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Abstract. Periodic-finite-type shifts (PFT’s) form a class of sofic shifts that strictly contains
the class of shifts of finite type (SFT’s). In this paper, we study PFT’s from the viewpoint of
certain “periods” that can be associated with them. We define three kinds of periods (descriptive,
sequential and graphical) for PFT’s, and investigate the relationships between them. The results
of our investigation indicate that there are no specific relationships between these periods, except
for the fact that the descriptive period of an irreducible PFT always divides its graphical period.
Furthermore, we compute the number of periodic sequences in PFT’s of a certain type, from which
we obtain expressions for their zeta functions.
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1. Introduction. A shift of finite type (SFT) is defined as a set of bi-infinite
sequences (over some alphabet) that do not contain as subwords any word from a
certain finite set. SFT’s are objects of fundamental importance in symbolic dynamics
[4] and the theory of constrained coding [5].

A generalization of SFT’s was introduced by Moision and Siegel [7] who were
interested in examining the properties of distance-enhancing constrained codes, in
which the appearance of certain words is forbidden in a periodic manner. This new
class of shifts, called periodic-finite-type shifts (PFT’s), contains the class of SFT’s
and some other interesting classes of shifts, such as constrained systems with uncon-
strained positions [1],[9], and shifts arising from the time-varying maximum transition
run constraint [8]. The class of PFT’s is in turn properly contained within the class
of sofic shifts [6], a fact we discuss in more detail in Section 2.

The difference between the definitions of SFT’s and PFT’s is small, but significant.
An SFT is defined by forbidding the appearance of finitely many words at any position
of a bi-infinite sequence. A PFT is also defined by forbidding the appearance of finitely
many words within a bi-infinite sequence, except that these words are only forbidden
to appear at positions indexed by certain pre-defined periodic integer sequences; see
Section 2 for a formal definition. Thus, there is a notion of period inherent in the
definition of a PFT that causes it to differ from an SFT.

The properties of SFT’s are quite well understood (see, for example, [4]), but the
same cannot be said for PFT’s. The study of PFT’s has, up to this point, primarily
focused on finding efficient algorithms for constructing their presentations [1],[2],[6].
The work presented in this paper began as an attempt to extend some of what is
known about SFT’s to the larger class of PFT’s. In particular, we wanted to see
whether we could come up with a simple formula for computing the zeta function of
a PFT, analogous to the one known for an SFT [4, Theorem 6.4.6].

Recall that the zeta function of a shift S is a generating function for the number
of sequences of period n in S; see Section 5 for a precise definition. It is known that
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the zeta function of a sofic shift S is a rational function, an expression for which
can be found in Theorem 6.4.8 of [4]. As mentioned above, PFT’s are indeed sofic
shifts, so, in principle, there is a method known to compute their zeta functions.
However, the method of Theorem 6.4.8 in [4] quickly becomes too cumbersome for
practical computations. So we made an attempt to determine whether it was possible
to simplify such computations in the special case of PFT’s. We are as yet unable to
resolve this question. However, in our pursuit of zeta functions of PFT’s, we found
ourselves asking the question of whether the notion of period inherent in the definition
of a PFT affects the periods of periodic sequences in the PFT. It is this question, along
with some other closely related ones, that we address in this paper.

We focus on three types of period that can be associated with a PFT X : (i) the
descriptive period in the definition of the PFT; (ii) the sequential period, which
we take to be the least period of any periodic sequence in X ; and (iii) the graphical
period (only defined for irreducible PFT’s), which is the least period of any irreducible
presentation of X . Formal definitions of these periods can be found in Section 4, where
we investigate the relationships that exist between them. Our investigations indicate
that there are no simple relationships between these periods in general, except for one:
the descriptive period of an irreducible PFT must always divide its graphical period.
This last fact actually implies a result of Moision and Siegel [6, Proposition 1].

As part of our comparative study of periods in PFT’s, we give various examples
that illustrate some of the phenomena involved in the interplay of periods. For in-
stance, we construct a class of PFT’s whose descriptive periods can be arbitrarily
large compared to their sequential periods. We also give a class of PFT’s where the
opposite phenomenon occurs. We give similar examples for other pairs of period types
as well (except, of course, there are no examples in which the descriptive period is
larger than the graphical period, since the former always divides the latter).

The class of PFT’s that we use to illustrate the fact that sequential periods can
be much larger than descriptive periods has another remarkable property. Each PFT
Xk in this class is parametrized by a positive integer k, and periodic sequences in Xk

can only have periods that are multiples of 2⌈log2 k⌉. This relative paucity of periodic
sequences in Xk allows us to compute an exact expression for its zeta function. The
zeta functions ζXk

(t) could serve as non-trivial test cases for validating a future general
formula for the zeta function of a PFT.

The rest of this paper is organized as follows. A review of the relevant definitions
and background is provided in Section 2. In Section 3, we derive a useful sufficient
condition for checking whether a given PFT is irreducible (so that its graphical period
can be defined). This result is used multiple times in subsequent sections. Section 4
contains our main results — Theorems 4.12, 4.14 and 4.20, and Proposition 4.18 —
concerning periods in PFT’s. The computation of the zeta function of the PFT’s
Xk is presented in Section 5. The proof of a relatively minor observation about the
irreducibility of the PFT’s Xk is given in an appendix.

2. Basic Background on SFT’s and PFT’s. We begin with a review of basic
background, based on material from [4] and [6]. Let Σ be a finite set of symbols; we
call Σ an alphabet. We always assume that |Σ| = q ≥ 2 since q = 1 gives us a
trivial case. Let w = . . . w−1w0w1 . . . be a bi-infinite sequence over Σ. A word
(finite-length sequence) u with length |u| = n (for some integer n) is said to be a
subword of w, denoted by u ≺ w, if u = wiwi+1 . . . wi+n−1 for some integer i. If we
want to emphasize the fact that u is a subword of w starting at the index i, (i.e.,
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u = wiwi+1 . . . wi+n−1), we write u ≺i w. By convention, we assume that the empty
word ǫ ∈ Σ0 is a subword of any bi-infinite sequence. The notion of subwords of
bi-infinite sequences can be naturally extended to the notion of subwords of words,
and we use the same notations u ≺ v and u ≺i v to represent that u is a subword of
a word v. Also, we define σ to be the shift map, that is, σ(w) = . . . w∗

−1w
∗
0w∗

1 . . . is
the bi-infinite sequence satisfying w∗

i = wi+1 for all i.

