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Abstract. We relate the notion of matroid pathwidth to the minimum trellis state-complexity
(which we term trellis-width) of a linear code, and to the pathwidth of a graph. By reducing from
the problem of computing the pathwidth of a graph, we show that the problem of determining the
pathwidth of a representable matroid is NP-hard. Consequently, the problem of computing the
trellis-width of a linear code is also NP-hard. For a finite field F, we also consider the class of
F-representable matroids of pathwidth at most w, and correspondingly, the family of linear codes
over F with trellis-width at most w. These are easily seen to be minor-closed. Since these matroids
(and codes) have branchwidth at most w, a result of Geelen and Whittle shows that such matroids
(and the corresponding codes) are characterized by finitely many excluded minors. We provide the
complete list of excluded minors for w = 1, and give a partial list for w = 2.
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1. Introduction. The notion of pathwidth of a matroid has received some recent
attention in the matroid theory literature [7], [9]. This notion has long been studied
in the coding theory literature, where it is used as a measure of trellis complexity of a
linear code [14], [5], [17]. However, there appears to be no standard coding-theoretic
nomenclature for this notion. It has been called the state complexity of a code in
[10], but the use of this term there conflicts slightly with its use in [17]. So to avoid
ambiguity, we will give it a new name here — trellis-width — which acknowledges its
roots in trellis complexity.

The relationship between matroid pathwidth and code trellis-width can be made
precise as follows. To an arbitrary linear code C over a finite field F, we associate a
matroid, M(C), which is simply the vector matroid, over F, of any generator matrix
of the code. Recall that in coding theory, a matrix G is called a generator matrix
of a code C, if C is the rowspace of G. Consequently, the matroid M(C) does not
depend on the actual choice of the generator matrix, and so is a characteristic of the
code C. The code C may in fact be viewed as a representation over F of the matroid
M(C). The trellis-width of C is simply the pathwidth of M(C); we will give the precise
definition of matroid pathwidth in Section 2.2.

It has repeatedly been conjectured in the coding theory literature that computing
the trellis-width of a linear code over a fixed finite field F is NP-hard [10], [11], [17,
Section 5]. This would imply that the corresponding decision problem (over a fixed
finite field F) — given a generator matrix for a code C over F, and a positive integer
w, deciding whether or not the trellis-width of C is at most w — is NP-complete.
This decision problem has been given various names — “Maximum Partition Rank
Permutation” [10], “Maximum Width” [11] and “Trellis State-Complexity” [17].

An equivalent statement of the trellis-width conjecture above is the following:
given a matrix A over F, the problem of computing the pathwidth the vector matroid
M [A] is NP-hard. In this paper, we prove the above statement for any fixed field F,
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not necessarily finite. Our proof is by reduction from the problem of computing the
pathwidth of a graph, which is known to be NP-hard [1], [2]. Thus, in particular,
computing the trellis-width of a linear code over F is NP-hard, which settles the
aforementioned coding-theoretic conjecture.

The situation is rather different if we weaken the trellis-width decision problem
above by not considering the integer w to be a part of the input to the problem. In
other words, for a fixed finite field F, and a fixed integer w > 0, consider the following
problem:

given a length-n linear code C over F, decide whether or not C has
trellis-width at most w.

The equivalent decision problem for matroid pathwidth would be to decide (for a fixed
finite field F and integer w > 0) whether or not a given F-representable matroid has
pathwidth at most w. Based on results from the structure theory of matroids [6], we
strongly believe that these problems are solvable in polynomial time.

In the process of studying matroids of bounded pathwidth, we observe that for
any finite field Fq = GF (q) and integer w > 0, the class, Pw,q, of Fq-representable
matroids having pathwidth at most w, is minor-closed and has finitely many excluded
minors. As a relatively easy exercise, we show that the list of excluded minors for
P1,q consists of1 U2,4, M(K4), M(K2,3) and M∗(K2,3). Unfortunately, the problem
of finding excluded-minor characterizations of Pw,q for w > 1 becomes difficult very
quickly. We give a list of excluded minors for P2,q, which is probably not complete.

The rest of the paper is organized as follows. In Section 2, we lay down the
definitions and notation used in the paper. In Section 3, we prove that, for any fixed
field F, the problem of computing the pathwidth of an F-representable matroid is
NP-hard, and therefore, so is the problem of computing the trellis-width of a linear
code over F. Finally, in Section 4, we consider the class of matroids Pw,q. We give
the complete lists of excluded minors for P1,q and the corresponding family of linear
codes over Fq having trellis-width at most one. We also give a partial list of excluded
minors for P2,q.

2. Preliminaries. We assume familiarity with the basic definitions and notation
of matroid theory, as expounded by Oxley [15]. The main results and proofs in this
paper will be given in the language of matroid theory, rather than that of coding
theory, as it is easier to do so. However, as our results may be of some interest to
coding theorists, we make an effort in this section to provide the vocabulary necessary
to translate the language of matroid theory into that of coding theory. Definitions of
coding-theoretic terms not explicitly defined here can be found in any text on coding
theory (e.g., [13]).

2.1. Codes and their Associated Matroids. Let C be a linear code of length
n over the finite field Fq = GF (q). The dimension of C is denoted by dim(C), and the
coordinates of C are indexed by the integers from the set [n] = {1, 2, . . . , n} as usual.
We will also associate with the coordinates of C a set, E(C), of coordinate labels, so
that there is a bijection αC : [n] → E(C). The label sequence of C is defined to be
the n-tuple (α1, α2, . . . , αn), where αi = αC(i). For notational convenience, we will
simply let αC denote the label sequence of C. Unless specified otherwise (as in the

1In this paper, we take the connectivity function of a matroid M with ground set E and rank
function r to be λM (X) = r(X) + r(E − X) − r(E) for X ⊆ E. Therefore, what we consider to be
matroids of pathwidth one would be matroids of pathwidth two in [7], [9].
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case of code minors and duals below), we will, by default, set E(C) to be [n], and αC

to be the n-tuple (1, 2, 3, . . . , n). In such a case, the label of each coordinate is the
same as its index.

Given a code C over Fq, specified by a generator matrix G, we define its associated
matroid M(C) to be the vector matroid, M [G], of G. We identify the ground set of
M(C) with E(C). Note that if G and G′ are distinct generator matrices of the code
C, then M [G] = M [G′], and hence, M(C) is independent of the choice of generator
matrix. Thus, any generator matrix of C is an Fq-representation of M(C).

Conversely, if M is an Fq-representable matroid, and G is an Fq-representation
of M , then M = M(C) for the code C generated by G. Thus, each Fq-representable
matroid is associated with some code C over Fq.

For any code C, the dual code, C⊥, is specified to have the same label sequence as
C, i.e., αC⊥ = αC . It is a particularly nice fact [15, Theorem 2.2.8] that the matroids

associated with C and C⊥ are dual to each other, i.e., M(C⊥) = (M(C))∗
def
= M∗(C).

