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ABSTRACT. A tree decomposition of the coordinates of a code is a mapping from the coordinate
set to the set of vertices of a tree. A tree decomposition can be extended toa tree realization,i.e.,
a cycle-free realization of the code on the underlying tree, by specifyinga state space at each edge
of the tree, and a local constraint code at each vertex of the tree. The constraint complexity of a
tree realization is the maximum dimension of any of its local constraint codes. A measure of the
complexity of maximum-likelihood decoding for a code is its treewidth, which isthe least constraint
complexity of any of its tree realizations.

It is known that among all tree realizations of a linear code that extends a given tree decomposi-
tion, there exists a unique minimal realization that minimizes the state space dimension at each vertex
of the underlying tree. In this paper, we give two new constructions of these minimal realizations.
As a by-product of the first construction, a generalization of the state-merging procedure for trellis
realizations, we obtain the fact that the minimal tree realization also minimizes the local constraint
code dimension at each vertex of the underlying tree. The second construction relies on certain code
decomposition techniques that we develop. We further observe that the treewidth of a code is related
to a measure of graph complexity, also called treewidth. We exploit this connection to resolve a
conjecture of Forney’s regarding the gap between the minimum trellis constraint complexity and the
treewidth of a code. We present a family of codes for which this gap can be arbitrarily large.

1. INTRODUCTION

Graphical models of codes and the decoding algorithms associated with them are now a major
focus area of research in coding theory. Turbo codes, low-density parity-check (LDPC) codes, and
expander codes are all examples of codes defined, in one way or another, on underlying graphs.
A unified treatment of graphical models and the associated decoding algorithms began with the
work of Wiberg, Loeliger and Koetter [32],[33], and has since been abstracted and refined under
the framework of the generalized distributive law [1], factor graphs [21], and normal realizations
[7],[8]. The particular case of graphical models in which the underlying graphs are cycle-free has a
long and rich history of its own, starting with the study of trellis representationsof codes; seee.g.,
[31] and the references therein.

Briefly, a graphical model consists of a graph, an assignment of symbol variables to the vertices
of the graph, an assignment of state variables to the edges of the graph, and a specification of
local constraint codes at each vertex of the graph. The full behaviorof the model is the set of all
configurations of symbol and state variables that satisfy all the local constraints. Such a model is
called a realization of a codeC if the restriction of the full behavior to the set of symbol variables
is preciselyC. The realization is said to be cycle-free if the underlying graph in the model has no
cycles. A trellis representation of a code can be viewed as a cycle-free realization in which the
underlying graph is a simple path.

A linear codeC has a realization on a graphG that is not connected if and only ifC can be ex-
pressed as the direct sum of the codes that are individually realized on the connected components
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of G [7]. Thus, there is no loss of generality in just focusing, as we do, on thecase of realiza-
tions on connected graphs. In this paper, we will be concerned with tree realizations — cycle-free
realizations in which the underlying cycle-free graph is connected,i.e., is a tree.

It is by now well known that the sum-product algorithm on any tree realization provides an exact
implementation of maximum-likelihood (ML) decoding [1],[7],[21],[32]. A good initial estimate
of the computational complexity of such an implementation is given by the constraint complexity
of the realization, which is the maximum dimension of any of the local constraint codes in the
realization. Now, distinct tree realizations of the same code have, in general, distinct constraint
complexities. The treewidth of a code is defined to be the least constraint complexity of any of its
tree realizations. Thus, treewidth may be taken to be a measure of the ML decoding complexity of
a code.

Since trellis realizations are instances of tree realizations, the treewidth of a code can be no larger
than the minimum constraint complexity1 of any of its trellis realizations. In the abstract of his paper
[8], Forney claimed that “the constraint complexity of a general cycle-free graph realization can be
[strictly] less than that of any conventional trellis realization, but not by very much.” While he
substantiated the first part of his claim by means of an example, he left the “not by very much”
part as a conjecture [8, p. 1606, Conjecture 2]. But he also admitted thatnone of the arguments
he gave in support of his conjecture “is very persuasive,” and that itis equally plausible that [8,
Conjecture 3] there exists no upper bound on the gap between the treewidthof a code and the
minimum constraint complexity of any of its trellis realizations.

One of the main contributions of this paper is an example that affirms the validity ofForney’s
Conjecture 3. We present, in Section 6, a family of codes for which the difference between the
minimum trellis constraint complexity and the treewidth grows logarithmically with the length of
the code. Our construction of this example is based upon results from the graph theory and matroid
theory literatures that connect the notions of treewidth and trellis complexity ofa code to certain
complexity measures defined for graphs.

This paper makes two other contributions, both relating to minimal tree realizations. A mapping
of the set of coordinates of a codeC to the vertices of a tree is called a tree decomposition. A tree
decomposition may be viewed as an assignment of symbol variables to the vertices of the tree. It is
known that given a codeC, among all tree realizations ofC that extend a given tree decomposition,
there is one that minimizes the state space dimension at each edge of the underlying tree [7]. This
minimal tree realization, an explicit construction of which was also given in [7], is unique up to
isomorphism.

We give two new constructions of minimal tree realizations. The first construction involves a
generalization of the idea of state merging that can be used to construct minimaltrellis realizations
[31, Section 4]. We show that any tree realization of a code can be converted to a minimal realization
by a sequence of state merging transformations. The state space and constraint code dimensions do
not increase at any step of this process. From this, we obtain the fact that a minimal realization also
minimizes the constraint code dimension at each vertex of the underlying tree.

Our second construction of minimal tree realizations uses extensions of the code decomposition
techniques that were presented in [18]. The main advantage of this construction is its recursive
nature, which makes it suitable for mechanical implementation. Also, it is relatively straightforward
to estimate the computational complexity of this construction. We show that the complexity is
polynomial in the length and dimension of the code, as well as in the size of the underlying tree, but
is exponential in the state-complexity of the minimal realization, which is the maximum dimension
of any state space in the realization.

1In the context of trellis realizations, constraint complexity is usually referred to as “branch complexity” or “edge com-
plexity”. We make it a point to avoid this usage, so as not to cause confusion when we define the “branchwidth” of a
code later in our paper.
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The paper is organized as follows. In Section 2, we provide the necessary background on tree
realizations of linear codes. The construction of minimal realizations by meansof state merging
is presented in Section 3. Code decomposition techniques are developed in Section 4, and used
in Section 5 to derive a recursive construction of minimal tree realizations. Proofs of some of
the results from Sections 2–5 and an example relevant to Section 3 are deferred to appendices to
preserve the flow of the exposition. Treewidth and related complexity measures are defined in
Section 6, which also establishes connections between these code complexitymeasures and certain
complexity measures defined for graphs. These connections are used toderive the example of a
code family for which the gap between minimum trellis constraint complexity and treewidth is
arbitrarily large. We also touch upon the subject of codes of bounded complexity, observing that
many hard coding-theoretic problems become polynomial-time solvable when restricted to code
families whose treewidth is bounded. Section 7 contains a few concluding remarks.

2. BACKGROUND ON TREE REALIZATIONS

Our treatment of the topic of tree realizations in this section is based on the exposition of Forney
[7],[8]; see also [9].

We start by establishing some basic notation. We takeF to be an arbitrary finite field. Given a
finite index setI, we have the vector spaceFI = {x = (xi ∈ F, i ∈ I)}. Forx ∈ F

I andJ ⊆ I,
the notationx|J will denote theprojection(xi, i ∈ J). Also, forJ ⊆ I, we will find it convenient
to reserve the use ofJ to denote the set differenceI − J = {i ∈ I : i /∈ J}.

2.1. Codes. A linear codeoverF, defined on the index setI, is a subspaceC ⊆ F
I . We will only

consider linear codes in this paper, so the terms “code” and “linear code”will be used interchange-
ably. The dimension, overF, of C will be denoted bydim(C). An [n, k] code is a code of length
n and dimensionk. If, additionally, the code has minimum distanced, then the code is an[n, k, d]
code. The dual code ofC is denoted byC⊥, and is defined on the same index set asC.

Let J be a subset of the index setI. The projection of C onto J is the codeC|J = {c|J :
c ∈ C}, which is a subspace ofFJ . We will useCJ to denote thecross-sectionof C consisting of
all projectionsc|J of codewordsc ∈ C that satisfyc|J = 0. To be precise,CJ = {c|J : c ∈
C, c|J = 0}. Note thatCJ ⊆ C|J . Also, sinceCJ is isomorphic to the kernel of the projection map
π : C → C|J defined byπ(c) = c|J , we have thatdim(CJ) = dim(C) − dim(C|J). Furthermore,
projections and cross-sections are dual notions, in the sense that(C|J)⊥ = (C⊥)J , and similarly,
(CJ)⊥ = (C⊥)|J .

If C1 andC2 are codes overF defined on mutually disjoint index setsI1 andI2, respectively, then
theirdirect sumis the codeC = C1 ⊕C2 defined on the index setI1 ∪ I2, such thatCI1 = C|I1 = C1

andCI2 = C|I2 = C2. This definition naturally extends to multiple codes (or subspaces)Cα, where
α is a code identifier that takes values in some setA. Again, it must be assumed that the codesCα

are defined on mutually disjoint index setsIα, α ∈ A. The direct sum in this situation is denoted
by

⊕
α∈A Cα.

2.2. Trees. A tree is a connected graph without cycles. Given a treeT , we will denote its vertex
and edge sets byV (T ) andE(T ), respectively, or simply byV andE if there is no ambiguity.
Vertices of degree one are calledleaves, and all other vertices are calledinternal nodes. Given a
v ∈ V , the set of edges incident withv will be denoted byE(v).

Removal of an arbitrary edgee fromT produces a disconnected graphT−e, which is the disjoint
union of two subtrees, which we will denote byTe andT e, of T . Note thatV (Te) andV (T e) form
a partition ofV (T ).

2.3. Tree Realizations. Let C be a code overF, defined on the index setI. To eachi ∈ I, we
associate asymbol variableXi, which is allowed to take values inF.
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FIGURE 1. A depiction of a tree decomposition(T, ω). Vertices of the treeT are
represented by squares. Edges are incident with two vertices, while half-edges are
incident with only one vertex. The vertexv0 has no half-edges incident with it,
indicating thatω−1(v0) = ∅, while the vertexv1 has two half-edges incident with
it, which means that|ω−1(v1)| = 2.

A tree decompositionof I is a pair(T, ω), whereT is a tree (i.e., a connected, cycle-free graph)
andω : I → V is a mapping fromI to the vertex set ofT . Pictorially, a tree decomposition(T, ω)
is depicted as a tree with an additional feature: at each vertexv such thatω−1(v) is non-empty, we
attach special “half-edges”, one for each index inω−1(v); see Figure 1.

At this point, we introduce some notation that we will consistently use in the rest of the paper.
Given a tree decomposition(T, ω) of an index setI, and an edgee ∈ E, we defineJ(e) =
ω−1(V (Te)) andJ(e) = ω−1(V (T e)). Thus,J(e) andJ(e) are the subsets ofI that get mapped
by ω to vertices inTe andT e, respectively. Clearly,J(e) andJ(e) form a partition ofI.

Recall thatE(v), v ∈ V , denotes the set of edges incident withv in T . Consider a tuple of the
form (T, ω, (Se, e ∈ E), (Cv, v ∈ V )), where

• (T, ω) is a tree decomposition ofI;
• for eache ∈ E, Se is a vector space overF called astate space;

• for eachv ∈ V , Cv is a subspace ofFω−1(v) ⊕
(⊕

e∈E(v) Se

)
, called alocal constraint

code, or simply, alocal constraint.

Such a tuple will be called atree model. The elements of any state spaceSe are calledstates. The
index sets of the state spacesSe, e ∈ E, are taken to be mutually disjoint, and are also taken to
be disjoint from the index setI corresponding to the symbol variables. Finally, to eache ∈ E, we
associate astate variableSe that takes values in the corresponding state spaceSe.

A global configurationof a tree model as above is an assignment of values to each of the symbol
and state variables. In other words, it is a vector of the form((xi ∈ F, i ∈ I), (se ∈ Se, e ∈ E)).
A global configuration is said to bevalid if it satisfies all the local constraints. Thus,((xi ∈ F, i ∈
I), (se ∈ Se, e ∈ E)) is a valid global configuration if for eachv ∈ V , ((xi, i ∈ ω−1(v)), (se, e ∈
E(v))) ∈ Cv. The set of all valid global configurations of a tree model is called thefull behavior
of the model.

Note that the full behavior is a subspaceB ⊆ F
I ⊕

(⊕
e∈E Se

)
. As usual,B|I denotes the

projection ofB onto the index setI. If B|I = C, then the model(T, ω, (Se, e ∈ E), (Cv, v ∈ V ))
is called a(linear) tree realizationof C. A tree realization(T, ω, (Se, e ∈ E), (Cv, v ∈ V )) of C is
said toextend(or be an extension of) the tree decomposition(T, ω) of the index set ofC. Any tree
decomposition of the index set of a code can always be extended to a tree realization of the code,
as explained in the following example.
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FIGURE 2. A trivial extension of a tree decomposition(T, ω) of the index set of a
codeC. At the vertexv, we haveCv = C. The state variables at the edgese ∈ E(v)
are copies of the symbol variables indexed byJ(e). Dashed ovals represent sub-
trees.