Given a labeled directed graph G, whose (edge) labels come from Σ, let S(G)
be the set of bi-infinite sequences which are generated by reading off labels along
bi-infinite paths in G. A sofic shift S is a set of bi-infinite sequences such that
S = S(G) for some labeled directed graph G. In this case, we say that S is presented
by G, or that G is a presentation of S. It is well known that every sofic shift has
a deterministic presentation, i.e., a presentation such that outgoing edges from the
same state (vertex) are labeled distinctly. For a sofic shift S, Bn(S) denotes the
set of words u ∈ Σn satisfying u ≺ w for some bi-infinite sequence w in S, and
B(S) = ∪n≥0Bn(S). A sofic shift S is irreducible if there is an irreducible (i.e.,
strongly connected) presentation of S, or equivalently, for every ordered pair of words
u and v in B(S), there exists a word z ∈ B(S) such that uzv ∈ B(S).

A shift of finite type (SFT ) YF ′ , with a finite set of forbidden words (a forbidden
set) F ′, is the set of all bi-infinite sequences w = · · ·w−1w0w1 · · · over Σ such that
w contains no word f ′ ∈ F ′ as a subword. That is, the finite number of words f ′ in
F ′ are not in B(YF ′).

A periodic-finite-type shift, which we abbreviate as PFT, is characterized by an
ordered list of finite sets F = (F (0),F (1), . . . ,F (T−1)) and a period T . The PFT
X{F,T} is defined as the set of all bi-infinite sequences w over Σ such that for some
integer r ∈ {0, 1, . . . , T − 1}, the r-shifted sequence σr(w) of w satisfies u ≺i σr(w)

=⇒ u 6∈ F (i mod T ) for every integer i. For simplicity, we say that a word f is in F
(symbolically, f ∈ F) if f ∈ F (j) for some j. Since the appearance of words f ∈ F is
forbidden in a periodic manner, note that f can be in B(X{F,T}). Also, observe that

a PFT X{F,T} satisfying F (0) = F (1) = · · · = F (T−1) is simply the SFT YF ′ with

F ′ = F (0). Thus, SFT’s are special cases of PFT’s. We call a PFT proper when it
cannot be represented as an SFT.

Any SFT can be considered to be an SFT in which every forbidden word has the
same length. More precisely, given an SFT Y = YF∗ , find the longest forbidden word
in F∗ and say it has length ℓ. Set F ′ = {f ′ ∈ Σℓ : f ′ has some f∗ ∈ F∗ as a prefix}.
Then, YF∗ = YF ′ , and each word in F ′ has the same length, ℓ. Furthermore, we can
also assume that Bℓ(Y) = Σℓ \F ′ since if not (that is, if Bℓ(Y) ( Σℓ \F ′), every word
in (Σℓ \ F ′) \ Bℓ(Y) can be added to F ′, and Y itself remains the same.

Correspondingly, every PFT X has a representation of the form X{F,T} such that

F (j) = ∅ for 1 ≤ j ≤ T − 1, and every word in F (0) has the same length. An
arbitrary representation X{F,T} can be converted to one in the above form as follows.

If f ∈ F (j) for some 1 ≤ j ≤ T − 1, list out all words with length j + |f | whose
suffix is f , add them to F (0), and delete f from F (j). Continue this process until
F (1) = · · · = F (T−1) = ∅. Then, apply the method described above for SFT’s to
make every word in F (0) have the same length.

It is known that PFT’s belong to the class of sofic shifts.

Theorem 2.1 (Moision and Siegel, [6]). All periodic-finite-type shifts X are sofic
shifts. That is, for any PFT X , there is a presentation G of X .
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Moision and Siegel proved the theorem by giving an algorithm that, given a PFT
X , generates a presentation, GX , of X . We call the presentation GX the MS presen-
tation of X . The MS algorithm, given a PFT X as input, runs as follows.

Step 1. Represent X in the form X{F,T}, such that every word in F has the same

length ℓ and belongs to F (0).
Step 2. Prepare T copies of Σℓ and name them V(0),V(1), . . . ,V(T−1).
Step 3. Consider the words in V(0),V(1), . . . ,V(T−1) as states. Draw an edge labeled

a ∈ Σ from u = u1u2 · · ·uℓ ∈ V(j) to v = v1v2 · · · vℓ ∈ V(j+1 mod T ) if and
only if u2 · · ·uℓ = v1 · · · vℓ−1 and vℓ = a.

Step 4. Remove states corresponding to words in F (0) from V(0), together with their
incoming and outgoing edges. Call this labeled directed graph G′.

Step 5. If there is a state in G′ having only incoming edges or only outgoing edges,
remove the state from G′ as well as its incoming or outgoing edges. Continue
this process until we cannot find such a state. The resulting graph GX is a
presentation of X .

Remark 2.1. It is evident that the MS presentation of a PFT is always determin-
istic. Also, for a path α in GX with length |α| ≥ ℓ, α terminates at some state that is a
copy of u = u1u2 . . . uℓ iff the length-ℓ suffix of the word generated by α is equal to u.

3. Irreducibility of PFT’s. Recall from the previous section that a PFT X
with period T always has a representation X{F,T} in which

F = (F (0),F (1), . . . ,F (T−1)) = (F (0), ∅, . . . , ∅),

and every word in F (0) has the same length. Thus, the following result can often be
a useful means of verifying the irreducibility of a PFT. We will make repeated use of
this result in the next section.

Theorem 3.1. Let X = X{F,T} be a PFT with

F = (F (0),F (1), . . . ,F (T−1)) = (F ′, ∅, . . . , ∅)

for some F ′ ⊆ Σℓ, ℓ ≥ 1. Suppose that the SFT Y = YF ′ has the following properties:

(i) Y is irreducible;
(ii) Bℓ(Y) = Σℓ \ F ′; and
(iii) there exists a periodic bi-infinite sequence y in Y with a period p satisfying

p ≡ 1 (mod T ).

