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Abstract—Subspace codes are subsets of the projective space
Pq(n), which is the set of all subspaces of the vector space Fn

q .
Koetter and Kschischang argued that subspace codes are useful
for error and erasure correction in random network coding.
Linearity in subspace codes was defined by Braun, Etzion and
Vardy, and they conjectured that the largest cardinality of a
linear subspace code in Pq(n) is 2n. In this paper, we show
that the conjecture holds for linear subspace codes that are
closed under intersection, i.e., codes having the property that
the intersection of any pair of codewords is also a codeword.
The proof is via a characterization of such codes in terms of
partitions of linearly independent subsets of Fn

q .

I. INTRODUCTION

Let Fnq be the vector space of dimension n over the field
Fq of order q. The set of all subspaces of Fnq is called the
projective space of order n over Fq and is denoted by Pq(n).
The subspace distance function in a projective space is defined
as follows: for X,Y ∈ Pq(n),

dS(X,Y ) := dimX + dimY − 2 dim(X ∩ Y ).

The subspace distance measure dS turns Pq(n) into a metric
space [1]. An (n,M, d) code in the projective space Pq(n)
is defined to be any C ⊆ Pq(n) such that |C| = M and
dS(X,Y ) ≥ d for all X,Y ∈ C. Any such code C is also
called a subspace code.

Koetter and Kschischang showed [1] that subspace codes
defined in projective space Pq(n) are useful for error and
erasure correction in random networks. To be precise, they
showed that an (n,M, d) code is capable of correcting any
combination of t packet errors as well as ρ packet era-
sures introduced anywhere within the network, as long as
2(t+ ρ) < d. Thus, a natural analogy can be drawn between
error and erasure correction in random network coding and
that in classical coding over Fnq . It makes sense to use this
analogy to develop aspects of subspace codes along the same
lines as those of classical error-correcting codes. Indeed, there
has been much prior work in this spirit, for example, bounds
of the Gilbert-Varshamov type [3] and the Singleton type [11]
have been derived for subspace codes. Other aspects of these
codes have been explored in the existing literature — see e.g.,
[1], [4], [5], [6], [7], [8], [9], [10].
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A notion that has proved to be enormously useful in
classical coding is that of linearity. Recall that a linear code
is simply a linear subspace of Fnq . In particular, a linear
code forms an abelian group under the usual componentwise
addition over Fq . Linear codes have a concise representation
in terms of generator and parity-check matrices, which, among
other things, lead to relatively simple encoding and decoding
algorithms — see e.g., [13]. Extending, by analogy, the notion
of linearity to subspace codes should prove similarly useful.
However, this has proved to be difficult. This is mainly
due to one crucial difference between the projective space
Pq(n) equipped with the subspace distance measure and the
Hamming space of Fnq equipped with the Hamming distance
measure. While Hamming distance is translation-invariant,
there is no equivalent notion applicable to projective space
as a whole, under subspace distance.

Nonetheless, as described in [2], it is possible to define a
certain type of linearity in projective space as well. The authors
of [2] defined a linear subspace code in Pq(n) to be a subset
C ⊆ Pq(n) which can be endowed with a binary operation
� that makes C an abelian group having the property that
the subspace distance measure restricted to C is translation-
invariant. They gave various constructions of linear codes in
Pq(n) including one that is generated by basis vectors of the
ambient space Fnq . A code constructed in this manner was
termed a code derived from a fixed basis in [12]. It was
conjectured in [2] that a linear subspace code in Pq(n) can
have at most 2n codewords. Another conjecture was made
about the linear codes in Pq(n) that contain Fnq as a codeword,
which states that any such linear code can have at most (nk )
k-dimensional codewords, for 0 ≤ k ≤ n. The last conjecture
was very recently proved in [12] using a result of Lovasz [14].
It was also shown that the codes attaining the bound stated in
this conjecture must be derived from a fixed basis. However, it
should be noted that there are examples of linear codes that do
not contain Fnq as a codeword, and yet attain the conjectured
maximum possible cardinality of 2n [2].