Example 2.1. Let C be a code defined on index setI, and let(T, ω) be a tree decomposition of
I. Pick an arbitraryv ∈ V , and defineCv = C. Now, consider the set,E(v), of edges incident
with v. Removal of anye ∈ E(v) produces the two subtreesTe andT e. We specifyTe to be the
subtree that doesnot contain the vertexv, and as usual,J(e) = ω−1(V (Te)). For eache ∈ E(v),
the state spaceSe is taken to be a copy ofFJ(e). The remaining state spaces and local constraints
are chosen so that, for eache ∈ E(v), the symbol variables indexed byJ(e) simply get relayed
(unchanged) to the state variableSe; see Figure 2. It should be clear that the resulting tree model
is a tree realization of the codeC. This will be called atrivial extension2 of (T, ω). We will present
constructions of non-trivial extensions of tree decompositions a little later.

FIGURE 3. A simple path on five vertices.

Example 2.2. A simple pathis a tree with exactly two leaves (the end-points of the path), in which
all internal nodes have degree two; see Figure 3. LetC be a code defined on index setI, and
let (T, ω) be a tree decomposition ofI, in whichT is a simple path, andω is a surjective map
ω : I → V (T ). Any tree realization ofC that extends(T, ω) is called atrellis realizationof C.
Whenω is a bijection, then any trellis realization extending(T, ω) is called aconventionaltrellis
realization. Whenω is not a bijection (but still a surjection), a trellis realization that extends(T, ω)
is called asectionalizedtrellis realization. In trellis terminology, the local constraint codes in a
trellis realization are calledbranch spaces. The theory of trellis realizations is well established; we
refer the reader to[31] for an excellent survey of this theory.

Let B be the full behavior of a tree model(T, ω, (Se, e ∈ E), (Cv, v ∈ V )). We will find it
useful to define certain projections ofB, other thanB|J for J ⊆ I. Letb = ((xi, i ∈ I), (se, e ∈
E)) be a global configuration inB. At any givenv ∈ V , thelocal configurationof b atv is defined
as

b|v = ((xi, i ∈ ω−1(v)), (se, e ∈ E(v))).

The set of all local configurations ofB at v is then defined asB|v = {b|v : b ∈ B}. Recall
that, by definition,b is a valid global configuration if, for eachv ∈ V , we haveb|v ∈ Cv. Thus,
B|v ⊆ Cv for eachv ∈ V . Similarly, for F ⊆ E, andb as above, we define the projections
b|F = (se, e ∈ F ) andB|F = {b|F : b ∈ B}. Clearly,B|F is a subspace of

⊕
e∈F Se. If F

2This generalizes the notion of a “trivial trellis” in [23],[24].
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consists of a single edgee, then we simply denote the corresponding projections byb|e andB|e.
The following elementary property of the projectionsb|e will be useful later; a proof for it is given
in Appendix A.

Lemma 2.1. Let B be the full behavior of some tree realization of a codeC, defined on the index
setI, that extends the tree decomposition(T, ω). Suppose thatb ∈ B and e ∈ E are such that
b|e = 0. Then,b|I ∈ CJ(e) ⊕ CJ(e).

A tree model (or realization)(T, ω, (Se, e ∈ E), (Cv, v ∈ V )), with full behaviorB, is said to
beessentialif B|e = Se for all e ∈ E. This definition actually implies something more.

Lemma 2.2. If the tree model(T, ω, (Se, e ∈ E), (Cv, v ∈ V )), with full behaviorB, is essential,
thenB|v = Cv for all v ∈ V .

A proof of the lemma can be found in Appendix A.

An arbitrary tree model can always be “essentialized”. To see this, letΓ = (T, ω, (Se, e ∈
E), (Cv, v ∈ V )) be a tree model with full behaviorB. Recall thatB|e is a subspace ofSe,
andB|v is a subspace ofCv. Define theessentializationof Γ to be the tree modeless(Γ) =
(T, ω, (B|e, e ∈ E), (B|v, v ∈ V )). It is readily verified thatess(Γ) has the same full behavior
asΓ.

2.4. Minimal Tree Realizations. Given a codeC and a tree decomposition(T, ω) of its index
setI, there exists an essential tree realization,(T, ω, (S∗

e , e ∈ E), (C∗
v , v ∈ V )), of C with the

following property [7],[8]:

if (T, ω, (Se, e ∈ E), (Cv, v ∈ V )) is a tree realization ofC that extends(T, ω),
then for alle ∈ E, dim(S∗

e ) ≤ dim(Se).

This minimal tree realization, which we henceforth denote byM(C; T, ω), is unique up to isomor-
phism. More precisely, if(T, ω, (S∗∗

e , e ∈ E), (C∗∗
v , v ∈ V )) is also a tree realization ofC with the

above property (except thatS∗
e is replaced byS∗∗

e ), thenS∗
e
∼= S∗∗

e for eache ∈ E, andC∗
v
∼= C∗∗

v

for eachv ∈ V . We will not distinguish between isomorphic tree realizations.
We outline a construction, due to Forney [8], ofM(C; T, ω). For any edgee ∈ E, the setsJ(e)

andJ(e) form a partition of the index setI. Set

S∗
e = C/(CJ(e) ⊕ CJ(e)), (1)

and let
s∗e : C → C/(CJ(e) ⊕ CJ(e)) (2)

be the canonical projection map. In other words, forc ∈ C, s∗e(c) is the cosetc + (CJ(e) ⊕ CJ(e)).
Now, letB be the vector space consisting of all global configurations(c, s∗(c)) corresponding to

codewordsc ∈ C, wheres∗(c) = (s∗e(c), e ∈ E). It is worth noting thatB|I = C, and furthermore,
B ∼= C, sincec = 0 implies thats∗(c) = 0.

We can now define for eachv ∈ V , the local constraint

C∗
v = B|v =

{(
c|ω−1(v) , (s∗e(c), e ∈ E(v))

)
: c ∈ C

}
. (3)

The minimal realizationM(C; T, ω) is the tuple(T, ω, (S∗
e , e ∈ E), (C∗

v , v ∈ V )). It may be
verified thatB is the full behavior ofM(C; T, ω), so thatM(C; T, ω) is indeed an essential tree
realization ofC.

From the definition ofS∗
e in (1), it is clear that for eache ∈ E,

dim(S∗
e ) = dim(C) − dim(CJ(e)) − dim(CJ(e)). (4)

It is useful to point out thatdim(S∗
e ) may also be expressed as

dim(S∗
e ) = dim(C|J(e)) + dim(C|J(e)) − dim(C), (5)
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FIGURE 4. Figure depicting the perspective about a vertexv in a tree decomposi-
tion. Dashed ovals represent subtrees.

a consequence of the fact that for anyJ ⊆ I, dim(CJ) = dim(C) − dim(C|J). Thus, by the
uniqueness of minimal tree realizations, ifΓ∗∗ = (T, ω, (S∗∗

e , e ∈ E), (C∗∗
v , v ∈ V )) is a tree

realization ofC with the property that for alle ∈ E, dim(S∗∗
e ) equals one of the expressions in (4)

or (5), thenΓ∗∗ is in factM(C; T, ω).
Forney [8] also derived an expression for the dimension of the local constraintsC∗

v . Consider
anyv ∈ V . For eache ∈ E(v), we specifyTe to be the component ofT − e that doesnot contain
v. As usual,J(e) = ω−1(V (Te)). Then [8, Theorem 1],

dim(C∗
v ) = dim(C) −

∑

e∈E(v)

dim(CJ(e)). (6)

Forney gave the following bound fordim(C∗
v ) [8, Theorem 5]: for anye ∈ E(v), dim(S∗

e ) ≤
dim(C∗

v ) ≤ len(C∗
v ) − dim(S∗

e ), where len(C∗
v ) denotes the length of the codeC∗

v . The upper
bound can be improved slightly.

Lemma 2.3. In the minimal tree realizationM(C; T, ω), we have, forv ∈ V ande ∈ E(v),

dim(S∗
e ) ≤ dim(C∗

v ) ≤ dim(C|ω−1(v)) +
∑

e′∈E(v)−{e}

dim(S∗
e′).

Proof. The upper bound may be proved as follows. Sincedim(CJ) = dim(C) − dim(C|J) for any
J ⊆ I, we may write (6) as

dim(C∗
v ) =

∑

e∈E(v)

dim(C|J(e)) − (|E(v)| − 1) dim(C).

Now, lete ∈ E(v) be fixed. We have

dim(C∗
v ) = dim(C|J(e)) +

∑

e′∈E(v)−{e}

(
dim(C|J(e′)) − dim(C)

)
.

However, as can be seen from Figure 4,J(e) is the disjoint union ofω−1(v) and the setsJ(e′),
e′ ∈ E(v) − {e}. Therefore,

dim(C|J(e)) ≤ dim(C|ω−1(v)) +
∑

e′∈E(v)−{e}

dim(C|J(e′)),

and hence,

dim(C∗
v ) ≤ dim(C|ω−1(v)) +

∑

e′∈E(v)−{e}

(
dim(C|J(e′)) + dim(C|J(e′)) − dim(C)

)
.

The lemma now follows from (5). ¤
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To justify our claim that the upper bound of the previous lemma is an improvementupon Forney’s
bounddim(C∗

v ) ≤ len(C∗
v ) − dim(S∗

e ) [8, Theorem 5], we note that

dim(C|ω−1(v)) +
∑

e′∈E(v)−{e}

dim(S∗
e′) = dim(C|ω−1(v)) +

∑

e′∈E(v)

dim(S∗
e′) − dim(S∗

e )

≤ |ω−1(v)| +
∑

e′∈E(v)

len(S∗
e′) − dim(S∗

e )

= len(C∗
v ) − dim(S∗

e ),

the last equality being a consequence of the fact thatC∗
v is, by definition, a subspace ofF

ω−1(v) ⊕(⊕
e′∈E(v) S

∗
e′

)
, Thus, for anyC, ω andv such thatdim(C|ω−1(v)) < |ω−1(v)|, we see that the

bound of Lemma 2.3 is strictly better than Forney’s bound.

As already mentioned, among all tree realizations ofC extending(T, ω), the minimal realization
M(C; T, ω) minimizes state space dimension at each edge of the treeT . It is natural to ask whether
M(C; T, ω) also minimizes local constraint code dimension at each vertex ofT . We will show in
the next section thatM(C; T, ω) does in fact have the following property:

if (T, ω, (Se, e ∈ E), (Cv, v ∈ V )) is a tree realization ofC that extends(T, ω),
then for allv ∈ V , dim(C∗

v ) ≤ dim(Cv).

We will deduce this fact from an alternative construction ofM(C; T, ω) that we present next.

3. A CONSTRUCTION OFM(C; T, ω) VIA STATE MERGING

The construction we describe in this section takes an arbitrary tree realization Γ that extends
the tree decomposition(T, ω) — for example, the trivial extension given in Example 2.1 — and
via a sequence of transformations, convertsΓ to M(C; T, ω). These transformations constitute a
natural generalization of the state-merging process in the context of minimal trellis realizations;
see, for example, [23] or [31, Section 4]. It would be useful to keep this special case in mind while
going through the details of the description that follows. For the reader’s convenience, we have
also included (in Appendix C) a specific example meant to serve as an aid to understanding the
description of state merging in the context of tree realizations.

Let Γ = (T, ω, (Se, e ∈ E), (Cv, v ∈ V )) be an essential3 tree realization of a codeC with
index setI, and letB be the full behavior ofΓ. As Γ is essential, we have thatB|e = Se for all
e ∈ E (by definition), andB|v = Cv for all v ∈ V (by Lemma 2.2).

Pick an arbitrary edgêe ∈ E, and for ease of notation, setJ = J(ê) andJ = J(ê). Let W be
the subspace ofSê defined by

W = {s ∈ Sê : ∃b ∈ B such thatb|I ∈ CJ ⊕ CJ and b|ê = s}. (7)

We will define a new tree modelΓ = (T, ω, (Se, e ∈ E), (Cv, v ∈ V )), such that states in the
same coset ofW in Sê are represented by a single “merged” state inS ê.

Let

Φ : F
I ⊕




⊕

e6=ê

Se


 ⊕ Sê −→ F

I ⊕




⊕

e6=ê

Se


 ⊕ Sê/W

be the mapping defined by

Φ((xi, i ∈ I), (se, e 6= ê), s) = ((xi, i ∈ I), (se, e 6= ê), s + W ). (8)

DefineB = Φ(B). It is clear from the definitions thatB|I = B|I = C, and thatdim(B) ≤
dim(B).

3This restriction can be dropped by consideringess(Γ) instead; see Theorem 3.4.



