism. Property
(P) is equivalent to the assertion that, for ang £, the kernel ofs. is preciselyC ;) © Cj(e).
ThereforeB*|, = C/(Cj() © Cj))-

Thus, for eache € E, state spac&*|, is isomorphic toS; defined in (1), and the mag,
is the canonical projection magj given by (2). It easily follows that for each € V, B*|, is
isomorphic toC; defined in (3). Hencel'\z) = (T,w, (B*|,, e € E),(B*],, v € V)) is the
minimal realizationM (C; T, w). O

Observe that at each step of the procedure outlined in Theorem 3.4nthagions of the state
spaces and the local constraints do not increase. To make this preeeetrge modeld” =
(T,w,(S., e € E),(Cl, veV))andl” = (T,w,(S!, e € E),(C}/, v € V)), let us say that
I" x T if dim(S)) < dim(SY) forall e € E, anddim(C)) < dim(CY)) forallv € V. Then, forl’
andl’;,i =0,1,2...,|E|, as in the statement of Theorem 3.4, we have by virtue of (9) and (10),

F|E| < F|E|71 <...xIh'xTIy :ess(F) <TI.

Thus, we have that if" is any tree realization of that extends the tree decompositith w),
then M(C;T,w) < I". We record this strong property of minimal realizations as a corollary to
Theorem 3.4.

Corollary 3.5. Let(T,w) be a tree decomposition of the index set of a abdend letM (C; T, w) =
(T,w, (S, e € E),(Ck, v € V)) be the corresponding minimal tree realization @f Then,
for any tree realization(T,w, (Se, e € E),(C,, v € V)), of C that extendg7T,w), we have
dim(S}) < dim(S,) for all e € E, anddim(C};) < dim(C,) forall v € V.

The procedure outlined in Theorem 3.4 does not translate to an effidgemitlam for the con-
struction of M(C; T,w). This is because the state-merging procedure that cré€ateem I';_;
requires knowledge of the full behavior 6f_1, which may not be easily determined. So, as a
practical method for constructingyt(C; T',w), givenC and(T,w), we propose a novel construction
that relies upon the code decomposition techniques of the next section.

4, CobE DECOMPOSITIONS

In previous work [18], it was demonstrated that techniques from therdpaosition theory of
matroids [28],[29] could be put to good use in a coding-theoretic setting dEbomposition theory
in that work was presented in the context of binary linear codes. As wenami show, the basic
elements of that theory can be easily extended to cover the case of myntmalas as well. The
object of this exercise is not just to create a more general code deciimpdiseory, but as we
will see in the next section, this decomposition theory ties in very nicely with tharythef tree
realizations.
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LetC; and(C, be linear codes over the finite fiélﬂq = GF(q), defined on the index sefs and
I, respectively. Let’; Al, denote the symmetric differencg; U I3) — (I; N I3), of the index
sets. We will construct a cod®C;, Cy) with I; Al as its index set. Fat = (x;, i € I;) € C; and
y = (yi,i € I) € Ca, letxxy = (¢, i € I U Iz) be defined by

Z; fori ¢ L — I
c; = Yi foriclh, — 1
x;—y; forie LN,
SettingC; xCo = {xxy : x € C1,y € Ca}, we see that’; x Cy hasl; U I, as its index set.
We takeS(Cy,Cy) to be the cross-sectiaft; *CQ)IIMQ. Note that when; N I, = (), we have
S(Cl,CQ) =C1xCy =C1 D Co.
Fori = 1,2, let ) andC' denote the projectiod;|; ~;, and the cross-sectiof€;); ;.
respectively. The coded” andC'”, for i = 1,2, all havel; N I, as their index set. The dimension

of S(C1,Cs) can be expressed in terms of the codgsci(”) andCZ.(S), i = 1,2, as stated in the
following lemma.

Proposition 4.1. For codes’y, Co, we have

dim(S(Cy, C2)) = dim(Cy) + dim(Cy) — dim(C\®) N ) — dim(C + ¢,
whereC”) + ) = (x +y: xec? y e cl1.
Proof. For a codeC, and a subsef of its index set, the kernel of the projection map C — C|5

is isomorphic taC;, and hencedim(C;) = dim(C) — dim(C|7). Thus, takingC = C; x Cz, and
J = I; A, we find that

dim(S(Cy,C2)) = dim(Cy * Cz) — dim((Cy % Ca)[ 1, y,) = dim(Cy x C2) — dim (€ + 5,

since(C1 x Ca)lj g, = e 4¢P so, we must show thalim(C; x Cy) = dim(Cy) + dim(Cy) —
dim(C{¥ n ).

LetC; be a copy of’; defined on an index set that is disjoint frdn For eachy € C,, denote
by y its copy inCe. Consider the homomorphistn: C; &Cy — C; xC defined byp(x,y) = x*y.
Note thatxxy = 0iff x|, _; =yl;,_; =0andx|; ~; —yl|;,~;, = 0. Equivalentlyxxy = 0 iff
X|5,n1, € Cf), Ylnnmn € Cés), andx|;, ~z, = ¥lj,n1,- It follows that the kernel o is isomorphic
to

{z:z¢€ C’Es), VS Cés)}.
which is simplyc¥ n c{*.

Hencedim(Cy Cs) = dim(Cy @ Ca) — dim (ker(4)) = dim(C1) + dim(C2) — dim(C\* nc{?),

as desired. O

We will restrict our attention to a particular instance of 8, ,Cs) construction, in which we

require that the code(éi(p) andCi(S), 1 = 1,2, take on a specific form. We need to introduce some
notation first. For each positive integersetm, = (¢" — 1)/(¢ — 1), and fix anr x m, matrix,
which we denote byD,, over[F,, with the property that each pair of columns Bf. is linearly
independent ovelF,. Note thatD, is a parity-check matrix for afm,, m, — r] Hamming code
overF, (cf. [30, § 3.3]). LetA, denote the dual of this Hamming code,, A, is the[m,., r| code
overlF, generateddy D,.. The code], is sometimes referred to asemplex code

Given anr > 0, suppose that the codés and(C-, defined on the index sefs and I, respec-

tively, are such thal; N I,| = m,., and fori = 1,2, we haveC”) = A, andC'®) = {0}. In such

4Up to this point, we did not need to specify the number of elements in the firlileofter which we were working, but
from now on, it will be useful for us to do so.
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a caseS(Cy, (o) is called ther-sumof C; andCy, and is denoted by; @, C,. It is convenient to
extend this definition to the caseot= 0 as well: whenI; N I3| = 0, the0-sumC; @ Cs is defined
to be the direct sur@; & Cs.

Example 4.1. Consider the case of codes defined over the binary figldNote thatA; = {0, 1}.
Suppose thatl; N I>| = 1, and that the coordinates @, are C, are ordered so that the index
common tal; and I, corresponds to the last coordinate ©f and the first coordinate af;. The
conditions necessary for the 1-suiim®; C; to be defined can then be stated as

(P1) 0...01is not a codeword of;, and the last coordinate @f; is not identically zero;

(P2) 10...0is not a codeword of,, and the first coordinate df; is not identically zero.

The composite cod8(Cy, Cy) resulting fromCy, Co that satisfy (P1), (P2) above was studied in
[18], where it was actually called a “2-sum”.

We would also like to point out that the specialization of etsum operation to the case= 2
was called 3-sum” in [18].° To add to the confusion, there was in fact an operation called “3-
sum” defined in18], but that, in a certain sense, dualizes the 2-sum operation we have given in
this paper.

Forr > 0, note that ifCZ.(p) andCZ.(s) (¢ = 1,2) are in the form needed to define asum, then

e 1) = A, andc® n el = {0}. Therefore, as a corollary to Proposition 4.1, we have the
following result (which also applies trivially to the= 0 case).

Corollary 4.2. Forr > 0, if C1, Cy are such that; &,. C, can be defined, then
dim(Cl Dy CQ) = dim(Cl) + dim(CQ) - .

An elementary property of direct sumise(, 0-sums) is that a code is expressible as a direct
sum of smaller codes if and only if there exists a partition.J) of the index set o’ such that
dim(C| ;) + dim(C|5) — dim(C) = 0. This property extends beautifully tesums in general.