Given a J ⊆ E(C), we will denote by C \J (resp. C/J) the code obtained from
C by puncturing (resp. shortening at) those coordinates having labels in J . Thus,
C/J = (C⊥ \J)⊥. A minor of C is a code of the form C/X \Y for disjoint subsets
X,Y ⊆ E(C). A minor of C that is not C itself is called a proper minor of C. The
coordinates of a minor of C retain their labels from E(C). More precisely, we set
E(C/X \Y ) = E(C) − (X ∪ Y ), and take the label sequence of C/X \Y to be the
(n − |X ∪ Y |)-tuple obtained from αC = (α1, α2, . . . , αn) by simply removing those
entries that are in X ∪ Y . The operations of puncturing and shortening correspond
to the matroid-theoretic operations of deletion and contraction, respectively: for J ⊆
E(C),

M(C \J) = M(C) \J and M(C/J) = M(C)/J.

We will find it convenient to use C|J to denote the restriction of C to the coordi-
nates with labels in J , i.e., C|J = C \Jc, where Jc denotes the set difference E(C)−J .
This allows us to express the rank function, r : E(C) → Z, of the matroid M(C) as
follows: for J ⊆ E(C), r(J) = dim(C|J).

Two length-n linear codes C and C′ over Fq are defined to be equivalent if there
is an n × n permutation matrix Π and an invertible n × n diagonal matrix ∆, such
that C′ is the image of C under the vector space isomorphism φ : F

n
q → F

n
q defined

by φ(x) = (Π∆)x. Informally, C′ is equivalent to C if C′ can be obtained by first
multiplying the coordinates of C by some nonzero elements of Fq, and then applying
a coordinate permutation. In such a case, we write C ≡ C′. The equivalence class of
codes equivalent to C will be denoted by [C]. It is clear that if codes C and C′ are
equivalent, then their associated matroids are isomorphic.

We remark that code equivalence has been defined above according to the coding-
theoretic convention. Note that, under this definition, if C′ is obtained by applying
an automorphism of the field Fq to C, then C and C′ would in general be considered
to be inequivalent.

A family, C, of codes over Fq is said to be minor-closed if, for each C ∈ C, any
code equivalent to a minor of C is also in C. A code, D, over Fq is said to be an
excluded minor for a minor-closed family C, if D /∈ C, but every proper minor of D is
in C. It is easily verified that if C is a minor-closed family, then a code C is in C iff no
minor of C is an excluded minor for C.

Given a collection, M, of Fq-representable matroids, define the code family

C(M) = {C : C is a linear code over Fq such that M(C) ∈ M}. (1)
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Evidently, if M is a minor-closed class of Fq-representable matroids, then C(M) is
also minor-closed. In this case, if F is the set of all excluded minors for M, then C(F)
is the set of all excluded minors for C(M).

2.2. Pathwidth, Trellis-width and Branchwidth. The definitions in this
section rely on the notion of the connectivity function of a matroid. Let M be a
matroid with ground set E(M) and rank function rM . Its connectivity function, λM ,
is defined by λM (X) = rM (X) + rM (E(M) − X) − rM (E(M)) for X ⊆ E(M). Note
that λM (X) = λM (E(M) − X), and λM (E(M)) = λM (∅) = 0. It should be pointed
out that in the matroid theory literature, the prevalent definition of the connectivity
function adds a ‘+1’ to the expression we have given. We have chosen not to follow
suit in order that we can give a minimum-fuss definition of trellis-width below.

The connectivity function is non-negative, i.e., λM (X) ≥ 0 for all X ⊆ E(M), and
submodular i.e., λM (X ∪ Y ) + λM (X ∩ Y ) ≤ λM (X) + λM (Y ) for all X,Y ⊆ E(M).
It is monotone under the action of taking minors — if N is a minor of M , then for
all X ⊆ E(N), λN (X) ≤ λM (X). Finally, the connectivity function of a matroid is
identical to that of its dual, i.e., λM (X) = λM∗(X) for all X ⊆ E(M).

Given an ordering (e1, e2, . . . , en) of the elements of M , define the width of the
ordering to be wM (e1, e2, . . . , en) = maxi∈[n] λM (e1, e2, . . . , ei). (For simplicity of
notation, we use λM (e1, e2, . . . , ei) instead of λM ({e1, e2, . . . , ei}).) The pathwidth of
M is defined as pw(M) = min wM (e1, e2, . . . , en), the minimum being taken over all
orderings (e1, e2, . . . , en) of E(M). An ordering (e1, e2, . . . , en) of E(M) such that
wM (e1, e2, . . . , en) = pw(M) is called an optimal ordering.

Since λM ≡ λM∗ , it is clear that pw(M) = pw(M∗). Another useful and eas-
ily verifiable property of pathwidth is that, for matroids M1 and M2, the pathwidth
of their direct sum, pw(M1 ⊕ M2), equals max{pw(M1),pw(M2)}. The property of
pathwidth most important for our purposes is stated in the following lemma.

Lemma 2.1. If N is a minor of M , then pw(N) ≤ pw(M).
Proof. Let (e1, . . . , en) be an optimal ordering of E(M). It is enough to show the

result in the case when N = M \ei or N = M/ei for some i ∈ [n]. In such a case,
consider the ordering (e1, . . . , ei−1, ei+1, . . . , en) of E(N). For j ∈ {1, . . . , i − 1}, we
have λN (e1, . . . , ej) ≤ λM (e1, . . . , ej). For j ∈ {i + 1, . . . , n}, we have

λN (e1, . . . , ei−1, ei+1, . . . , ej) = λN (ej+1, . . . , en)

≤ λM (ej+1, . . . , en) = λM (e1, . . . , ej).

It follows that wN (e1, . . . , ei−1, ei+1, . . . , en) ≤ wM (e1, . . . , en) = pw(M), and hence,
pw(N) ≤ pw(M).

The trellis-width of a linear code C over Fq is defined to be tw(C) = pw(M(C)).
For a discussion of the motivation and practical implications of this definition, we
refer the reader to [17, Section 5].

The pathwidth of a matroid is an upper bound on its branchwidth, a more well
known measure of matroid complexity. The branchwidth of a matroid is defined via
cubic trees. A cubic tree is a tree in which the degree of any vertex is either one
or three. The vertices of degree one are called leaves. A branch-decomposition of a
matroid M is a cubic tree, T , with |E(M)| leaves, labelled in a one-to-one fashion
by the elements of M . Each edge e of such a branch-decomposition T connects two
subtrees of T , so T \e has two components. We say that edge e displays a subset
X ⊆ E(M) if X is the set of labels of leaves of one of the components of T \e. The
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e3 en−1e2

en1e ...

Fig. 1. A branch-decomposition of M having width equal to wM (e1, e2, . . . , en).

width of an edge e of T is defined to be λM (X), where X is one of the label sets
displayed by e. The width of T is the maximum among the widths of its edges.