ON MINIMAL TREE REALIZATIONS OF LINEAR CODES 9

Consider now the tree modelΓ = (T, ω, (Se, e ∈ E), (Cv, v ∈ V )), whereSe = B|e for
eache ∈ E, andCv = B|v for eachv ∈ V . Note thatS ê = Sê/W , and fore 6= ê, we have
Se = B|e = B|e = Se. All states inSê belonging to the same coset ofW , say,s+ W , are mapped
to (or merged into) the single states + W in S ê. Further note that ifv is not one of the two vertices
incident withê, thenCv = B|v = B|v = Cv. At the two vertices that are incident witĥe, the local
constraints are appropriately modified to take into account the state-merging at edgeê. In any case,
we have

dim(Se) = dim(B|e) ≤ dim(B|e) = dim(Se), for eache ∈ E, (9)

and

dim(Cv) = dim(B|v) ≤ dim(B|v) = dim(Cv), for eachv ∈ V. (10)

We claim thatΓ is an essential tree realization ofC. To prove this claim, we must show that
B(Γ)|e = B|e for all e ∈ E, and thatB(Γ)|I = C, whereB(Γ) denotes the full behavior ofΓ.
Note that we donot claim thatB(Γ) = B; indeed, this may not be true.

It is easy to see that the inclusionC ⊆ B(Γ)|I holds. Indeed, sinceΓ = (T, ω, (B|e, e ∈

E), (B|v, v ∈ V )), it is evident that anyb ∈ B satisfies all the local constraints ofΓ, and hence is
in B(Γ). Therefore,B ⊆ B(Γ), and in particular,C = B|I ⊆ B(Γ)|I .

The reverse inclusion,B(Γ)|I ⊆ C, follows from part (a) of the lemma below.

Lemma 3.1. Letb be a global configuration inB(Γ). Then,

(a) b|I ∈ C; and
(b) b|ê = 0 if and only if b|I ∈ CJ ⊕ CJ .

We defer the proof of the lemma to Appendix B. Lemma 3.1(a) shows thatB(Γ)|I ⊆ C, thus
proving thatΓ is a tree realization ofC. It remains to show thatΓ is essential,i.e., thatB(Γ)|e =

B|e for all e ∈ E. This is shown by the following simple argument. We have already seen that
B ⊆ B(Γ), and hence,B|e ⊆ B(Γ)|e for all e ∈ E. On the other hand, at anye ∈ E, B(Γ)|e
is, by definition, a subspace ofSe = B|e. Hence,Γ is essential, thus proving our original claim,
which we record in the following proposition.

Proposition 3.2. The tree modelΓ is an essential tree realization ofC.

Let us call the process described above of obtainingΓ from Γ as thestate-merging process at
edgêe. We use the notationΓ = mergeê(Γ) to denote this transformation. Our goal now is to show
that, starting from an essential tree realization, if we apply the state-merging process at each edge
of the underlying tree, then we always end up with a minimal realization. A proof of this assertion
requires the following technical lemma, whose proof we also defer to Appendix B.

Lemma 3.3. Suppose that there existse′ ∈ E − {ê} such that the full behavior,B, of Γ satisfies
the following property: forb ∈ B, we haveb|e′ = 0 if and only if b|I ∈ CJ(e′) ⊕ CJ(e′). Then, for

anyb ∈ B(Γ), we also haveb|e′ = 0 if and only if b|I ∈ CJ(e′) ⊕ CJ(e′).

We are now in a position to prove the main result of this section, which providesa construction of
M(C; T, ω) via state merging. The reader is referred to Appendix C for an example thatillustrates
this construction.

Theorem 3.4. Let Γ be a tree realization ofC that extends the tree decomposition(T, ω). Let
e1, e2, . . . , e|E| be a listing of the edges ofT . SetΓ0 = ess(Γ), and for i = 1, 2, . . . , |E|, set
Γi = mergeei

(Γi−1). Then,Γ|E| is the minimal tree realizationM(C; T, ω).
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Proof. Let B denote the full behavior ofΓ (and hence, also ofess(Γ)), and fori = 1, 2, . . . , |E|,
let B(Γi) denote the full behavior ofΓi. By Proposition 3.2, eachΓi is an essential tree realization
of C.

By Lemma 3.1(b), for anyb ∈ B(Γi), we haveb|ei
= 0 if and only if b|I ∈ CJ(ei) ⊕ CJ(ei)

.
Furthermore, by Lemma 3.3, for anyj ≥ i, B(Γj) satisfies the following property:

for anyb ∈ B(Γj), we haveb|ei
= 0 if and only if b|I ∈ CJ(ei) ⊕ CJ(ei)

.

In particular,B∗ def
= B(Γ|E|) satisfies the following property fori = 1, 2, . . . , |E|:

for anyb ∈ B∗, we haveb|ei
= 0 if and only if b|I ∈ CJ(ei) ⊕ CJ(ei)

.

Let us call the above property (P). Property (P) has two important consequences. Firstly, it implies
that if b ∈ B∗ is such thatb|I = 0, thenb|e = 0 for all e ∈ E. This means that the projection
π : B∗ → C defined byπ(b) = b|I is in fact an isomorphism.

For the second consequence of (P), consider, for anye ∈ E, the homomorphismβe : C → B∗|e
defined byβe(c) = (π−1(c))|e. This map is well-defined sinceπ is an isomorphism. Property
(P) is equivalent to the assertion that, for anye ∈ E, the kernel ofβe is preciselyCJ(e) ⊕ CJ(e).
Therefore,B∗|e

∼= C/(CJ(e) ⊕ CJ(e)).
Thus, for eache ∈ E, state spaceB∗|e is isomorphic toS∗

e defined in (1), and the mapβe

is the canonical projection maps∗e given by (2). It easily follows that for eachv ∈ V , B∗|v is
isomorphic toC∗

v defined in (3). Hence,Γ|E| = (T, ω, (B∗|e, e ∈ E), (B∗|v, v ∈ V )) is the
minimal realizationM(C; T, ω). ¤

Observe that at each step of the procedure outlined in Theorem 3.4, the dimensions of the state
spaces and the local constraints do not increase. To make this precise, given tree modelsΓ′ =
(T, ω, (S ′

e, e ∈ E), (C ′
v, v ∈ V )) andΓ′′ = (T, ω, (S ′′

e , e ∈ E), (C ′′
v , v ∈ V )), let us say that

Γ′ 4 Γ′′ if dim(S ′
e) ≤ dim(S ′′

e ) for all e ∈ E, anddim(C ′
v) ≤ dim(C ′′

v ) for all v ∈ V . Then, forΓ
andΓi, i = 0, 1, 2 . . . , |E|, as in the statement of Theorem 3.4, we have by virtue of (9) and (10),

Γ|E| 4 Γ|E|−1 4 . . . 4 Γ1 4 Γ0 = ess(Γ) 4 Γ.

Thus, we have that ifΓ is any tree realization ofC that extends the tree decomposition(T, ω),
thenM(C; T, ω) 4 Γ. We record this strong property of minimal realizations as a corollary to
Theorem 3.4.

Corollary 3.5. Let(T, ω) be a tree decomposition of the index set of a codeC, and letM(C; T, ω) =
(T, ω, (S∗

e , e ∈ E), (C∗
v , v ∈ V )) be the corresponding minimal tree realization ofC. Then,

for any tree realization,(T, ω, (Se, e ∈ E), (Cv, v ∈ V )), of C that extends(T, ω), we have
dim(S∗

e ) ≤ dim(Se) for all e ∈ E, anddim(C∗
v ) ≤ dim(Cv) for all v ∈ V .

The procedure outlined in Theorem 3.4 does not translate to an efficient algorithm for the con-
struction ofM(C; T, ω). This is because the state-merging procedure that createsΓi from Γi−1

requires knowledge of the full behavior ofΓi−1, which may not be easily determined. So, as a
practical method for constructingM(C; T, ω), givenC and(T, ω), we propose a novel construction
that relies upon the code decomposition techniques of the next section.

4. CODE DECOMPOSITIONS

In previous work [18], it was demonstrated that techniques from the decomposition theory of
matroids [28],[29] could be put to good use in a coding-theoretic setting. The decomposition theory
in that work was presented in the context of binary linear codes. As we willnow show, the basic
elements of that theory can be easily extended to cover the case of nonbinary codes as well. The
object of this exercise is not just to create a more general code decomposition theory, but as we
will see in the next section, this decomposition theory ties in very nicely with the theory of tree
realizations.



ON MINIMAL TREE REALIZATIONS OF LINEAR CODES 11

Let C1 andC2 be linear codes over the finite field4
Fq = GF (q), defined on the index setsI1 and

I2, respectively. LetI1∆I2 denote the symmetric difference,(I1 ∪ I2) − (I1 ∩ I2), of the index
sets. We will construct a codeS(C1, C2) with I1∆I2 as its index set. Forx = (xi, i ∈ I1) ∈ C1 and
y = (yi, i ∈ I2) ∈ C2, let x ⋆ y = (ci, i ∈ I1 ∪ I2) be defined by

ci =





xi for i ∈ I1 − I2

yi for i ∈ I2 − I1

xi − yi for i ∈ I1 ∩ I2.

SettingC1 ⋆ C2 = {x ⋆ y : x ∈ C1, y ∈ C2}, we see thatC1 ⋆ C2 hasI1 ∪ I2 as its index set.
We takeS(C1, C2) to be the cross-section(C1 ⋆ C2)I1∆I2

. Note that whenI1 ∩ I2 = ∅, we have
S(C1, C2) = C1 ⋆ C2 = C1 ⊕ C2.

For i = 1, 2, let C(p)
i andC

(s)
i denote the projectionCi|I1∩I2

and the cross-section(Ci)I1∩I2
,

respectively. The codesC(p)
i andC(s)

i , for i = 1, 2, all haveI1∩I2 as their index set. The dimension

of S(C1, C2) can be expressed in terms of the codesCi, C
(p)
i andC(s)

i , i = 1, 2, as stated in the
following lemma.

Proposition 4.1. For codesC1, C2, we have

dim(S(C1, C2)) = dim(C1) + dim(C2) − dim(C
(s)
1 ∩ C

(s)
2 ) − dim(C

(p)
1 + C

(p)
2 ),

whereC(p)
1 + C

(p)
2 = {x + y : x ∈ C

(p)
1 ,y ∈ C

(p)
2 }.

Proof. For a codeC, and a subsetJ of its index set, the kernel of the projection mapπ : C → C|J
is isomorphic toCJ , and hence,dim(CJ) = dim(C) − dim(C|J). Thus, takingC = C1 ⋆ C2, and
J = I1∆I2, we find that

dim(S(C1, C2)) = dim(C1 ⋆ C2) − dim((C1 ⋆ C2)|I1∩I2
) = dim(C1 ⋆ C2) − dim(C

(p)
1 + C

(p)
2 ),

since(C1 ⋆ C2)|I1∩I2
= C

(p)
1 + C

(p)
2 . So, we must show thatdim(C1 ⋆ C2) = dim(C1) + dim(C2) −

dim(C
(s)
1 ∩ C

(s)
2 ).

Let C̃2 be a copy ofC2 defined on an index set that is disjoint fromI1. For eachy ∈ C2, denote
by ỹ its copy inC̃2. Consider the homomorphismφ : C1⊕C̃2 → C1 ⋆C2 defined byφ(x, ỹ) = x⋆y.
Note thatx⋆y = 0 iff x|I1−I2

= y|I2−I1
= 0 andx|I1∩I2

−y|I1∩I2
= 0. Equivalently,x⋆y = 0 iff

x|I1∩I2
∈ C

(s)
1 , y|I1∩I2

∈ C
(s)
2 , andx|I1∩I2

= y|I1∩I2
. It follows that the kernel ofφ is isomorphic

to
{z : z ∈ C

(s)
1 , z ∈ C

(s)
2 }.

which is simplyC(s)
1 ∩ C

(s)
2 .

Hence,dim(C1 ⋆C2) = dim(C1 ⊕C̃2)−dim(ker(φ)) = dim(C1)+dim(C2)−dim(C
(s)
1 ∩C

(s)
2 ),

as desired. ¤

We will restrict our attention to a particular instance of theS(C1, C2) construction, in which we

require that the codesC(p)
i andC(s)

i , i = 1, 2, take on a specific form. We need to introduce some
notation first. For each positive integerr, setmr = (qr − 1)/(q − 1), and fix anr × mr matrix,
which we denote byDr, over Fq, with the property that each pair of columns ofDr is linearly
independent overFq. Note thatDr is a parity-check matrix for an[mr, mr − r] Hamming code
overFq (cf. [30, § 3.3]). Let∆r denote the dual of this Hamming code,i.e., ∆r is the[mr, r] code
overFq generatedby Dr. The code∆r is sometimes referred to as asimplex code.

Given anr > 0, suppose that the codesC1 andC2, defined on the index setsI1 andI2, respec-
tively, are such that|I1 ∩ I2| = mr, and fori = 1, 2, we haveC(p)

i = ∆r andC(s)
i = {0}. In such

4Up to this point, we did not need to specify the number of elements in the finite field over which we were working, but
from now on, it will be useful for us to do so.
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a case,S(C1, C2) is called ther-sumof C1 andC2, and is denoted byC1 ⊕r C2. It is convenient to
extend this definition to the case ofr = 0 as well: when|I1∩I2| = 0, the0-sumC1⊕0 C2 is defined
to be the direct sumC1 ⊕ C2.

Example 4.1. Consider the case of codes defined over the binary fieldF2. Note that∆1 = {0, 1}.
Suppose that|I1 ∩ I2| = 1, and that the coordinates ofC1 are C2 are ordered so that the index
common toI1 and I2 corresponds to the last coordinate ofC1 and the first coordinate ofC2. The
conditions necessary for the 1-sumC1 ⊕1 C2 to be defined can then be stated as

(P1) 0 . . . 01 is not a codeword ofC1, and the last coordinate ofC1 is not identically zero;
(P2) 10 . . . 0 is not a codeword ofC2, and the first coordinate ofC2 is not identically zero.