In this paper, we focus on the class of linear subspace codes
which are closed under the usual set/subspace intersection
operation, i.e., linear subspace codes with the property that the
intersection of any pair of codewords is also a codeword. We
describe a method of constructing such codes from partitions
of linearly independent subsets of Fnq . We say that a code
constructed in this manner is derived from a partition of a
linearly independent set. Codes derived from a fixed basis
form special cases of our construction. We go on to show that978-1-4799-6619-6/15/$31.00 c© 2015 IEEE



any linear subspace code that is closed under intersection must
be derived from a partition of a linearly independent set. This
yields a complete characterization of this class of subspace
codes. From this characterization, it is straightforward to
deduce that the conjecture of Braun, Etzion and Vardy [2]
on the maximum cardinality of a linear subspace code holds
for the class of linear codes closed under intersection.

The rest of the paper is organized as follows. Section II
introduces the reader to the formal definitions related to linear
subspace codes and the conjectures made in [2]. The class of
linear codes in Pq(n) closed under intersection are defined
in Section III and their characterization as codes derived
from a partition of a linearly independent set is proved. In
Section IV, we study the maximal members of the class of
codes of interest to us. It is shown here that the maximal such
codes are precisely those that are derived from a fixed basis.
Along the way, we show that the maximum cardinality of
any linear code closed under intersection is 2n, thus verifying
the Braun-Etzion-Vardy conjecture for this class of subspace
codes. Section V contains a few concluding remarks.

II. LINEAR CODES IN PROJECTIVE SPACE

Braun, Etzion and Vardy [2] introduced a notion of linearity
in projective space by abstracting the key properties of linear
codes in the Hamming space Fn2 . A linear code in Pq(n) is
defined as follows:

Definition 1. A subset U ⊆ Pq(n), with {0} ∈ U , is a linear
subspace code if the following properties hold:
(i) there exists a function � : U ×U → U such that (U ,�) is
an abelian group;
(ii) the identity element of (U ,�) is {0};
(iii) X �X = {0} for every group element X ∈ U;
(iv) the addition operation � is isometric, i.e., dS(X�Y1, X�
Y2) = dS(Y1, Y2) for all X,Y1, Y2 ∈ U .

When a subset U of Pq(n) satisfies only the first three
conditions in the above definition, it is called a quasi-linear
code. Note that a quasi-linear code has the structure of a vector
space over F2. As a result, the number of codewords in a
quasi-linear code must be a power of 2. In fact, the following
proposition was proved by Braun, Etzion and Vardy [2].

Proposition 1. A subset U ⊆ Pq(n), with {0} ∈ U , is a
quasi-linear code if and only if |U| is a power of 2.

Thus, a subspace code having a vector space structure is
not very interesting by itself. It is the requirement that the
addition operation � be isometric that makes linear subspace
codes interesting. The definition of linearity implies certain
properties that an isometric linear addition must satisfy. Some
of these are listed in the next three lemmas, which are
taken from [2]. The first two lemmas follow easily from the
definitions; for completeness, we give a proof of the third
lemma.

Lemma 2. Let U be a linear code in Pq(n) and let � be the
isometric linear addition on U . Then for all X,Y ∈ U , we

have:

dim(X�Y ) = dS(X,Y ) = dimX+dimY − 2 dim(X ∩Y )

In particular, if X ⊆ Y , then dim(X�Y ) = dimY −dimX .

Lemma 3. For any three subspaces X,Y and Z of a linear
code U in Pq(n) with isometric linear addition �, the condi-
tion Z = X � Y implies Y = X � Z.

To state the next lemma, we recall that the sum of two
subspaces X and Y of Fnq is defined as the subspace X+Y =
{x+ y : x ∈ X,y ∈ Y }.

Lemma 4. Let U be a linear code in Pq(n) and let � be
the isometric linear addition on U . If X and Y are any two
codewords of U such that X∩Y = {0}, then X�Y = X+Y .

Proof: From the definition of linearity, we have dimX =
dim((X�Y )�Y ) = dim(X�Y )+dimY −2 dim((X�Y )∩
Y ) and using the fact X∩Y = {0}, we also have from Lemma
2 that dim(X � Y ) = dimX + dimY . Combining both, we
obtain dimX = dimX+2dimY−2 dim((X�Y )∩Y ), which
implies dimY = dim((X � Y ) ∩ Y ), i.e., Y ⊆ (X � Y ).
Similarly, X ⊆ (X � Y ). This means X + Y ⊆ X � Y .
Finally, as X ∩ Y = {0}, dim(X + Y ) = dimX + dimY =
dim(X � Y ), which proves the lemma.