The branchwidth of M is the minimum among the widths of all its branch-
decompositions. Note that if T is the branch-decomposition of M shown in Figure 1,
then the width of T is precisely wM (e1, e2, . . . , en). Indeed, the width of any edge of
T is either λM (ei) or λM (e1, . . . , ei) for some i ∈ [n]. Now, for any i ∈ [n],

λM (e1, . . . , ei−1) + λM (e1, . . . , ei) = λM (ei, ei+1, . . . , en) + λM (e1, . . . , ei)

≥ λM (E(M)) + λM (ei) = λM (ei),

the inequality above arising from the submodularity of λM . Since λM (ei) ∈ {0, 1},
either λM (e1, . . . , ei−1) or λM (e1, . . . , ei) is at least as large as λM (ei). Therefore, the
width of T is given by maxi∈[n] λM (e1, . . . , ei) = wM (e1, . . . , en). It follows that the
branchwidth of M is bounded from above by pw(M).

3. NP-Hardness of Matroid Pathwidth and Code Trellis-Width. In this
section, we prove that for any fixed field F, the problem of computing the pathwidth
of an F-representable matroid M , given a representation of M over F, is NP-hard.
We accomplish this by reduction from the known NP-hard problem of computing the
pathwidth of a graph [1], [2].

The notion of graph pathwidth was introduced by Robertson and Seymour in
[16]. Let G be a graph with vertex set V . An ordered collection V = (V1, . . . , Vt),
t ≥ 1, of subsets of V is called a path-decomposition of G, if

(i)
⋃t

i=1 Vi = V ;
(ii) for each pair of adjacent vertices u, v ∈ V , we have {u, v} ⊆ Vi for some

i ∈ [t]; and
(iii) for 1 ≤ i < j < k ≤ t, Vi ∩ Vk ⊆ Vj .

The width of such a path-decomposition V is defined to be wG(V) = maxi∈[t] |Vi| − 1.
The pathwidth of G, denoted by pw(G), is the minimum among the widths of all its
path-decompositions. A path-decomposition V such that wG(V) = pw(G) is called an
optimal path-decomposition of G.

Let F be an arbitrary field. Given a graph G with vertex set V , our aim is to
produce, in time polynomial in |V |, a matrix A over F such that pw(G) can be directly
computed from pw(M [A]). The NP-hardness of computing graph pathwidth then
implies the NP-hardness of computing the pathwidth of an F-representable matroid.

The obvious idea of taking A to be a representation of the cycle matroid of G does
not work. As observed by Robertson and Seymour [16], trees can have arbitrarily
large pathwidth; however, the cycle matroid of any tree is Un,n for some n, and
pw(Un,n) = 0. What actually turns out to work is to take A to be a representation of
the cycle matroid of a certain graph constructible from G in polynomial time, as we
describe next.

Let G′ be a graph defined on the same vertex set, V , as G, having the following
properties (see Figure 2):
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G G’

Fig. 2. Construction of G′ from G.

(P1) G′ is loopless;
(P2) a pair of distinct vertices is adjacent in G′ iff it is adjacent in G; and
(P3) in G′, there are exactly two edges between each pair of adjacent vertices.

It is evident from the definition that (V1, . . . , Vt) is a path-decomposition of G iff it is
a path-decomposition of G′. Therefore, pw(G′) = pw(G).

Define G to be the graph obtained by adding an extra vertex, henceforth denoted
by x, to G′, along with a pair of parallel edges from x to each v ∈ V (see Figure 3).
Clearly, G is constructible directly from G in O(|V |2) time. But more importantly,
the pathwidth of the cycle matroid, M(G), of G relates very simply to the pathwidth
of G, as made precise by the following proposition.

Proposition 3.1. pw(M(G)) = pw(G) + 1.

Before proving the result, we present some of its implications. For any field F,
M(G) is F-representable. Indeed, if D(G) is any directed graph obtained by arbitrarily
assigning orientations to the edges of G, then the vertex-arc incidence matrix of D(G)
is an F-representation of M(G) [15, Proposition 5.1.2]. It is easily verified that such an
F-representation of M(G) can be constructed directly from G in O(|V |3) time. Now,
suppose that there were a polynomial-time algorithm for computing the pathwidth of
an arbitrary F-representable matroid, given an F-representation for it. Then, given
any graph G, we can construct an F-representation, A, of M(G), and then compute the
pathwidth of M [A] = M(G), all in polynomial time. Therefore, by Proposition 3.1,
we have a polynomial-time algorithm to compute the pathwidth of G. However, the
graph pathwidth problem is NP-hard. So, if there exists a polynomial-time algorithm
for it, then we must have P = NP . This implies the following result.

Theorem 3.2. Let F be a fixed field. The problem of computing the pathwidth of
M [A], for an arbitrary matrix A over F, is NP-hard.

As a corollary, we have that computing the trellis-width of a code is NP-hard.

Corollary 3.3. Let F be a fixed finite field. The problem of computing the trellis-
width of an arbitrary linear code over F, specified by any of its generator matrices, is
NP-hard.

The remainder of this section is devoted to the proof of Proposition 3.1. Since
pw(G′) = pw(G), for the purpose of our proof, we may assume that G′ = G. Thus,
from now until the end of this section, we take G to be a loopless graph satisfying
property (P3) above. Note that G also satisfies (P3). For each pair of adjacent vertices
u, v in G or G, we denote by luv and ruv the two edges between u and v. Let V and E
denote the sets of vertices and edges of G, and let V and E denote the corresponding

sets of G. We thus have V = V
·
∪ {x}, and E = E

·
∪

(⋃
v∈V {lxv, rxv}

)
.
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G

x

G’

Fig. 3. Construction of G from G′.

Set M = M(G), so that E(M) = E. Note that since G is connected (each v ∈ V
is adjacent to x), we have rank(M) = |V | − 1 = |V |.

We will first prove that pw(M) ≤ pw(G) + 1. Let V = (V1, . . . , Vt) be a path-
decomposition of G. We need the following fact about V: for each j ∈ [t],

⋃

i≤j

Vi ∩
⋃

k≥j

Vk = Vj . (2)

The above equality follows from the fact that a path-decomposition, by definition,
has the property that for 1 ≤ i < j < k ≤ t, Vi ∩ Vk ⊆ Vj .

For j ∈ [t], let Fj be the set of edges of G that have both their end-points in

Vj . By condition (ii) in the definition of path-decomposition,
⋃t

j=1 Fj = E. Now, let

Fj = Fj ∪
(⋃

v∈Vj
{lxv, rxv}

)
, so that

⋃t

j=1 Fj = E.

Definition 3.1. An ordering (e1, . . . , en) of the elements of a matroid M is said
to induce an ordered partition (E1, . . . , Et) of E(M) if for each j ∈ [t], {enj−1+1,

enj−1+2, . . . , enj
} = Ej, where nj =

∣∣∣
⋃

i≤j Ei

∣∣∣ (and n0 = 0).