Then, the MS presentation, GX , of X is irreducible as a graph, and hence, X is irre-
ducible.

Proof. Throughout this proof, for a path η in a graph, let s(η) and t(η) be the
starting state and the terminal state, respectively, of η in the graph. Also, for a state
v = v1v2 . . . vℓ in GX , v ∈ V(j) is denoted by v(j) for 0 ≤ j ≤ T − 1.

Let G′ be the graph defined in Step 4 of the MS algorithm. Consider the subgraph
H of G′ that is induced by the states in Σℓ \ F ′. Since Σℓ \ F ′ = Bℓ(Y), all states in
H have incoming edges and outgoing edges. Hence, H is a subgraph of GX .

The key points of the proof are the following.

Claim 1 : H is a presentation of Y.
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Claim 2 : H is irreducible as a graph if1 there exists a periodic bi-infinite sequence
y in Y with a period p satisfying p ≡ 1 (mod T ).

Once these claims are proved, it is straightforward to check that the MS presen-
tation GX of X is irreducible. Note that the graph G′ is obtained from H by adding
words in F (0) = F ′ to V(1),V(2), . . . ,V(T−1) and corresponding incoming and outgo-
ing edges. Observe that (by Step 5 of the MS algorithm) a word f ′ ∈ F ′ is a state in
GX if and only if there exist paths ρ1, ρ2 in G′ satisfying s(ρ1) = f ′, t(ρ1) ∈ Σℓ \ F ′

and s(ρ2) ∈ Σℓ \ F ′, t(ρ2) = f ′. Since H is irreducible, GX is irreducible as well.

Proof of Claim 1. We need to show that S(H) ⊆ Y and Y ⊆ S(H). It is clear
that S(H) ⊆ Y since, by Remark 2.1, there is no path in H which generates words
in F ′. Conversely, take an arbitrary bi-infinite sequence x = . . . x−1x0x1 . . . ∈ Y.
Since f ′ 6≺ x for every forbidden word f ′ ∈ F ′, we see that for any integer i, the
states corresponding to xi−ℓ+1xi−ℓ+2 . . . xi are in H. Therefore, there exists an edge
labeled xi+1 from xi−ℓ+1xi−ℓ+2 . . . xi ∈ V(j) to xi−ℓ+2 . . . xixi+1 ∈ V(j+1 mod T ) for
all integers i and 0 ≤ j ≤ T − 1. Hence, x ∈ S(H), that is, Y ⊆ S(H).

Proof of Claim 2. A periodic bi-infinite sequence y ∈ Y with period p ≡ 1
(mod T ) can be written as y = (y1y2 . . . yn)∞, for some y1y2 . . . yn ∈ Σn, where n is
some multiple of p satisfying n ≡ 1 (mod T ) and n ≥ ℓ.

As y ∈ Y, yn−ℓ+1 . . . yny1y2 . . . yn ∈ B(Y). Thus, for every i ∈ {0, 1, . . . , T − 1},
there exists a path α in H satisfying s(α) = z(i) = yn−ℓ+1 . . . yn and generating
y1y2 . . . yn. Observe that t(α) is also z(i′) = yn−ℓ+1 . . . yn for some i′ ∈ {0, 1, . . . , T −
1}. However, since |y1y2 . . . yn| = n ≡ 1 (mod T ), we have i′ = i + 1 mod T . This
automatically implies that for the word z = yn−ℓ+1 . . . yn in B(Y), there is a path
βjk in H such that s(βjk) = z(j) and t(βjk) = z(k) for any ordered pair (j, k), where
0 ≤ j, k ≤ T − 1.

Now take an arbitrary pair of states u(r) and v(s) in H. Since Y is irreducible, there
exist words w′ and w∗ in B(Y) so that uw′z and zw∗v are in B(Y). Thus, there exists
a path γ generating w′z such that s(γ) = u(r) and t(γ) = z(j) for some 0 ≤ j ≤ T −1,
and a path δ generating w∗v such that s(δ) = z(k) for some 0 ≤ k ≤ T − 1 and
t(δ) = v(s). As there is a path βjk from z(j) to z(k) from the argument above, we have
a path γβjkδ starting from u(r) and terminating at v(s). Hence, the presentation H
is irreducible as a graph.

4. Periods in PFT’s. Given a PFT X , define its descriptive period, T
(X )
desc, to

be the smallest integer among all T ∗ such that X = X{F∗,T∗} for some F∗. Note that

T
(X )
desc = 1 iff X is in fact an SFT. Thus, if X is a proper PFT, then T

(X )
desc ≥ 2.

The descriptive period is not the only notion of “period” that can be associated
with a PFT. A bi-infinite sequence x = . . . x−1x0x1 . . . is said to be periodic if there
exists a positive integer n such that xi = xi+n for all i ∈ Z. Any such integer n is
called a period of the sequence x, in which case we say that x has period n. Note
that if x has period n, then it also has period 2n, 3n, etc. We define the sequential
period of a PFT (or more generally, a sofic shift) X to be the smallest period of any

periodic bi-infinite sequence in X ; we denote this by T
(X )
seq .

In the case when X is an irreducible PFT (or more generally, an irreducible sofic
shift), we further define a “graphical period” as follows. Let G be a presentation of
X with state set V(G) = {V1, . . . , Vr}. For each Vi ∈ V(G), define per(Vi) to be the

1In fact, the converse is true as well.
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greatest common divisor (gcd) of the lengths of paths (cycles) in G that begin and
end at Vi, and further define per(G) = gcd(per(V1), . . . ,per(Vr)). It is well known
that when G is irreducible, per(Vi) = per(Vj) for each pair of states Vi, Vj ∈ V(G),

and hence per(G) = per(V ) for any V ∈ V(G). The graphical period, T
(X )
graph, of X is

defined to be the least per(G) of any irreducible presentation G of X .

In this section, we determine what relationships, if any, exist, between the de-
scriptive, sequential and graphical periods of a PFT.

4.1. Comparing descriptive and sequential periods. The following propo-
sition, proved in [6], will be useful for our initial development.