Using the above lemmas, Braun, Etzion and Vardy proved
that the definition of linearity restricts the number of one-
dimensional subspaces that can be included in a linear sub-
space code. We state their result below without proof.

Proposition 5. Let U be a linear code in Pq(n) with isometric
linear addition �. Then U contains at most n of the qn − 1
one-dimensional subspaces of Fnq .

Proposition 5 lends credence to the idea that a linear
subspace code U ∈ Pq(n) cannot have size greater than
2n. This is because one may reasonably expect the one-
dimensional codewords of U to form a basis of the F2-vector
space formed by U . Indeed, Braun, Etzion and Vardy formally
conjectured that the cardinality of any linear subspace code in
Pq(n) can be at most 2n. They further conjectured, based on
empirical evidence, that when Fnq is included as a codeword,
the code can contain at most

(
n
k

)
k-dimensional codewords,

for 0 ≤ k ≤ n. The second conjecture was recently proved
in [12], and is stated as a theorem below. The notation Uk
will henceforth denote the set of all k-dimensional codewords
belonging to the linear code U , for 0 ≤ k ≤ n.

Theorem 6 ([12], Theorem 2). If U is a linear code over
Pq(n) that contains Fnq , then |Uk| ≤

(
n
k

)
for 0 ≤ k ≤ n, and

hence, |U| ≤ 2n. Equality holds if and only if U is derived
from a fixed basis.

The definition of a code derived from a fixed basis is given
below for easy reference.

Definition 2. A linear subspace code U in Pq(n) is derived
from a fixed basis if the group (U ,�) is generated by n one-
dimensional subspaces in U .



In this paper, we show that the Braun-Etzion-Vardy con-
jecture on the cardinality of linear subspace codes holds for
a certain subclass of codes. This subclass is defined and
characterized in the next section.

III. LINEAR SUBSPACE CODES CLOSED UNDER
INTERSECTION

In this section, we explore the class of linear subspace
codes in Pq(n) that are closed under the usual set intersection
operation. We start with the formal definition.

Definition 3. A subspace code U ⊆ Pq(n) with the property
that X ∩ Y ∈ U whenever X,Y ∈ U is said to be closed
under intersection.

A linear code in Pq(n) closed under intersection can be
constructed as described in the next theorem. For a set S ⊆ Fnq ,
let 〈S〉 denote the subspace of Fnq spanned by the elements of
S; we specifically define 〈φ〉 = {0}.

Theorem 7. Let E = {e1, e2, . . . , er} be a linearly in-
dependent subset of Fnq over the field Fq and also let
{E1, E2, . . . , Em} be a partition of E , i.e., Ei∩Ej = φ whenever
i 6= j,

⋃m
i=1 Ei = E and Ei 6= φ for 1 ≤ i ≤ m. Define

EI :=
⋃
i∈I Ei for any I ⊆ [m] with Eφ := φ, where

[m] = {1, 2, . . . ,m}. Then, U = {〈EI〉 : I ⊆ [m]} is a linear
code in Pq(n) that is closed under intersection.

Proof: Let us denote the symmetric difference of two sets
A and B by A4B, i.e.,

A4B := (A ∪B)\(A ∩B).

The operation 4 is commutative and associative.
For any two elements X and Y of U , define the addition
operation � on U in the following way.

X � Y := 〈EIX4EIY 〉

where X = 〈EIX 〉 for all X ∈ U , i.e. X is the span of
EIX , where IX ⊆ [m] by construction. Since E is a linearly
independent set over Fq , choice of EIX is unique for any
X ∈ U . It is obvious that X�Y = 〈EIX4EIY 〉 = 〈EIX4IY 〉
for all X,Y ∈ U . The following points are observed.
(i) As φ ⊂ [m], 〈Eφ〉 = 〈φ〉 = {0} ∈ U .
(ii) For any IX , IY ⊆ [m], IX4IY is also a subset of
[m]. This is because Ei’s partition the set E and thus for
any J ⊆ [m], either Ei ∈ EJ , or Ei ∩ EJ = φ. Hence
X � Y = 〈EIX4EIY 〉 = 〈EIX4IY 〉 ∈ U for all X,Y ∈
U . Moreover, X � Y = 〈EIX4EIY 〉 = 〈EIX4IY 〉 =
〈EIY4IX 〉 = 〈EIY4EIX 〉 = Y �X for all X,Y ∈ U , since
4 is commutative.
(iii) X � X = 〈EIX4EIX 〉 = {0} for all X ∈ U , since
S4S = φ.
(iv) X � {0} = 〈EIX4φ〉 = 〈EIX 〉 = X for all X ∈ U .
(v) By construction, X∩Y = 〈EIX 〉∩〈EIY 〉 = 〈EIX∩IY 〉 ∈ U
for all X,Y ∈ U , since IX ∩ IY ⊆ [m] for IX , IY ⊆ [m].
(vi) As X�Y = 〈EIX4EIY 〉, that means EIX�Y