Let π = (e1, . . . , en) be any ordering of E that induces the ordered partition
(E1, E2, . . . , Et), where for each j ∈ [t], Ej = Fj −

⋃
i<j Fi. We claim that the width

of π is at most one more than the width of the path-decomposition V.

Lemma 3.4. wM (π) ≤ wG(V) + 1.

Proof. Observe first that

wM (π) = max
j∈[t]

max
1≤k≤nj−nj−1

λM




⋃

i<j

Ei ∪ {enj−1+1, . . . , enj−1+k}




≤ max
j∈[t]

max
E′⊆Ej

λM




⋃

i<j

Ei ∪ E′


 . (3)

Let X =
⋃

i<j Ei ∪ E′ for some j ∈ [t] and E′ ⊆ Ej , and consider λM (X) =

rM (X)+ rM (E −X)− rM (E). Since G is a connected graph, rM (E) = |V | − 1 = |V |.

If v is a vertex of G incident with an edge in X, then v ∈
⋃

i≤j Vi

·
∪ {x}. So, the

subgraph of G induced by X has its vertices contained in
⋃

i≤j Vi

·
∪ {x}. Therefore,

rM (X) ≤
∣∣∣
⋃

i≤j Vi

·
∪ {x}

∣∣∣ − 1 =
∣∣∣
⋃

i≤j Vi

∣∣∣.
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Next, consider E−X = (
⋃

k>j Ek)∪(Ej −E′). Reasoning as above, the subgraph

of G induced by E − X has its vertices contained in
⋃

k≥j Vk

·
∪ {x}. Hence, rM (E −

X) ≤
∣∣∣
⋃

k≥j Vk

∣∣∣.
Therefore, we have

λM (X) ≤

∣∣∣∣∣∣

⋃

i≤j

Vi

∣∣∣∣∣∣
+

∣∣∣∣∣∣

⋃

k≥j

Vk

∣∣∣∣∣∣
− |V |

=

∣∣∣∣∣∣

⋃

i≤j

Vi ∩
⋃

k≥j

Vk

∣∣∣∣∣∣
= |Vj |,

the last equality arising from (2). Hence, carrying on from (3),

wM (π) ≤ max
j∈[t]

|Vj | = wG(V) + 1,

as desired.

The fact that pw(M) ≤ pw(G) + 1 easily follows from the above lemma. Indeed,
we may choose V to be an optimal path-decomposition of G. Then, by Lemma 3.4,
there exists an ordering (e1, . . . , en) of E(M) such that wM (e1, . . . , en) ≤ pw(G) + 1.
Hence, pw(M) ≤ wM (e1, . . . , en) ≤ pw(G) + 1.

We prove the reverse inequality in two steps, first showing that pw(G) = pw(G)+1,
and then showing that pw(M) ≥ pw(G).

Lemma 3.5. pw(G) = pw(G) + 1.

Proof. Clearly, if V = (V1, . . . , Vt) is a path-decomposition of G, then V = (V1 ∪
{x}, . . . , Vt ∪ {x}) is a path-decomposition of G. Hence, choosing V to be an optimal
path-decomposition of G, we have that pw(G) ≤ wG(V) = wG(V) + 1 = pw(G) + 1.

For the inequality in the other direction, we will show that there exists an optimal
path-decomposition, Ṽ = (Ṽ1, . . . , Ṽs), of G such that x ∈ Ṽi for all i ∈ [s]. We then

have V = (Ṽ1 − {x}, . . . , Ṽs − {x}) being a path-decomposition of G, and hence,

pw(G) ≤ wG(V) = wG(Ṽ) − 1 = pw(G) − 1.

Let V = (V 1, . . . , V t) be an optimal path-decomposition of G, and let i0 = min{i :
x ∈ V i} and i1 = max{i : x ∈ V i}. Since V i ∩ V k ⊆ V j for i < j < k, we must have
x ∈ V i for each i ∈ [i0, i1].

We claim that (V i0 , V i0+1, . . . , V i1) is a path-decomposition of G. We only have

to show that
⋃i1

i=i0
V i = V , and that for each pair of adjacent vertices u, v ∈ V ,

{u, v} ⊆ V i for some i ∈ [i0, i1]. To see why the first assertion is true, consider
any v ∈ V , v 6= x. Since x is adjacent to v, and V is a path-decomposition of G,
{x, v} ⊆ V i for some i ∈ [t]. However, x ∈ V i iff i ∈ [i0, i1], and so, {x, v} ⊆ V i for
some i ∈ [i0, i1]. In particular, v ∈ V i for some i ∈ [i0, i1].

For the second assertion, suppose that u, v is a pair of vertices adjacent in G.
Obviously, {u, v} ⊆ V j for some j ∈ [t]. Suppose that j /∈ [i0, i1]. We consider the

case when j > i1; the case when j < i0 is similar. As
⋃i1

i=i0
V i = V , there exist

i2, i3 ∈ [i0, i1] such that u ∈ V i2 and v ∈ V i3 . Without loss of generality, i2 ≤ i3.
If i2 = i3, then there exists i ∈ [i0, i1] such that {u, v} ⊆ V i. If i2 < i3, we have
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u ∈ V i2 ∩ V j and i2 < i3 < j. Hence, u ∈ V i3 as well, and so once again, we have an
i ∈ [i0, i1] such that {u, v} ∈ V i.

Thus, (V i0 , V i0+1, . . . , V i1) is a path-decomposition of G, with the property that
x ∈ V i for all i ∈ [i0, i1]. It must be an optimal path-decomposition, since it is a
subsequence of the optimal path-decomposition V.

To complete the proof of Proposition 3.1, it remains to show that pw(M) ≥ pw(G).
We introduce some notation at this point. Recall that the two edges between a pair
of adjacent vertices u and v in G (or G) are denoted by luv and ruv. We define

LG = {luv : u, v are adjacent vertices in G},

RG = {ruv : u, v are adjacent vertices in G},

Lx =
⋃

v∈V {lxv} and Rx =
⋃

v∈V {rxv}, where x is the distinguished vertex in V −V .

Thus, LG∪RG = E and E∪Lx∪Rx = E. Note that, by construction of G, clM (Lx) =
clM (Rx) = E, where clM denotes the closure operator of M .

We will need the fact that there exists an optimal ordering (e1, . . . , en) of E that
induces a certain ordered partition of E of the form

(L1, A1, B1, R1, L2, A2, B2, R2, . . . , Lt, At, Bt, Rt),

where for each j ∈ [t], Lj ⊆ Lx, Aj ⊆ LG , Bj ⊆ RG , and Rj ⊆ Rx. This will follow
from a re-ordering argument given further below. But first, we make some simple
observations about orderings of E. Given an ordering of E, we may assume, without
loss of generality, that for each pair of adjacent vertices u, v ∈ V , luv appears before
ruv in the ordering; we denote this by luv < ruv. We call such an ordering of E a
normal ordering.