Theorem 4.3. LetC be a linear code oveF,, defined on the index séf and letr be a positive
integer. Then, the following statements are equivalent.

(@) C = C1 &, Cy for some codeéy, Cs.

(b) There exists a partitiof./, J) of I, withmin{|.J|,|J|} > r, such that

dim(C|;) + dim(C|5) — dim(C) = r.
Proof. (a) = (b): See Appendix D.

(b) = (a) We give here a complete proof of this direction of the theorem, as it givesxglicit
construction of code§;, Cs such thaC = C; @, Co, given a partition(.J, J) as in (b). The proof
generalizes ideas from similar constructions presented in [18].

Let (J,J) be a partition off such thadim(C| ;) + dim(C|5) — dim(C) = r. Setn = |I| and
k = dim(C), and letG be ak x n generator matrix fo€. Without loss of generality, we may assume
that the columns of7 are ordered so that the first| columns are indexed by the elements/of
and the rest by the elements.bfIn the following exposition, we will often permute the columns of
G to bring the matrix into some desired form. Whenever this is the case, it will be tasilymed
that column indices migrate with the columns.

Let G| ; andG|; denote the restrictions @f to the columns indexed by the elements/aind./,
respectively; thus(; = [G|; G|5]. Letrank(G|;) = k; andrank(G|;) = kz; by our assumption
on(J,J), we have we have; + ky = k + 7.

SThe 2-sum and-sum operations defined in [18] imposed additional conditions on the Igngtine codes involved in
the sum, which we have dropped here.
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Bring G into reduced row-echelon form (rref) ov&;. Permuting within the columns af|
and within those oty if necessaryref(G) may be assumed to be of the form

_[ A o B
O O I, C |

wherel;, for j = ki, ko — r, denotes thg x j identity matrix,A is ak; x (|J| — ki) matrix, B is a
k1 x (|J| — k + k1) matrix,Cis a(k — k1) x (|J| — k + k1) matrix, and theD’s denote all-zeros
matrices of appropriate sizes.

The fact that the submatri%

(11)

B

kakl C
that B must have ranks — (kK — k1) = r. Hence,B hasr linearly independent rows, call them
by, ..., b,, which form a basis of the row-spaceBf Permuting the first; rows ofG if necessary,
we may assume that;, ..., b, constitute the first rows of B. (Permuting these rows &¥ will
also permute the rows of thk, matrix, but the effects of this can be negated by appropriately
permuting the firsk; columns ofG.) Any row of B is uniquely expressible as a linear combination
(overF,) of by,...,b,. In particular, fori = 1,2,...,kq, theith row of B can be uniquely
expressed a3’ _; a; jb; for somea; ; € Fy.

Let us denote byly, ..., d,, the rows of the: x m,. generator matrixD,., of the codeA,.. Let
X be thek; x m, matrix such that for = 1,2,..., k1, theith row of X equalszgz1 a; ;d;,
where thew; ;'s are such that théth row of B is %, «; jb;. Thus, the row-space of is the
span ofdq,...,d,, i.e, itis the codeA,. To the columns ofX', we assign indices from some set
Ix disjoint from 1.

Now, define thek; x (|.J| + m,) matrix

Gi=[I A X], (12)

must have rank equal t@nk(G|5) = ko implies

allowing the submatril,, A] to retain its column indices fro¥. Also, define the: x (|.J| +m;.)
matrix

X O B
G2 - |: o) Ik‘—k;l C :| ) (13)
. . l O B . - — :
again allowing the submatn% 7 c } to retain its column indices fro&'. Thus, the index
k—k1

set of the columns of; is I; %€ J U I, while that of the columns o, is I, %" 7 U 7.
Finally, fori = 1,2, letC; denote the code ovét, generated byr;. The following facts about
C, andCy, may be verified:
(i) C1 @, Co can be defined, so that by Corollary 4@m(C; @, C2) = k1 + ke —r =k =
dim(C).
(iii) All rows of G are inC; @, Co. SinceG generates the same code(agrecall that column
indices get permuted along with columns), we seedhat, C, contains all the codewords
of C.

We leave the details of the routine verification of the above facts to the relaadely remains to
point out that facts (ii) and (iii) above show théf @, Co = C, thus completing the proof of the
implication (b)=- (a). O

The procedure described in the above proof can be formalized into arithig that takes as
input ak x n generator matrixG (over[F,) for C, and a partition(.J, J) of the index set o, and
produces as output generator matrices of two cédesdC, (and their associated index sets) such
thatC = C; @, C2, wherer = dim(C| ;) + dim(C|7) — dim(C). The run-time complexity of this
procedure is determined by the following:
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Il I

FIGURES. A tree realization of an-sum decomposition.

e an rref computation to find: as in (11); this can be carried out id(k2n) time, which
is the run-time complexity of bringing & x n matrix to reduced row-echelon form via
elementary row operations;

e the computations required to identify a badis,(. . . , b,.) of the row-space of the matrik,
and correspondingly the coefficients ;; this could be done by computing the rref Bf
which would also take)(k?n) time;

e the computations needed to determinekthem,. matrix X'; each row of the matrix requires
O(rm,) computations, and there ake = O(|.J|) rows, so the computation of takes
O(|J|rm,) = O(|J|rq") time.

Therefore, the entire procedure can be carried ot(ik’n + |J|rq") time. It is worth noting that
the run-time complexity of the procedure is polynomiahint andq, but exponential inr.

We take a moment here to clarify an important point in our definition of-tsam operation in

this section. Recall that in order to defifie®, C,, we required that’{p) = Cé”) = A,. The code

A, acted as a “glue” in the-sum composition of from C; andCs. An astute reader may have
noted that if, instead oA\, anyfixed r-dimensional code ovéf, were to be used as the “glue”, the
results stated in this section (Corollary 4.2 and Theorem 4.3) would hold certorhold true. (The
construction of the matriX in the proof given for Theorem 4.3(a) would have to be appropriately
modified, but the rest of the proof would go through unchanged.) Sajuéstion naturally arises
as to why we picked the cod®, for our definition. One reason for our choice was simply to make
a specificr-sum definition compatible with the definitions in [18] (cf. Example 4.1). A sd¢cand
much more compelling, reason was the following: it is the choice of the dgdes the “glue” that
allows for the new recursive construction of minimal tree realizations thestnext.

5. A CONSTRUCTION OFM(C; T, w) VIA CODE DECOMPOSITIONS

The procedure given in the previous section for determining-arm decomposition of a given
code forms the basis of a new construction of minimal tree realizations thatesert here. The
key observation behind this construction is that if a c6deas a partition(.J, J) of its index set
such thaddim(C| ;) 4 dim(C|5) — dim(C) = r, thenC has an essential tree realization of the form
depicted in Figure 5. The tree in the figure consists of a single edg€v;, v2}, the state space
S, is the code\,., and the local constraint codes at the two vertices are the eéqhd®sdC, such
thatC; @, C2 = C. In fact, this is the minimal realizatiom (C; T, w), for the treeT’ consisting
of the single edge = {v1,v2}, and the index map such thatv=!(v;) = J andw!(vy) = J.
This is simply becauséim(S.) = dim(A,) = r, so by virtue of (5)S,. has the same dimension
as the state spac®' in the minimal realization\ (C; T', w). So, by the uniqueness of minimal tree
realizations, the tree realization depicted in Figure B4&C; T, w).

To summarize, i€ is a code defined on the index detand (7', w) is a tree decomposition df
such thafl” consists of the single edge= {v1, v2}, then we may construc!(C; T, w) as follows.
SetJ = w!(v1) andJ = w™!(vz), and compute = dim(C|;) + dim(C|5) — dim(C). Assign an
index setl A that is disjoint from/ to the code),.. Use the procedure in the proof of Theorem 4.3
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. o @y T,

FIGURE 6. Depiction of the manner in which the tree decomposit{@isw; ) and
(T'¢,w2) are obtained frontT', w).

to determine codeg; andC,, defined on the respective index séts= J U I andl; = J U Ia,
such thatC = C; @, Cy. Fori = 1,2, assignC; to be the local constraint code at vertgx and
assignA, to be the state space at edgé he resulting tree modél’, w, A,., C1, Cs) is the minimal
tree realizatiooM (C; T', w).