Proposition 4.1 ([6], Proposition 1). Let X = X{F,T} be an irreducible, proper
PFT, and let G be an irreducible presentation of X . Then, gcd(per(G), T ) 6= 1.

We will later prove a sharper result (Theorem 4.14) for the case when T = T
(X )
desc.

In any case, the proposition above allows us to prove the following result, which shows

that a proper PFT X can have T
(X )
desc arbitrarily larger than T

(X )
seq .

Proposition 4.2. Let X = X{F,T} be a proper PFT with

F = (F (0),F (1), . . . ,F (T−1)) = (F ′, ∅, . . . , ∅)

for some F ′ ⊆ Σℓ, ℓ ≥ 1, and some prime T . Suppose that the SFT Y = YF ′ has the
following properties:

(i) Y is irreducible;
(ii) Bℓ(Y) = Σℓ \ F ′; and
(iii) a∞ ∈ Y for some a ∈ Σ.

Then, T
(X )
desc = T . (Since Y ⊆ X , (iii) above also implies that T

(X )
seq = 1.)

Proof. First observe that, by Theorem 3.1, the MS presentation, GX , of X is
irreducible, since the bi-infinite sequence a∞ ∈ Y has period 1. Also, note that, by
construction, the length of any cycle in GX is some multiple of T , and hence, per(GX )
must be kT for some k ≥ 1. On the other hand, the cycle in GX that generates a∞ is
of length T , and passes through the states aℓ. Hence, by the irreducibility of GX , we
have that per(GX ) = per(aℓ) = T .

Since X is proper, we have from Proposition 4.1 that gcd(per(GX ), T ∗) 6= 1 for
all T ∗ satisfying X = X{F∗,T∗}. As T is prime, gcd(per(GX ), T ′) = gcd(T, T ′) = 1 for
all T ′ < T . Therefore, T is the descriptive period of X .

As a concrete application of the proposition above, we prove the following result.

Corollary 4.3. Let Σ = {0, 1}. For the PFT X = X{F,T}, with T an arbitrary

prime, and F = ({11}, ∅, . . . , ∅), we have T
(X )
seq = 1 and T

(X )
desc = T .

Proof. Let Y = YF ′ be the SFT over Σ with forbidden set F ′ = {11}. It is easy
to verify that Y is irreducible, B2(Y) = Σ2 \ F ′, and 0∞ ∈ Y. Since Y ⊆ X , we have

0∞ ∈ X , and hence, T
(X )
seq = 1.

We claim that X is a proper PFT, and hence, by Proposition 4.2, T
(X )
desc = T . To

see this, suppose to the contrary that X = YF ′′ for some SFT YF ′′ with forbidden set
F ′′. We may assume that F ′′ ⊆ Σℓ for some ℓ ≥ 1. Note that the bi-infinite sequence
w = 0∞110∞ is in X . Therefore, none of the length-ℓ subwords of w is in F ′′. Now,
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the sequence

w′ = 0∞(110Tℓ−1)T 0∞

has the same set of length-ℓ subwords as w, and since none of these words is in F ′′,
we must have w′ ∈ YF ′′ = X . But this is impossible as the T instances of 11 in w′

are separated such that, no matter how w′ is shifted, there is always an instance of
11 beginning at some index i ≡ 0 (mod T ). This contradiction shows that X must
be a proper PFT.

Having shown that it is possible for T
(X )
desc to be arbitrarily larger than T

(X )
seq for a

PFT X , we present an example of the opposite phenomenon next.

Set Σ = {0, 1} and let ⊕ denote modulo-2 addition. We define a sliding-block map
ψ as follows: for a non-empty word u = u1u2 . . . un ∈ Σn, (resp. a bi-infinite sequence
w = . . . w−1w0w1 . . . over Σ), define ψ(u) = u∗

1u
∗
2 . . . u∗

n−1, where u∗
i = ui ⊕ ui+1 for

1 ≤ i ≤ n − 1 (resp. ψ(w) = . . . w∗
−1w

∗
0w∗

1 . . ., where w∗
i = wi ⊕ wi+1 for each i). By

convention, ψ(u) = ǫ when u ∈ Σ1. For k ≥ 1, consider the PFT Xk = X{Fk,2}, with

Fk = (F
(0)
k ,F

(1)
k ) defined as follows:

• F
(1)
k = ∅ for all k ≥ 1.

• F
(0)
1 = {0}, and for k ≥ 2, we set F

(0)
k = ψ−1(F

(0)
k−1). That is, F

(0)
k is the

inverse image of F
(0)
k−1 under ψ.

It is easy to see that for each k ≥ 1, every word f ∈ F
(0)
k has length |f | = k, and

in particular, we have 0k ∈ F
(0)
k . Moreover, as ψ is a two-to-one mapping, we have

|F
(0)
k | = 2k−1.

In the remainder of this subsection, we will show that the Xk’s form a class of
PFT’s whose sequential period can be arbitrarily large compared to its descriptive
period (see Theorem 4.12 below). We begin with a useful observation concerning the
map ψ.

Proposition 4.4. For a binary word u = u1u2 . . . ur of length r > m, let
u∗

1u
∗
2 . . . u∗

r−m = ψm(u). If m = 2j for some j ≥ 0, then u∗
i = ui ⊕ ui+2j for 1 ≤ i ≤

r−m. Furthermore, if m = 2j −1 for some j ≥ 0, then u∗
i = ui⊕ui+1⊕· · ·⊕ui+2j−1

for 1 ≤ i ≤ r − m.

Proof. The case of j = 0 is trivial for both statements, so suppose that these
statements hold when j = n ≥ 0. Then when j = n + 1, ψ2n+1

(u) = ψ2n

(ψ2n

(u)) =
u∗

1u
∗
2 . . . u∗

r−2n+1 , where u∗
i is given by (ui⊕ui+2n)⊕(ui+2n ⊕ui+2n+2n) = ui⊕ui+2n+1

for 1 ≤ i ≤ r − 2n+1. Similarly, ψ2n+1−1(u) = ψ2n

(ψ2n−1(u)) = u∗
1u

∗
2 . . . u∗

r−2n+1+1,
where u∗

i = (ui ⊕ ui+1 ⊕ · · · ⊕ ui+2n−1) ⊕ (ui+2n ⊕ ui+2n+1 ⊕ · · · ⊕ ui+2n+2n−1) =
ui ⊕ ui+1 ⊕ · · · ⊕ ui+2n+1−1 for 1 ≤ i ≤ r − 2n+1 + 1. The proposition follows by
induction.

