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Abstract— A generating function method is developed in order
to select synchronization markers that maximize the timing
span of period-2 periodic prefix-synchronized (PPS) sync-timing
coding with small delay. Sync-timing codes are used in situations
where conventional data synchronization is required, and data
time stamps or time indices are also needed. A PPS code is a sync-
timing code in which each encoded block of data is preceded by
a synchronization marker, with the markers preceding successive
blocks forming a periodic sequence with some period p. Since
only PPS codes with small periods can have good rates at small
delays, and since codes with p = 1 are simply Gilbert’s prefix-
synchronized codes which have been studied previously in the
literature, this paper focuses on p = 2 codes. The generating
function method, which extends that used by Guibas and Odlyzko
to analyze p = 1 codes, enables one to find PPS codes with the
largest possible timing span among codes with a given delay and
rate. It is found that at low delays such optimized PPS codes
offer significant advantages over cascaded and natural marker
PPS codes. They also compare favorably with embedded-index
codes. Finally, for asymptotically large delays, it is shown that
the best p = 2 PPS codes operate at approximately the same rate
and delay, but twice the timing span, of the best p = 1 codes.

Index Terms— generating functions, periodic prefix-
synchronized codes, prefix-synchronized codes, Shannon
capacity

I. INTRODUCTION

Periodic prefix-synchronized (PPS) codes were introduced
in [5]–[8] as a family of synchronization with timing codes,
or sync-timing codes for short. Sync-timing codes perform
two tasks. The first is that of conventional synchronization
[11],[12] namely, to encode data with bits in such a way
that when decoding begins in the middle of the encoded bit
stream or when the encoded bits are corrupted by insertion,
deletion or substitution errors, the decoder synchronizes and
begins producing correct data symbols as soon as possible.
The second task, which distinguishes sync-timing codes, is
to encode the data so that after synchronizing, the decoder
produces an estimate of the time index of each decoded
symbol. More specifically, it produces the true time index
modulo some integer T , called the timing span of the sync-
timing code. The performance of a sync-timing code is
quantified by its coding rate R, which is the number of
information symbols per encoded bit, its resynchronization
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Fig. 1. A fragment of the encoded bitstream for PPS codes.

delay D, which is the required number of correctly received
bits until resynchronization is guaranteed to occur, and its
timing span T . Large rate (small redundancy), small delay
and large timing span are desired. The attainable (R,D, T )
triples form a capacity region, whose boundary is described
by a function T (r, d) giving the largest timing span attainable
by sync-timing codes with rate at least r and delay at most
d. In our work, we tend to fix a constraint on the rate, e.g.
R = .9, and examine how timing span T grows as delay D is
permitted to increase.

As in [5], to simplify discussion we assume that the data
source produces binary symbols, i.e. bits. A (p,m, n) PPS
code is a binary block code characterized by a period p,
synchronizing markers M1, . . . ,Mp, which are distinct binary
sequences each of length m, and codewords of length n.
Specifically, corresponding to each marker Mi, there is a
codebook Ci containing 2ki binary sequences (codewords)
of length n, all of which have Mi as a prefix. Moreover,
the codebooks are chosen so that when any codeword from
Ci is followed by any from Ci+1, no marker appears at
any place except at the beginning of each codeword. Here,
Cp+1 is to be interpreted as C1. Encoding takes place by
first parsing the sequence of data bits into blocks of length
K =

∑p
i=1 ki, and then in each block of length K, the first

k1 bits are encoded by a codeword from C1, the next k2 bits
are encoded by one from C2, and so on until the last kp bits
are encoded by a codeword from Cp (see Figure 1). Observe
that the markers and codebooks are specifically designed to
ensure that the markers are distinctly recognizable in any
encoded sequence (no marker may appear in the code stream
other than at the beginning of codewords), which allows
the decoder to resynchronize in the event of errors. A PPS
code with markers M1 = 000, M2 = 111, and codebooks
C1 = {0001100, 0001010}, C2 = {1110011, 1110101}, is an
example of a (2, 3, 7) code.

The decoder operates as follows: it starts by looking for the
first occurrence of a marker in the received binary sequence.
If the first marker found is Mi, and this marker along with
the n − m subsequent received bits forms a codeword from
Ci, then the decoder outputs the ki data bits encoded by this
codeword. To these ki data bits, it assigns the time indices
k + 1, k + 2, . . . , k + ki, where k =

∑i−1
j=0 kj , defining k0 to
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be 0. As result the index assigned to each decoded data bit is
an estimate of the true time index modulo the integer K, which
we call the timing span of the code. The decoder then begins
another round of decoding by looking for the next marker. On
the other hand, if the n − m bits following the marker Mi

do not form a part of a codeword from Ci, then the decoder
outputs nothing and renews its search for a marker, starting
at the second bit of Mi. A more detailed description of the
encoding and decoding of PPS codes can be found in [5].

The rate of the code is R = K/N , since each block of K
data bits is encoded into N = pn coded bits, the delay of the
code is D = n, because the decoder must wait for at most n
error-free bits to arrive until it sees a marker, and as mentioned
earlier, the timing span is T = K = NR = pDR.

When p = 1, PPS codes reduce to prefix-synchronized
codes, first studied by Gilbert [2] who analyzed their rate
vs. blocklength. Further analysis was undertaken by Guibas
and Odlyzko [3], and systematic encoding procedures were
developed by Morita et al [10].

PPS codes are thus a generalization of Gilbert’s prefix-
synchronized codes. A generalization of Gilbert’s codes in a
different direction was considered recently by Wijngaarden
and Morita [13]. Their partial-prefix synchronizable codes
use a single distinguished marker that must appear at regular
intervals in the encoded bitsream, but this marker is not
required to appear as a contiguous subsequence of the encoded
bitstream. The authors show that their codes are better than
Gilbert’s codes in terms of rate. It is very probable that the
idea of allowing the markers to be non-contiguous strings can
be used to improve the performance of PPS codes as well, but
we do not pursue that idea in this paper.

The formula T = pDR indicates that timing span for PPS
codes increases with period p, provided that it remains possible
to have codes with delay D and rate R. Thus, they may
offer substantially larger timing span than prefix-synchronized
codes or partial-prefix synchronizable codes. Clearly, given
constraints r on rate and d on delay, the timing span is
maximized by the largest value p for which there exists a
period-p PPS code with rate at least r and delay at most d.