The composite codeS(C1, C2) resulting fromC1, C2 that satisfy (P1), (P2) above was studied in
[18], where it was actually called a “2-sum”.

We would also like to point out that the specialization of ourr-sum operation to the caser = 2
was called “3-sum” in [18].5 To add to the confusion, there was in fact an operation called “3-
sum” defined in[18], but that, in a certain sense, dualizes the 2-sum operation we have given in
this paper.

For r > 0, note that ifC(p)
i andC(s)

i (i = 1, 2) are in the form needed to define anr-sum, then

C
(p)
1 + C

(p)
2 = ∆r, andC(s)

1 ∩ C
(s)
2 = {0}. Therefore, as a corollary to Proposition 4.1, we have the

following result (which also applies trivially to ther = 0 case).

Corollary 4.2. For r ≥ 0, if C1, C2 are such thatC1 ⊕r C2 can be defined, then

dim(C1 ⊕r C2) = dim(C1) + dim(C2) − r.

An elementary property of direct sums (i.e., 0-sums) is that a codeC is expressible as a direct
sum of smaller codes if and only if there exists a partition(J, J) of the index set ofC such that
dim(C|J) + dim(C|J) − dim(C) = 0. This property extends beautifully tor-sums in general.

Theorem 4.3. Let C be a linear code overFq, defined on the index setI, and letr be a positive
integer. Then, the following statements are equivalent.

(a) C = C1 ⊕r C2 for some codesC1, C2.
(b) There exists a partition(J, J) of I, with min{|J |, |J |} ≥ r, such that

dim(C|J) + dim(C|J) − dim(C) = r.

Proof. (a)⇒ (b): See Appendix D.

(b)⇒ (a): We give here a complete proof of this direction of the theorem, as it gives an explicit
construction of codesC1, C2 such thatC = C1 ⊕r C2, given a partition(J, J) as in (b). The proof
generalizes ideas from similar constructions presented in [18].

Let (J, J) be a partition ofI such thatdim(C|J) + dim(C|J) − dim(C) = r. Setn = |I| and
k = dim(C), and letG be ak×n generator matrix forC. Without loss of generality, we may assume
that the columns ofG are ordered so that the first|J | columns are indexed by the elements ofJ ,
and the rest by the elements ofJ . In the following exposition, we will often permute the columns of
G to bring the matrix into some desired form. Whenever this is the case, it will be tacitlyassumed
that column indices migrate with the columns.

Let G|J andG|J denote the restrictions ofG to the columns indexed by the elements ofJ andJ ,
respectively; thus,G =

[
G|J G|J

]
. Let rank(G|J) = k1 andrank(G|J) = k2; by our assumption

on (J, J), we have we havek1 + k2 = k + r.

5The 2-sum and3-sum operations defined in [18] imposed additional conditions on the lengths of the codes involved in
the sum, which we have dropped here.
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Bring G into reduced row-echelon form (rref) overFq. Permuting within the columns ofG|J
and within those ofG|J if necessary,rref(G) may be assumed to be of the form

G =

[
Ik1

A O B
O O Ik−k1

C

]
, (11)

whereIj , for j = k1, k2 − r, denotes thej × j identity matrix,A is ak1 × (|J | − k1) matrix,B is a
k1 × (|J | − k + k1) matrix,C is a(k − k1) × (|J | − k + k1) matrix, and theO’s denote all-zeros
matrices of appropriate sizes.

The fact that the submatrix

[
O B

Ik−k1
C

]
must have rank equal torank(G|J) = k2 implies

thatB must have rankk2 − (k − k1) = r. Hence,B hasr linearly independent rows, call them
b1, . . . ,br, which form a basis of the row-space ofB. Permuting the firstk1 rows ofG if necessary,
we may assume thatb1, . . . ,br constitute the firstr rows ofB. (Permuting these rows ofG will
also permute the rows of theIk1

matrix, but the effects of this can be negated by appropriately
permuting the firstk1 columns ofG.) Any row ofB is uniquely expressible as a linear combination
(over Fq) of b1, . . . ,br. In particular, fori = 1, 2, . . . , k1, the ith row of B can be uniquely
expressed as

∑r
j=1 αi,jbj for someαi,j ∈ Fq.

Let us denote byd1, . . . ,dr, the rows of ther × mr generator matrix,Dr, of the code∆r. Let
X be thek1 × mr matrix such that fori = 1, 2, . . . , k1, the ith row of X equals

∑r
j=1 αi,jdj ,

where theαi,j ’s are such that theith row of B is
∑r

j=1 αi,jbj . Thus, the row-space ofX is the
span ofd1, . . . ,dr, i.e., it is the code∆r. To the columns ofX, we assign indices from some set
IX disjoint fromI.

Now, define thek1 × (|J | + mr) matrix

G1 =
[

Ik1
A X

]
, (12)

allowing the submatrix[Ik1
A] to retain its column indices fromG. Also, define thek× (|J |+mr)

matrix

G2 =

[
X O B
O Ik−k1

C

]
, (13)

again allowing the submatrix

[
O B

Ik−k1
C

]
to retain its column indices fromG. Thus, the index

set of the columns ofG1 is I1
def
= J

·
∪ IX , while that of the columns ofG2 is I2

def
= IX

·
∪ J .

Finally, for i = 1, 2, let Ci denote the code overFq generated byGi. The following facts about
C1 andC2 may be verified:

(i) dim(Ci) = rank(Gi) = ki, i = 1, 2.
(ii) C1 ⊕r C2 can be defined, so that by Corollary 4.2,dim(C1 ⊕r C2) = k1 + k2 − r = k =

dim(C).
(iii) All rows of G are inC1 ⊕r C2. SinceG generates the same code asG (recall that column

indices get permuted along with columns), we see thatC1 ⊕r C2 contains all the codewords
of C.

We leave the details of the routine verification of the above facts to the reader. It only remains to
point out that facts (ii) and (iii) above show thatC1 ⊕r C2 = C, thus completing the proof of the
implication (b)⇒ (a). ¤

The procedure described in the above proof can be formalized into an algorithm that takes as
input ak × n generator matrixG (overFq) for C, and a partition(J, J) of the index set ofC, and
produces as output generator matrices of two codesC1 andC2 (and their associated index sets) such
thatC = C1 ⊕r C2, wherer = dim(C|J) + dim(C|J) − dim(C). The run-time complexity of this
procedure is determined by the following:
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. . . . . .

∆rC1 C2

J J

FIGURE 5. A tree realization of anr-sum decomposition.

• an rref computation to findG as in (11); this can be carried out inO(k2n) time, which
is the run-time complexity of bringing ak × n matrix to reduced row-echelon form via
elementary row operations;

• the computations required to identify a basis (b1, . . . ,br) of the row-space of the matrixB,
and correspondingly the coefficientsαi,j ; this could be done by computing the rref ofB,
which would also takeO(k2n) time;

• the computations needed to determine thek1×mr matrixX; each row of the matrix requires
O(rmr) computations, and there arek1 = O(|J |) rows, so the computation ofX takes
O(|J |rmr) = O(|J |rqr) time.

Therefore, the entire procedure can be carried out inO(k2n + |J |rqr) time. It is worth noting that
the run-time complexity of the procedure is polynomial inn, k andq, but exponential inr.

We take a moment here to clarify an important point in our definition of ther-sum operation in
this section. Recall that in order to defineC1 ⊕r C2, we required thatC(p)

1 = C
(p)
2 = ∆r. The code

∆r acted as a “glue” in ther-sum composition ofC from C1 andC2. An astute reader may have
noted that if, instead of∆r, anyfixedr-dimensional code overFq were to be used as the “glue”, the
results stated in this section (Corollary 4.2 and Theorem 4.3) would hold continue to hold true. (The
construction of the matrixX in the proof given for Theorem 4.3(a) would have to be appropriately
modified, but the rest of the proof would go through unchanged.) So, thequestion naturally arises
as to why we picked the code∆r for our definition. One reason for our choice was simply to make
a specificr-sum definition compatible with the definitions in [18] (cf. Example 4.1). A second, and
much more compelling, reason was the following: it is the choice of the code∆r as the “glue” that
allows for the new recursive construction of minimal tree realizations described next.

5. A CONSTRUCTION OFM(C; T, ω) VIA CODE DECOMPOSITIONS

The procedure given in the previous section for determining anr-rum decomposition of a given
code forms the basis of a new construction of minimal tree realizations that we present here. The
key observation behind this construction is that if a codeC has a partition(J, J) of its index set
such thatdim(C|J) + dim(C|J) − dim(C) = r, thenC has an essential tree realization of the form
depicted in Figure 5. The tree in the figure consists of a single edgee = {v1, v2}, the state space
Se is the code∆r, and the local constraint codes at the two vertices are the codesC1 andC2 such
thatC1 ⊕r C2 = C. In fact, this is the minimal realizationM(C; T, ω), for the treeT consisting
of the single edgee = {v1, v2}, and the index mapω such thatω−1(v1) = J andω−1(v2) = J .
This is simply becausedim(Se) = dim(∆r) = r, so by virtue of (5),Se has the same dimension
as the state spaceS∗

e in the minimal realizationM(C; T, ω). So, by the uniqueness of minimal tree
realizations, the tree realization depicted in Figure 5 isM(C; T, ω).

To summarize, ifC is a code defined on the index setI, and(T, ω) is a tree decomposition ofI
such thatT consists of the single edgee = {v1, v2}, then we may constructM(C; T, ω) as follows.
SetJ = ω−1(v1) andJ = ω−1(v2), and computer = dim(C|J) + dim(C|J)− dim(C). Assign an
index setI∆ that is disjoint fromI to the code∆r. Use the procedure in the proof of Theorem 4.3
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J(ê)

ê
Tê T ê

J(ê)
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. . . . . .

v1

J(ê)

Tê

. . .

v1

I∆

T ê

J(ê)

v2

. . .

I∆

FIGURE 6. Depiction of the manner in which the tree decompositions(Tê, ω1) and
(T ê, ω2) are obtained from(T, ω).

to determine codesC1 andC2, defined on the respective index setsI1 = J
·
∪ I∆ andI2 = J

·
∪ I∆,

such thatC = C1 ⊕r C2. For i = 1, 2, assignCi to be the local constraint code at vertexvi, and
assign∆r to be the state space at edgee. The resulting tree model(T, ω, ∆r, C1, C2) is the minimal
tree realizationM(C; T, ω).

Before describing how the construction may be extended to the case of trees with more than one
edge, we deal with the trivial case of trees without any edges. IfT is a tree consisting of a single
vertexv, and no edges, then given any codeC defined on some index setI, there is only one way of
realizingC on T . This is the realization(T, ω, Cv), whereω is the unique mappingω : I → {v},
andCv is the codeC itself. Of course, this is also the minimal realizationM(C; T, ω).

At this point, we know how to constructM(C; T, ω), for any codeC, and any tree decomposition
(T, ω) such thatT has at most one edge. From this, we can recursively constructM(C; T, ω) for
anyC and any(T, ω), as we now describe.

Suppose that we know how to constructM(C; T, ω) for anyC, and any(T, ω) such thatT has at
mostη− 1 edges, for some integerη ≥ 2. LetC be a code defined on the index setI, and let(T, ω)
be a tree decomposition such that|E(T )| = η. Pick anyê = {v1, v2} ∈ E(T ), and as usual, letTê

andT ê be the two components ofT − ê. We will assume thatv1 ∈ V (Tê) andv2 ∈ V (T ê). Let
J(ê) = ω−1(V (Tê)) andJ(ê) = ω−1(V (T ê)). Compute

r = dim(C|J(ê)) + dim(C|J(ê)) − dim(C), (14)

which determines the code∆r. Assign∆r an index setI∆ that is disjoint fromI. Use the procedure
in the proof of Theorem 4.3 to determine codesC1 andC2, defined on the respective index sets

I1 = J(ê)
·
∪ I∆ andI2 = J(ê)

·
∪ I∆, such thatC = C1 ⊕r C2.

Now, define the index mapsω1 : I1 → V (Tê) andω2 : I2 → V (T ê) as follows (see Figure 6):

ω1(i) =

{
ω(i), if i ∈ J(ê)

v1, if i ∈ I∆
(15)

ω2(i) =

{
ω(i), if i ∈ J(ê)

v2, if i ∈ I∆
(16)
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J(ê) J(ê)

. . . . . .

M(C1; Tê, ω1) M(C2; T ê, ω2)
Sê = ∆r

FIGURE 7. A depiction of the construction ofΓ∗ fromM(C1; Tê; ω1) andM(C2; T ê, ω2).