= EIX4EIY
for all X,Y ∈ U , since any member Z of U is spanned
by EIZ where IZ is a unique subset of [m]. Let |EI | :=

|{j : ej ∈ EI}|, then the dimension of a member X of U
can be calculated as, dimX = |EIX |. Now dS(X,Y ) =
dimX+dimY −2 dim(X∩Y ) = |EIX |+|EIY |−2 |EIX∩Y

| =
|EIX |+|EIY |−2 |EIX ∩ EIY | = |EIX4EIY | for all X,Y ∈ U .
This implies

dS(X � Z, Y � Z) =
∣∣EIX�Z

4EIY �Z

∣∣
= |(EIX4EIZ )4(EIY4EIZ )|
= |EIX4(EIZ4EIZ )4EIY |
= |EIX4φ4EIY |
= |EIX4EIY |
= dS(X,Y )

for all X,Y, Z ∈ U .
(i) proves the existence of {0} in the structure. (ii) establishes
that {U ,�} is an abelian group. (iii) and (iv) prove idempo-
tency and additive inverse of that group respectively. (v) shows
that the code is closed under intersection. Finally (vi) accounts
for translation invariance in the structure, thus proving that U
is a linear code in Pq(n) that is closed under intersection.

Theorem 7 gives us a systematic method of constructing
linear subspace codes that are closed under intersection. A
code constructed in this manner will be referred to as a code
derived from a partition of a linearly independent set. As
stated in Theorem 8 below, this is in fact the only means of
constructing linear subspace codes closed under intersection.

Theorem 8. Let U be a linear subspace code that is closed un-
der intersection. Then, there exist a set of linearly independent
vectors E = {e1, e2, . . . , er} and a partition {E1, E2, . . . , Em}
of E such that U = {〈EI〉 : I ⊆ [m]}.

Theorems 7 and 8 together give a characterization of
the class of linear subspace codes that are closed under
intersection. Our proof of Theorem 8 requires the notion of
indecomposable codewords, which we define next.

Definition 4. A codeword Y 6= {0} of a linear subspace code
U is said to be indecomposable if Y cannot be expressed as
Y1 � Y2 for any Y1, Y2 ∈ U with dimY1,dimY2 < dimY .

The next few lemmas record some important properties of
indecomposable codewords that we will use in our proof of
Theorem 8.

Lemma 9. Let Y be an indecomposable codeword of a linear
subspace code U . Then, for any codeword X ∈ U , we have
X ⊆ Y iff X = {0} or X = Y .

Proof: Suppose that X ⊂ Y for some X with 0 <
dimX < dimY . Then, we also have dim(X � Y ) =
dimY − dimX < dimY . Since we can always write Y =
X � (X � Y ), this means that Y cannot be indecomposable.

Lemma 10. If Y1, Y2 are any two distinct indecomposable
codewords of a linear subspace code U that is closed under
intersection, then Y1 ∩ Y2 = {0}. Consequently, Y1 � Y2 =
Y1 + Y2, and dim(Y1 � Y2) = dimY1 + dimY2.



Proof: Consider any indecomposable Y1, Y2 ∈ U with
Y1 6= Y2. Obviously Y1 ∩ Y2 ∈ U . By Lemma 9, we cannot
have Y1 ⊂ Y2, and so dim(Y1 ∩ Y2) < dim(Y1). Since Y1 ∩
Y2 ⊂ Y1, we must have Y1 ∩ Y2 = {0} by Lemma 9 again.
The facts about Y1 � Y2 now follow from Lemma 4.

The following generalization of Lemma 10 plays a key role
in our proof of Theorem 8.