Previous work of the authors [5] established the following
upper bound to the timing span attainable by PPS codes with
rate at least r and delay at most d:

T (r, d) ≤ 2d(1−r)+log
2

d. (1)

It was also shown that for a rate constraint r and large
values of the delay constraint d, a structured family of PPS
codes, called cascaded codes, can have timing span at least
as large as 2d(1−r)+o(d), where o(d) denotes a quantity such
that o(d)/d → 0 as d → ∞. Comparing this with the
upper bound (1) reveals that cascaded codes have timing
span increasing exponentially with delay, with asymptotically
optimal exponent. Note that when delay is constrained to be
small, the previous work shows how to compute the maximum
timing span of cascaded codes for a given rate constraint, but
it does not indicate how close these codes are to being optimal,
in the sense of having the largest possible timing span among
all PPS codes at that rate. This is the main topic of the present
paper. In other words, we seek to optimize PPS codes with

small delay and to compare the resulting performance to that
of cascaded codes. We also compare the optimized PPS codes
to embedded-index sync-timing codes, which is another family
of sync-timing codes introduced in [5] that attains somewhat
better performance than PPS codes, at the expense of greater
encoding and decoding complexity. It must be pointed out
that this paper is primarily concerned with determining the
performance achievable by PPS codes, measured in terms of
their rate, delay and timing span, and does not discuss the
issue of the complexity of their implementation.

To optimize PPS codes with small delay, one must consider
codes with small periods, because they are the only ones with
the potential for small delay. To clarify the situation, let us fix
a rate constraint r; let D(p, r) denote the least delay of PPS
codes with period p and rate at least r; and let us assume that,
as usually happens, D(p+1, r) > D(p, r) for small values of
p and typical values of r. Defining TPPS(r, d) to be the largest
possible timing span of a PPS code with rate at least r and
delay at most d, we see that when 0 < d < D(1, r), there are
no PPS codes with delay at most d, and hence TPPS(r, d) = 0.
When D(1, r) ≤ d < D(2, r), the only PPS codes with delay
at most d are those with period one, i.e. prefix-synchronized
codes, and so TPPS(r, d) ≈ rd. When D(2, r) ≤ d < D(3, r),
there are PPS codes with periods one and two, and the latter
give the largest timing span, implying TPPS(r, d) ≈ 2rd, and
so on for larger values of p. In general, to find the largest
possible timing span attainable with a small delay constraint
d, one needs to find D(p, r) for small values of p. This, in
turn, is accomplished by finding the function R(p, n), defined
to be the largest rate of PPS codes with period p and delay
D = n. Then

D(p, r) = min{n : R(p, n) ≥ r} (2)

and

TPPS(r, d) ≈ prd, for D(p, r) ≤ d < D(p + 1, r) . (3)

With the above as motivation, in this paper we focus
primarily on PPS codes with period p = 2. We need to find
R(2, n), and to do this, in Section II, we use a generating
function method developed by Guibas and Odlyzko [3], [4]
to analyze the rate R̂(M1,M2, n), which is the largest rate
attainable by a PPS code with period 2, codeword length n
and markers M1,M2.

The results of the generating function analysis of period-
2 PPS codes are given in Section III, where we show the
rates attainable for various choices of m, n and marker pairs,
and where we compare the rates, delays and timing spans
attainable with those for other types of codes. For example, the
least delays of various sync-timing codes with period p = 2
and rate r = 0.9 are shown in Table I. It is interesting to see
from this table that optimal PPS codes are as good as prefix-
synchronized embedded-index codes [5]. While not as good
as comma-free embedded-index codes, they are considerably
simpler to decode. They are, however, better than cascaded
codes. Indeed, the reduction of the least delay from 120 for
cascaded codes to 90 for optimal period-2 PPS codes means
that for delay constraints between 90 and 119, optimal codes
permit a doubling of the timing span (they can operate with
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TABLE I
LEAST DELAYS OF SYNC-TIMING CODES WITH PERIOD 2 AND RATE AT

LEAST 0.9.

PPS Codes embedded-index codes
cascaded optimal prefix-sync comma-free

120 90 90 80

p = 2 whereas cascaded codes are infeasible and so prefix-
synchronized codes (p = 1) would have to be used instead).

It was shown by Gilbert [2] that when m is fixed, for all
sufficiently large n, the all-ones marker 1m yields a prefix-
synchronized code with the largest rate among all (1,m, n)
codes. It is natural, then, to seek the best choice of markers
for PPS codes with period p = 2. Examination of the pairs of
markers found to yield the largest rates suggests the conjecture
that for a given marker length m and all sufficiently large n,
rate R̂(M1,M2, n) is maximized by the marker pairs (0m, 1m)
and (〈01〉m, 〈10〉m), where the first pair contains the two
constant sequences (m 1’s and m 0’s) and the second pair
contains the two complementary sequences with alternating 0’s
and 1’s. This conjecture is essentially proved in [9], where it
is shown that given m, for all sufficiently large n, one or both
of the aforementioned marker pairs maximizes rate. Indeed,
we show here that for most values of n, R̂(0m, 1m, n) =
R̂(〈01〉m, 〈10〉m, n).

For prefix-synchronized codes with codewords of length n
and no constraint on the marker length, it was conjectured by
Gilbert [2] and proved by Guibas and Odlyzko [3] that the
marker that maximizes rate has the form 1m0 for some value
of m. For period-2 PPS codes, while the general form of the
best pair of markers is unknown, we provide in Table III a list
of the best marker pairs for various values of n.

Asymptotic results for period-2 PPS codes are discussed in
Section IV, and comparisons are drawn with the previously-
known asymptotic results for period-1 codes, i.e. prefix-
synchronized codes. The generating function approach of
Guibas and Odlyzko [3],[4] shows that as codeword length
n tends to infinity, the rates of prefix-synchronized codes with
marker M converge to the Shannon capacity, H(M), of the
constrained system that forbids M . (H(M) is defined to be
limn→∞ n−1 log2 qM (n), where qM (n) denotes the number
of sequences of length n that do not contain M .) The above
facts, along with the well-known fact [1] that H(1m) =
log2 ρm, ρm being the largest real root of the polynomial
zm−zm−1−. . .−1, show that log2 ρm is the limit of the largest
rate of prefix-synchronized codes with markers of length m.