Lemma 3.6. Let (e1, . . . , en) be a normal ordering of E. Then, for 1 ≤ j ≤ n−1,
we have

(a) λM (e1, . . . , ej+1) = λM (e1, . . . , ej) + 1 iff ej+1 /∈ clM (e1, . . . , ej); and
(b) λM (e1, . . . , ej+1) = λM (e1, . . . , ej) − 1 iff ej+1 /∈ clM (ej+2, . . . , en).

Proof. We only prove (a), as the proof of (b) is similar. It is easy to deduce from
the definition of the connectivity function that λM (e1, . . . , ej+1) = λM (e1, . . . , ej)+ 1
iff ej+1 /∈ clM (e1, . . . , ej) and ej+1 ∈ clM (ej+2, . . . , en).

Now, if ej+1 /∈ clM (e1, . . . , ej), then ej+1 = luv for some u, v. (If not, i.e.,
if ej+1 = ruv, then since luv < ruv, we must have luv ∈ {e1, . . . , ej}, and so,
ej+1 = ruv ∈ clM (luv) ⊆ clM (e1, . . . , ej), a contradiction.) Therefore, {ej+2, . . . , en}
contains ruv, and hence, ej+1 = luv ∈ clM (ej+2, . . . , en). We have thus shown that
if ej+1 /∈ clM (e1, . . . , ej), then ej+1 ∈ clM (ej+2, . . . , en). Part (a) of the lemma now
follows.

We now describe a procedure that takes as input a normal ordering of E, and
produces as output a re-ordering of E with certain desirable properties.
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Re-ordering Algorithm

Input : a normal ordering (e1, . . . , en) of E.

Initialization: j = 0.

Step 0: If j = 0, set Xj = ∅;
else, set Xj = clM (e1, . . . , ej) − {e1, . . . , ej}.

Step 1: If Xj = ∅,
find the least k > j such that

for some m > j, em ∈ Lx ∩ clM (e1, . . . , ek);
set (e′1, . . . , e

′
n) = (e1, . . . , ej , em, ej+1, . . . , em−1, em+1, . . . , en).

If Xj 6= ∅,
if Lx ∩ Xj 6= ∅, find an m > j such that em ∈ Lx ∩ Xj ;
else, if LG ∩ Xj 6= ∅, find an m > j such that em ∈ LG ∩ Xj ;
else, if RG ∩ Xj 6= ∅, find an m > j such that em ∈ RG ∩ Xj ;
else, if Rx ∩ Xj 6= ∅, find an m > j such that em ∈ Rx ∩ Xj ;
set (e′1, . . . , e

′
n) = (e1, . . . , ej , em, ej+1, . . . , em−1, em+1, . . . , en).

Step 2: Replace j by j + 1.
If j < n, replace (e1, . . . , en) by (e′1, . . . , e

′
n),

and return to Step 0;
else, output (e′1, . . . , e

′
n).

Denote by (e∗1, . . . , e
∗
n) the final output generated by the above algorithm. Set

X∗
0 = ∅, and for j ∈ [n], X∗

j = clM (e∗1, . . . , e
∗
j ) − {e∗1, . . . , e

∗
j}. Stepping through

the algorithm, one may easily check that (e∗1, . . . , e
∗
n) has the following property: for

0 ≤ j ≤ n − 1, if X∗
j = ∅, then e∗j+1 ∈ Lx, and if X∗

j 6= ∅, then

e∗j+1 ∈





Lx ∩ X∗
j , if Lx ∩ X∗

j 6= ∅

LG ∩ X∗
j , if Lx ∩ X∗

j = ∅, but LG ∩ X∗
j 6= ∅

RG ∩ X∗
j , if Lx ∩ X∗

j = LG ∩ X∗
j = ∅, but RG ∩ X∗

j 6= ∅

Rx ∩ X∗
j , if Lx ∩ X∗

j = LG ∩ X∗
j = RG ∩ X∗

j = ∅, but Rx ∩ X∗
j 6= ∅.

The following claim can be readily deduced from this property, and we leave the de-
tails to the reader.

Claim 3.7. (a) The ordering (e∗1, . . . , e
∗
n) induces an ordered partition of E of

the form

(L1, A1, B1, R1, L2, A2, B2, R2, . . . , Lt, At, Bt, Rt),

where for each j ∈ [t], Lj ⊆ Lx, Aj ⊆ LG, Bj ⊆ RG and Rj ⊆ Rx. Moreover, for
each u, v ∈ V , luv ∈ Lj ∪ Aj iff ruv ∈ Bj ∪ Rj.

(b) For the ordered partition in (a), we have for each j ∈ [t],

Aj ∪ Bj ⊆ clM (
⋃

i≤j

Li) − clM (
⋃

i<j

Li).

The crucial property of (e∗1, . . . , e
∗
n) is the following.



MATROID PATHWIDTH AND CODE TRELLIS COMPLEXITY 11

Lemma 3.8. If (e∗1, . . . , e
∗
n) is the output of the Re-ordering Algorithm in response

to the input (e1, . . . , en), then wM (e∗1, . . . , e
∗
n) ≤ wM (e1, . . . , en).

Proof. Steps 0–1 of the algorithm go through n iterations, indexed by j ∈
{0, 1, . . . , n − 1}. In the jth iteration, Step 1 is given a normal ordering (e1, . . . , en),
in response to which it produces an ordering (e′1, . . . , e

′
n), which is also normal. To

prove the lemma, it is enough to show that wM (e′1, . . . , e
′
n) ≤ wM (e1, . . . , en).

So, suppose that the algorithm is in its jth iteration (0 ≤ j ≤ n − 1). We first
dispose of the case when Xj 6= ∅. Then,

(e′1, . . . , e
′
n) = (e1, . . . , ej , em, ej+1, . . . , em−1, em+1, . . . , en)

for some m > j such that em ∈ Xj . Observe that if 1 ≤ s ≤ j or if m ≤ s ≤
n, then (e′1, . . . , e

′
s) is just a re-ordering of (e1, . . . , es), and hence λM (e′1, . . . , e

′
s) =

λM (e1, . . . , es).
So, consider j < s < m. In this case, (e′1, . . . , e

′
s) = (e1, . . . , ej , em, ej+1, . . . , es−1).

Since em ∈ clM (e1, . . . , ej), we have rM (e′1, . . . , e
′
s) = rM (e1, . . . , ej , ej+1, . . . , es−1).

On the other hand,

rM (e′s+1, . . . , e
′
n) = rM (es, . . . , em−1, em+1, . . . , en)

≤ rM (es, . . . , em−1, em, em+1, . . . , en). (4)

Hence, λ(e′1, . . . , e
′
s) ≤ λ(e1, . . . , es−1). Therefore, for any s ∈ [n], we have shown

that there exists a t ∈ [n] such that λ(e′1, . . . , e
′
s) ≤ λ(e1, . . . , et). It follows that

wM (e′1, . . . , e
′
n) ≤ wM (e1, . . . , en).