Before describing how the construction may be extended to the case®Witbenore than one
edge, we deal with the trivial case of trees without any edges.i¢fa tree consisting of a single
vertexv, and no edges, then given any catidefined on some index s&tthere is only one way of
realizingC onT'. This is the realizatiofT', w, C,), wherew is the unique mapping : I — {v},
andC, is the code itself. Of course, this is also the minimal realizatidn(C; T, w).

At this point, we know how to construgi!(C; T, w), for any code, and any tree decomposition
(T,w) such thatl" has at most one edge. From this, we can recursively constrl(¢t, T', w) for
anyC and any(T,w), as we now describe.

Suppose that we know how to construet(C; 7', w) for anyC, and any(T", w) such thafl" has at
mostn — 1 edges, for some integer> 2. LetC be a code defined on the index $eaind let(T', w)
be a tree decomposition such tha(T")| = n. Pick anyée = {v1,v2} € E(T), and as usual, |&f;
andT; be the two components @f — é. We will assume that; € V(T;) andvy € V(T;). Let
J(&) =w YV (Ts)) andJ(é) = w1 (V(T¢)). Compute

r =dim(C| ) + dim(Cl5,)) — dim(C), (14)
which determines the codg,. AssignA, an index sef A that is disjoint from/. Use the procedure
in the proof of Theorem 4.3 to determine codgsandC., defined on the respective index sets
Iy = J(é) U Ix andly = J(é) U Ia, suchthat = C; @, Cs.

Now, define the index maps, : I — V(T;) andw, : Iy — V(T;) as follows (see Figure 6):

i) = {w(i), if i € J(é)

15
U1, ifiGIA ( )

i) = {w(i), if i € J(é) (16)

V2, if i € Ia
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M(Cy; T;, wh) : M(Co; Te,wo)

1T

J(é) J(e)

FIGURE 7. A depiction of the construction & from M (Cy; Ts; wi) and M (Ca; Te, w2).

Thus,(T3,w) and(T;, w>) are tree decompositions of the index set€,08ndC,, respectively. As

neither E(T%) nor E(T:) contains the edge, we have|E(T;)| < n—1and|E(T:)| < n— 1.
Therefore, by our assumption, we know how to constutiiCy; 7%, w1 ) and M (Ca; T, wo). Let

M(Ci;Toywn) = (Té,wl, (S, e € B(Ty)), (CV, v e V(Té))), (17)

M(CoiTeswn) = (Teswa, (S, e € B(Te), (O, ve V(Te). (18)

Finally, setl™ = (T, w, (Se, e € E(T)), (Cy, v e V(T))), where

and

SY.if e € B(Ty)
Se={A,, ife=é (19)
SP itec B(T,),
W T
C, — C?Q), ?f v E V(j) (20)
cy’, ifve L’CT@)

Figure 7 contains a depiction &f*. It is easy to see thdt* is a tree realization of. Indeed,
M(Cy; Ty, wr) is arealization o, and M (Co; T, w2) is a realization of’,, and hence (as should
be clear from Figure 7),* is a realization o€; &, C, = C. Itis not immediately obvious that* is
actually M (C; T, w), but this is in fact true, as stated in the following proposition, a proof of Wwhic
is given in Appendix E. It should be pointed out that the proof is strongliamt on the choice of
the codeA,. as the “glue” in the-sum decomposition af into C; and(s.

Proposition 5.1. T* is the minimal tree realizatioM (C; T, w).

In summary, we have the following recursive procedure for constmictit(C; 7', w), given a
codeC and a tree decompositidff’, w).

Procedure M N_.REALZN(C, T, w)

Input A k x n generator matrix for a code, and a tree decompositidfl’, w) of
the index set of.

Output A specification of the state spaces and the local constraints in the minimal
realizationM (C; T, w).
Step M 1. If T consists of a single vertex, then retukt(C; T, w) = (T, w,C).

Step M2. If T contains at least one edge, then choosé anF(T'). Letv; be the
vertex of T; incident withé, and letv, be the vertex of; incident withé.

(M2.2) Determine),,, and assign it an index sét disjoint from.J(é) U J(é).
(M2.3) Determine code§; andCs, with index setsl; = J(é) U I and; =
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J(é) U I, respectively, such that = C; &, Cs.

(M2.4) Determine the index maps andw, as in (15) and (16).

Step M3. DetermineM(Cy;T;,w1) by callingM N.REALZN(C;, T, w1); deter-
mine M (Co; T, w2) by callingM N.REALZN(Cz, T¢,w2). We may assume that
M(Cy;Ts,wr) andM(Co; Ts, wo) are in the form given in (17) and (18).

Step M4. ReturnM(C; T, w) = (T, w, (Se, e € E(T)), (Cy, v € V(T))), where
S. andC,, are as defined in (19) and (20).

A simplified version of the above procedure may be obtained by choosifgepM2, the edge
¢ to be an edge incident with a leaf @. Then, one of the two components Bf— ¢, say, T,
consists of a single vertex, so that the calMd\N_REALZN(C,; T, w2) may be avoided, as it would
simply return(T, wa, C2). We will use this modification of the procedure to give an estimate of its
run-time complexity.

Let n denote the length @, letk = dim(C), and letEl = E(T'). Also, define

Tmax = MaX dim(C| ;) + dim(Cl7,)) — dim(C). (21)

Observe that, as a result of the modification suggested above, in the detgomiof M (C; T, w),
the procedurdl N_.REALZN gets called E| times, once for each edgec E. The run-time com-
plexity of any particular run oM N_.REALZN is determined by the computations in Step M2. In
theith run, the procedure acts upon some oﬁﬂéof lengthn; and dimensiort;, and in Step M2,

it computes am;, a codeA,, with index setlg), and a codeﬁfz). Via Lemma E.1, we have that
ri < rmax. We boundk; andn; as follows. Note tha(/’f’) is the codeC(“+1) that the(i + 1)th
run of the procedure takes as input. Thus, we hWave < k;, andn;+; < n; + \IX)\. Since

ky = k,ny = n, and|IV| = (¢" — 1)/(g — 1) < ¢, we have, fori = 1,2,...,|E|, k; < k
andn; < n+ (i — 1)¢"™=<. Now, by the estimate given in Section 4 of the run-time complexity
of ther-sum decomposition procedure, we see thatitheun of Step M2 oM N_REALZN takes
O(k?n; +n;r;q"") time. Hence the overall run-time complexity Mf N.REALZN may be estimated

to bezgl1 O(k?n; + n;r;q"). This expression can be simplified by observing that

|E| |E]

> (kini+nirig”) < (B + rmaxg™) Y ng

i=1 i=1
|E]

S (k2 + Tmaxq'f‘max) Z [n + (Z _ 1)q7‘max]
=1

= (kz + Tmaxq ™) [n|E| + (1/2)|E|(|E| — 1)g"™].

It follows thatM N.REALZN runs inO((k? + rmaxq ™) (n|E| + | E|*rmaxq ™)) time. Note that
this is polynomial imn, k, ¢ and| E|, but exponential imy,x.