For codes with period 2, the situation is more complex.
While it is true that for arbitrary markers M1,M2, the rate
R̂(M1,M2, n) does approach a limit as n increases, this
limit need not always be equal to the Shannon capacity,
H(M1,M2), of the constrained system that forbids M1,M2.
The exact relationship, derived in [9] and summarized in
Section IV, does however show that for the best marker
pairs, (0m, 1m) and (〈01〉m, 〈10〉m), the limiting rate equals
the corresponding Shannon capacity. This, along with the
fact proved in [9] that H(0m, 1m) = H(〈01〉m, 〈10〉m) =
log2 ρm−1, implies that the maximum rate of a (2,m, n) PPS

code converges, as n goes to infinity, to a limit, which is
log2 ρm−1. In Theorem 3, we use the generating function
of Section II to directly show that both R̂(0m, 1m, n) and
R̂(〈01〉m, 〈10〉m, n) converge towards log2 ρm−1 as n tends
to infinity. The convergence results for the maximum rates of
period-1 and period-2 codes imply that for sufficiently large
delays, there exist PPS codes with period 2 that operate at
roughly the same rates and delays as the best period-1 codes.
Thus, the timing spans provided by these period-2 codes are
roughly double that provided by the best period-1 codes.

While we restrict ourselves to the study of PPS codes
with period 2 in this paper, we do provide the necessary
tools for using the generating function approach to study
PPS codes with larger periods. In Appendix A, we present
a system of linear equations that can be solved to obtain a
generating function for the number of sequences satisfying
the requirements for inclusion in a codebook of a period-p
code with a given set of markers.

II. GENERATING FUNCTIONS

A. Gilbert’s Prefix-Synchronized Codes

As mentioned earlier, for p = 1, PPS codes are nothing but
the prefix-synchronized codes introduced by Gilbert in 1960
[2]. We shall refer to them as Gilbert’s prefix-synchronized
codes or GPS codes. Given a binary sequence M of length
m, and an integer n > m, let gM (n) be the number of binary
sequences that could be used as codewords in a GPS code with
codeword length n and marker M . Thus, defining R(1,m, n)
to be the maximum rate of a GPS code with marker length m
and codeword length n, we see that

R(1,m, n) = max
M

blog2 gM (n)c

n
(4)

the maximum being taken over all markers M of length m. As
mentioned earlier, Gilbert showed that if m is fixed, then for
all sufficiently large n, gM (n) is maximized by choosing M to
be 1m, the all-ones sequence of length m. Therefore, for any
m, if n is sufficiently large, R(1,m, n) = blog2 gM (n)c/n
with M = 1m.

The work of Gilbert, and subsequently, that of Guibas and
Odlyzko [3] contained methods for evaluating gM (n), for
any choice of M , using generating functions. In particular, it
follows from Guibas and Odlyzko’s results that for M = 1m

and n > m, gM (n) is the coefficient of z−n in the expansion
of

GM (z) =
(2 − z)zm−1

zm − zm−1 − . . . − z − 1
(5)

as GM (z) =
∑∞

n=0 vnz−n, i.e., vn = gM (n) for n > m.
For small values of m and n > m, one can find R(1,m, n)

by using the generating function method to compute gM (n)
for all length-m markers M , and then applying (4). Plots of
R(1,m, n), for m = 2, 3 are shown in Figure 2 (along with
other plots to be discussed later). The non-monotonicity of
R(1,m, n) is a consequence of the fact that the cardinality of
the codebook of a GPS code is constrained to be a power of
two, which manifests itself in the floor function used in the
expression for R(1,m, n) in (4).
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The generating function in (5) can be used to infer
the asymptotic limit of R(1,m, n). It is a well-known
fact (see e.g. [2],[15]) that for m ≥ 2, the polynomial
zm − zm−1 − . . . − z − 1 has m − 1 zeros within the
unit circle on the complex plane, and the remaining zero,
ρm, is real and lies in the interval (1,2). Thus, the largest
pole1 of GM (z) is simple, and hence it follows from the
theory of generating functions (cf. [14], Chapter 5) that
gM (n) = α (ρm)

n
(1 + o(1)). As a result, the following

theorem is an immediate consequence of the fact that for
all sufficiently large n, R(1,m, n) = blog2 gM (n)c/n with
M = 1m.

Theorem 1: For m ≥ 1,

lim
n→∞

R(1,m, n) = log2 ρm

where ρm is the zero of the polynomial zm−zm−1−. . .−z−1
that is largest in magnitude.

The fact that R(1,m, n) converges to log2 ρm as n increases
is illustrated in Figure 2, where log2 ρm is plotted as an
asymptote to R(1,m, n) for m = 2, 3.

In [15], it is also shown that ρm increases with m, and
that 2(1 − 2−m) < ρm < 2, from which it follows that
limm→∞ ρm = 2. Hence, limn→∞ R(1,m, n) is an increasing
function of m, whose limit as m → ∞ is 1. Thus, GPS codes
asymptotically introduce no redundancy.

Closely related to the rate of a prefix-synchronized code
with marker M is the notion of the Shannon capacity of the
constrained system of binary sequences that forbids M , which
is defined to be

H(M) = lim
n→∞

log2 qM (n)

n

where qM (n) is the number of binary sequences that do
not contain M as a contiguous subsequence. Guibas and
Odlyzko derived generating functions for both qM (n) and
gM (n) [3],[4], and it is easily seen that for any given M ,
both generating functions have the same set of poles. It then
follows from the theory of generating functions that for any
M ,

lim
n→∞

log2 gM (n)

n
= lim

n→∞

log2 qM (n)

n
= H(M) (6)

This fact, though seemingly obvious, does not actually extend
to PPS codes with period 2, as we shall see in Section IV.

B. PPS Codes with Period 2

Using a result of Guibas and Odlyzko in [4], we derive
a generating function for the number of sequences that are
allowable as codewords in a period-2 PPS code with a given
pair of markers M1,M2. This generating function will be used
in the remainder of the paper to analyze the performance of
period-2 PPS codes analogous to the analysis of GPS codes
summarized above.

1We need the largest pole here, instead of the smallest pole, because GM (z)
is defined as a power series in z−1.