Lemma 11. Let Y1, Y2, . . . , Ym, m ≥ 2, be distinct indecom-
posable codewords of a linear subspace code U that is closed
under intersection. Then,
(a) for all j ∈ [m], Yj ∩

∑
i∈[m]\{j} Yi = {0};

(b) Y1 � Y2 � · · ·� Ym = Y1 + Y2 + · · ·+ Ym; and
(c) dim(Y1 � Y2 � · · ·� Ym) =

∑m
i=1 dim(Yi).

Proof: We prove (a)–(c) simultaneously by induction on
the number of indecomposable codewords. The base case of
two codewords is covered by Lemma 10. As the induction
hypothesis, assume that the statements (a)–(c) hold for any
set of m− 1 indecomposable codewords, for some m ≥ 3. In
particular, for any (m−1)-subset I ⊂ [m], we have �i∈IYi =∑
i∈I Yi and dim(�i∈IYi) =

∑
i∈I dimYi.

Now, suppose that (a) does not hold for the given set of m
indecomposable codewords Y1, Y2, . . . , Ym. Without loss of
generality, assume that Y ′ := Ym∩ (Y1+ · · ·+Ym−1) 6= {0}.
By the induction hypothesis, Y1+· · ·+Ym−1 = Y1�· · ·�Ym−1
is in U , and hence, so is Y ′. Since Y ′ ⊆ Ym, we have Y ′ = Ym
by Lemma 9. Thus, Ym ⊂ Y1 + · · · + Ym−1. This further
implies that Y2+ · · ·+Ym−1+Ym ⊆ Y1+ · · ·+Ym−1. By the
induction hypothesis, this is equivalent to (Y2 � · · ·� Ym) ⊆
(Y1 � · · ·� Ym−1).

Now, consider Z = (Y1 � · · ·� Ym−1)� (Y2 � · · ·� Ym).
On the one hand, we have dimZ = dim(Y1 � · · ·� Ym−1)−
dim(Y2 � · · · � Ym) by Lemma 2, and hence, applying the
induction hypothesis,

dimZ =

m−1∑
i=1

dimYi −
m∑
i=2

dimYi = dimY1 − dimYm. (1)

On the other hand, Z = Y1 � Ym, so that by Lemma 10,
dimZ = dimY1 + dimYm, which contradicts (1) since
dimYm 6= 0. Hence, (a) must hold for Y1, Y2, . . . , Ym.

The statements (b) and (c) follow easily from (a) by
induction using Lemma 4.

We are now in a position to prove Theorem 8.
Proof of Theorem 8: Let Y1, . . . , Ym be a listing of all

the distinct indecomposable codewords of U . For each i ∈
[m], fix a basis Ei of Yi. It follows from Lemma 11(a) that
E =

⋃m
i=1 Ei is a linearly independent subset of Fnq , and that

{E1, . . . , Em} constitutes a partition of E . As a consequence,
for any I ⊆ [m], we have 〈EI〉 =

∑
i∈I Yi = �i∈IYi, the

last equality being due to Lemma 11(b). Thus, 〈EI〉 ∈ U for
all I ⊆ [m].

To complete the proof, we must show that any codeword
X ∈ U is of the form 〈EI〉 for some I ⊆ [m]. This is trivially
true if X = Yi for some i ∈ [m]. So suppose that X is not
indecomposable. Then, it can be decomposed into a sum of the

form X1 �X2 with dimX1,dimX2 < dimX . Now, X1 and
X2 are either indecomposable or can be further decomposed.
Carrying on in this manner, X can be decomposed into a sum
of the form �i∈IYi. Hence, X = 〈EI〉 for some I ⊆ [m],
which completes the proof.

The proof above used the fact that any codeword X ∈ U
could be decomposed into a sum of the form �i∈IYi. Such a
decomposition is, in fact, unique.

Proposition 12. Let U be a linear subspace code that is closed
under intersection, and let Y1, Y2, . . . , Ym be its indecompos-
able codewords. Then, any codeword X ∈ U can be uniquely
expressed as �i∈IYi for some I ⊆ [m].

Proof: Suppose that X ∈ U can be expressed as � of
indecomposable codewords in two different ways:

X = �i∈IYi = �j∈J Yj

for distinct subsets I and J of [m]. Then, upon some re-
organization and possible cancellation of like terms, we would
obtain for some i ∈ I ∪ J and some L ⊆ [m] \ {i}, Yi =
�`∈LY`. By Lemma 11(b), this is the same as Yi =

∑
`∈L Y`,

which contradicts Lemma 11(a).
From the proof of Theorem 8 (and the statement of Proposi-

tion 12), it is clear that any linear subspace code closed under
intersection is generated by its indecomposable codewords.
This motivates the following definition.