6. COMPLEXITY MEASURES

6.1. Complexity Measures for Codes. As observed in [7], any graphical realization of a code
specifies an associated decoding algorithm, namely, the sum-produdthefgofhe sum-product
algorithm specified by a tree realization, = (7,w, (Se, e € E), (Cy, v € V)), of a codeC
provides an exact implementation of ML decoding orA reasonable initial estimate of the com-
putational complexity of the sum-product algorithmIoms provided by theconstraint complexity
of I', which is defined asnax,cy dim(C,). As implied by Corollary 3.5, given a tree decom-
position (T, w) of the index set o, the minimal realization\(C; T, w) has the least constraint
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complexity among all tree realizations ©that extend 7', w). Letx(C; T, w) denote the constraint
complexity of M(C; T,w). Note that, by (6),

#(C; T,w) = max (dim(C) -y dim(CJ(e))) . (22)
)

veV
ecE(v

Thus, x(C; T,w) is a measure of the complexity of implementing ML decodingdcais a sum-
product algorithm oM (C; T, w).
Let us now define theeewidthof the code’ to be
k(C) = (min k(C; T, w), (23)
where the minimum is taken over all tree decompositi@nsv) of the index set of . The treewidth
of a code is an indicator of how small the computational complexity of an MLdiagaalgorithm
for C can be. The notion of treewidth.€., minimal constraint complexity) of a code was first
introduced by Forney [8]. A related notion, called minimal tree complexity,dedimed and studied
by Halford and Chugg [9]. Treewidth, as defined in (23), is an uppentd on the minimal tree
complexity measure of Halford and Chugg.
Atree is callectubicif all its internal nodes have degree 3. Forney [8] showed that the minimum
in (23) is always achieved by a tree decompositidhw) in which 7' is a cubic tree, and is a
bijectior between the index set 6fand the set of leaves @f. Let Q(C) denote the set of all tree
decomposition$T’, w) in whichT" is cubic andv maps the index set @f bijectively onto the set of
leaves ofl’. We may then re-write (23) as
k(C) (T#I)I)lé%(c) K(C; T, w). (24)
An alternate measure of code complexity may be obtained from the not&iatefcomplexitpf
a tree realizatiol’, which is the largest dimension of a state spack.imhus, by virtue of (4) and
(5), the state complexity of a minimal realizatidr (C; T, w) is given by

oC;T,w) = max dim(C) — dim(Cy)) — dlm(Cj(e))

= max dim(C| ;) + dim(C|,,) — dim(C). (25)

We then define, in analogy with (24),
C)= i C;T,w). 26
a(C) (T’(gléré(c)o( w) (26)

Note that the minimum in the above definition is taken over tree decompositiaB&inonly. It
must be emphasized tha{C), as defined in (26), neetbt be the same as the leasC; T', w) over
all tree decomposition&l’, w) of the index set of.

A notion analogous te (C) is known as branchwidth in the matroid theory literature; sge
[15]. In keeping with that nomenclature, we will cal(C) the branchwidthof the codeC. Branch-
width and treewidth are very closely related, as shown by the followindtreghich can be ob-
tained in a straightforward manner from the bounds in Lemma 2.3.

Proposition 6.1 ([16], Theorem 4.2) Given a cod&, if (T, w) € Q(C), then
o(C;T,w) <k(C;T,w) < 20(C; T, w).
Henceo (C) < k(C) < 20(C).
6Forney [8] only explicitly states that the minimizif@", w) may be taken to be such thatis a cubic tree and is a

surjective map onto the leavesBf However, the symbol-splitting argument in Section V.F of his paper hgtugplies
thatw in the minimizing tree decomposition may be taken to be one-to-one as well.
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The notions of state and constraint complexity have been studied exigrisitke context of
conventional trellis realizations of a code; seg, [31]. Recall from Example 2.2 that a conven-
tional trellis realization of a code is a tree realization that extends a tree desgiop (7', w) in
which T is a simple path and is a bijection between the index set©®fand the vertices of .
This special case of a tree decomposition is referred tqpastadecompositiarSpecifically, a path
decomposition of a codé defined on the index sdtis a pair(7’,w), whereT is a simple path on
|I| vertices, andv : I — V/(T') is a bijection. LetP(C) denote the set of all path decompositions
of C. We then define

Krellis(C) = . f)lé% © K(C; T, w) (27)
and
otreliis(C) = - glé% o o(C;T,w). (28)

It is well-known, and indeed readily follows from Lemma 2.3, that)is(C) < Fyenis(C) <
otreliis(C) + 1.

It is clear from (23) and (27) that(C) < kuelis(C). Forney [8] asked the question of whether
x(C) could be significantly smaller thafyeis(C). He conjectured that eithegeis(C) — <(C) < 1
for all codesC, or kyelis(C) — k(C) is unbounded. We show here that it is in fact the latter that is
true. To do so, we need to introduce some new concepts.

6.2. Complexity Measuresfor Graphs. In their fundamental work on graph minors [27], Robert-
son and Seymour introduced two notions of complexity of graphs, namedwittth and pathwidth.
These notions have proved to be invaluable tools with many applications inh trapry and theo-
retical computer science. An overview of such applications can be fdandxample, in [6]. We
will define the notions of treewidth and pathwidth of a graph in this subsedimhsubsequently,
relate them to the complexity measurd€) andxyelis(C) defined above for codes.

Let G be a graph with vertex s&f(G) and edge se(G). The graph may contain self-loops and
parallel edges. Aree decompositioof G is a pair(T, 3), whereT is a tree, angs : V (T) — 2V(9)
is a mapping that satisfies the following:

(T1) Uzev(r) Blz) = V(9);

(T2) for each pair of adjacent verticesv € V(G), we have{u, v} C B(x) for somer € V(T);
and

(T3) for each pair of vertices, z € V(T)), if y € V(T') is any vertex on the unique path between
x andz, theng(z) N G(z) C B(y).

It may be helpful to point out that (T3) above is equivalent to the following

(T3) for eachv € V(G), the subgraph df’ induced by{x € V(T') : v € 5(x)} is a (connected)
subtree off".

A reader familiar with the notion of “junction trees” (seqy, [1]) will recognize a tree decomposi-
tion of G to be a junction tree.

Thewidth of a tree decompositiofil’, 3) as above is defined to beax,cy (1 |3(z)| — 1. The
treewidthof G, which we denote by(G), is the minimum among the widths of all its tree decom-
positions. Note that if has at least one edge, then, because of (T2), any tree decompotifion o
must have width at least one. Thus, for any gréphith |F(G)| > 1, we havex(G) > 1.

Example 6.1. For any treeT" with at least two vertices, we havg7’) = 1. This can be seen as
follows. Fix a vertex € V(T'). Define a mapping : V(T') — 2V () as follows:3(r) = {r}, and

for z # r, B(x) = {x,y}, where{z, y} is the first edge on the unique path franto . It is easily
verified that(7', §) is a tree decomposition df. Since this tree decomposition has width one, it
follows thatx(T") = 1.
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FIGURE 8. The treed7, Y, andYs.

If (T, ) is a tree decomposition in which is a simple path, the(il’, 3) is called apath de-
composition The minimum among the widths of all the path decomposition§ & called the
pathwidthof G, which we denote bytpain(G). It is evident that(G) < kpa(G).

Analogous to the situation of Example 6.1, a simple path has pathwidth one. Eigivees may
have arbitrarily large pathwidth. The following example is due to Robertsdrsagmour [26].

Example 6.2. LetY; be the complete bipartite grapR; 3. For i > 2, we inductively defin&;
by taking a copy o¥;_1, and to each leat of this graph, adding two new vertices adjacento
Figure 8 shows the tre€k;, Y andY3. The pathwidth of;, i > 1,is[5(i + 1)] [26].

Thus, for treed’, the differencespan(1") — ~(1) can be arbitrarily large. We will use this fact
to construct codes for which kyeis(C) — «(C) is arbitrarily large.

We remark that the problem of determining the treewidth or pathwidth of a gsakiown to
be NP-hard [2],[6]. As we will see a little later, this implies that the problem ¢émheining the
treewidth of a code, or its trellis counterpart, is also NP-hard.

6.3. Relating the Complexity Measuresfor Codesand Graphs. LetTF be an arbitrary finite field.
To any given graplg/, we will associate a codg[G] over[ as follows. LetD(G) be any directed
graph obtained by arbitrarily assigning orientations to the edgés afd letA g be the vertex-
edge incidence matrix aD(G). This is the|V(G)| x |E(G)| matrix whose rows and columns are
indexed by the vertices and directed edges, respectively(6#, and whoséi, j)th entry,q; ;, is
determined as follows:

1 if vertexi is the tail of non-loop edg¢
a;; = —1 if vertexi is the head of non-loop edge
0  otherwise

The codeC[G] is defined to be the linear code oegenerated by the matri# pg). WhenF is the
binary field, the cod€[G] is thecut-set codef G, i.e., the dual of the cycle code ¢f[10].

The following fundamental result that relates the treewidths of the gFagid the cod€[G] is
due to Hliréry and Whittl€[16],[17].

Theorem 6.2 ([16], Theorem 3.2) If G is a graph with at least one edge, the(G) = x(C[G)).

Since determining the treewidth of a graph is NP-hard, it immediately follows thenabove
theorem that the problem of determining the treewidth of a code (over aatfiixite field) is also
NP-hard. We remark that the problem of determining the branchwidth ofla isoalso NP-hard.
This follows from a result [11] that relates the branchwidth of the ad@g to the branchwidth of
the graphg, the latter being a notion we have not defined in this paper.