The expression we derive for the generating function uses
the notion of the correlation A ◦ B between a pair of binary
strings A and B [3], [4]. This is itself a binary sequence of the
same length as A, whose ith bit (from the left) is determined
as follows: place B under A in such a way that the first bit
of B lies under the ith bit of A; if the segments that overlap
are identical, then the ith bit of A ◦ B is 1, else it is 0. Note
that the leading bit of A ◦ B can be 1 if and only if A is a
prefix of B, or B is a prefix of A. From this, it follows that
if A and B have the same length, then the first bit of A ◦ B
is a 1 if and only if A = B.

Example: Let A = 110001, B = 1000. Then, A◦B = 010001,
B ◦ A = 0000, A ◦ A = 100001, and B ◦ B = 1000.

If A ◦ B = (cn−1cn−2 . . . c0) is the correlation between
two sequences A and B, then we define the corresponding
correlation polynomial

φAB(z) =

n−1∑

i=0

ciz
i (7)

For A and B of the previous example, φAB(z) = z4 + 1,
φBA(z) = 0, φAA(z) = z5 + 1, and φBB(z) = z3.

Now, given distinct binary sequences A and B and an
integer k > 0, we define fAB(k) to be the number of binary
sequences of length k that begin with A and end with B, but do
not contain A or B anywhere else. Note that if C1 and C2 are
the two codebooks of a (2,m, n) code with markers M1 and
M2, then |C1| ≤ fM1M2

(m+n), |C2| ≤ fM2M1
(m+n), where

|Ci| denotes the cardinality of Ci. Thus, if R̂(M1,M2, n)
denotes the maximum rate achievable by a (2,m, n) code with
markers M1 and M2, then

R̂(M1,M2, n)

=
blog2 fM1M2

(m + n)c + blog2 fM2M1
(m + n)c

2n
(8)

We define R̂(M1,M2, n) to be 0 if there exists no (2,m, n)
code with markers M1 and M2.

The following theorem presents a generating function for
fAB(k) in the case when the sequences A and B have the
same length:

Theorem 2: Let A and B be distinct binary sequences of
length m. For k > m, fAB(k) is the coefficient of z−k in the
expansion of

FAB(z) =
1

z

(z − 2)φAB + 1

(z − 2)DAB + RAB
(9)

as FAB(z) =
∑∞

k=0 vkz−k, where DAB = φAAφBB −
φABφBA and RAB = φAA + φBB − φAB − φBA, the φ’s
being correlation polynomials as defined in (7).

Proof : Let X be the sequence obtained by deleting the first
bit of A. In other words, if A = (a1a2 . . . am), then X =
(a2 . . . am). For T ∈ {A,B} and k > 0, define hXT (k) to be
the number of binary sequences of length k that begin with
X , end with T , and do not contain A or B as a substring
except for the single instance of T at the end. Also, define
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hX(k) to be the number of binary sequence of length k that
begin with X and do not contain A or B as a substring. For
completeness, we define hXT (k) = hX(k) = 0 for k = 0. Let

HXT (z) =

∞∑

k=0

hXT (k)z−k, HX(z) =

∞∑

k=0

hX(k)z−k

It is clear from the definitions that for any k > m, fAT (k) =
hXT (k− 1). Thus, defining FAT (z) =

∑∞
k=1 fAT (k)z−k, we

find that
FAT (z) = z−1HXT (z) (10)

Applying Theorem 2.1 of [4] to the sequences X , A and
B, we find that the generating functions HXA, HXB and HX

satisfy the following system of linear equations2:

(z − 2)HX + zHXA + zHXB = z2−m

−HX + zφAAHXA + zφBAHXB = z2−mφXA

−HX + zφABHXA + zφBBHXB = z2−mφXB

the φ’s being correlation polynomials as defined in (7).
Eliminating HX from the above set of equations, we obtain

γAAHXA + γBAHXB = z1−mγXA

γABHXA + γBBHXB = z1−mγXB

where γ∗∗ = (z − 2)φ∗∗ + 1. Solving for HXB and plugging
into (10), we obtain

FAB(z) =
z−m(γAAγXB − γABγXA)

γAAγBB − γABγBA

The theorem now follows by simplifying the expression for
FAB(z) above using the facts that

φXA(z) = φAA(z) − zm−1, φXB(z) = φAB(z).

III. PERFORMANCE OF PERIOD-2 PPS CODES

For small values of m, it is practical to use Theorem 2
to exactly evaluate R(2,m, n), which is the maximum rate
achievable by a (2,m, n) PPS code, for any given integer n >
m. To be more specific, since

R(2,m, n)

= max{R̂(M1,M2, n) : M1,M2 ∈ {0, 1}
m

,M1 6= M2}

we can use (8) and (9) to maximize R̂(M1,M2, n) over all
pairs of markers M1 and M2 of length m.

In fact, we can reduce the number of marker pairs
to be considered by partitioning the set of all pairs
of length-m sequences into equivalence classes as fol-
lows: two pairs of length-m sequences (M1,M2) and
(M̃1, M̃2) are assigned to the same equivalence class
if {M1 ◦ M1,M2 ◦ M2} = {M̃1 ◦ M̃1, M̃2 ◦ M̃2} and
{M1 ◦ M2,M2 ◦ M1} = {M̃1 ◦ M̃2, M̃2 ◦ M̃1}. It easily fol-
lows from (8) and (9) that given an integer n > m, all marker
pairs (M1,M2) within the same equivalence class yield the

2There is a slight error in the statement of Theorem 2.1 in [4]: in the right-
hand sides of all but the first equation in (2.2), the expression z1−|H| should
actually be −z1−|X|.

same R̂(M1,M2, n). While the notation (M1,M2) is used to
denote a pair of markers, it must be emphasized that the actual
order of the markers within the pair is irrelevant, i.e., the pairs
(M1,M2) and (M2,M1) are considered to be one and the
same.