Thus,(Tê, ω1) and(T ê, ω2) are tree decompositions of the index sets ofC1 andC2, respectively. As
neitherE(Tê) nor E(T ê) contains the edgêe, we have|E(Tê)| ≤ η − 1 and |E(T ê)| ≤ η − 1.
Therefore, by our assumption, we know how to constructM(C1; Tê, ω1) andM(C2; T ê, ω2). Let

M(C1; Tê, ω1) =
(
Tê, ω1, (S(1)

e , e ∈ E(Tê)), (C(1)
v , v ∈ V (Tê))

)
, (17)

M(C2; T ê, ω2) =
(
T ê, ω2, (S(2)

e , e ∈ E(T ê)), (C(2)
v , v ∈ V (T ê))

)
. (18)

Finally, setΓ∗ = (T, ω, (Se, e ∈ E(T )), (Cv, v ∈ V (T ))), where

Se =





S
(1)
e , if e ∈ E(Tê)

∆r, if e = ê

S
(2)
e , if e ∈ E(T ê),

(19)

and

Cv =

{
C

(1)
v , if v ∈ V (Tê)

C
(2)
v , if v ∈ V (T ê).

(20)

Figure 7 contains a depiction ofΓ∗. It is easy to see thatΓ∗ is a tree realization ofC. Indeed,
M(C1; Tê, ω1) is a realization ofC1, andM(C2; T ê, ω2) is a realization ofC2, and hence (as should
be clear from Figure 7),Γ∗ is a realization ofC1 ⊕r C2 = C. It is not immediately obvious thatΓ∗ is
actuallyM(C; T, ω), but this is in fact true, as stated in the following proposition, a proof of which
is given in Appendix E. It should be pointed out that the proof is strongly reliant on the choice of
the code∆r as the “glue” in ther-sum decomposition ofC into C1 andC2.

Proposition 5.1. Γ∗ is the minimal tree realizationM(C; T, ω).

In summary, we have the following recursive procedure for constructing M(C; T, ω), given a
codeC and a tree decomposition(T, ω).

Procedure MIN REALZN(C, T, ω)

Input: A k × n generator matrix for a codeC, and a tree decomposition(T, ω) of
the index set ofC.

Output: A specification of the state spaces and the local constraints in the minimal
realizationM(C; T, ω).

Step M1. If T consists of a single vertex, then returnM(C; T, ω) = (T, ω, C).

Step M2. If T contains at least one edge, then choose anê ∈ E(T ). Let v1 be the
vertex ofTê incident withê, and letv2 be the vertex ofT ê incident withê.
(M2.1) Computer = dim(C|J(ê)) + dim(C|J(ê)) − dim(C).

(M2.2) Determine∆r, and assign it an index setI∆ disjoint fromJ(ê) ∪ J(ê).

(M2.3) Determine codesC1 andC2, with index setsI1 = J(ê)
·
∪ I∆ andI2 =
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J(ê)
·
∪ I∆, respectively, such thatC = C1 ⊕r C2.

(M2.4) Determine the index mapsω1 andω2 as in (15) and (16).

Step M3. DetermineM(C1; Tê, ω1) by callingMIN REALZN(C1, Tê, ω1); deter-
mineM(C2; T ê, ω2) by calling MIN REALZN(C2, T ê, ω2). We may assume that
M(C1; Tê, ω1) andM(C2; T ê, ω2) are in the form given in (17) and (18).

Step M4. ReturnM(C; T, ω) = (T, ω, (Se, e ∈ E(T )), (Cv, v ∈ V (T ))), where
Se andCv are as defined in (19) and (20).

A simplified version of the above procedure may be obtained by choosing, inStep M2, the edge
ê to be an edge incident with a leaf ofT . Then, one of the two components ofT − ê, say,T ê,
consists of a single vertex, so that the call toMIN REALZN(C2; T ê, ω2) may be avoided, as it would
simply return(T ê, ω2, C2). We will use this modification of the procedure to give an estimate of its
run-time complexity.

Let n denote the length ofC, let k = dim(C), and letE = E(T ). Also, define

rmax = max
e∈E

dim(C|J(e)) + dim(C|J(e)) − dim(C). (21)

Observe that, as a result of the modification suggested above, in the determination ofM(C; T, ω),
the procedureMIN REALZN gets called|E| times, once for each edgee ∈ E. The run-time com-
plexity of any particular run ofMIN REALZN is determined by the computations in Step M2. In
theith run, the procedure acts upon some codeC(i) of lengthni and dimensionki, and in Step M2,
it computes anri, a code∆ri

with index setI(i)
∆ , and a codeC(i)

1 . Via Lemma E.1, we have that

ri ≤ rmax. We boundki andni as follows. Note thatC(i)
1 is the codeC(i+1) that the(i + 1)th

run of the procedure takes as input. Thus, we haveki+1 ≤ ki, andni+1 ≤ ni + |I
(i)
∆ |. Since

k1 = k, n1 = n, and|I(i)
∆ | = (qri − 1)/(q − 1) ≤ qrmax , we have, fori = 1, 2, . . . , |E|, ki ≤ k

andni ≤ n + (i − 1)qrmax . Now, by the estimate given in Section 4 of the run-time complexity
of ther-sum decomposition procedure, we see that theith run of Step M2 ofMIN REALZN takes
O(k2

i ni +niriq
ri) time. Hence the overall run-time complexity ofMIN REALZN may be estimated

to be
∑|E|

i=1 O(k2
i ni + niriq

ri). This expression can be simplified by observing that

|E|∑

i=1

(k2
i ni + niriq

ri) ≤ (k2 + rmaxq
rmax)

|E|∑

i=1

ni

≤ (k2 + rmaxq
rmax)

|E|∑

i=1

[n + (i − 1)qrmax ]

= (k2 + rmaxq
rmax) [n|E| + (1/2)|E|(|E| − 1)qrmax ] .

It follows thatMIN REALZN runs inO((k2 + rmaxq
rmax)(n|E|+ |E|2rmaxq

rmax)) time. Note that
this is polynomial inn, k, q and|E|, but exponential inrmax.

6. COMPLEXITY MEASURES

6.1. Complexity Measures for Codes. As observed in [7], any graphical realization of a code
specifies an associated decoding algorithm, namely, the sum-product algorithm. The sum-product
algorithm specified by a tree realization,Γ = (T, ω, (Se, e ∈ E), (Cv, v ∈ V )), of a codeC
provides an exact implementation of ML decoding forC. A reasonable initial estimate of the com-
putational complexity of the sum-product algorithm onΓ is provided by theconstraint complexity
of Γ, which is defined asmaxv∈V dim(Cv). As implied by Corollary 3.5, given a tree decom-
position(T, ω) of the index set ofC, the minimal realizationM(C; T, ω) has the least constraint
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complexity among all tree realizations ofC that extend(T, ω). Let κ(C; T, ω) denote the constraint
complexity ofM(C; T, ω). Note that, by (6),

κ(C; T, ω) = max
v∈V


dim(C) −

∑

e∈E(v)

dim(CJ(e))


 . (22)

Thus,κ(C; T, ω) is a measure of the complexity of implementing ML decoding forC as a sum-
product algorithm onM(C; T, ω).

Let us now define thetreewidthof the codeC to be

κ(C) = min
(T,ω)

κ(C; T, ω), (23)

where the minimum is taken over all tree decompositions(T, ω) of the index set ofC. The treewidth
of a code is an indicator of how small the computational complexity of an ML decoding algorithm
for C can be. The notion of treewidth (i.e., minimal constraint complexity) of a code was first
introduced by Forney [8]. A related notion, called minimal tree complexity, wasdefined and studied
by Halford and Chugg [9]. Treewidth, as defined in (23), is an upper bound on the minimal tree
complexity measure of Halford and Chugg.

A tree is calledcubicif all its internal nodes have degree 3. Forney [8] showed that the minimum
in (23) is always achieved by a tree decomposition(T, ω) in which T is a cubic tree, andω is a
bijection6 between the index set ofC and the set of leaves ofT . LetQ(C) denote the set of all tree
decompositions(T, ω) in whichT is cubic andω maps the index set ofC bijectively onto the set of
leaves ofT . We may then re-write (23) as

κ(C) = min
(T,ω)∈Q(C)

κ(C; T, ω). (24)

An alternate measure of code complexity may be obtained from the notion ofstate complexityof
a tree realizationΓ, which is the largest dimension of a state space inΓ. Thus, by virtue of (4) and
(5), the state complexity of a minimal realizationM(C; T, ω) is given by

σ(C; T, ω) = max
e∈E

dim(C) − dim(CJ(e)) − dim(CJ(e))

= max
e∈E

dim(C|J(e)) + dim(C|J(e)) − dim(C). (25)

We then define, in analogy with (24),

σ(C) = min
(T,ω)∈Q(C)

σ(C; T, ω). (26)

Note that the minimum in the above definition is taken over tree decompositions inQ(C) only. It
must be emphasized thatσ(C), as defined in (26), neednot be the same as the leastσ(C; T, ω) over
all tree decompositions(T, ω) of the index set ofC.

A notion analogous toσ(C) is known as branchwidth in the matroid theory literature; seee.g.,
[15]. In keeping with that nomenclature, we will callσ(C) thebranchwidthof the codeC. Branch-
width and treewidth are very closely related, as shown by the following result, which can be ob-
tained in a straightforward manner from the bounds in Lemma 2.3.

Proposition 6.1 ([16], Theorem 4.2). Given a codeC, if (T, ω) ∈ Q(C), then

σ(C; T, ω) ≤ κ(C; T, ω) ≤ 2σ(C; T, ω).

Hence,σ(C) ≤ κ(C) ≤ 2σ(C).

6Forney [8] only explicitly states that the minimizing(T, ω) may be taken to be such thatT is a cubic tree andω is a
surjective map onto the leaves ofT . However, the symbol-splitting argument in Section V.F of his paper actually implies
thatω in the minimizing tree decomposition may be taken to be one-to-one as well.
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The notions of state and constraint complexity have been studied extensively in the context of
conventional trellis realizations of a code; seee.g., [31]. Recall from Example 2.2 that a conven-
tional trellis realization of a code is a tree realization that extends a tree decomposition (T, ω) in
which T is a simple path andω is a bijection between the index set ofC and the vertices ofT .
This special case of a tree decomposition is referred to as apath decomposition. Specifically, a path
decomposition of a codeC defined on the index setI is a pair(T, ω), whereT is a simple path on
|I| vertices, andω : I → V (T ) is a bijection. LetP(C) denote the set of all path decompositions
of C. We then define

κtrellis(C) = min
(T,ω)∈P(C)

κ(C; T, ω) (27)

and

σtrellis(C) = min
(T,ω)∈P(C)

σ(C; T, ω). (28)

It is well-known, and indeed readily follows from Lemma 2.3, thatσtrellis(C) ≤ κtrellis(C) ≤
σtrellis(C) + 1.

It is clear from (23) and (27) thatκ(C) ≤ κtrellis(C). Forney [8] asked the question of whether
κ(C) could be significantly smaller thanκtrellis(C). He conjectured that eitherκtrellis(C)− κ(C) ≤ 1
for all codesC, or κtrellis(C) − κ(C) is unbounded. We show here that it is in fact the latter that is
true. To do so, we need to introduce some new concepts.

6.2. Complexity Measures for Graphs. In their fundamental work on graph minors [27], Robert-
son and Seymour introduced two notions of complexity of graphs, namely, treewidth and pathwidth.
These notions have proved to be invaluable tools with many applications in graph theory and theo-
retical computer science. An overview of such applications can be found, for example, in [6]. We
will define the notions of treewidth and pathwidth of a graph in this subsection,and subsequently,
relate them to the complexity measuresκ(C) andκtrellis(C) defined above for codes.

Let G be a graph with vertex setV (G) and edge setE(G). The graph may contain self-loops and
parallel edges. Atree decompositionof G is a pair(T, β), whereT is a tree, andβ : V (T ) → 2V (G)

is a mapping that satisfies the following:

(T1)
⋃

x∈V (T ) β(x) = V (G);
(T2) for each pair of adjacent verticesu, v ∈ V (G), we have{u, v} ⊆ β(x) for somex ∈ V (T );

and
(T3) for each pair of verticesx, z ∈ V (T ), if y ∈ V (T ) is any vertex on the unique path between

x andz, thenβ(x) ∩ β(z) ⊆ β(y).

It may be helpful to point out that (T3) above is equivalent to the following:

(T3′) for eachv ∈ V (G), the subgraph ofT induced by{x ∈ V (T ) : v ∈ β(x)} is a (connected)
subtree ofT .

A reader familiar with the notion of “junction trees” (seee.g., [1]) will recognize a tree decomposi-
tion of G to be a junction tree.

Thewidth of a tree decomposition(T, β) as above is defined to bemaxx∈V (T ) |β(x)| − 1. The
treewidthof G, which we denote byκ(G), is the minimum among the widths of all its tree decom-
positions. Note that ifG has at least one edge, then, because of (T2), any tree decomposition of G
must have width at least one. Thus, for any graphG with |E(G)| ≥ 1, we haveκ(G) ≥ 1.

Example 6.1. For any treeT with at least two vertices, we haveκ(T ) = 1. This can be seen as
follows. Fix a vertexr ∈ V (T ). Define a mappingβ : V (T ) → 2V (T ) as follows:β(r) = {r}, and
for x 6= r, β(x) = {x, y}, where{x, y} is the first edge on the unique path fromx to r. It is easily
verified that(T, β) is a tree decomposition ofT . Since this tree decomposition has width one, it
follows thatκ(T ) = 1.
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Y1

Y2

Y3

FIGURE 8. The treesY1, Y2 andY3.