We must now deal with the case when Xj = ∅, i.e., clM (e1, . . . , ej) = {e1, . . . , ej}.
Note that if Lx ⊆ {e1, . . . , ej}, then since clM (Lx) = E, we have clM (e1, . . . , ej) = E.
Therefore, {e1, . . . , ej} = E, which means that j = n, a contradiction. Therefore,
there must exist some m > j such that em ∈ Lx.

Let k∗ be the least integer k > j such that there exists em ∈ Lx ∩ clM (e1, . . . , ek)
for some m > j. By choice of k∗, we have m ≥ k∗. For this m, we again have

(e′1, . . . , e
′
n) = (e1, . . . , ej , em, ej+1, . . . , em−1, em+1, . . . , en).

As before, if 1 ≤ s ≤ j or if m ≤ s ≤ n, then λM (e′1, . . . , e
′
s) = λM (e1, . . . , es). For

k∗ < s < m, we have

rM (e′1, . . . , e
′
s) = rM (e1, . . . , ej , em, ej+1, . . . , es−1) = rM (e1, . . . , ej , ej+1, . . . , es−1),

as em ∈ clM (e1, . . . , ek∗) ⊆ clM (e1, . . . , es−1). And as in (4), rM (e′s+1, . . . , e
′
n) ≤

rM (es, . . . , en). Hence, λ(e′1, . . . , e
′
s) ≤ λ(e1, . . . , es−1).

We are left with j+1 ≤ s ≤ k∗. Note that by choice of k∗, em /∈ clM (e1, . . . , es−1).
Therefore,

rM (e′1, . . . , e
′
s) = rM (e1, . . . , ej , em, ej+1, . . . , es−1)

= 1 + rM (e1, . . . , ej , ej+1, . . . , es−1),

Since (4) again applies, we have that

λM (e′1, . . . , e
′
s) ≤ 1 + λM (e1, . . . , es−1). (5)
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Observe that, since ej+1 /∈ clM (e1, . . . , ej), by Lemma 3.6(a),

λM (e1, . . . , ej+1) = λM (e1, . . . , ej) + 1. (6)

Furthermore, by choice of k∗, em /∈ clM (e1, . . . , ek∗−1), but em ∈ clM (e1, . . . , ek∗),
which together imply that ek∗ /∈ clM (e1, . . . , ek∗−1). Hence, again by Lemma 3.6(a),

λM (e1, . . . , ek∗) = λM (e1, . . . , ek∗−1) + 1. (7)

Therefore, from (5)–(7), we find that for s = j+1 or s = k∗, we have λM (e′1, . . . , e
′
s) ≤

λM (e1, . . . , es).
We claim that for j + 1 < s < k∗, we have λM (e1, . . . , es−1) ≤ λM (e1, . . . , es),

so that by induction, λM (e1, . . . , es−1) ≤ λM (e1, . . . , ek∗−1). This would then imply,
via (5) and (7), that λM (e′1, . . . , e

′
s) ≤ λM (e1, . . . , ek∗). Thus, for any s ∈ [n], we

have a t ∈ [n] such that λ(e′1, . . . , e
′
s) ≤ λ(e1, . . . , et). Therefore, wM (e′1, . . . , e

′
n) ≤

wM (e1, . . . , en), which would complete the proof of the lemma.
To prove our claim, it is enough to show that when j + 1 < s < k∗, we have es ∈

clM (es+1, . . . , en). Indeed, it then follows from Lemma 3.6(b) that λM (e1, . . . , es) ≥
λM (e1, . . . , es−1). So, suppose that es /∈ clM (es+1, . . . , en) for some j + 1 < s < k∗.
Then, es = ruv for some u, v ∈ V . (Otherwise, if es = luv, then since ruv > luv,
we would have es ∈ clM (es+1, . . . , en).) Note that luv /∈ {e1, . . . , ej}; otherwise,
the fact that {e1, . . . , ej} is a flat of M would imply that ruv ∈ {e1, . . . , ej}. So,
luv ∈ {ej+1, . . . , es−1}.

Suppose that es = rxv for some v ∈ V . Then, lxv ∈ {ej+1, . . . , es−1}, which
contradicts the choice of k∗. Therefore, es /∈ Rx, meaning that es = ruv for some
u, v ∈ V .

Now, if lxu, lxv ∈ {es+1, . . . , en}, then es ∈ clM (es+1, . . . , en), as (lxu, lxv, ruv) is
a triangle in G. So, without loss of generality, lxu /∈ {es+1, . . . , en}. By choice of k∗,
lxu /∈ {ej+1, . . . , es}. Therefore, lxu ∈ {e1, . . . , ej}. But now, lxv ∈ clM (e1, . . . , es−1),
as (lxu, luv, lxv) is a triangle in G. However, lxv /∈ {e1, . . . , ej}; otherwise, we would
have lxu, lxv ∈ {e1, . . . , ej}, which, since {e1, . . . , ej} is a flat and (lxu, luv, lxv) is a
triangle, would imply that luv ∈ {e1, . . . , ej}. Thus, lxv = em∗ for some m∗ > j.
As already noted, lxv ∈ clM (e1, . . . , es−1), and so once again, our choice of k∗ is
contradicted.

Therefore, our assumption that es /∈ clM (es+1, . . . , en) always leads to a contra-
diction, from which we conclude that the assumption is false. This completes the
proof of the lemma.

We can now furnish the last remaining piece of the proof of Proposition 3.1.

Lemma 3.9. pw(M) ≥ pw(G).

Proof. Let (e1, . . . , en) be an optimal ordering of E. Without loss of generality,
(e1, . . . , en) may be assumed to be normal. Let (e∗1, . . . , e

∗
n) be the output of the Re-

ordering Algorithm in the response to the input (e1, . . . , en). Then, (e∗1, . . . , e
∗
n) has

the properties listed in Claim 3.7, and, by Lemma 3.8, is also an optimal ordering of
E.

Now, (e∗1, . . . , e
∗
n) induces an ordered partition (L1, A1, B1, R1, . . . , Lt, At, Bt, Rt)

of E, as in Claim 3.7(a). For j ∈ [t], define Yj =
⋃

i<j(Li ∪Ai ∪Bi ∪Ri)∪ (Lj ∪Aj),

and Y ′
j = E−Yj =

⋃
i>j(Li∪Ai∪Bi∪Ri)∪(Bj∪Rj). Letting G[Yj ] and G[Y ′

j ] denote

the subgraphs of G induced by Yj and Y ′
j , respectively, set Vj = V (G[Yj ])∩ V (G[Y ′

j ]).



MATROID PATHWIDTH AND CODE TRELLIS COMPLEXITY 13

In other words, Vj is the set of vertices common to both G[Yj ] and G[Y ′
j ]. It is easily

checked that V = (V1, . . . , Vt) is a path-decomposition of G. Note that

|Vj | = |V (G[Yj ])| + |V (G[Y ′
j ])| − |V |.