"The results in [16],[17] are stated in matroid-theoretic language. Tbabudary necessary to translate the language of
matroid theory into that of coding theory can be found, for example,9h [1
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g g

FIGURE 9. Construction of}’ andg from G.

Unfortunately, it is not true thatpan(G) = Krelis(C[G]). As an example, consider the cogld]
over the binary field, for an arbitrary tré@ It is not hard to see that[7] = {0, 1}/ which,
being the direct sum of multiple copies 66, 1}, haskyelis(C[T]) = 1. But as we have already
noted, trees can have arbitrarily large pathwidth.

We get around this problem by means of a suitable transformation of gr&gmwen a graply,
let G’ be a graph defined on the same vertex sét,dmving the following properties (see Figure 9):

e G'isloopless;
e a pair of distinct vertices is adjacentdH iff it is adjacent inG; and
e in G’, there are exactly two edges between each pair of adjacent vertices.

Defineg to be the graph obtained by adding an extra vertexp G', along with a pair of parallel
edges from: to eachv € V(G') (see Figure 9). Itis easy to see thas constructible directly from
GinO(|V(G)[?) time.

The following result was used in [19] to show that the problem of determisings(C) for an
arbitrary code (over any fixed finite field) is NP-hard.

Theorem 6.3 ([19], Proposition 3.1) If G is the graph constructed from a given graghas de-
scribed above, thediyelis (C[G]) = kpatn(G) + 1.

Sinceoyelis(C) is always within one ofiyenis(C), the above theorem implies that
Kpath(G) + 1 < Htrellis(c[g]) < Kpath(G) + 2. (29)

While this falls short of establishing the NP-hardness of computirgs(C) for an arbitrary codé€,

it is certainly enough to provide us with the desired example of c6deswhich kyelis(C) — k(C)
is arbitrarily large. We just need to make one more observatigg) = «(G) + 1. The proof
of this fact, which is along the lines of the proof of Lemma 3.5 in [19], is left tordeder as a
straightforward exercise. We can now prove the following corollary tecfems 6.2 and 6.3.

Coroallary 6.4. Over any finite field, there exists a family of cod€s, i € 1,2, ..., such that
hzm /‘ftrellis(ci) - K(Cz‘) = OQ.

Proof. LetY;, i = 1,2,..., be the family of trees defined in Example 6.2. Defihe= C[Y;],
whereY; refers to the graph obtained fror by the transformation depicted in Figure 9. Note that
k(Y;) = k(Y;) + 1 = 2, sincex(Y;) = 1, as shown in Example 6.1. Thus, on the one hand, from
Theorem 6.2, we have(C ) = x(Y;) = 2. And on the other hand, from (29) and Example 6.2, we
haverielis(Ci) > rpan(Yi) + 1 = [5(i + 3)]. O

Using standard facts known about the incidence matrixg) for a graphg (see, for example,
[25, Chapter 5]), it may be verified that the codgs: > 1, constructed in the above proof are
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[ng, ki, d;] codes, where

ni = |B(Y;)| = 122" —1)+2,
kB o= V)| -1 = 3(2°=1)+1,
d; = size of the smallest cut-setl = 4.

Note thatkyenis(C;) — (C;) grows asO(logn;). It is tempting to conjecture that this is in fact
the maximal rate of growth of the differenegelis(C;) — x(C;) for any code familyC;, but this
is unlikely to be true. What is true, however, is that tho ryelis(C;)/~(C;) can grow at most
logarithmically with the length of the code. Indeed, it has been shown in [20Fdh any code& of
lengthn > 1,

/‘Gtrellis(c)

K(C)

The above bound on the ratio efeis(C) to x(C) is the best possible, up to the constants involved.
Indeed, for the codes; constructed in the proof of Corollary 6.4, we have that

/ftrellis(cz‘) > 1+ 3 _ 1
K,(CZ) - 4 4

< 2logy(n —1) + 3. (30)

[logy(n; + 10) — logy(3/2)].

The codeg’; above constitute an example of a family of codes whose treewidth is bougded b
constant. Issues related to such code families are discussed next.

6.4. Codesof Bounded Complexity. Many NP-hard combinatorial problems on graphs are known
to be solvable in polynomial (often, linear) time when restricted to graphs whded treewidth
[3].,[5]. In this subsection, we will see that the same general principlkesip problems pertaining

to codes as well.

LetF, = GF(q) be afixed finite field. Given an integer> 0, denote byTW(t) (resp.BW(t))
the family of all codes ovef, of treewidth (resp. branchwidth) at mastThus, a family¢ of codes
overF, is said to have bounded treewidth (resp. branchwidti) @ TW(¢) (resp.¢ C BW(t))
for some integet. Note that by Proposition 6. BW(|t/2]) C TW(t) C BW(¢), and so, a code
family € has bounded treewidth if and only if it has bounded branchwidth.

A fundamental result of coding theory [4] states that the problem of Mtodimg is NP-hard

for an arbitrary family of codes. However, we will now show that this peabbecomes solvable
in linear time for any code family of bounded treewidth. So, consider a caaédyf ¢ C TW(t),
wheret is afixedinteger, and pick an arbitray € €. Letn denote the length af. By definition,
C has a minimal realizatioM (C; T, w) with constraint complexity at most Moreover, by (24),
(T, w) can be chosen to be @(C), i.e., it may be chosen so thdtis a cubic tree, and maps the
index set ofC bijectively onto the leaves df. In particular, the number of leaves bfequals the
cardinality,n, of the index set of.

Now, recall that ML decoding of may be implemented as a sum-product algorithm on any
tree realization o€, and in particular, ooM(C; T, w). The computational complexity of the sum-
product algorithm on\(C; T', w) is determined by the computations that take place at the internal
nodes off". By an estimate of Forney [7, Theorem 5.2], the number of computatione attérnal
nodev € V(T) is of the order of5, (5, — 2)q4™(), whered, is the degree of in T. Since
T is cubic, §, = 3, and since the constraint complexity &8ft(C; T, w) is at mostt, we have
dim(C}) < t. Hence, the number of computations performed by the sum-product afgattany
internal node ofl" is bounded byaq?, which is a constant. NowZ is a cubic tree om leaves, so it
has at most. — 2 internal nodes. It follows that the computational complexity of the sum-mtodu
algorithm onM (C; T, w) is O(n), the constant in th&-notation being proportional t8¢’. Thus,
there is a linear-time implementation of ML decoding for @hg €.

A question that naturally arises in this context is that of how hard it is to expldétgrmine the
minimal tree realization required for linear-time implementation of ML decoding. Matethis is
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not exactly a decoding complexity issue, since the determination of a suitdfle T, w) may be
done “off-line” for eachC € €.

An explicit determination ofM (C; T', w) involves finding a tree decompositi¢it’,w) € Q(C)
such that:(C; T,w) < t, and the specification of the state spaces and the local constraint dodes o
M(C;T,w). Given a(T,w) € Q(C) satisfyingx(C; T,w) < t, the state spaces and local constraint
codes ofM(C; T',w) may be determined by thd N_.REALZN procedure of Section 5. An estimate
of the computational complexity of this procedure was given in that sectidarnms of the length
and dimension of, the number of edges i, and the quantity.,.x defined in (21). Comparing
(21) with (25), we see that,,x is simplyo(C; T,w), which by Proposition 6.1, is bounded from
above byt. The number of edges @f is |V (T')| — 1, andV (T') consists ofn leaves and at most
n — 2 internal nodesyn being the length of. Therefore, by the estimate of the computational
complexity ofM N_-REALZN given in Section 5, for afn, k] codeC € €, and a(T,w) € Q(C)
such that(C; T, w) < t, the minimal realizatioo\ (C; T, w) may be constructed i@ (k?n?) time.
Note thatt appears in the exponent of the constant implicit indhaotation.