The corollary below simply follows from the fact that for any f ∈ F
(0)
k , we must

have ψk−1(f) = 0.

Corollary 4.5. If z ∈ Σ2j

, j ≥ 0, has an odd number of 1’s, then z /∈ F
(0)
2j .

We next prove some important facts about the PFT’s Xk.

Proposition 4.6. For k ≥ 1, (a) Xk+1 = ψ−1(Xk), and (b) Xk is a proper PFT.
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Proof. (a) Let x and x′ be bi-infinite sequences such that x′ ∈ ψ−1(x), i.e.,
ψ(x′) = x. Observe that, for any word f ∈ Σℓ (ℓ ≥ 0) and any integer i, we have
f ≺i x iff there exists f ′ ∈ Σℓ+1 such that ψ(f ′) = f and f ′ ≺i x′. In particular,

f ≺i x for some f ∈ F
(0)
k iff f ′ ≺i x′ for some f ′ ∈ ψ−1(F

(0)
k ) = F

(0)
k+1. It follows that

x ∈ Xk iff x′ ∈ Xk+1, from which we obtain (a).

(b) Suppose to the contrary that Xk is not a proper PFT for some k ≥ 1.
Then, Xk = Y for some SFT Y = YF ′ , where every forbidden word in F ′ has the
same length, ℓ. Pick a j ≥ 0 such that 2j ≥ k, and set r = 2j − k. By (a) above,
X2j = ψ−r(Xk) = ψ−r(Y). Note that ψ−r(Y) is also an SFT, with forbidden set
ψ−r(F ′). All words in ψ−r(F ′) have length ℓ′ = ℓ + r.

For the PFT X2j , observe that the bi-infinite sequence

w = (02j−11)∞02j

(102j−1)∞

is in X2j as w contains a word in F
(0)
2j (i.e., 02j

) only once, by Corollary 4.5. Therefore,
every subword of w is in B(X2j ) = B(ψ−r(Y)).

Now, consider the bi-infinite sequence

w′ = (02j−11)∞02j

(102j−1)2ℓ′+1102j

(102j−1)∞.

Note that every length-ℓ′ subword of w′ is also a subword of w, and hence, is in
B(ψ−r(Y)). This implies that w′ ∈ ψ−r(Y). For the two distinct indices m,n (m < n)

such that 02j

≺m w′ and 02j

≺n w′, we have n − m = 2j(2ℓ′ + 2) + 1, so that m 6≡ n

(mod 2). But, since 02j

∈ F
(0)
2j , this implies that w′ 6∈ X2j , which is a contradiction.

Statement (b) of Proposition 4.6 implies that T
(Xk)
desc = 2 for all k ≥ 1. In contrast,

the following theorem shows that T
(Xk)
seq → ∞ as k → ∞.

Theorem 4.7. For any j ≥ 0 and 2j + 1 ≤ k ≤ 2j+1, the periods of periodic
sequences in Xk must be multiples of 2j+1.

To prove Theorem 4.7, we need the next three lemmas.

Lemma 4.8. If x ∈ {0, 1}Z is a periodic sequence, then so is ψ(x). Furthermore,
any period of x is also a period of ψ(x).

Proof. If x is periodic with a period n, then x can be written as x = (x1x2 . . . xn)∞

for some x1x2 . . . xn ∈ Σn. Then, it is clear that ψ(x) = (z1z2 . . . zn)∞, where
zi = xi ⊕ xi+1 for 1 ≤ i ≤ n − 1 and zn = xn ⊕ x1. Hence, ψ(x) is periodic
and has a period n as well.

Lemma 4.9. Let j ≥ 0. For the PFT X2j+1,

F
(0)
2j+1 = {f∗f∗

1 : f∗ = f∗
1 f∗

2 . . . f∗
2j ∈ Σ2j

}.

Proof. Recall that for a word f = f1f2 . . . f2j+1 ∈ F
(0)
2j+1, we have ψ2j

(f) = 0.

Since Proposition 4.4 shows that ψ2j

(f) = f1 ⊕ f2j+1, we have f1 = f2j+1. Since

|F
(0)
2j+1| = 22j

= |Σ2j

|, we have F
(0)
2j+1 = {f∗f∗

1 : f∗ = f∗
1 f∗

2 . . . f∗
2j ∈ Σ2j

} as required.

Lemma 4.10. For j ≥ 0, there is no periodic sequence x in X2j+1 whose period
is (2t + 1)2j for some t ≥ 0.
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Proof. When j = 0, X2j+1 = X2, and it may be verified that there is no periodic
sequence in X2 with an odd period. So let j ≥ 1, and assume to the contrary that there
exists a periodic sequence x = . . . x−1x0x1 . . . ∈ X2j+1 whose period is (2t + 1)2j for
some t ≥ 0. Then, x is of the form (x0x1 . . . x(2t+1)2j−1)

∞. Without loss of generality,

we may assume that for every even integer i, u ≺i x implies u 6∈ F
(0)
2j+1. Then, for

each integer m, xm2j xm2j+1 . . . x(m+1)2j /∈ F
(0)
2j+1. Since F

(0)
2j+1 = {f∗f∗

1 : f∗ ∈ Σ2j

}
from Lemma 4.9, we have xm2j 6= x(m+1)2j . This implies x0 = x(2t)2j as |Σ| = 2. But

then, x(2t)2j . . . x(2t+1)2j−1x0 ∈ F
(0)
2j+1, which is a contradiction.

We are now in a position to prove Theorem 4.7.

Proof of Theorem 4.7. To prove the theorem, it is enough to show that for
j ≥ 0, the periods of periodic sequences in X2j+1 must be multiples of 2j+1. It then
follows, by Lemma 4.8, that the same also applies to periodic sequences in Xk, for
2j + 1 < k ≤ 2j+1.