We next observe that G[Yj ] and G[Y ′
j ] are connected graphs. From Claim 3.7(b),

we have that Yj ⊆ clM (
⋃

i≤j Li). Therefore, for any edge luv (or ruv) in Yj −
⋃

i≤j Li,

both lxu and lxv must be in some Li, i ≤ j. Thus, in G[Yj ], each vertex v 6= x is
adjacent to x, which shows that G[Yj ] is connected.

Consider any vertex v 6= x in G[Y ′
j ], such that rxv /∈ Y ′

j . Then, ruv ∈ Y ′
j for

some u 6= x. So, ruv ∈ Bk for some k ≥ j. By Claim 3.7(b), ruv ∈ clM (
⋃

i≤k Li) −
clM (

⋃
i<k Li). This implies that either lxu ∈ Lk or lxv ∈ Lk. Hence, either rxu ∈ Rk

or rxv ∈ Rk. However, rxv cannot be in Rk, since rxv /∈ Y ′
j , and so, rxu ∈ Rk. Thus,

(rxu, ruv) forms a path in G[Y ′
j ] from x to v. It follows that G[Y ′

j ] is connected.
Therefore,

λM (Yj) = rM (Yj) + rM (Y ′
j ) − rM (E)

= (|V (G[Yj ])| − 1) + (|V (G[Y ′
j ])| − 1) − (V − 1) = |Vj | − 1.

Hence,

pw(M) = wM (e∗1, . . . , e
∗
n) ≥ max

j∈[t]
λM (Yj) = max

j∈[t]
|Vj | − 1 = wG(V) ≥ pw(G),

which proves the lemma.

The proof of Proposition 3.1 is now complete.

4. Matroids of Bounded Pathwidth. Theorem 3.2 shows that the following
decision problem is NP-complete.

Problem: Matroid Pathwidth

Let F be a fixed field.

Instance: An m × n matrix A over F, and an integer w > 0.
Question: Is there an ordering (e1, . . . , en) of the elements of M = M [A],

such that wM (e1, . . . , en) ≤ w?

Similarly, Corollary 3.3 shows that the corresponding decision problem for code trellis-
width (over a fixed finite field F) is NP-complete.

In this section, we consider the situation when the parameter w above is a fixed
constant, and therefore, not considered to be part of the problem instance. In con-
trast to the NP-completeness of Matroid Pathwidth, we believe that the following
decision problem and its coding-theoretic counterpart are solvable in polynomial time.

Problem: Weak Matroid Pathwidth

Let Fq = GF (q) be a fixed finite field, and w a fixed positive integer.

Instance: An m × n matrix A over Fq.
Question: Is there an ordering (e1, . . . , en) of the elements of M = M [A],

such that wM (e1, . . . , en) ≤ w?

Our optimism above stems from the fact that the property of having pathwidth
bounded by w is preserved by the minors of a matroid. To be precise, let Pw,q be
the class of matroids representable over the finite field Fq = GF (q), that have path-
width at most w. By Lemma 2.1, Pw,q is minor-closed. Since pathwidth is an upper
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bound on the branchwidth of a matroid, all matroids in Pw,q have branchwidth at
most w. Now, Geelen and Whittle have shown that if M is any minor-closed class of
Fq-representable matroids having bounded branchwidth, then M has finitely many
excluded minors [8, Theorem 1.4]. As a result, we have the following theorem.

Theorem 4.1. For any integer w > 0 and finite field Fq, Pw,q has finitely many
excluded minors. Consequently, the code family

C(Pw,q) = {C : C is a linear code over Fq such that tw(C) ≤ w}.

also has finitely many excluded minors.

Theorem 4.1 shows that deciding whether or not a given Fq-representable matroid
M belongs to Pw,q can be accomplished by testing whether or not M contains as a
minor one of the finitely many excluded minors of Pw,q. The Minor-Recognition Con-
jecture of Geelen, Gerards and Whittle [6, Conjecture 1.3] states that, for any fixed
Fq-representable matroid N , testing a given Fq-representable matroid for the presence
of an N -minor can be done in polynomial time. So, if this conjecture is true — and
there is evidence to support its validity [6] — then membership of an Fq-representable
matroid in the class Pw,q can be decided in polynomial time. Hence, assuming the va-
lidity of the Minor-Recognition Conjecture, Weak Matroid Pathwidth is solvable
in polynomial time.

While the finiteness of the list of excluded minors for Pw,q implies, modulo
the Minor-Recognition Conjecture, the existence of a polynomial-time algorithm for
Weak Matroid Pathwidth, an actual implementation of such an algorithm would
require the explicit determination of the excluded minors. As a relatively easy exer-
cise, we prove the following theorem.

Theorem 4.2. A matroid is in P1,q iff it contains no minor isomorphic to any
of the matroids U2,4, M(K4), M(K2,3) and M∗(K2,3).

We first verify the easy “only if” part of the above theorem.

Proposition 4.3. U2,4, M(K4), M(K2,3) and M∗(K2,3) are not in P1,q.

Proof. If (e1, e2, e3, e4) is any ordering of the elements of M = U2,4, then
λM (e1, e2) = rM (e1, e2) + rM (e3, e4) − rank(M) = 2 + 2 − 2 = 2. It follows that
pw(U2,4) = 2.

Now consider M = M(K4). For any ordering (e1, . . . , e6) of E(K4), we have
rM (e1, e2, e3) ≥ 2, with equality iff {e1, e2, e3} is a triangle, in which case {e4, e5, e6}
is a triad. It follows that rM (e1, e2, e3) + rM (e4, e5, e6) ≥ 5. Hence, wM (e1, . . . , e6) ≥
λM (e1, e2, e3) ≥ 2.

The proof for M = M(K2,3) is very similar. For any J ⊆ E(K2,3) with |J | = 3,
rM (J) = 3, since K2,3 has no circuits of size less than 4. Therefore, for any order-
ing (e1, . . . , e6) of E(K2,3), wM (e1, . . . , e6) ≥ λM (e1, e2, e3) = 3 + 3 − 4 = 2. Thus,
pw(M(K2,3)) ≥ 2, and by duality, pw(M∗(K2,3)) ≥ 2 as well.

We now prove the “if” part of Theorem 4.2. For the duration of the proof, we
take M to be a matroid that contains no minor isomorphic to the matroids listed
in the statement of the theorem. Since M(K4) is a minor of each of the matroids
F7, F ∗

7 , M(K5), M∗(K5), M(K3,3) and M∗(K3,3), M contains none of these as mi-
nors. Therefore, M = M(G) for some planar graph G (cf. [15, Theorem 13.3.1 and
Proposition 5.2.6]). Evidently, we may take G to be connected as a graph.
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...

Fig. 4. An “umbrella” graph. A dotted line between a pair of vertices represents zero or more

parallel edges between them.