If (T, β) is a tree decomposition in whichT is a simple path, then(T, β) is called apath de-
composition. The minimum among the widths of all the path decompositions ofG is called the
pathwidthof G, which we denote byκpath(G). It is evident thatκ(G) ≤ κpath(G).

Analogous to the situation of Example 6.1, a simple path has pathwidth one. However, trees may
have arbitrarily large pathwidth. The following example is due to Robertson and Seymour [26].

Example 6.2. Let Y1 be the complete bipartite graphK1,3. For i ≥ 2, we inductively defineYi

by taking a copy ofYi−1, and to each leafv of this graph, adding two new vertices adjacent tov.
Figure 8 shows the treesY1, Y2 andY3. The pathwidth ofYi, i ≥ 1, is ⌈1

2(i + 1)⌉ [26].

Thus, for treesT , the differenceκpath(T ) − κ(T ) can be arbitrarily large. We will use this fact
to construct codesC for whichκtrellis(C) − κ(C) is arbitrarily large.

We remark that the problem of determining the treewidth or pathwidth of a graphis known to
be NP-hard [2],[6]. As we will see a little later, this implies that the problem of determining the
treewidth of a code, or its trellis counterpart, is also NP-hard.

6.3. Relating the Complexity Measures for Codes and Graphs. Let F be an arbitrary finite field.
To any given graphG, we will associate a codeC[G] overF as follows. LetD(G) be any directed
graph obtained by arbitrarily assigning orientations to the edges ofG, and letAD(G) be the vertex-
edge incidence matrix ofD(G). This is the|V (G)| × |E(G)| matrix whose rows and columns are
indexed by the vertices and directed edges, respectively, ofD(G), and whose(i, j)th entry,ai,j , is
determined as follows:

ai,j =





1 if vertex i is the tail of non-loop edgej

−1 if vertex i is the head of non-loop edgej

0 otherwise.

The codeC[G] is defined to be the linear code overF generated by the matrixAD(G). WhenF is the
binary field, the codeC[G] is thecut-set codeof G, i.e., the dual of the cycle code ofG [10].

The following fundamental result that relates the treewidths of the graphG and the codeC[G] is
due to Hliňeńy and Whittle7[16],[17].

Theorem 6.2 ([16], Theorem 3.2). If G is a graph with at least one edge, thenκ(G) = κ(C[G]).

Since determining the treewidth of a graph is NP-hard, it immediately follows fromthe above
theorem that the problem of determining the treewidth of a code (over any fixed finite field) is also
NP-hard. We remark that the problem of determining the branchwidth of a code is also NP-hard.
This follows from a result [11] that relates the branchwidth of the codeC[G] to the branchwidth of
the graphG, the latter being a notion we have not defined in this paper.

7The results in [16],[17] are stated in matroid-theoretic language. The vocabulary necessary to translate the language of
matroid theory into that of coding theory can be found, for example, in [19].
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FIGURE 9. Construction ofG′ andG from G.

Unfortunately, it is not true thatκpath(G) = κtrellis(C[G]). As an example, consider the codeC[T ]

over the binary field, for an arbitrary treeT . It is not hard to see thatC[T ] = {0, 1}|E(T )| which,
being the direct sum of multiple copies of{0, 1}, hasκtrellis(C[T ]) = 1. But as we have already
noted, trees can have arbitrarily large pathwidth.

We get around this problem by means of a suitable transformation of graphs. Given a graphG,
letG′ be a graph defined on the same vertex set asG, having the following properties (see Figure 9):

• G′ is loopless;
• a pair of distinct vertices is adjacent inG′ iff it is adjacent inG; and
• in G′, there are exactly two edges between each pair of adjacent vertices.

DefineG to be the graph obtained by adding an extra vertex,x, to G′, along with a pair of parallel
edges fromx to eachv ∈ V (G′) (see Figure 9). It is easy to see thatG is constructible directly from
G in O(|V (G)|2) time.

The following result was used in [19] to show that the problem of determiningσtrellis(C) for an
arbitrary codeC (over any fixed finite field) is NP-hard.

Theorem 6.3 ([19], Proposition 3.1). If G is the graph constructed from a given graphG as de-
scribed above, thenσtrellis(C[G]) = κpath(G) + 1.

Sinceσtrellis(C) is always within one ofκtrellis(C), the above theorem implies that

κpath(G) + 1 ≤ κtrellis(C[G]) ≤ κpath(G) + 2. (29)

While this falls short of establishing the NP-hardness of computingκtrellis(C) for an arbitrary codeC,
it is certainly enough to provide us with the desired example of codesC for whichκtrellis(C)− κ(C)
is arbitrarily large. We just need to make one more observation:κ(G) = κ(G) + 1. The proof
of this fact, which is along the lines of the proof of Lemma 3.5 in [19], is left to thereader as a
straightforward exercise. We can now prove the following corollary to Theorems 6.2 and 6.3.

Corollary 6.4. Over any finite fieldF, there exists a family of codesCi, i ∈ 1, 2, . . ., such that

lim
i

κtrellis(Ci) − κ(Ci) = ∞.

Proof. Let Yi, i = 1, 2, . . ., be the family of trees defined in Example 6.2. DefineCi = C[Yi],
whereYi refers to the graph obtained fromYi by the transformation depicted in Figure 9. Note that
κ(Yi) = κ(Yi) + 1 = 2, sinceκ(Yi) = 1, as shown in Example 6.1. Thus, on the one hand, from
Theorem 6.2, we haveκ(Ci) = κ(Yi) = 2. And on the other hand, from (29) and Example 6.2, we
haveκtrellis(Ci) ≥ κpath(Yi) + 1 = ⌈1

2(i + 3)⌉. ¤

Using standard facts known about the incidence matrixAD(G) for a graphG (see, for example,
[25, Chapter 5]), it may be verified that the codesCi, i ≥ 1, constructed in the above proof are
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[ni, ki, di] codes, where

ni = |E(Yi)| = 12(2i − 1) + 2,

ki = |V (Yi)| − 1 = 3(2i − 1) + 1,

di = size of the smallest cut-set inYi = 4.

Note thatκtrellis(Ci) − κ(Ci) grows asO(log ni). It is tempting to conjecture that this is in fact
the maximal rate of growth of the differenceκtrellis(Ci) − κ(Ci) for any code familyCi, but this
is unlikely to be true. What is true, however, is that theratio κtrellis(Ci)/κ(Ci) can grow at most
logarithmically with the length of the code. Indeed, it has been shown in [20] that for any codeC of
lengthn > 1,

κtrellis(C)

κ(C)
≤ 2 log2(n − 1) + 3. (30)

The above bound on the ratio ofκtrellis(C) to κ(C) is the best possible, up to the constants involved.
Indeed, for the codesCi constructed in the proof of Corollary 6.4, we have that

κtrellis(Ci)

κ(Ci)
≥

i + 3

4
=

1

4
[log2(ni + 10) − log2(3/2)].

The codesCi above constitute an example of a family of codes whose treewidth is bounded by a
constant. Issues related to such code families are discussed next.

6.4. Codes of Bounded Complexity. Many NP-hard combinatorial problems on graphs are known
to be solvable in polynomial (often, linear) time when restricted to graphs of bounded treewidth
[3],[5]. In this subsection, we will see that the same general principle applies to problems pertaining
to codes as well.

Let Fq = GF (q) be a fixed finite field. Given an integert ≥ 0, denote byTW(t) (resp.BW(t))
the family of all codes overFq of treewidth (resp. branchwidth) at mostt. Thus, a familyC of codes
overFq is said to have bounded treewidth (resp. branchwidth) ifC ⊆ TW(t) (resp.C ⊆ BW(t))
for some integert. Note that by Proposition 6.1,BW(⌊t/2⌋) ⊆ TW(t) ⊆ BW(t), and so, a code
family C has bounded treewidth if and only if it has bounded branchwidth.

A fundamental result of coding theory [4] states that the problem of ML decoding is NP-hard
for an arbitrary family of codes. However, we will now show that this problem becomes solvable
in linear time for any code family of bounded treewidth. So, consider a code family C ⊆ TW(t),
wheret is afixedinteger, and pick an arbitraryC ∈ C. Let n denote the length ofC. By definition,
C has a minimal realizationM(C; T, ω) with constraint complexity at mostt. Moreover, by (24),
(T, ω) can be chosen to be inQ(C), i.e., it may be chosen so thatT is a cubic tree, andω maps the
index set ofC bijectively onto the leaves ofT . In particular, the number of leaves ofT equals the
cardinality,n, of the index set ofC.

Now, recall that ML decoding ofC may be implemented as a sum-product algorithm on any
tree realization ofC, and in particular, onM(C; T, ω). The computational complexity of the sum-
product algorithm onM(C; T, ω) is determined by the computations that take place at the internal
nodes ofT . By an estimate of Forney [7, Theorem 5.2], the number of computations at the internal
nodev ∈ V (T ) is of the order ofδv(δv − 2)qdim(C∗

v ), whereδv is the degree ofv in T . Since
T is cubic, δv = 3, and since the constraint complexity ofM(C; T, ω) is at mostt, we have
dim(C∗

v ) ≤ t. Hence, the number of computations performed by the sum-product algorithm at any
internal node ofT is bounded by3qt, which is a constant. Now,T is a cubic tree onn leaves, so it
has at mostn − 2 internal nodes. It follows that the computational complexity of the sum-product
algorithm onM(C; T, ω) is O(n), the constant in theO-notation being proportional to3qt. Thus,
there is a linear-time implementation of ML decoding for anyC ∈ C.

A question that naturally arises in this context is that of how hard it is to explicitlydetermine the
minimal tree realization required for linear-time implementation of ML decoding. Notethat this is
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not exactly a decoding complexity issue, since the determination of a suitableM(C; T, ω) may be
done “off-line” for eachC ∈ C.

An explicit determination ofM(C; T, ω) involves finding a tree decomposition(T, ω) ∈ Q(C)
such thatκ(C; T, ω) ≤ t, and the specification of the state spaces and the local constraint codes of
M(C; T, ω). Given a(T, ω) ∈ Q(C) satisfyingκ(C; T, ω) ≤ t, the state spaces and local constraint
codes ofM(C; T, ω) may be determined by theMIN REALZN procedure of Section 5. An estimate
of the computational complexity of this procedure was given in that section, interms of the length
and dimension ofC, the number of edges inT , and the quantityrmax defined in (21). Comparing
(21) with (25), we see thatrmax is simplyσ(C; T, ω), which by Proposition 6.1, is bounded from
above byt. The number of edges ofT is |V (T )| − 1, andV (T ) consists ofn leaves and at most
n − 2 internal nodes,n being the length ofC. Therefore, by the estimate of the computational
complexity ofMIN REALZN given in Section 5, for an[n, k] codeC ∈ C, and a(T, ω) ∈ Q(C)
such thatκ(C; T, ω) ≤ t, the minimal realizationM(C; T, ω) may be constructed inO(k2n2) time.
Note thatt appears in the exponent of the constant implicit in theO-notation.

This leaves us with the problem of finding, for a given codeC ∈ TW(t), a tree decomposition
(T, ω) ∈ Q(C) such thatκ(C; T, ω) ≤ t. Unfortunately, there appears to be no efficient algorithm
known for solving this problem. However, reasonably good algorithms do exist for solving a closely
related problem: given a codeC ∈ BW(t), find a tree decomposition(T, ω) ∈ Q(C) such that
σ(C; T, ω) ≤ t. Several polynomial-time algorithms for solving this problem are given in [14], the
most efficient of these being an algorithm that runs inO(n3) time8, n being the length ofC. Now,
by Proposition 6.1, anyC ∈ TW(t) is also inBW(t), and furthermore,κ(C; T, ω) ≤ 2σ(C; T, ω).
Therefore, the algorithms of [14] find, for a given codeC ∈ TW(t), a tree decomposition(T, ω) ∈
Q(C) such thatκ(C; T, ω) ≤ 2t. This is sufficient for our purposes, as the computational complexity
of the sum-product algorithm on the resultingM(C; T, ω) would still beO(n), except that the
constant in theO-notation would now be proportional to3q2t.

While code families of bounded treewidth have the desirable property of having linear decoding
complexity, they tend to have poor error-correcting properties. We givehere an argument to support
this statement. Recall from coding theory that a code familyC is calledasymptotically goodif there
exists a sequence of[ni, ki, di] codesCi ∈ C, with limi ni = ∞, such thatlim infi ki/ni and
lim infi di/ni are both strictly positive. The code familyCi, i ≥ 1, from the proof of Corollary 6.4
has bounded treewidth, but is not asymptotically good:ki/ni → 1/4, butdi/ni → 0, asi → ∞.
More generally, it has recently been shown that for anyt > 0, the code familyTW(t) is not
asymptotically good [20].