When j = 0, the required statement clearly holds by Lemma 4.10. So, suppose
that the statement is true for some j ≥ 0, so that periodic sequences in X2j+1 have
only multiples of 2j+1 as periods. Therefore, by Lemma 4.8, periodic sequences in
X2j+1+1 also can only have multiples of 2j+1 as periods. However, by Lemma 4.10, no
periodic sequence in X2j+1+1 can have an odd multiple of 2j+1 as a period. Hence, all
periodic sequences in X2j+1+1 have periods that are multiples of 2j+2. The theorem
follows by induction.

Theorem 4.7 shows that for 2j + 1 ≤ k ≤ 2j+1, we have T
(Xk)
seq ≥ 2j+1. To put

this another way, we have T
(Xk)
seq ≥ 2⌈log2 k⌉. In fact, this holds with equality.

Corollary 4.11. T
(X1)
seq = 1, and for k ≥ 2, if j ≥ 0 is such that 2j + 1 ≤ k ≤

2j+1, then T
(Xk)
seq = 2j+1.

Proof. When k = 1, T
(X1)
seq = 1 as 1∞ ∈ X1. So let k ≥ 2, and let j ≥ 0 be such

that 2j + 1 ≤ k ≤ 2j+1. We only need to show that T
(Xk)
seq ≤ 2j+1. The bi-infinite

sequence w = (02j+1−11)∞ is in X2j+1 since, by Corollary 4.5, w contains no word in

F
(0)
2j+1 as a subword. Since w has period 2j+1, by Lemma 4.8, w′ = ψ2j+1−k(w) ∈ Xk

has period 2j+1 as well. Thus, T
(Xk)
seq ≤ 2j+1.

We have thus proved the following result.

Theorem 4.12. For each k ≥ 1, T
(Xk)
desc = 2, while T

(Xk)
seq = 2⌈log2 k⌉.

From Proposition 4.2 and Theorem 4.12, we see that the descriptive period and
the sequential period of a PFT can each be arbitrarily larger than the other.

4.2. Comparing descriptive and graphical periods. The PFT’s Xk defined
in the previous subsection also illustrate the fact that the graphical period of a PFT
can be larger than its descriptive period. Of course, in order to make such a claim, we
have to be able to show that the Xk’s are irreducible so that their graphical periods
can be defined. In fact, it turns out that Xk is irreducible iff 1 ≤ k ≤ 6. To preserve
the flow of our presentation, we prove this fact in Appendix A.

Thus, the graphical period of Xk is defined only for 1 ≤ k ≤ 6. For these values
of k, we have the following result.

Proposition 4.13. T
(Xk)
graph ≥ 2⌈log2 k⌉ holds when 1 ≤ k ≤ 6.
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Proof. We must show that T
(Xk)
graph ≥ T

(Xk)
seq . Since X1 is proper, T

(X1)
graph ≥ 2 by

Proposition 4.1. Thus, T
(X1)
graph > T

(X1)
seq = 1. So, let k ≥ 2 and suppose 2j + 1 ≤ k ≤

2j+1 for some j ≥ 0. By Corollary 4.11, we have T
(Xk)
seq = 2j+1. On the other hand,

for any irreducible presentation G of Xk, we have per(G) ≥ 2j+1. Indeed, for each
vertex V in G, we have per(V ) being a multiple of 2j+1; otherwise, we would have a

contradiction of Theorem 4.7. Hence, T
(Xk)
graph ≥ 2j+1 = T

(Xk)
seq as required.

Proposition 4.13 shows that T
(Xk)
graph is strictly larger than T

(Xk)
desc = 2 when 3 ≤ k ≤

6. Equality can hold in Proposition 4.13 — for example, when k = 2. Since X2 is
proper, and the MS presentation, GX2

, of X2 is irreducible and per(GX2
) = 2, we have

T
(X2)
graph = 2. Furthermore, T

(X2)
seq = 2 from Corollary 4.11. Thus, X2 is an example of

a proper PFT X in which T
(X )
seq = T

(X )
graph = T

(X )
desc holds.

We have thus found that, for an irreducible PFT X , T
(X )
graph can be larger than

T
(X )
desc. However, the converse does not hold; in fact, T

(X )
desc always divides T

(X )
graph.

Theorem 4.14. Let X be an irreducible PFT, and G be any irreducible presen-
tation of X . Then, gcd(per(G), Tdesc) = Tdesc holds. Thus, for any irreducible PFT

X , T
(X )
desc always divides T

(X )
graph.

Note that Theorem 4.14 sharpens Proposition 4.1 in the case when T = T
(X )
desc. To

prove the theorem, we need the following key lemma, the proof of which we defer to
the end of this section.

Lemma 4.15. Let X = X{F,T} be an irreducible PFT with period T , and G be an
irreducible presentation of X . If gcd(per(G), T ) = d, then for any state V in G, there
exists a cycle C with length L, starting and terminating at V , such that gcd(L, T ) = d.

Using Lemma 4.15, we can prove Theorem 4.14 as follows.

Proof of Theorem 4.14. For a bi-infinite sequence x = . . . x−1x0x1 . . ., let us
denote the left-infinite subsequence . . . xm−1xm and the right-infinite subsequence
xmxm+1 . . . of x by xm− and xm+ , respectively.

Let T
(X )
desc = T , and represent X as X{F,T}, where F is in standard form, i.e.,

F = (F (0), ∅, . . . , ∅) and each f ∈ F (0) has length ℓ. Contrary to the statement in
the theorem, assume that gcd(per(G), T ) = d < T . In this case, we consider the PFT

X̃ = X{ eF,T}, with F̃ = (F̃ (0), F̃ (1), . . . , F̃ (T−1)) defined as follows:

F̃ (k) =

{
F (0) if k ≡ 0 (mod d).

∅ otherwise.

It is easy to see that X̃ = X{ bF,d}, where F̂ = (F̃ (0), F̃ (1), . . . , F̃ (d−1)). Thus,

the theorem would be proved if we can show that X̃ = X , as we would then have

X = X{ bF,d}, and hence, T
(X )
desc ≤ d < T , which contradicts our assumption on T .