When m = 2, there are exactly three such equiva-
lence classes: {(00, 11)}, {(01, 10)} and {(00, 01), (11, 10),
(00, 10), (11, 01)}. Now, for all odd n > 2, there exists no
(2, 2, n) code with markers from the first class because there
is no binary sequence of odd length that begins with 00
and ends with 11, but does not contain 00 or 11 elsewhere.
So, with M1 = 00, M2 = 11, we have fM1M2

(k) =
fM2M1

(k) = 0, for all odd k. But for all even k > 2,
fM1M2

(k) = fM2M1
(k) = 1, because sequences of the form

001010 . . . 1011 (resp. 110101 . . . 0100) are the only even-
length sequences that can be counted by fM1M2

(k) (resp.
fM2M1

(k)). Therefore, we find that R̂(00, 11, n) = 0 for all n.
Next, with markers M1 and M2 from the second equivalence
class, the only sequences that can be counted by fM1M2

(k)
and fM2M1

(k) are 01k−20 and 10k−21, respectively, so that
fM1M2

(k) = fM2M1
(k) = 1 for all k > 2, which means that

R̂(01, 10, n) = 0 for all n. Finally, it can be easily verified that
for any n > 2, there does not exist a (2, 2, n) PPS code for
a marker pair chosen from the third equivalence class. Thus,
we see that R(2, 2, n) = 0 for all n > 2.

When m = 3, it turns out that there are eleven equivalence
classes. Table II lists R̂(M1,M2, n) values for a representative
marker pair (M1,M2) from seven of these classes, for a few
values of n. The remaining four equivalence classes are rep-
resented by the marker pairs (000,001), (001,011), (001,101)
and (001,110). It can easily be shown using Theorem 2 that
limn→∞ R̂(M1,M2, n) = 0 for any marker pair (M1,M2)
belonging to these four equivalence classes, and so they can
be ignored. Thus, we can find R(2, 3, n) by maximizing
R̂(M1,M2, n) over the seven equivalence classes listed in
Table II.

Observe that the data in Table II indicates that for L ≥ 10,
R(2, 3, 3+L) is achieved by codes with marker pairs from the
equivalence classes represented by (000, 010), (000, 111) and
(010, 101). Similarly, from numerical data for the m = 4 case,
it appears that the marker pairs (0000, 1111) and (0101, 1010)
achieve R(2, 4, n) for n ≥ 19. Also, data for m = 5 suggests
that for n large enough, R(2, 5, n) is achieved by the pairs
(00000, 11111) and (01010, 10101).

Based on these observations, it is reasonable to make
the conjecture, mentioned in the introduction, that given an
integer m ≥ 3, for all sufficiently large n, R(2,m, n) is
achieved by the marker pairs (0m, 1m) and (〈01〉m, 〈10〉m),
the former being the pair consisting of the all-zeros and all-
ones sequences, and the latter being the pair consisting of the
two complementary sequences with alternating 0’s and 1’s.
It is easily verified that these pairs are the only members
of their respective equivalence classes. This conjecture has
essentially been proved in [9], where it is shown that for
m ≥ 2, at least one of the marker pairs (0m, 1m) and
(〈01〉m, 〈10〉m) achieves R(2,m, n) for all sufficiently large
n. In fact, a simple argument outlined in Appendix B shows
that |f〈01〉

m
〈10〉

m
(k)−f0m1m(k)| ≤ 1 for all k, and hence due
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TABLE II
R̂(M1, M2, 3 + L) VALUES FOR VARIOUS (M1, M2) PAIRS. BOLD VALUES ARE LARGEST IN THEIR RESPECTIVE ROWS.

L (000, 010) (000, 011) (000, 101) (000, 111) (001, 010) (001, 100) (010, 101)
1 0 0 0 0 0 0.1250 0
2 0 0.1000 0 0 0.1000 0.1000 0
3 0.1667 0.0833 0.1667 0.1667 0.0833 0.1667 0.1667
4 0.1429 0.2143 0.1429 0.1429 0.2143 0.2143 0.1429
5 0.1250 0.1875 0.2500 0.2500 0.1875 0.1875 0.2500
6 0.2222 0.2222 0.2222 0.2222 0.2778 0.2222 0.2222
7 0.3000 0.2500 0.3000 0.3000 0.2500 0.2500 0.3000
8 0.2727 0.2273 0.2727 0.3636 0.3182 0.2273 0.3636
9 0.3333 0.2500 0.3333 0.3333 0.2917 0.2500 0.3333

10 0.3846 0.2692 0.3077 0.3846 0.3462 0.2692 0.3846
11 0.4286 0.2857 0.3571 0.4286 0.3214 0.2500 0.4286
12 0.4000 0.3000 0.3333 0.4000 0.3667 0.2667 0.4000
20 0.5217 0.3261 0.4348 0.5217 0.4130 0.3043 0.5217
50 0.6226 0.3774 0.4906 0.6226 0.5000 0.3208 0.6226

100 0.6505 0.3883 0.5243 0.6505 0.5194 0.3350 0.6505
500 0.6859 0.4016 0.5467 0.6859 0.5457 0.3449 0.6859

1000 0.6899 0.4038 0.5484 0.6899 0.5489 0.3460 0.6899
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Fig. 2. The maximum rate R(p, m, n) achievable by (p, m, n) PPS codes,
for various values of p and m, as a function of n.

to the floor function used in defining R̂(A,B, n), for nearly all
(if not all) values of n, R̂(0m, 1m, n) = R̂(〈01〉m, 〈10〉m, n).

Based on rate calculations like those used to generate
Table II, we plot R(2, 3, n) and R(2, 4, n) for 1 ≤ n ≤ 100
in Figure 2. We shall show in the next section that as n
increases, R(2,m, n) and R(1,m − 1, n) converge towards
the same limit. Accordingly, for comparison, R(1, 2, n) and
R(1, 3, n) are also shown in the figure, along with their limits
from Theorem 1. As illustrated by the figure, for m = 3, 4,
R(2,m, n) and R(1,m − 1, n) approach each other rapidly,
which means that for small to moderate values of n, PPS
codes with period 2 essentially attain the promised doubling
of timing span (recall that T = pDR). This is illustrated in
Figure 3 which plots T = pnR(p,m, n) for the values of p,
m and n in Figure 2.