This leaves us with the problem of finding, for a given cdde TW(¢), a tree decomposition
(T,w) € Q(C) such that:(C; T,w) < t. Unfortunately, there appears to be no efficient algorithm
known for solving this problem. However, reasonably good algorithmsigbfer solving a closely
related problem: given a code € BW(¢), find a tree decompositiofil’,w) € Q(C) such that
o(C;T,w) < t. Several polynomial-time algorithms for solving this problem are given in, fthé]
most efficient of these being an algorithm that run®im?) time®, n being the length of. Now,
by Proposition 6.1, ang € TW(¢) is also inBW(t), and furthermorex(C; T, w) < 20(C;T,w).
Therefore, the algorithms of [14] find, for a given calle TW(t), a tree decompositiofl’, w) €
Q(C) suchthak(C; T,w) < 2t. Thisis sufficient for our purposes, as the computational complexity
of the sum-product algorithm on the resulting (C; T',w) would still be O(n), except that the
constant in theé-notation would now be proportional 8.

While code families of bounded treewidth have the desirable property afdnimear decoding
complexity, they tend to have poor error-correcting properties. Welgive an argument to support
this statement. Recall from coding theory that a code familycalledasymptotically goodf there
exists a sequence Ok, k;, d;] codesC; € €, with lim; n; = oo, such thaflim inf; k; /n; and
lim inf; d; /n; are both strictly positive. The code family, i > 1, from the proof of Corollary 6.4
has bounded treewidth, but is not asymptotically gobdn; — 1/4, butd;/n; — 0, asi — oo.
More generally, it has recently been shown that for any 0, the code familyTW(¢) is not
asymptotically good [20].

We wrap up our discussion on complexity measures for codes by elalmpostia comment we
made at the beginning of this subsection, in which we implied that hard codeagettic problems
often become polynomial-time solvable when restricted to codes of boundegleadty. We saw
earlier several examples of algorithms that, given a ¢bdeTW(¢), solve some problem in time
polynomial in the length of. In each of these cases, the computational complexity of the algorithm
displayed an exponential dependence on the paramet8ut sincet was a fixed constant, this
exponential dependence could be absorbed into the constant hiddem ‘inigkO” estimate of
the complexity. Thus, fixing the parameterllowed a potentially intractable coding-theoretic
problem to become tractable. Problems that may be hard in general, but ddome solvable
in polynomial time when one of the parameters of the problem is fixed, are daaetiparameter
tractable We noted previously that the problems of computing the treewidth and lwéatbhof
a code are NP-hard. It should come as no surprise that these problemdact fixed-parameter
tractable. Hligny [12] gives anO(n?) algorithm that, for a fixed integet determines whether or
not a given length: code is inBW(¢). From this, one can also prove the existence oDgn?)
algorithm for deciding membership of a given lengtlzode inTW(¢) [13].

8As usual, the constant hidden in tBenotation depends exponentially én
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7. CONCLUDING REMARKS

As we have pointed out in this paper, the problem of computing the treewfdthof a codeC is
NP-hard. This means that there can be (modulo the unlikely scenarif taalv P) no efficient —
meaning polynomial-time — algorithm for computing the treewidth of an arbitrarg chidwever,
it may still be possible to determine exactly, or give efficient algorithms for adimg, the treewidth
of standard algebraic codes such as Hamming codes, Reed-Muller Gmlag codes etc. To the
best of our knowledge, there has been no prior work done on thisctubbjefact, except for the
pioneering work of Forney [7],[8], no serious attempt seems to have ineele on the problem of
finding general constructions of tree realizations for such codemdnagnstraint complexity equal
to, or close to, the treewidth of the code. This, perhaps, constitutes thempmstant theoretical
problem in the context of tree realizations of linear codes. Note that exptingtructions of such
low-complexity tree realizations would be useful to a code designer whoewigh employ the
sum-product algorithm for decoding algebraic codes.

However, an open problem of far greater significance is the develdphargeneral theory of
minimal realizations of codes on graphs with cycles. At present, such gythely exists for the
case of realizations of codes on graphs consisting of a single cycléail-biting trellis realizations
[22]. This simplest case of graphs with cycles is already more difficult @ysfuan the cycle-free
case — for example, there can be several non-equivalent definitionsionality in the context of
tail-biting trellis realizations. The challenge posed by graphs with more comptda structures
can only be greater.

APPENDIXA. PROOFS OFLEMMAS 2.1 AND 2.2

Proof of Lemma 2.1 Consider an arbitrary € E. An arbitrary global configuratiob may be
written in the form(b| ; .y, bl g(r,, blc; bl g7, ) PI7())- Now, suppose thai is such thab|, = 0,
i.e, b= (bl blrr 0,b|E(Te), b|7(e))- Observe that the global configurations

b" = (bl () blg(r,);0,0,0) and b”=(0,0,0,b| ), blj))

also satisfy all local constraints (sin@ec 3|, for eachv € V), and hence are if8. There-
fore, (b[,(),0) = b’|; € C, and so by definition of ), we haveb|,., € Cj). Similarly,
(0,bl3.,)) = b"|; € C, sothab|5, € Cy.,. Henceb|; = (b, bl7)) € Cie) ®C5) U

Proof of Lemma 2.2For any tree model (essential or not), we have, by definitip, C C, for
all v € V. So we need only show the reverse inclusion in the case When (T, w, (S, e €
E), (Cy, v € V)) is an essential tree model.

Pick an arbitraryp € V. Letej,es,...,es be the edges of incident withV. Fori =
1,2,...,0, letT; denote the component GT— e; that does not include. SetF;, = E(T;), and
J = w Y (V(T;)). We will write an arbitrary configuratiob € B as

(Bl1(s)s (BleysBlay bl (Bl bl bl ) -

Consider any(co, i, . ..,c5) € Cy, Wherecy € F¥ '), ande; € S, fori = 1,...,8. As
the tree model” is essential, we hav§., = B|,, for all <. In particular, cZ € B|, , so that there

existsb( € B such thab(®|_ = c;. Asb@ is in %, its “sub- conflguratlon(cz,b( Ne,9))
satisfies the local constraints Bfat all vertices iV (7;). Hence,

b = (co. (e1,bD |5, b1, (e, DDl B )

satisfies the local constraints Dfat all vertices inUf:1 V(T;). Now, v is the only vertex ofl’
that is not in(JO_, V(T;). But, by constructionb|, = (co,c1,...,c5) € C,, and so,b also



ON MINIMAL TREE REALIZATIONS OF LINEAR CODES 25

FIGURE 10. A depiction of the two subtreds andT: connected by the edge

satisfies the local EonstraintatThus,B satisfies all local constraints df so thatb € 8. Hence,
(co,c1,...,¢c5) = b|, isinB|, , which proves the lemma. O

APPENDIXB. PROOFS OFLEMMAS 3.1 AND 3.3

Proof of Lemma 3.1For simplicity of notation, lef” denote the edge set of the subtiieeand let
I denote that of the subtré&. Note thatF’ U F' = E(T') — é. Throughout this proof, we will write
an arbitrary global configuratidn, belonging tdB or B(T'), in the form(b| ;, b| ., b|;, b|#, b|7).

Consider anyb = (b|;, b, b|;, b|z bl7) € B(I'). Letl andr be the two vertices incident
with the edges in T. We assume that € V(T;) andr € V(T,), as depicted in Figure 10. We
write the local configuratioﬁ\e as(E]E(Z)fé,E\w_l(z),E\é)i,andB]T as(E]é,B\w_l(r),E]E(r)fé).ﬁ

Suppose first thab|, = 0; note that the zero element &t (= S; /W) is W. By definition ofT’,
b|, € B|, = ®(B)|,. Hence, there existd|p ) _;, bl,-1(,), W) € B|,, for somew € W. Now,
(bl;,b|) (being a “sub-configuration” ob) satisfies the local constraints Bfat all vertices in
V(T:)—{¢}. Butthese local constraints are of the foBh, which, forv € V(T;)—{¢}, is identical
to B,.. Therefore, the sub-configuratigb| ;, b|,.) satisfies the local constraints bfat all vertices
in V(T;) — {¢}. It follows that(b|,, b| -, w) satisfies the local constraints bfat all vertices in
V(T%), including?. By a similar argument, there existswé € W such tha{w’, b|, b|5) satisfies
the local constraints df at all vertices inV/ (T ).