The remainder of this proof is devoted to showing that X̃ = X . It is clear that
X̃ ⊆ X . Suppose that X̃ 6= X . We will show that this leads to a contradiction.

Since X̃ ( X , there exists a bi-infinite sequence x ∈ X \ X̃ . Since x 6∈ X̃ , for each
r = 0, 1, . . . , d − 1, we have fr ≺j σr(x) for some fr ∈ F (0) and j ≡ 0 (mod d). That
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is, for each r ∈ {0, 1, . . . , d − 1}, there exists fr ∈ F (0) such that fr ≺jr
x for some

jr ≡ r (mod d).

Consider f0, and let j0 be an index such that f0 ≺j0 x and j0 ≡ 0 (mod d). As
x ∈ X , there is a path α in G generating that f0 as a subword of x. Let U and V
denote the initial state and the terminal state of α, respectively. Since G is irreducible,
there is a path β with the initial state V and the terminal state U . From the fact
that gcd(per(G), T ) = d, we have that |α|+ |β| is a multiple of d since the path αβ is
a cycle in G. Also, from Lemma 4.15, there is a cycle C with length L, starting and
terminating at U , such that gcd(L, T ) = d.

Let u0 and v0 be the words generated by β and C, respectively. Then, by using
paths α, β and C appropriately, we can generate the bi-infinite sequence x(0) from G
such that

x(0) = x(j0−1)−(f0u0(v0)
N0)T/df0x(j0+ℓ)+ ,

where N0 is a positive integer satisfying |f0| + |u0| + N0|v0| ≡ d (mod T ). Such an
integer N0 can always be found. Indeed, since gcd(|v0|, T ) = gcd(L, T ) = d, there
exists a positive integer m0 such that m0|v0| ≡ d (mod T ). Moreover, |f0| + |u0| =
|α| + |β| is a multiple of d; say, |f0| + |u0| = m1d. Take N0 = m0m2 for any positive
integer m2 ≡ (1 − m1) (mod T ).

Observe that, by construction, the T/d instances of f0 within (f0u0(v0)
N0)T/d

occur as subwords of x(0) starting at certain indices i
(0)
0 , i

(0)
1 , . . . , i

(0)
T/d−1 satisfying

i
(0)
s ≡ j0 + sd (mod T ), 0 ≤ s ≤ T/d − 1. Furthermore, since x has fr ∈ F (0), 1 ≤

r ≤ d− 1, at an index jr ≡ r (mod d), we have fr ≺j′

r
x(0) for some j′r ≡ jr (mod T ).

More precisely, j′r = jr if jr < j0 and j′r = jr + pT if jr > j0, where p is the integer
such that pd = |f0| + |u0| + N0|v0|. Therefore, using the same argument described
above, we can generate the bi-infinite sequence

x(1) = x
(0)
(j′

1−1)−(f1u1(v1)
N1)T/df1x

(0)
(j′

1+ℓ)+

from G so that the T/d f1’s in (f1u1(v1)
N1)T/d have indices i

(1)
0 , i

(1)
1 , . . . , i

(1)
T/d−1 sat-

isfying i
(1)
s ≡ j′1 + sd ≡ j1 + sd (mod T ), 0 ≤ s ≤ T/d − 1.

Continue this procedure d times, once for each fr, r = 0, 1, . . . , d − 1, and con-
sider the resulting bi-infinite sequence x(d−1) = x̃ generated from G. Observe that

for each 0 ≤ r ≤ d− 1, x̃ contains fr’s at indices i
(r)
0 , i

(r)
1 , . . . , i

(r)
T/d−1 satisfying i

(r)
s ≡

jr + sd (mod T ), 0 ≤ s ≤ T/d − 1. Equivalently, for each r′ = 0, 1, . . . , T − 1, x̃ con-
tains some f ∈ F (0) at an index ir′ ≡ r′ (mod T ). Then, for each r′ = 0, 1, . . . , T − 1,
σr′

(x̃) contains some f ∈ F (0) at an index i ≡ 0 (mod T ), and hence, x̃ 6∈ X . How-
ever, x̃ must be in X since x̃ is generated from G, which is the desired contradiction.
Therefore, X = X̃ .

To complete the proof of Theorem 4.14, it remains to prove Lemma 4.15. We
need an elementary number-theoretic result to furnish a proof of the lemma. This is
an extension of the well-known fact (see, for example, [3, p. 119]) that if a, b are two
positive integers, with b < a and gcd(a, b) = d, then there exist non-negative integers
m,n ≤ a such that ma − nb = d.

Proposition 4.16. Let a1, a2, . . . , ar, r ≥ 2, be positive integers, with 0 < ar <
· · · < a2 < a1 and gcd(a1, a2, . . . , ar) = 1. Then, there exist non-negative integers
N1, N2, . . . , Nr ≤ ar−1

1 such that N1a1 − N2a2 + · · · + (−1)r−1Nrar = 1.
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Proof. Recall that gcd(a1, a2, . . . , ar) = gcd(a1, gcd(a2, . . . , ar)). Also observe
that a1 > gcd(a2, . . . , ar) as a1 > ar. Therefore, there exist 0 ≤ m1, n1 ≤ a1 such
that

m1a1 − n1 × gcd(a2, . . . , ar) = 1. (1)

Similarly, for gcd(a2, . . . , ar), there exist 0 ≤ m2, n2 ≤ a2 such that

m2a2 − n2 × gcd(a3, . . . , ar) = gcd(a2, . . . , ar). (2)

Substituting (2) into (1), we have

m1a1 − n1m2a2 + n1n2 × gcd(a3, . . . , ar) = 1,

where m1, n1m2, n1n2 ≤ a2
1. The proposition follows by continuing this procedure.

From Proposition 4.16, we derive the following corollary.

Corollary 4.17. Let a1, a2, . . . , ar be r positive integers, where 0 < ar < · · · <
a2 < a1, such that gcd(a1, a2, . . . , ar) = 1. Then, for each integer M ≥ ar

1(a1 + a2 +
· · · + ar), there exist h1, h2, . . . , hr ≥ 0 such that M = h1a1 + h2a2 + · · · + hrar.