We wrap up our discussion on complexity measures for codes by elaborating on a comment we
made at the beginning of this subsection, in which we implied that hard coding-theoretic problems
often become polynomial-time solvable when restricted to codes of bounded complexity. We saw
earlier several examples of algorithms that, given a codeC ∈ TW(t), solve some problem in time
polynomial in the length ofC. In each of these cases, the computational complexity of the algorithm
displayed an exponential dependence on the parametert. But sincet was a fixed constant, this
exponential dependence could be absorbed into the constant hidden in the “big-O” estimate of
the complexity. Thus, fixing the parametert allowed a potentially intractable coding-theoretic
problem to become tractable. Problems that may be hard in general, but whichbecome solvable
in polynomial time when one of the parameters of the problem is fixed, are calledfixed-parameter
tractable. We noted previously that the problems of computing the treewidth and branchwidth of
a code are NP-hard. It should come as no surprise that these problems are in fact fixed-parameter
tractable. Hliňeńy [12] gives anO(n3) algorithm that, for a fixed integert, determines whether or
not a given length-n code is inBW(t). From this, one can also prove the existence of anO(n3)
algorithm for deciding membership of a given length-n code inTW(t) [13].

8As usual, the constant hidden in theO-notation depends exponentially ont.
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7. CONCLUDING REMARKS

As we have pointed out in this paper, the problem of computing the treewidthκ(C) of a codeC is
NP-hard. This means that there can be (modulo the unlikely scenario thatP = NP ) no efficient —
meaning polynomial-time — algorithm for computing the treewidth of an arbitrary code. However,
it may still be possible to determine exactly, or give efficient algorithms for computing, the treewidth
of standard algebraic codes such as Hamming codes, Reed-Muller codes, Golay codes etc. To the
best of our knowledge, there has been no prior work done on this subject. In fact, except for the
pioneering work of Forney [7],[8], no serious attempt seems to have been made on the problem of
finding general constructions of tree realizations for such codes, having constraint complexity equal
to, or close to, the treewidth of the code. This, perhaps, constitutes the mostimportant theoretical
problem in the context of tree realizations of linear codes. Note that explicitconstructions of such
low-complexity tree realizations would be useful to a code designer who wishes to employ the
sum-product algorithm for decoding algebraic codes.

However, an open problem of far greater significance is the development of a general theory of
minimal realizations of codes on graphs with cycles. At present, such a theory only exists for the
case of realizations of codes on graphs consisting of a single cycle,i.e., tail-biting trellis realizations
[22]. This simplest case of graphs with cycles is already more difficult to study than the cycle-free
case — for example, there can be several non-equivalent definitions of minimality in the context of
tail-biting trellis realizations. The challenge posed by graphs with more complex cycle structures
can only be greater.

APPENDIX A. PROOFS OFLEMMAS 2.1 AND 2.2

Proof of Lemma 2.1. Consider an arbitrarye ∈ E. An arbitrary global configurationb may be
written in the form(b|J(e),b|E(Te)

,b|e,b|E(T e)
,b|J(e)). Now, suppose thatb is such thatb|e = 0,

i.e., b = (b|J(e),b|E(Te)
,0,b|E(T e)

,b|J(e)). Observe that the global configurations

b′ = (b|J(e),b|E(Te)
,0,0,0) and b′′ = (0,0,0,b|E(T e)

,b|J(e))

also satisfy all local constraints (since0 ∈ B|v for eachv ∈ V ), and hence are inB. There-
fore, (b|J(e),0) = b′|I ∈ C, and so by definition ofCJ(e), we haveb|J(e) ∈ CJ(e). Similarly,
(0,b|J(e)) = b′′|I ∈ C, so thatb|J(e) ∈ CJ(e). Hence,b|I = (b|J(e),b|J(e)) ∈ CJ(e) ⊕ CJ(e). ¤

Proof of Lemma 2.2. For any tree model (essential or not), we have, by definition,B|v ⊆ Cv for
all v ∈ V . So we need only show the reverse inclusion in the case whenΓ = (T, ω, (Se, e ∈
E), (Cv, v ∈ V )) is an essential tree model.

Pick an arbitraryv ∈ V . Let e1, e2, . . . , eδ be the edges ofT incident with V . For i =
1, 2, . . . , δ, let Ti denote the component ofT − ei that does not includev. SetFi = E(Ti), and
Ji = ω−1(V (Ti)). We will write an arbitrary configurationb ∈ B as

(
b|ω−1(v), (b|e1

,b|F1
,b|J1

), . . . , (b|eδ
,b|Fδ

,b|Jδ
)
)

.

Consider any(c0, c1, . . . , cδ) ∈ Cv, wherec0 ∈ F
ω−1(v), andci ∈ Sei

for i = 1, . . . , δ. As
the tree modelΓ is essential, we haveSei

= B|ei
for all i. In particular,ci ∈ B|ei

, so that there

existsb(i) ∈ B such thatb(i)|ei
= ci. As b(i) is in B, its “sub-configuration”(ci,b

(i)|Fi
,b(i)|Ji

)
satisfies the local constraints ofΓ at all vertices inV (Ti). Hence,

b =
(
c0, (c1,b

(1)|F1
,b(1)|J1

), . . . , (cδ,b
(δ)|Fδ

,b(δ)|Jδ
)
)

satisfies the local constraints ofΓ at all vertices in
⋃δ

i=1 V (Ti). Now, v is the only vertex ofT
that is not in

⋃δ
i=1 V (Ti). But, by construction,b|v = (c0, c1, . . . , cδ) ∈ Cv, and so,b also
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FIGURE 10. A depiction of the two subtreesTê andT ê connected by the edgêe.

satisfies the local constraint atv. Thus,b satisfies all local constraints ofΓ, so thatb ∈ B. Hence,
(c0, c1, . . . , cδ) = b|v is in B|v, which proves the lemma. ¤

APPENDIX B. PROOFS OFLEMMAS 3.1 AND 3.3

Proof of Lemma 3.1. For simplicity of notation, letF denote the edge set of the subtreeTê, and let
F denote that of the subtreeT ê. Note thatF ∪F = E(T )− ê. Throughout this proof, we will write
an arbitrary global configurationb, belonging toB or B(Γ), in the form(b|J ,b|F ,b|ê,b|F ,b|J).

Consider anyb = (b|J ,b|F ,b|ê,b|F ,b|J) ∈ B(Γ). Let ℓ andr be the two vertices incident
with the edgêe in T . We assume thatℓ ∈ V (Tê) andr ∈ V (T ê), as depicted in Figure 10. We
write the local configurationb|ℓ as(b|E(ℓ)−ê,b|ω−1(ℓ),b|ê), andb|r as(b|ê,b|ω−1(r),b|E(r)−ê).

Suppose first thatb|ê = 0; note that the zero element ofS ê (= Sê/W ) is W . By definition ofΓ,
b|ℓ ∈ B|ℓ = Φ(B)|ℓ. Hence, there exists(b|E(ℓ)−ê,b|ω−1(ℓ),w) ∈ B|ℓ, for somew ∈ W . Now,

(b|J ,b|F ) (being a “sub-configuration” ofb) satisfies the local constraints ofΓ at all vertices in
V (Tê)−{ℓ}. But these local constraints are of the formB|v which, forv ∈ V (Tê)−{ℓ}, is identical
to Bv. Therefore, the sub-configuration(b|J ,b|F ) satisfies the local constraints ofΓ at all vertices
in V (Tê) − {ℓ}. It follows that(b|J ,b|F ,w) satisfies the local constraints ofΓ at all vertices in
V (Tê), includingℓ. By a similar argument, there exists aw′ ∈ W such that(w′,b|F ,b|J) satisfies
the local constraints ofΓ at all vertices inV (T ê).

Now, by definition ofW , there existb andb′ in B, such thatb = (b|J ,b|F ,w,b|F ,b|J),
b′ = (b′|J ,b′|F ,w′,b′|F ,b′|J), and(b|J ,b|J), (b′|J ,b′|J) ∈ CJ ⊕ CJ . Note, in particular, that
the sub-configuration(w,b|F ,b|J) of b satisfies the local constraints ofΓ at all vertices inV (T ê).
Therefore, the global configurationg = (b|J ,b|F ,w,b|F ,b|J) satisfies the local constraints of
Γ at all vertices inT , and hence is in the full behavior,B, of Γ. A similar argument shows that
g′ = (b′|J ,b′|F ,w′,b|F ,b|J) is also inB.

As B is a vector space, it must also contain

b − g = (b|J − b|J ,b|F − b|F ,0,0,0)

and

b′ − g′ = (0,0,0,b′|F − b|F ,b′|J − b|J).

SinceΓ is a tree realization ofC, we haveB|I = C. In particular,(b|J − b|J ,0) = (b − g)|I ∈ C,
and similarly,(0,b′|J − b|J) = (b′ − g′)|I ∈ C. Hence,b|J − b|J ∈ CJ andb′|J − b|J ∈ CJ .
However,b andb′ were chosen so thatb|J ∈ CJ andb′|J ∈ CJ . Thus, we also haveb|J ∈ CJ and
b|J ∈ CJ . This finally yieldsb|I = (b|J ,b|J) ∈ CJ ⊕ CJ , thus proving one direction of part (b) of
the lemma.

We will next show that ifb|ê 6= 0, thenbI ∈ C butbI /∈ CJ ⊕ CJ . This will prove both part (a)
and the reverse direction of part (b).
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FIGURE 11. Template for tree realizations of the[8, 4] Reed-Muller code.

So, suppose thatb|ê = s 6= 0. Thus,s is some coset ofW in Sê, but is notW itself. Pick some
s ∈ s. AsSê = B|ê, there exists someb ∈ B such thatb|ê = s. Observe thatb|I ∈ B|I = C, but
sinces ∈ s 6= W , b|I /∈ CJ ⊕ CJ .

Define b̃ = Φ(b), so thatb̃ ∈ B. Furthermore,̃b|ê = s, andb̃|I (= b|I ) is in C but not in
CJ ⊕ CJ . We have already noted (prior to the statement of Lemma 3.1) thatB ⊆ B(Γ). Therefore,

b̃ ∈ B(Γ), and sinceB(Γ) is a vector space,b − b̃ ∈ B(Γ).
However,(b − b̃)|ê = s−s = 0, and as we showed above, this implies that(b − b̃)|I ∈ CJ⊕CJ .

Sinceb̃|I is in C but not inCJ ⊕ CJ , we find thatb|I ∈ C, butb|I /∈ CJ ⊕ CJ .
The proof of the lemma is now complete. ¤

Proof of Lemma 3.3. As Γ is a tree realization ofC, Lemma 2.1 shows that for anyb ∈ B(Γ), we
haveb|e′ = 0 only if b|I ∈ CJ(e′) ⊕ CJ(e′). Thus, we need only prove the converse.

Suppose thatb ∈ B(Γ) is such that(b|J(e′),b|J(e′)) ∈ CJ(e′) ⊕ CJ(e′), but b|e′ 6= 0. Now,

b|e′ ∈ Se′ = B|e′ = B|e′ , the last equality being a consequence of the fact thate′ 6= ê. Therefore,
there exists ab ∈ B such thatb|e′ = b|e′ . Note that, by the hypothesis of the lemma,b|I /∈
CJ(e′) ⊕ CJ(e′).

Setb̃ = Φ(b), so that̃b ∈ B ⊆ B(Γ). Observe that̃b|I = b|I , and sincee′ 6= ê, we also have
b̃|e′ = b|e′ . Thus,b̃|e′ = b|e′ andb̃|I /∈ CJ(e′) ⊕ CJ(e′). But now, we haveb − b̃ ∈ B(Γ), with

(b − b̃)|e′ = 0, and(b − b̃)|e′ /∈ CJ(e′) ⊕ CJ(e′). This contradiction of Lemma 2.1 proves that

there exists nob ∈ B(Γ) such that(b|J(e′),b|J(e′)) ∈ CJ(e′) ⊕ CJ(e′), butb|e′ 6= 0. ¤

APPENDIX C. EXAMPLE OF STATE-MERGING PROCEDURE

In this appendix. we illustrate the state-merging process described in Section3 by using it to
derive a minimal tree realization of the binary[8, 4] Reed-Muller codeC generated by

GRM =




1 1 0 0 1 1 0 0
0 1 1 0 0 1 1 0
0 0 1 1 0 0 1 1
0 0 1 1 1 1 0 0


 . (31)

The index set of the code is assumed to beI = {1, 2, . . . , 8}, where indexi represents theith
coordinate of the code. The template for our tree realizations — consisting of atree decomposition
of I, symbol variablesXi (i ∈ I), state variablesSe (e ∈ {1, 2, 3, 4, 5}), and local constraint
codesCv (v ∈ {1, 2, 3, 4, 5, 6}) — is depicted in Figure 11. We will describe our tree realizations
by specifying the state spacesSe and the local constraint codesCv. All vector spaces and codes
defined are over the binary field,F2. This appendix is simply meant to be an aid to helping the
reader understand the state-merging process, so the details will be kept toa bare minimum.
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We start with a trivial extension (cf. Example 2.1) of the depicted tree decomposition. This yields
a tree realizationΓtriv of the Reed-Muller codeC, specified as follows. For the state spaces, we have
S1 = S2 = S4 = S5 = F

2
2, andS3 = F

4
2. The local constraintsC1, C2, C5 andC6 are [4, 2]

codes with basis vectors1010 and0101. The first two coordinates of these[4, 2] codes correspond
to the appropriate symbol variable pair(Xi, Xi+1) and the last two coordinates correspond to the
appropriate state variableSj . The codeC3 is the[8, 4] Reed-Muller code generated by the matrix
GRM in (31), with the symbol variablesS1, S2 andS3 corresponding to the first two, next two,
and last four coordinates, respectively, ofC3. Finally, the codeC4 is taken to be the[8, 4] code
generated by 



1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1


 ,

with the symbol variablesS3, S4 andS5 corresponding to the first four, next two, and last two
coordinates, respectively, ofC4.