Now, by definition of 17/, there existb andb’ in B, such thatb = (b|;,b|,, w,b|z,bl5),
b’ = (b'|;, bz, W', b'| b5), and(b| ;,b|7), (b’|;,b’|7) € C; @ C5. Note, in particular, that
the sub-configuratiofw, b|#, b|7) of b satisfies the local constraintsbfat all vertices inV/ (T;).
Therefore, the global configuratian = (b|;, b|, w, b|#, b|5) satisfies the local constraints of
I" at all vertices inT’, and hence is in the full behavidB, of I". A similar argument shows that
g = (b'|;,b'|p, W', b|# bl5) is also inB.

As 9B is a vector space, it must also contain

and

b’ — g/ = (07 0,0, b/‘f - B|f7 b,|7 - B‘j)
Sincel is a tree realization af, we haveB|, = C. In particular,(b| ; — b|;,0) = (b — g)|; € C,
and similarly,(0,b’|5 — bl5) = (b’ —g')|; € C. Henceb|; — b|; € C; andb’|57 — b|; € C5.
However,b andb’ were chosen so thai| ; € C; andb’|5 € C5. Thus, we also havb|; € C; and
bl € C5. This finally yieldsb|, = (b|,, b|5) € C; @ C7, thus proving one direction of part (b) of
the lemma.

We will next show that ifb|, # 0, thenb; € C butb; ¢ C; @ C5. This will prove both part (a)
and the reverse direction of part (b).
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FIGURE 11. Template for tree realizations of tf&e 4] Reed-Muller code.

So, suppose theﬁ\é =58 # 0. Thus,s is some coset Off in Sz, but is notlV itself. Pick some
s € 5. AsS; = B|,, there exists somb < B such thab|, = s. Observe thab|; € B|; = C, but
sinces €5 # W, b|; ¢ C; © Cy.

Defineb = ®(b), so thatb ¢ B. Furthermore]g\é =5, andf)|1 (= bl;) isin C but not in
C; @ C5. We have already noted (prior to the statement of Lemma 3.1hat3(I"). Therefore,
b € B(T), and sinceB(T') is a vector spacd — b € B(T).

However,(b — f))\é =5—5 = 0, and as we showed above, this implies {fiat- B)|I € C (7.

Sinceb|, is in C but notinC;; & C, we find thab|, € C, butb|; ¢ C; & C5.
The proof of the lemma is now complete. O

Proof of Lemma 3.3As T is a tree realization af, Lemma 2.1 shows that for aiy € B(T"), we
haveb|,, = 0 only if b|; € Cj) @ Cj(e,). Thus, we need only prove the converse.

Suppose thab € %B(T') is such that(b| ;... bl7.) € Cje) ® C (., butbl, # 0. Now,
b|, € Se = B|, = B, the last equality being a consequence of the fact¢hgté. Therefore,
there exists & € B such thatb|,, = b|,. Note that, by the hypothesis of the lemnkg; ¢
Caer) © Cery- N N

Setb = ®(b), so thatb € B C B(I"). Observe thab|, = b|,, and since’ # ¢, we also have
b, = bl,. Thus,b|,, = b, andb|; ¢ Cj() ® C5.y. But now, we havés — b € B(T), with
(b—b)|, = 0,and(b—b)|,, ¢ Cy) ® Cy)- This contradiction of Lemma 2.1 proves that
there exists nd € B(I') such that(b| ;.y, bl5.)) € Cj(e) ® C5(,), butb|,, # 0. O

APPENDIXC. EXAMPLE OF STATE-MERGING PROCEDURE

In this appendix. we illustrate the state-merging process described in S8dbpmising it to
derive a minimal tree realization of the bind®y 4] Reed-Muller cod€ generated by

11001100
01 100110
CRM=10 01100 11 (31)
001 1 1100
The index set of the code is assumed to/be- {1,2,...,8}, where index: represents theth

coordinate of the code. The template for our tree realizations — consistinyesdf decomposition

of I, symbol variablesX; (i € I), state variables, (e € {1,2,3,4,5}), and local constraint
codesC, (v € {1,2,3,4,5,6}) — is depicted in Figure 11. We will describe our tree realizations
by specifying the state spacés and the local constraint codés,. All vector spaces and codes
defined are over the binary fielll;. This appendix is simply meant to be an aid to helping the
reader understand the state-merging process, so the details will be kapaite minimum.
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We start with a trivial extension (cf. Example 2.1) of the depicted tree deosttign. This yields
a tree realizatio'yj, of the Reed-Muller codé, specified as follows. For the state spaces, we have
S1 =8 =8 =8 = F3, andS; = F3. The local constraint€’;, Co, C5 andCg are [4, 2]
codes with basis vectoi$10 and0101. The first two coordinates of the$g 2] codes correspond
to the appropriate symbol variable p&X;, X;.1) and the last two coordinates correspond to the
appropriate state variablgj. The codeCs is the[8, 4] Reed-Muller code generated by the matrix
Gry in (31), with the symbol variableS;, S; and S5 corresponding to the first two, next two,
and last four coordinates, respectively,@f. Finally, the code’} is taken to be thés, 4] code
generated by

S O =
O = O
_ o O
o O O
S O =
O = O
o= OO
_ o OO

000100

with the symbol variable$’s, S, and S5 corresponding to the first four, next two, and last two
coordinates, respectively, 6.
The full behaviorB of I'yy, is generated by the following four global configuration vectors:

X Xo X3 X4 X5 X X7 Xg S1 S22 S3 0S4 Ss

1 1 0 0 1 10 0 11 00 1100 11 00

0 1 10 o0 1 1 0 01 10 0110 01 10 (32)
0 0 1 10 0 1 1 00 11 0011 00 11

0 0 1 1 1 10 0 00 11 1100 11 00

Itis easy to see that this realization is not essential — for example, if we talkdee the central edge
of the tree (associated with state variablg, thens|, is the 3-dimensional subspace®f = I}
generated by 100, 0110 and0011.

The essentialization dfyj, is the tree realizatioh, specified as follows. The state space§ ef
are the same as thoseligy,, except thatS; is now the 3-dimensional subspacefjfgenerated by
1100, 0110 and0011. The local constraints df, are the same as thoselig;,, except forC; which
is now the[8, 3] code generated by the matrix

1100110
0110011
0011001

The full behaviors of T’y is exactly the same as thatBf;,, which is shown in (32).

We will apply the state-merging process at the central edge of the tree ireFigu We will
now denote this edge by, in keeping with the description in Section 3. Note tat= S5 in
our notation above. Our first task is to determine the subspécef Sz, as defined in (7). Itis
easily checked that; @ C5 is the subcode of generated byt1110000 and00001111, and as a
consequence, we obtal@ = {0000, 1111}. We identify the 2-dimensional vector spaSg/W
with F3 as follows: the coset011 + W is identified with01, and the coset110 + W is identified
with 10. With this identification, the mapping defined in (8), when applied 8, yields the vector
spaceB = ®(B) generated by the following four global configuration vectors:

X1 Xo X3 X4 X5 X X7 Xg S1 S2 S3 St Ss

tr 1 o0 o0 1 1 0 0 11 00 01 11 00
o 1 1 o0 o0 1 1 0 01 10 10 01 10
0o 0 1 1 0 0 1 1 00 11 01 00 11
0o 0 1 11 1 0 0 00 11 01 11 00

From®, we derive the tree realizatidnwith state spaceS. = 9|, for each edge, and local
constraints”,, = B|, for each vertex. It is readily verified thatS, = S, = F3 fore = 1, 2,4, 5,
andS3 = F% as well. The local constraintS, are the samét, 2] codes ag’, for v = 1,2,5,6;

0
0
1
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however, the codes, at the two remaining vertices ai@ 3] codes. The basis vectors for the codes
C5 andC|, are given below:

S1 Sy S3 S3 Sy Ss
— 11 00 01 _ 01 11 00
U35 01 10 10 Cat 99 01 10
00 11 01 01 00 11

One can now check that further state merging does not change the tiealizawhich means
thatI" is a minimal tree realization of the Reed-Muller c@tldn fact, this is the realization depicted
in [7, Figure 31].