Definition 5. The generating set, UG, of a linear subspace
code U closed under intersection is the set of all its indecom-
posable codewords.

Note that any one-dimensional codeword of U is indecom-
posable, and hence is in the generating set. More generally,
we have the following strengthening of Lemma 9.

Lemma 13. Let U be a linear subspace code closed under
intersection. For any Y ∈ U , we have Y ∈ UG if and only if
there is no X ∈ U , X 6= {0}, such that X ⊂ Y .

Proof: The “only if” part holds by Lemma 9. For the “if”
part, assume that Y ∈ U is such that for all X ∈ U , X ⊂ Y
implies X = {0}. If Y /∈ UG, then by Proposition 12, Y can
be expressed as �ri=1Yi for some indecomposable codewords
Y1, . . . , Yr. Evidently r ≥ 2, otherwise Y would itself be
in UG. Therefore, by Lemma 11(b), we have Y =

∑r
i=1 Yi,

which means Yi ⊂ Y for 1 ≤ i ≤ r, r ≥ 2. Hence, proved by
contradiction.

The following property of generating sets will be useful in
the next section.

Lemma 14. Let U and V be two linear subspace codes, each
closed under intersection. If UG ⊂ VG, then U ⊂ V .

Proof: Obviously, if UG ⊆ VG, then U ⊆ V . Moreover,
UG = VG iff U = V .

Remark 1. The converse statement of Lemma 14, namely, that
U ⊂ V implies UG ⊂ VG, is not true in general. For example,
let {e1, e2} be a basis for F2

q , and consider UG = {〈e1, e2〉}



and VG = {〈e1〉, 〈e2〉}.

We end this section by noting that codes derived from a
fixed basis (see Definition 2) form a special case of codes
derived from partitions of linearly independent sets. This
connection will be explored further in the next section.

IV. MAXIMALITY OF LINEAR SUBSPACE CODES CLOSED
UNDER INTERSECTION

In this section, we prove the conjecture of Braun, Etzion
and Vardy [2] for the class of linear subspace codes that
are closed under intersection. We also identify the maximal
linear subspace codes under the constraint of closure under
intersection.

Definition 6. A linear code U closed under intersection in
Pq(n) is said to be maximal if and only if for any other linear
code V closed under intersection, U ⊆ V ⇒ U = V .

We start with a small observation on the dimensions of the
indecomposable codewords of any linear subspace code closed
under intersection.

Lemma 15. If U is a linear code closed under intersection
in Pq(n) with generating set UG = {Y1, Y2, . . . , Ym}, then∑m
i=1 dimYi ≤ n.

Proof: By Proposition 12, the maximum dimension of a
codeword in U is dim(Y1 � Y2 � · · · � Ym), which equals
dim(

∑m
i=1 Yi) by Lemma 11. The last sum cannot exceed n

since U ⊂ Pq(n), and the lemma is proved.
The following result is concerned with the maximality of

linear subspace codes closed under intersection.

Proposition 16. Let U be a linear subspace code closed
under intersection in Pq(n) with generating set UG =
{Y1, Y2, . . . , Ym}. Then U is maximal only if

∑m
i=1 dimYi =

n.

Proof: We will show that if
∑m
i=1 dimYi = s < n, then

U cannot be maximal. By Lemma 11, we have dim(Y1 �
Y2 � · · · � Ym) =

∑m
i=1 dimYi = s. Any bases for the Yis

when combined together will form a basis for Fsq . This can
be extended to a basis of Fnq by adding n − s more vectors,
say {x1, x2, . . . , xn−s}, where xj ∈ Fnq for all 1 ≤ j ≤ (n−
s). Consider X = 〈x1, x2, . . . , xn−s〉. If X is added to the
generating set UG then by Definition 5 and Proposition 12,
VG = {X,Y1, Y2, . . . , Ym} ⊃ UG is the generating set for
another linear subspace code V closed under intersection. By
Lemma 14, U cannot be maximal.