Fixing p and n, and maximizing R(p,m, n) over m yields
the R(p, n) curves shown in Figure 4 for p = 1, 2. Note that
for p = 2, this maximization is equivalent to maximizing
R̂(M1,M2, n) over pairs of markers (M1,M2) of the same
length. For p = 1, as mentioned in the introduction, it was
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Fig. 3. The timing spans of (p, m, n) PPS codes operating at rate
R(p, m, n), for various values of p and m, as a function of n.

conjectured by Gilbert [2] and subsequently proved (at least
for all sufficiently large n) by Guibas and Odlyzko [4] that
the GPS code using a marker of the form 1m0, for a suitable
choice of m, attains the maximal rate of R(1, n). For the p = 2
case, the general form of the best pair of markers is unknown,
but we do provide a list of the best marker pairs for various
values of n in Table III. While for each value of n, there
may be several marker pairs that are optimal, the table only
lists one representative pair of markers. Note that because we
allow the length of the markers to vary, there is no guarantee
that the best markers are those demonstrated to be optimal
for a fixed value of m. Indeed, the marker pairs (0m, 1m) and
(〈01〉m, 〈10〉m) never appear in the table. Although these pairs
may be optimal for a few values of n, they are only rarely so.
Nevertheless, due to their simplicity they are an interesting
pair of markers to consider. Accordingly, Table III also lists
for each n, the value of m that maximizes R̂(0m, 1m, n), and
Figure 4 also plots the rates maxm R̂(0m, 1m, n). One can
see from the figure that the optimal marker pairs improve
over the simple (0m, 1m) pair by a substantial amount for
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TABLE III
MARKER PAIRS THAT ACHIEVE R(2, n), AND MARKER LENGTHS m THAT

ACHIEVE maxm R̂(0m, 1m, n)

n best marker pair argmax
m

R̂(0m, 1m, n)
4 (001,110) 2,3
5 (001,011) 2,3,4
6 (0001,1110) 3
7 (0001,0111) 3,4
8 (0001,1001) 3,4
9 (0001,1110) 3,4,5
10 (0001,0111) 3,4,5
11 (0001,0111) 3,4
12 (0001,1110) 4
13 (0011,0101) 4
14 (00001,10001) 4
15 (00001,11010) 4,5
16 (00011,00101) 4,5
17 (00011,00101) 4,5
18 (00001,00101) 4,5
19 (00000,10001) 4,5
20 (00001,00100) 4,5
25 (000001,010011) 5
30 (000001,000101) 4,5,6
35 (000000,100001) 5,6
40 (000001,001001) 5,6
45 (000001,010110) 5,6
50 (0000001,1000001) 6
55 (0000001,0000101) 5,6,7
60 (0001001,0100111) 5,6,7
65 (000001,001100) 6,7
70 (0000001,0001000) 6,7
75 (0000001,0001000) 6,7
80 (0000001,0001000) 6,7
85 (0000001,0010001) 6,7
90 (0000001,0100110) 6,7
95 (00000001,01000011) 7
100 (0000001,0000100) 6,7,8

values of n less than ∼ 35, after which the improvement
becomes less pronounced. For comparison purposes, we also
plot the maximum rates achievable at each n by cascaded
codes, comma-free and prefix-synchronized embedded-index
codes with p = 2 (see [5] for descriptions of these codes).

Finally, to put everything into perspective, Figure 5 plots
a delay and timing span point (D,T ) for a number of sync-
timing code classes. Specifically, for each class, D is the least
delay for which codes of that class have rate at least 0.9
(at most 10% redundancy), and T = 0.9pD is the resulting
timing span, as the codes represented in the figure actually
turn out to have rates equal to 0.9 at their respective least
delays. Accordingly, all codes shown with period p lie on
a straight line (also shown) passing through the origin with
slope 0.9p. For p = 1, we show only one point (asterisk) for
the least delay GPS code. For p = 2, minimal delay codes are
shown for the following classes: PPS codes, cascaded codes,
and embedded-index codes – both prefix-synchronized and
comma-free. Table I in Section I gives the least delay values
for these period-2 codes. For p = 3, 4, Figure 5 shows the
same points as for p = 2, except that we have not found the
least delay PPS codes. For each category of codes, one can
also attain, approximately, any (D,T ) value on the straight
line emerging to the right of its point. We may conclude from
this figure, that for delays below 80, there are no sync-timing
codes with rates at least 0.9 and the maximal timing span is
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Fig. 4. Plots comparing the maximal rates of period-1 PPS codes (R(1, n))
and the following period-2 codes: optimal PPS (R(2, n)), comma-free
embedded-index (CFE), prefix-synchronized embedded-index (PSE), period-2
cascaded, and PPS codes with marker pair (0m, 1m) for an optimal choice
of m.

0. For delays between 80 and 89, GPS codes (p = 1) and
comma-free embedded-index (CFE) codes with p = 2, 3 are
the only options. For these delays, CFE codes provide timing
spans that are two or three times that of GPS codes, but at the
expense of much higher encoding and decoding complexity.
For delays between 90 and 99, both optimal period-2 PPS
codes and prefix-synchronized embedded-index codes permit
a doubling of timing span over GPS codes, and these codes are
only marginally more complex than GPS codes. We also see
that in comparison to cascaded codes with p = 2, optimal PPS
codes permit the doubling to take place at D = 90 as opposed
to D = 120. Thus optimizing period-2 PPS codes can make
a notable difference if D is tightly constrained, whereas the
simpler cascaded codes will be sufficient if the delay is not
so tightly constrained. Finally, the points shown for p = 3, 4
indicate the delays at which codes with periods 3 and 4 can
replace period-2 codes.

IV. ASYMPTOTICS OF PERIOD-2 PPS CODES

As mentioned in the previous section, it has been proved in
[9] that for m ≥ 2, at least one of the marker pairs (0m, 1m)
and (〈01〉m, 〈10〉m) achieves R(2,m, n) for all sufficiently
large n. This, along with the fact proved in Appendix B that
|f〈01〉

m
〈10〉

m
(k) − f0m1m(k)| ≤ 1 for all k, leads us to the

asymptotic result for R(2,m, n) stated in the next theorem,
which is the period-2 analogue of Theorem 1. Although a
proof of this result can be found in [9], for the sake of
completeness, we include a (somewhat different) proof here.

Theorem 3: For m ≥ 2,

lim
n→∞

R(2,m, n) = log2 ρm−1

where ρm−1 is the zero of the polynomial zm−1 − . . .− z− 1
that is largest in magnitude.