APPENDIXD. PROOF OFFORWARD DIRECTION OF THEOREM4.3

Proof of (a) = (b) in Theorem 4.3LetC = C; &, C» for codeC; andC, defined on the index sets
I, andI,, respectively. By definition] = I;Al,. SetJ = I} — Iy andJ = I — I, so that(J, J)
forms a partition off. In what follows, words defined on the index gewill be written in the form
x = (x| 7, %[, ~7,); words defined on the index sktwill be written in the formx = (x|, ,, x[7);
words defined on the index sewill be written asx = (x| ;, x[7); and finally, words on the index
setl; U I will be written asx = (x| ;, x|}, 1, X[7)-

We begin by proving thadim(C| ;) = dim(C;). This is accomplished by a two-step argument:
we first show tha€| ; = C,|;, and then we show th&y | ; = C;.

If a € C|;, thenthere exists someec Cy,y € Co suchthatx x y)|; = a. However(x xy)|; =
x|; asJ lies outsidel; N I>. Hence,a = x|; € C1|;. Conversely, suppose thatc C|;. Then,
there existz € C?’) such thatx = (a,z) € C;. SinceCY’) = Cép), there existyy = (z,b) € Cs.
Now, x xy = (a,0,b), and hencga,b) € C. Thus,a € C|;, which completes the proof of the
fact thatC| ; = Cy| ;.

Now, to show that’; = C,|;, let us consider the projection map: C; — Ci|; defined by
7(x) = x|;. This map is a homomorphism, with kernel isomorphiocéé), which is {0} by
definition. Hencer is in fact an isomorphism, which proves tliat= C; | ;.

We have thus shown thatm(C| ;) = dim(Cy). A similar argument yields the fact thaim (C|5) =
dim(Csz). Hence,

dim(C|;) + dim(C|5) — dim(C) = dim(Cy) + dim(Cz) — dim(C; @, C2) =1,

by Corollary 4.2.

It remains to show thahin{|.J|, [.J|} > r. Note that sincelim(C| ;) + dim(C|7) — dim(C) = r,
anddim(C|7) < dim(C), we must havelim(C|;) > r. Therefore|J| > dim(C|;) > . By a
similar argument, we also hayé| > r. O

APPENDIXE. PROOF OFPROPOSITIONS.1

The proof of Proposition 5.1 requires the following lemma, which present®pepty of the
code<C; andC» obtained via the-sum decomposition procedure of Section 4.

Lemma E.1. LetC be a code defined on the index $etand let(.J,.J) be a partition ofI, with
dim(C| ;)+dim(C|7) —dim(C) = r. Suppose that; andC. are the codes, defined on the respective
index setd; andIs, that are obtained by the procedure described in the proof of The4ranThen,
foranyJ; C J, and anyJ, C J, we have

dim(Cal ) + dim(Cal;,_,,) — dim(C2) = dim(C|,,) +dim(C|,_,) — dim(C). (34)
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Proof. We use notation from the proof of the (&) (a) direction of Theorem 4.3. Thus, C; and
C, are generated by the matriogs(G; andG- given by (11), (12) and (13), respectively, which we
reproduce here for the sake of convenience.

(,, A O B
| O O Iy, CJ°

G = [Ik1 AX]v

‘X O B
% = o 5. c}

For any matrix}/, given a subsef of the column indices of\/, we will denote byM/|, the
restriction of M to the columns indexed h¥. Thus,

G|J:[Ik1 A:|> G1|J:[Ik1 A]v

G =

O O

= O B
Gy = Gl = [ Iy, C ] '

Our proof of the lemma uses only elementary linear algebra. We prove (88)@ionsider any
Ji € J. Itis clear thatG|; = [ Gg‘h ] and therefore, we havéim(C|; ) = rank(G|; ) =

rank(Gil;,) = dim(C1[;, ). Next, note that — J, = (J — J1) U J, from which we have
dim(C|,_, ) =rank ([ G|,_; Gl7]).
Now, observe that by performing column operations#s, we can bring it into the form
O B
W = .
[ Ipk, O ]

Hence,

rank ([Gl,_y, Gly)) = rank([Gl,_y, W)
= rank(ly_i,) +rank ([ Gil,_; B])
= k—ki+rank ([Gi];_;, B]).
At this point, we have
which upon re-arrangement yields
dim(C|;,) + dim(C|;_;,) — dim(C) = dim(C1|;,) + rank ([ Gi1|,_;,, B]) —dim(Cy).
Thus, (33) would be proved if we could establish tian(C:|;,_; ) = rank ([ Gily_y, B).
Now, I; — J; = (J — J;) U Ix, and hence,
dim(Cy|;,_ ;) =rank ([ Gil,_; X]).
Thus, we have to show thednk ([ G1|,_, B]) =rank ([ G1|,_; X ]).We will prove that
the matricesB and X have identical column-spaces. Clearly, the desired result then follows.
Recall that fori = 1,2, ..., k1, theith row of B can be uniquely expressed as a linear combina-
tion, >>"_, a; b, of its firstr rowsby, . .., b,.. Furthermore, théth row of X equalsy " _, a; ;d;
for the samey; ;'s, wheredy, ..., d, are the rows of the generator matrix,, of the codeA,.. In
particular, the first rows of X constitute the matrixD,.. Denote byB, the submatrix ofB com-
prised by its first rows.

At this point, we must use a fundamental property of the mdixix namely, that the columns
of D, form a maximal subset df; with the property that each pair of vectors from the subset is
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linearly independent ovéf,. This is due to the fact that, by definition, each pair of column® pf
is linearly independent ovét,, and furthermore, the number of distinct one-dimensional subspaces
of Iy, is precisely equal to the number,. = (¢" — 1)/(¢ — 1), of columns ofD,.. Therefore, any
(column) vector inF; is a scalar multiple of some column 6f,..

In particular, any column oB, is a scalar multiple of some column &f,.. But because of the
way X was constructed, this implies that any columnibfs a scalar multiple of some column of
X. Thus, the column-space &f is a subspace of the column-spaceXaf However, we also have
rank(B) = rank(X), and so, the column-spaces of the two matrices are in fact identical. This
proves thatank (| Gil;_;, B ]) =rank ([ Gilj_y; X ]), and (33) follows.

To show (34), consider anj, C J. Arguments similar to the ones above establish that

dim(C|,,) = dim(Ca[,,) and dim(C;_,) = ki +rank(uk,k1 C] \j_h). (35)

Now, considedim(Ca|;, ;) = rank(Ga|,,_;,). Noting thatl, — Jo = Ix U (J — J5), we see
that the matri>G2|1,2_J2 has the form

X O Bl
oI Clg|

with I’ = (Ik_kl)\j_h_K, for someK C J — J,. Since the columns aB are contained in the
column-space ok, we can perform column operations 6i|;, ;, to bring it into the form

;| X O O

=13 7 |

Hence,
rank(Ga|y,_;) = rank(W’') = rank(X) +rank([I' C|g])
_ (k1+k2—k)+rank([1k,k1 C \7_J2). (36)

Some trivial manipulations of (35) and (36) yield (34), which proves the lemma O

Proof of Proposition 5.1 Recall thatl™ = (T, w, (S, e € E(T)), (Cy, v € V(T))), whereS,
andC, are as defined in (19) and (20). To show théis the minimal realizatioo\ (C; T, w), it is
enough to show that for all € E(T'), dim(S,) equals the expression in ().,

dim(S,) = dim(C| ;(,) + dim(Cly,)) — dim(C). (37)

Note that this is true whea = ¢, sincedim(S;) = dim(A,) = r, and from (14), we have
r = dim(C| ;) + dim(C|7) — dim(C). We must therefore show that (37) holds foe E(T") —

{é} = E(T:) U E(T:). We will prove this fore € E(T;); the proof fore € E(T;) is similar.

So, consider any € E(T;). One of the two component§, andT., of T — e is contained in
T;. Without loss of generality, we may assume that ifisthat is a subtree df;, as depicted in
Figure 12. Hence/(e) = w—(V(T..)) C J(&). Now, by (19),S. = S{V, the latter being the state
space associated within M(C1; T;, w1 ). Therefore, by (5),

dim(S{") = dim(C1| ;) + dim(Calj, (o)) — dim(Cy).

But, by Lemma E.1, the above expression is equal to the expression onhtrbaitd side of (37).
Hence, (37) holds for any € E(T};), and the proposition follows. O
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FIGURE 12. T, is a subtree of ;.
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