The full behaviorB of Γtriv is generated by the following four global configuration vectors:

X1 X2 X3 X4 X5 X6 X7 X8 S1 S2 S3 S4 S5

1 1 0 0 1 1 0 0 11 00 1100 11 00
0 1 1 0 0 1 1 0 01 10 0110 01 10
0 0 1 1 0 0 1 1 00 11 0011 00 11
0 0 1 1 1 1 0 0 00 11 1100 11 00

(32)

It is easy to see that this realization is not essential — for example, if we takee to be the central edge
of the tree (associated with state variableS3), thenB|e is the 3-dimensional subspace ofSe = F

4
2

generated by1100, 0110 and0011.
The essentialization ofΓtriv is the tree realizationΓ0 specified as follows. The state spaces ofΓ0

are the same as those inΓtriv , except thatS3 is now the 3-dimensional subspace ofF
4
2 generated by

1100, 0110 and0011. The local constraints ofΓ0 are the same as those inΓtriv , except forC4 which
is now the[8, 3] code generated by the matrix




1 1 0 0 1 1 0 0
0 1 1 0 0 1 1 0
0 0 1 1 0 0 1 1


 .

The full behaviorB of Γ0 is exactly the same as that ofΓtriv , which is shown in (32).
We will apply the state-merging process at the central edge of the tree in Figure 11. We will

now denote this edge bŷe, in keeping with the description in Section 3. Note thatSê = S3 in
our notation above. Our first task is to determine the subspace,W , of Sê, as defined in (7). It is
easily checked thatCJ ⊕ CJ is the subcode ofC generated by11110000 and00001111, and as a
consequence, we obtainW = {0000, 1111}. We identify the 2-dimensional vector spaceSê/W
with F

2
2 as follows: the coset0011 + W is identified with01, and the coset0110 + W is identified

with 10. With this identification, the mappingΦ defined in (8), when applied toB, yields the vector
spaceB = Φ(B) generated by the following four global configuration vectors:

X1 X2 X3 X4 X5 X6 X7 X8 S1 S2 S3 S4 S5

1 1 0 0 1 1 0 0 11 00 01 11 00
0 1 1 0 0 1 1 0 01 10 10 01 10
0 0 1 1 0 0 1 1 00 11 01 00 11
0 0 1 1 1 1 0 0 00 11 01 11 00

FromB, we derive the tree realizationΓ with state spacesSe = B|e for each edgee, and local
constraintsCv = B|v for each vertexv. It is readily verified thatSe = Se = F

2
2 for e = 1, 2, 4, 5,

andS3 = F
2
2 as well. The local constraintsCv are the same[4, 2] codes asCv for v = 1, 2, 5, 6;
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however, the codesCv at the two remaining vertices are[6, 3] codes. The basis vectors for the codes
C3 andC4 are given below:

C3 :

S1 S2 S3

11 00 01
01 10 10
00 11 01

C4 :

S3 S4 S5

01 11 00
10 01 10
01 00 11

One can now check that further state merging does not change the realization Γ, which means
thatΓ is a minimal tree realization of the Reed-Muller codeC. In fact, this is the realization depicted
in [7, Figure 31].

APPENDIX D. PROOF OFFORWARD DIRECTION OFTHEOREM 4.3

Proof of (a)⇒ (b) in Theorem 4.3. Let C = C1 ⊕r C2 for codesC1 andC2 defined on the index sets
I1 andI2, respectively. By definition,I = I1∆I2. SetJ = I1 − I2 andJ = I2 − I1, so that(J, J)
forms a partition ofI. In what follows, words defined on the index setI1 will be written in the form
x = (x|J ,x|I1∩I2

); words defined on the index setI2 will be written in the formx = (x|I1∩I2
,x|J);

words defined on the index setI will be written asx = (x|J ,x|J); and finally, words on the index
setI1 ∪ I2 will be written asx = (x|J ,x|I1∩I2

,x|J).
We begin by proving thatdim(C|J) = dim(C1). This is accomplished by a two-step argument:

we first show thatC|J = C1|J , and then we show thatC1|J
∼= C1.

If a ∈ C|J , then there exists somex ∈ C1, y ∈ C2 such that(x ⋆ y)|J = a. However,(x ⋆ y)|J =
x|J asJ lies outsideI1 ∩ I2. Hence,a = x|J ∈ C1|J . Conversely, suppose thata ∈ C1|J . Then,

there existsz ∈ C
(p)
1 such thatx = (a, z) ∈ C1. SinceC(p)

1 = C
(p)
2 , there existsy = (z,b) ∈ C2.

Now, x ⋆ y = (a,0,b), and hence(a,b) ∈ C. Thus,a ∈ C|J , which completes the proof of the
fact thatC|J = C1|J .

Now, to show thatC1
∼= C1|J , let us consider the projection mapπ : C1 → C1|J defined by

π(x) = x|J . This map is a homomorphism, with kernel isomorphic toC
(s)
1 , which is {0} by

definition. Hence,π is in fact an isomorphism, which proves thatC1
∼= C1|J .

We have thus shown thatdim(C|J) = dim(C1). A similar argument yields the fact thatdim(C|J) =
dim(C2). Hence,

dim(C|J) + dim(C|J) − dim(C) = dim(C1) + dim(C2) − dim(C1 ⊕r C2) = r,

by Corollary 4.2.
It remains to show thatmin{|J |, |J |} ≥ r. Note that sincedim(C|J)+dim(C|J)−dim(C) = r,

anddim(C|J) ≤ dim(C), we must havedim(C|J) ≥ r. Therefore,|J | ≥ dim(C|J) ≥ r. By a
similar argument, we also have|J | ≥ r. ¤

APPENDIX E. PROOF OFPROPOSITION5.1

The proof of Proposition 5.1 requires the following lemma, which presents a property of the
codesC1 andC2 obtained via ther-sum decomposition procedure of Section 4.

Lemma E.1. Let C be a code defined on the index setI, and let(J, J) be a partition ofI, with
dim(C|J)+dim(C|J)−dim(C) = r. Suppose thatC1 andC2 are the codes, defined on the respective
index setsI1 andI2, that are obtained by the procedure described in the proof of Theorem4.3. Then,
for anyJ1 ⊆ J , and anyJ2 ⊆ J , we have

dim(C1|J1
) + dim(C1|I1−J1

) − dim(C1) = dim(C|J1
) + dim(C|I−J1

) − dim(C), (33)

dim(C2|J2
) + dim(C2|I2−J2

) − dim(C2) = dim(C|J2
) + dim(C|I−J2

) − dim(C). (34)
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Proof. We use notation from the proof of the (b)⇒ (a) direction of Theorem 4.3. Thus,C, C1 and
C2 are generated by the matricesG, G1 andG2 given by (11), (12) and (13), respectively, which we
reproduce here for the sake of convenience.

G =

[
Ik1

A O B
O O Ik−k1

C

]
,

G1 =
[

Ik1
A X

]
,

G2 =

[
X O B
O Ik−k1

C

]
.

For any matrixM , given a subsetZ of the column indices ofM , we will denote byM |Z the
restriction ofM to the columns indexed byZ. Thus,

G|J =

[
Ik1

A
O O

]
, G1|J =

[
Ik1

A
]
,

G|J = G2|J =

[
O B

Ik−k1
C

]
.

Our proof of the lemma uses only elementary linear algebra. We prove (33) first. Consider any

J1 ⊆ J . It is clear thatG|J1
=

[
G1|J1

O

]
, and therefore, we havedim(C|J1

) = rank(G|J1
) =

rank(G1|J1
) = dim(C1|J1

). Next, note thatI − J1 = (J − J1)
·
∪ J , from which we have

dim(C|I−J1
) = rank

([
G|J−J1

G|J
])

.

Now, observe that by performing column operations onG|J , we can bring it into the form

W =

[
O B

Ik−k1
O

]
.

Hence,

rank
([

G|J−J1
G|J

])
= rank

([
G|J−J1

W
])

= rank(Ik−k1
) + rank

([
G1|J−J1

B
])

= k − k1 + rank
([

G1|J−J1
B

])
.

At this point, we have

dim(C|J1
) + dim(C|I−J1

) = dim(C1|J1
) + k − k1 + rank

([
G1|J−J1

B
])

,

which upon re-arrangement yields

dim(C|J1
) + dim(C|I−J1

) − dim(C) = dim(C1|J1
) + rank

([
G1|J−J1

B
])

− dim(C1).

Thus, (33) would be proved if we could establish thatdim(C1|I1−J1
) = rank

([
G1|J−J1

B
])

.

Now, I1 − J1 = (J − J1)
·
∪ IX , and hence,

dim(C1|I1−J1
) = rank

([
G1|J−J1

X
])

.

Thus, we have to show thatrank
([

G1|J−J1
B

])
= rank

([
G1|J−J1

X
])

. We will prove that
the matricesB andX have identical column-spaces. Clearly, the desired result then follows.

Recall that fori = 1, 2, . . . , k1, theith row ofB can be uniquely expressed as a linear combina-
tion,

∑r
j=1 αi,jbj , of its firstr rowsb1, . . . ,br. Furthermore, theith row ofX equals

∑r
j=1 αi,jdj

for the sameαi,j ’s, whered1, . . . ,dr are the rows of the generator matrix,Dr, of the code∆r. In
particular, the firstr rows ofX constitute the matrixDr. Denote byBr the submatrix ofB com-
prised by its firstr rows.

At this point, we must use a fundamental property of the matrixDr, namely, that the columns
of Dr form a maximal subset ofFr

q with the property that each pair of vectors from the subset is
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linearly independent overFq. This is due to the fact that, by definition, each pair of columns ofDr

is linearly independent overFq, and furthermore, the number of distinct one-dimensional subspaces
of F

r
q is precisely equal to the number,mr = (qr − 1)/(q − 1), of columns ofDr. Therefore, any

(column) vector inFr
q is a scalar multiple of some column ofDr.

In particular, any column ofBr is a scalar multiple of some column ofDr. But because of the
way X was constructed, this implies that any column ofB is a scalar multiple of some column of
X. Thus, the column-space ofB is a subspace of the column-space ofX. However, we also have
rank(B) = rank(X), and so, the column-spaces of the two matrices are in fact identical. This
proves thatrank

([
G1|J−J1

B
])

= rank
([

G1|J−J1
X

])
, and (33) follows.

To show (34), consider anyJ2 ⊆ J . Arguments similar to the ones above establish that

dim(C|J2
) = dim(C2|J2

) and dim(C|I−J2
) = k1 + rank

(
[Ik−k1

C]
∣∣
J−J2

)
. (35)

Now, considerdim(C2|I2−J2
) = rank(G2|I2−J2

). Noting thatI2 − J2 = IX

·
∪ (J − J2), we see

that the matrixG2|I2−J2
has the form

[
X O B|K
O I ′ C|K

]
,

with I ′ = (Ik−k1
)|J−J2−K , for someK ⊆ J − J2. Since the columns ofB are contained in the

column-space ofX, we can perform column operations onG2|I2−J2
to bring it into the form

W ′ =

[
X O O

O I ′ C|K

]
.

Hence,

rank(G2|I2−J2
) = rank(W ′) = rank(X) + rank([I ′ C|K ])

= (k1 + k2 − k) + rank
(
[Ik−k1

C]
∣∣
J−J2

)
. (36)

Some trivial manipulations of (35) and (36) yield (34), which proves the lemma. ¤

Proof of Proposition 5.1. Recall thatΓ∗ = (T, ω, (Se, e ∈ E(T )), (Cv, v ∈ V (T ))), whereSe

andCv are as defined in (19) and (20). To show thatΓ∗ is the minimal realizationM(C; T, ω), it is
enough to show that for alle ∈ E(T ), dim(Se) equals the expression in (5),i.e.,

dim(Se) = dim(C|J(e)) + dim(C|J(e)) − dim(C). (37)

Note that this is true whene = ê, sincedim(Sê) = dim(∆r) = r, and from (14), we have
r = dim(C|J(ê))+dim(C|J(ê))−dim(C). We must therefore show that (37) holds fore ∈ E(T )−

{ê} = E(Tê) ∪ E(T ê). We will prove this fore ∈ E(Tê); the proof fore ∈ E(T ê) is similar.
So, consider anye ∈ E(Tê). One of the two components,Te andT e, of T − e is contained in

Tê. Without loss of generality, we may assume that it isTe that is a subtree ofTê, as depicted in
Figure 12. Hence,J(e) = ω−1(V (Te)) ⊆ J(ê). Now, by (19),Se = S

(1)
e , the latter being the state

space associated withe in M(C1; Tê, ω1). Therefore, by (5),

dim(S(1)
e ) = dim(C1|J(e)) + dim(C1|I1−J(e)) − dim(C1).

But, by Lemma E.1, the above expression is equal to the expression on the right-hand side of (37).
Hence, (37) holds for anye ∈ E(Tê), and the proposition follows. ¤
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ê
T ê

J(ê)

v2

. . . . . .

v1

. . .

J(e)

J(ê)

Te

Tê

e

FIGURE 12. Te is a subtree ofTê.
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