Proof : We have already seen previously that R(2, 2, n) = 0
for all n > 2, and so we need only consider the case when
m ≥ 3 (so that we have ρm−1 > 1). Since at least one
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Fig. 5. Timing span vs. delay for various classes of sync-timing codes. The
circles plot the timing spans of period-p (p = 2, 3, 4) CFE codes at the least
delays at which such codes exist with rate R ≥ 0.9; the asterisks, squares and
diamonds mark similar points for PPS codes, PSE codes and cascaded codes,
respectively. Any point on the solid lines can be approximately attained by
some code with R ≥ 0.9.

of the marker pairs (0m, 1m) and (〈01〉m, 〈10〉m) achieves
R(2,m, n) for all sufficiently large n, it is sufficient to
show that lim

n→∞
R̂(0m, 1m, n) = lim

n→∞
R̂(〈01〉m, 〈10〉m, n) =

log2 ρm−1.
We note first that it is an easy consequence of Theorem 2

that F〈01〉
m
〈10〉

m
(z) = F〈10〉

m
〈01〉

m
(z) and F0m1m(z) =

F1m0m(z), and hence that f〈01〉
m
〈10〉

m
(k) = f〈10〉

m
〈01〉

m
(k)

and f0m1m(k) = f1m0m(k) for all k. By (8), this im-
plies that R̂(〈01〉m, 〈10〉m, n) = blog2 f〈01〉

m
〈10〉

m
(m +

n)c/n, and R̂(0m, 1m, n) = blog2 f0m1m(m + n)c/n. But
now, since |f〈01〉

m
〈10〉

m
(k) − f0m1m(k)| ≤ 1, we see that

lim
n→∞

R̂(〈01〉m, 〈10〉m, n) = lim
n→∞

R̂(0m, 1m, n). Hence, it

suffices to show that limn→∞ R̂(0m, 1m, n) = log2 ρm−1.
An application of Theorem 2 to the marker pair (0m, 1m)

shows that

F0m1m(z) =
1

z2(zm−1 + · · · + z + 1)(zm−1 − . . . − z − 1)

The polynomial zm−1 + · · ·+ z +1 is a factor of zm − 1, and
hence all its zeros lie on the unit circle |z| = 1. Moreover,
since zm−1 − . . . − z − 1 has exactly one zero, ρm−1, that
lies outside the unit circle, we see that ρm−1 is the unique
largest-magnitude pole of F0m1m(z), and it is a simple pole.
Hence, by the reasoning used to derive Theorem 1, it follows
that lim

n→∞
R̂(0m, 1m, n) = lim

n→∞
blog2 f0m1m(m + n)c/n =

log2 ρm−1.

One consequence of Theorems 1 and 3 is the fact that
if we are willing to incur reasonably large delays, then we
can get roughly double the amount of timing span, if not
more, by using a period-2 PPS code instead of a period-1
code, with little or no loss in terms of rate or delay. This is
because by the aforementioned theorems, for each m ≥ 3,
if n is sufficiently large, then R(1,m − 1, n) ≈ R(2,m, n).
Now, the timing span of a (2,m, n) code operating at rate

R(2,m, n) is 2nR(2,m, n), and hence for large enough n,
this is approximately equal to 2nR(1,m − 1, n), which is
the timing span of a (1,m − 1, n) code operating at rate
R(1,m − 1, n). This is illustrated for m = 3, 4 in Figure 3.
It can be seen from this figure that even at reasonably small
values of delay, the advantage gained by using period-2 codes
instead of period-1 codes is significant.

Finally, we would like to mention an interesting relationship,
analogous to (6), that exists between the limit, as n goes to
∞, of the maximum rate, R̂(A,B, n), of a (2,m, n) PPS code
with marker pair (A,B), and the Shannon capacity, H(A,B),
of the constrained system of binary sequences that forbids A
and B. Formally, we define

H(A,B) = lim
n→∞

log2 qAB(n)

n

where qAB(n) is the number of length-n binary sequences that
do not contain A or B as a contiguous subsequence.

Guibas and Odlyzko [4] showed that the generating function
QAB(z) =

∑∞
n=0 qAB(n)z−n can be expressed as

QAB(z) =
z DAB

(z − 2)DAB + RAB
(11)

where DAB and RAB are as in the statement of Theorem 2.
Now, if it could be shown that for any A,B, the generat-
ing functions FAB(z), FBA(z) and QAB(z) have identical,
unique largest-magnitude poles, then it would follow that
limn→∞ R̂(A,B, n) exists and equals H(A,B). Comparing
(9) and (11), we see that the denominators of FAB(z), FBA(z)
and QAB(z) are all the same. However, this is not even enough
to guarantee that the largest-magnitude poles of FAB(z),
FBA(z) and QAB(z) are the same, since the largest-magnitude
zero of the denominator polynomial may get cancelled out
by a zero of the numerator polynomial in one or more of
these generating functions. Indeed, this does happen for certain
choices of A,B. For instance, it may be verified that when
A = 100 and B = 001, the largest-magnitude pole of FAB(z)
is 1, while that of FBA(z), as well as that of QAB(z), is
ρ2 ≈ 1.618. In this case, we have

lim
n→∞

log2 fAB(n)

n
= 0

but

lim
n→∞

log2 fBA(n)

n
= lim

n→∞

log2 qAB(n)

n
= log2 ρ2 ≈ 0.6942

Therefore, from (8), we see that limn→∞ R̂(100, 001, n) =
1
2 H(100, 001).

However, as shown in [9], it is still true that
limn→∞ R̂(A,B, n) exists for all choices of A,B, and that
in most cases, it equals H(A,B), which is itself equal to the
logarithm of the unique largest-magnitude pole of QAB(z). In
fact, the following statements are true for m ≥ 2 (Proposi-
tion 20 in [9] states these for m ≥ 5, but they can be directly
verified for m = 2, 3, 4):
(a) If {A,B} or {A,B} = {0m, 0m−11} or {0m, 10m−1},
then limn→∞ R̂(A,B, n) = 0, while H(A,B) = log2 ρm−1.
(b) If {A,B} or {A,B} = {10m−1, 0m−11}, then
limn→∞ R̂(A,B, n) = 1

2 H(A,B) = 1
2 log2 ρm−1.
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(c) For all other pairs of distinct length-m sequences A,B,
limn→∞ R̂(A,B, n) = H(A,B).
In statements (a) and (b), A,B are the sequences obtained by
complementing each bit of A,B. The above facts indicate that
period-2 PPS codes exhibit more complex asymptotic behavior
than period-1 codes, for which as we observed in Section II,
the limiting code rate is always equal to the corresponding
Shannon capacity.