Since P1,q is closed under direct sums, we may assume that M is 2-connected.
Therefore, G is either a graph consisting of a single vertex with a self-loop incident
with it, or G is a loopless graph. In the former case, M ∼= U0,1, which is in P1,q. So,
we may assume that G is loopless. If G has exactly two vertices, then M ∼= U1,n for
some n, which is also in P1,q. Hence, we may assume that |V (G)| ≥ 3, in which case,
G is 2-connected as a graph [15, Corollary 8.2.2]. Moreover, if G∗ is any geometric
dual of G, then, since M∗ = M(G∗) is 2-connected, by the same argument as above,
we may assume that G∗ is also 2-connected as a graph.

At this point, we need the following definition. We call a graph an umbrella if it
is of the form shown in Figure 4. Formally, an umbrella is a graph H that consists
of a circuit on m + 1 vertices u0, u1, . . . , um, and in addition, for each i ∈ [m], zero
or more parallel edges between u0 and ui. Note that H − u0 is a simple path, where
H − u0 denotes the graph obtained from H by deleting the vertex u0 and all edges
incident with it.

Returning to our proof, we have M = M(G) for a loopless, 2-connected, planar
graph G, such that any geometric dual of G is also 2-connected.

Lemma 4.4. G has a geometric dual G∗ that is isomorphic to an umbrella.

We prove the lemma using the concept of an outerplanar graph. A planar graph
is said to be outerplanar if it has a planar embedding in which every vertex lies on
the exterior (unbounded) face. We will refer to such a planar embedding of the graph
as an outerplanar embedding. Outerplanar graphs were characterized by Chartrand
and Harary [3] as graphs that do not contain K4 or K2,3 as a minor.

Proof of Lemma 4.4: Since M(G) contains no M(K4)- or M(K2,3)-minor, G can-
not contain K4 or K2,3 as a minor. Therefore, by the Chartrand-Harary result men-
tioned above, G is outerplanar. Let G∗ be the geometric dual of an outerplanar
embedding of G.

Let x be the vertex of G∗ corresponding to the exterior face of the outerplanar
embedding of G. By a result of Fleischner et al. [4, Theorem 1], G∗ − x is a forest. In
fact, since G∗ is 2-connected, G∗ − x is a tree.

We claim that no vertex of G∗−x has degree greater than two, and hence, G∗−x
is a simple path. Indeed, suppose that G∗ − x has a vertex u adjacent to three other
vertices v1, v2, v3. Since G∗ is 2-connected, there are paths π1, π2 and π3 in G∗ from
v1, v2 and v3, respectively, to x that do not pass through u. Also, since G∗ − x is a
tree, these paths must be internally disjoint in G∗. The graph G∗ thus has a subgraph
as depicted in Figure 5. But this subgraph is obviously contractible to K2,3, and
hence G∗ has K2,3 as a minor. However, this is impossible, as M∗ = M(G∗) does not
have M(K2,3) as a minor.

Thus, G∗ − x is a simple path. The two degree-one vertices (end-points) of this
path must be adjacent to x in G∗; otherwise, G∗ is not 2-connected. It follows that
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Fig. 5. If G∗ − x has a vertex of degree at least 3, then G∗ has a K2,3 minor.

G∗ is isomorphic to an umbrella.

To complete the proof of Theorem 4.2, we show that M(G∗) ∈ P1,q, so that by
duality, M = M∗(G∗) ∈ P1,q. This is done by the following lemma.

Lemma 4.5. If H is an umbrella, then M(H) ∈ P1,q.
Proof. Let H be an umbrella on m + 1 vertices u0, u1, . . . , um, where u0 is the

vertex such that H −{u0} is a simple path. For i ∈ [m], let Ei denote the set of edges
between u0 and ui. Also, for j ∈ [m− 1], let ej denote the edge between uj and uj+1.
Consider any ordering of the edges of H that induces the ordered partition

(E1, e1, E2, e2, . . . , Em−1, em−1, Em).

Let J =
(⋃j−1

i=1 (Ei ∪ {ei})
)
∪ X, with X ⊆ Ej (X may be empty). Note that

the subgraph, H[J ], of H induced by the edges in J is incident only with vertices
in {u0, u1, . . . , uj}. Therefore, setting M = M(H), rM (J) = |V (H[J ])| − 1 ≤ j.
Similarly, the subgraph of H induced by the edges in E(H)− J is incident only with
vertices in {uj , uj+1, . . . , um, u0}, and so, rM (E(H) − J) ≤ m − j + 1.

Thus, λM (J) ≤ j + (m − j + 1) − m = 1, and it follows that pw(M) ≤ 1. Being
graphic, M is Fq-representable, and hence, M ∈ P1,q.

This completes the proof of Theorem 4.2.

As a corollary to the theorem, we give a coding-theoretic characterization of the
code family C(P1,q). In coding theory, an Fq-representation of a uniform matroid
is called a maximum-distance separable (MDS) code. For any field Fq, the matrices
G4, G2,3 and G∗

2,3 below are Fq-representations of M(K4), M(K2,3) and M∗(K2,3),
respectively.

G4 =




1 0 0 1 0 −1
0 1 0 1 1 −1
0 0 1 0 1 −1


 ;

G2,3 =




1 0 0 0 −1 −1
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 1 1 1


 ; G∗

2,3 =

[
1 −1 0 −1 1 0
1 0 −1 −1 0 1

]
.

The matroids M(K4), M(K2,3) and M∗(K2,3), being binary, are uniquely repre-
sentable over Fq, in the matroid-theoretic sense [15, Section 6.3 and Theorem 10.1.3].
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Fig. 6. Some of the planar graphs whose cycle matroids are excluded minors for P2,q.

We let C(K4), C(K2,3) and C(K2,3)
⊥ denote the codes over Fq generated by the ma-

trices G4, G2,3 and G∗
2,3, respectively.

Corollary 4.6. Let Fq be an arbitrary finite field. A linear code C over Fq has
trellis-width at most one iff it contains no minor equivalent to any of the following:

(i) a [4, 2] MDS code;
(ii) a code obtainable by applying an automorphism of Fq to one of the codes

C(K4), C(K2,3) and C(K2,3)
⊥.

The problem of finding the complete set of excluded minors for Pw,q quickly be-
comes difficult for w > 1. The main obstacle is that we may only assume the basic
property of 2-connectedness for such excluded minors. The class Pw,q is not even
closed under 2-sums, so excluded minors for the class need not be 3-connected. An
illustration of this is given by the following result, which provides a partial list of
excluded minors for P2,q.

Proposition 4.7. For any finite field Fq, the matroids F7, F ∗
7 , M(K5), M∗(K5),

M(K3,3), M∗(K3,3), and M(G), where G is any of the planar graphs in Figure 6, are
excluded minors for P2,q. If q ≥ 4, then U3,6 is also an excluded minor for P2,q.

We omit the proof, as it is only a matter of verifying that for each matroid M
listed in the proposition, M /∈ P2,q, but M \e,M/e ∈ P2,q for any e ∈ E(M). We
point out that the cycle matroids of all but the three leftmost graphs in Figure 6 are
not 3-connected.
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