Thus, if U is maximal, then by Lemma 15,
∑m
i=1 dimYi =

n.
When a linear subspace code closed under intersection is

maximal, it is natural to ask what other constraints are imposed
on its structure. The next lemma will give us some answer to
this question.

Corollary 16.1. Let U be a linear subspace code closed under
intersection in Pq(n). Then U is maximal only if Fnq ∈ U .

Proof: Suppose U is maximal. If UG = {Y1, Y2, . . . , Ym}
be its generating set then by Proposition 16, dim(Y1 � Y2 �
· · ·�Ym) =

∑m
i=1 dimYi = n and hence, Y1�Y2�· · ·�Ym =

Fnq ∈ U .
Let us now prove the conjecture of Braun, Etzion and Vardy

for the class of linear subspace codes closed under intersection.

Proposition 17. The size of the largest linear subspace code
in Pq(n) that is closed under intersection is 2n.

Proof: If U is a linear subspace code closed under in-
tersection with Y1, Y2, . . . , Ym being the only indecomposable
codewords of U , then according to Lemma 11, dim(Y1�Y2�
· · ·� Ym) = dim(Y1 + Y2 + · · ·+ Ym) =

∑m
i=1 dimYi ≥ m

and by Lemma 15,
∑m
i=1 dimYi ≤ n. Combining both gives

m ≤ n. Again Proposition 12 states that a codeword of U can
be achieved as � of some or all of Y1, Y2, . . . , Ym in a unique
way. Since the total number of all such possible combinations
of Yi’s is 2m, it readily follows that |U| = 2m ≤ 2n.

Corollary 17.1. Let U be a linear subspace code in Pq(n)
closed under intersection such that |U| = 2n. Then Fnq ∈ U .
Furthermore, |UG| = n and dimY = 1 for all Y ∈ UG.

Proof: The fact that Fnq ∈ U follows directly from
Proposition 17 and Corollary 16.1. Using the existence of Fnq ,
it also follows from Theorem 6 that |U1| = n, thus |UG| ≥ n.
Finally using Lemma 15, we get the rest.

The following result reveals that only the codes derived from
a fixed basis can have the maximum cardinality among the
class of linear subspace codes closed under intersection.

Lemma 18. If U is a linear subspace code in Pq(n) closed
under intersection, then the size of U is 2n if and only if U is
a code derived from a fixed basis.

Proof: If |U| = 2n, then U is derived from a fixed basis
follows from Theorem 6 and Corollary 17.1.

Conversely, let U be a code derived from a fixed basis, then
according to Definition 2, |U1| = n. That means UG = U1 by
Lemma 15 and hence |U| = 2n.

We conclude this section with the following result which
identifies only those linear codes that can attain maximality
when subjected to closure under intersection.

Proposition 19. Let U be a linear subspace code in Pq(n)
closed under intersection. Then U is maximal if and only if U
is derived from a fixed basis.

Proof: If U is a code which is derived from a fixed basis,
then by Lemma 18 and Proposition 17, |U| = 2n, and therefore
it is maximal.

Conversely, assume U to be a maximal linear code closed
under intersection which is not derived from a fixed basis.
According to Corollary 16.1, Fnq ∈ U and using Theorem 6
as well as Definition 2, |U1| < n, which means UG ⊃ U1
by Proposition 16. There must exist some Y ∈ UG such that
Y /∈ U1, since UG\U1 6= φ. Pick any basis BY for Y . If BY =
{e1, e2, . . . , edimY }, then consider the linear code W closed
under intersection and characterized by WG = {UG\Y } ∪



{〈ej〉}dimY
j=1 . Evidently 〈ej〉 /∈ U by Lemma 13 for all 1 ≤

j ≤ dimY . On the other hand Y ∈ W although Y /∈ WG.
Hence, W ⊃ U , a contradiction to our initial assumption.
Therefore, proved.

V. CONCLUSION

In this paper, we introduced the class of linear subspace
codes closed under intersection. We characterized this class of
codes in terms of partitions of linearly independent subsets of
Fnq . We also proved that a linear code closed under intersection
is maximal if and only if it is derived from a fixed basis.

The conjecture by Braun, Etzion and Vardy [2] on the
maximum cardinality of a linear subspace code was shown
to be true for the particular case of linear codes closed under
intersection. However, the general conjecture that any linear
subspace code has a maximum cardinality of 2n is yet to
be resolved and would be an interesting problem for future
research.
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