V. CONCLUDING REMARKS

Conceptually, it is possible to continue the above style of
analysis to study the maximum rates of PPS codes with p > 2.
Indeed, in Appendix A, we show how to derive generating
functions for PPS codes with arbitrary p, similar to the one in
Theorem 2. However, this kind of analysis is cumbersome, and
the resultant expressions for generating functions are unwieldy
even for p = 3. In fact, the difficulty of this is compounded
by the fact that when p > 2, then even within a given
set of markers, different orderings of the markers can yield
different rates. This means that there are (2m)!/(2m − p)!
possible candidate orderings of markers, of which only a small
proportion may be ruled out by inspection as being clearly
sub-optimal. Naturally, a brute force search technique such as
that described in Section III cannot be used for finding the
maximal rate R(p,m, n) in the general (p,m, n) case.

It would be interesting to explore the relationships between
R(p,m, n) for various values of p, m and n. For example,
it seems intuitively clear, but as yet unproven, that for fixed
m and n, R(p,m, n) should decrease with p, at least for
sufficiently large values of n. Also, for arbitrary p and m,
the question of whether limn→∞ R(p,m, n) exists remains
unanswered, as does the question of how the limiting rate (if
it exists) of a PPS code with a given set of p length-m markers
is related to the corresponding Shannon capacity.

APPENDIX A

It is possible, in principle, to derive a generating function for
the number of binary sequences that can be included in a code-
book of a PPS code with marker set M = {M1,M2, . . . ,Mp}
containing a finite number of distinct length-m binary markers.
For i, j ∈ {1, 2, . . . , p} (not necessarily distinct) and k > 0,
we define fij(k) to be the number of binary sequences of
length k that begin with Mi, end with Mj , but do not contain
any member of M elsewhere. We also define fi(k) to be
the number of binary sequences of length k that begin with
Mi and do not contain any member of M elsewhere. Let
Fij(z) and Fi(z) be the corresponding generating functions.
We shall also find it convenient to define the polynomials
γij(z) = (z − 2)φij(z) + 1, where φij(z) = φMiMj

(z) is
the correlation polynomial for the pair of markers Mi and
Mj . For the sake of simplicity, we shall henceforth drop the
argument z from the notation for the polynomials φ and γ,
as well as for all the generating functions F . The following
theorem provides a means of deriving an expression for Fij .

Theorem A.1: Let F = (Fij) be the p × p matrix whose
(i, j)th entry is the generating function Fij , and let Γ = (γij)

be the p × p matrix whose entries are the polynomials γij .
Then,

F = z−mI −
z − 2

z
Γ−1

where I is the p × p identity matrix.
Proof : Generalizing the ideas contained in the proof of

Theorem 2, it can be shown that for i, j = 1, 2, . . . , p, the
generating functions Fi and Fij satisfy the following system
of linear equations:

(z − 2)Fi + z

p∑

j=1

Fij = z1−m

−Fi + z

p∑

j=1

φjkFij = z1−mφik − δik, k = 1, 2, . . . , p

where δik = 1 if i = k, and 0 otherwise.
Eliminating Fi from the above equations, we get

p∑

j=1

γjkFij = z−mγik −
z − 2

z
δik

for k = 1, 2, . . . , p.
But this system of linear equations is more compactly

expressed in matrix form as

FΓ = z−mΓ −
z − 2

z
I

which, upon multiplying by Γ−1, proves the theorem.

APPENDIX B
In this appendix, we show that |f〈01〉

m
〈10〉

m
(k) −

f0m1m(k)| ≤ 1 for all k, and hence for nearly all (if not
all) values of n, R̂(0m, 1m, n) = R̂(〈01〉m, 〈10〉m, n).

From Theorem 2, it follows that the generating function for
f0m1m(k) is given by

F0m1m(z) =
1

z2(zm−1 + · · · + z + 1)(zm−1 − . . . − z − 1)

and that for f〈01〉
m
〈10〉

m
(k) is given by

F〈01〉
m
〈10〉

m
(z)

=
(z − 2)

(∑bm/2c
j=1 zm−2j

)

(z2)(zm−1 − . . . − z − 1)
(∑m

j=1 (−1)
j−1

zm−j
)

Note also that F〈01〉
m
〈10〉

m
(z) = F〈10〉

m
〈01〉

m
(z) and

F0m1m(z) = F1m0m(z), which implies that f〈01〉
m
〈10〉

m
(k) =

f〈10〉
m
〈01〉

m
(k) and f0m1m(k) = f1m0m(k) for all k.

Now, F〈01〉
m
〈10〉

m
(z) − F0m1m(z) is a generating function

for f〈01〉
m
〈10〉

m
(k) − f0m1m(k). After some algebraic manip-

ulations, we find that

F〈01〉
m
〈10〉

m
(z) − F0m1m(z) =

{
1

z(zm−1) if m is even
zm−1−1
z2m−1 if m is odd

But z−1(zm − 1)
−1

=
∑∞

r=1 z−(rm+1), and (zm−1 −
1)/(z2m − 1) = z−(m+1) − z−2m + z−(3m+1) − z−4m + · · ·.
This shows that when m is even,

f〈01〉
m
〈10〉

m
(k) − f0m1m(k)

=

{
1 if k = m + 1, 2m + 1, 3m + 1, . . .
0 otherwise
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and when m is odd,

f〈01〉
m
〈10〉

m
(k) − f0m1m(k)

=





1 if k = m + 1, 3m + 1, 5m + 1, . . .
−1 if k = 2m, 4m, 6m, . . .

0 otherwise

Thus, we have shown that |f〈01〉
m
〈10〉

m
(k)−f0m1m(k)| ≤ 1.

Now, note that since f〈01〉
m
〈10〉

m
(k) = f〈10〉

m
〈01〉

m
(k), we

have R̂(〈01〉m, 〈10〉m, n) = blog2 f〈01〉
m
〈10〉

m
(m + n)c/n,

and similarly, we see that R̂(0m, 1m, n) = blog2 f0m1m(m +
n)c/n. The floor functions in these expressions ensure that
for nearly all (if not all) values of n, R(0m, 1m, n) =
R(〈01〉m, 〈10〉m, n).
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