Proof. It is enough to show that the statement is true for Mp = ar
1(a1 +a2 + · · ·+

ar) + p, 0 ≤ p < a1, since for each M ≥ ar
1(a1 + a2 + · · · + ar) + a1, there exists Mp

such that M − Mp = ta1 for some t ≥ 1.

Now, Mp = ar
1(a1 + a2 + · · · + ar) + p × 1 = ar

1(a1 + a2 + · · · + ar) + p(N1a1 −
N2a2+· · ·+(−1)r−1Nrar), where N1, N2, . . . , Nr ≤ ar−1

1 , by Proposition 4.16. Hence,
Mp = (ar

1 + pN1)a1 + (ar
1 − pN2)a2 + · · ·+ (ar

1 + (−1)r−1pNr)ar and the coefficient of
ai is non-negative for each i.

We are now in a position to prove Lemma 4.15.

Proof of Lemma 4.15. Since the presentation G is irreducible, per(G) = per(V )
for any vertex V in G. Furthermore, per(V ) = gcd(c1, c2, . . . , cr), where each ci

represents the length of a simple cycle Ci starting and terminating at V . Without
loss of generality, we can assume that

1. ci 6= cj for 1 ≤ i, j ≤ r, i 6= j;
2. c1 > c2 > · · · > cr.

Since gcd(per(G), T ) = gcd(per(V ), T ) = d, per(V ) = Pd and T = Qd for some
P,Q ≥ 1 such that gcd(P,Q) = 1. Then, gcd(c1/(Pd), c2/(Pd), . . . , cr/(Pd)) = 1.
Set ci/(Pd) = ai for 1 ≤ i ≤ r. Pick an integer M ≥ ar

1(a1 + a2 + · · · + ar) such that
gcd(M,Q) = 1. For such an integer M , we see, from Corollary 4.17, that there exist
h1, h2, . . . , hr ≥ 0 such that M = h1a1+h2a2+ · · ·+hrar. Let C be the cycle, starting
and terminating at V , which is generated by passing through each simple cycle Ci

hi times. The length L of the cycle C is given by L = h1c1 + h2c2 + · · · + hrcr =
Pd(h1a1 + h2a2 + · · · + hrar) = PMd. Observe that gcd(L, T ) = gcd(PMd,Qd) =
d × gcd(PM,Q) = d, as gcd(PM,Q) = 1.

4.3. Comparing sequential and graphical periods. In this subsection, we

present examples of irreducible PFT’s X where we have T
(X )
seq ≪ T

(X )
graph, and other

examples where we have T
(X )
seq ≫ T

(X )
graph.

Examples of the former phenomenon can be obtained from the following strength-
ening of Proposition 4.2.



A COMPARATIVE STUDY OF PERIODS IN A PERIODIC-FINITE-TYPE SHIFT 13

Proposition 4.18. Let X = X{F,T} be a proper PFT with

F = (F (0),F (1), . . . ,F (T−1)) = (F ′, ∅, . . . , ∅)

for some F ′ ⊆ Σℓ, ℓ ≥ 1, and some prime T . Suppose that the SFT Y = YF ′ has the
following properties:

(i) Y is irreducible;
(ii) Bℓ(Y) = Σℓ \ F ′; and
(iii) a∞ ∈ Y for some a ∈ Σ.

Then, T
(X )
desc = T

(X )
graph = T .

Proof. In view of Proposition 4.2, we only need to show that T
(X )
graph = T . An

application of Theorem 3.1 shows that X is irreducible (as its MS presentation, GX ,

is irreducible as a graph), so T
(X )
graph can be defined. But now, Theorem 4.14 shows

that T divides T
(X )
graph. In particular, T

(X )
graph ≥ T .

On the other hand, the proof of Proposition 4.2 shows that per(GX ) = T . Thus,

T
(X )
graph ≤ per(GX ) = T .

Corollary 4.19. Let Σ = {0, 1}. For the PFT X = X{F,T}, with T an arbitrary

prime, and F = ({11}, ∅, . . . , ∅), we have T
(X )
seq = 1 and T

(X )
graph = T

(X )
desc = T .

As T in the proposition (and corollary) above can be an arbitrarily large prime,

we see that it is possible for T
(X )
seq ≪ T

(X )
graph. On the other hand, the following theo-

rem provides a construction of a PFT X for which T
(X )
seq can be arbitrarily larger than

T
(X )
graph.

Theorem 4.20. Set Σ = {0, 1} and k ≥ 2, and let P denote the set of all
periodic bi-infinite sequences over Σ with period k!. Consider the PFT X = X{F,2}

with F = (F (0), ∅), such that F (0) = {w ∈ Σ2k! : ∃x ∈ P such that w ≺ x}. The
following statements hold:

(a) X is proper, and so, T
(X )
desc = 2;

(b) X is irreducible; and

(c) T
(X )
seq ≥ k + 1 and T

(X )
graph = 2.

Proof. (a) Suppose X is not proper. Then there exists an SFT Y = YF ′ such
that X = Y and every forbidden word in F ′ has the same length ℓ.

Now consider two bi-infinite sequences w = (0k!1)∞02k!(10k!)∞ and w′ = (0k!1)∞

02k!(10k!)2ℓ102k!(10k!)∞. Observe that w ∈ X = Y, and every subword of w′ with
length ℓ is a subword of w as well. Thus, w′ must be in Y. However, w′ 6∈ X
since for the two integers i, j (i < j) satisfying 02k! ≺i w′ and 02k! ≺j w′, we have
j − i = 2k! + 2ℓ(k! + 1) + 1 ≡ 1 (mod 2), which cannot happen since 02k! ∈ F (0).
Hence, X is proper.

(b) In this part of the proof, we use the following standard piece of notation:
given a binary word w = w1w2 . . . wn, we let w denote its complement w1w2 . . . wn,
where 0 = 1 and 1 = 0.

The irreducibility of X can be proved, from Theorem 3.1, by showing that the
SFT Y = YF(0) is irreducible. This is because B2k!(Y) = Σ2k! \ F (0) since for any
w′ ∈ Σ2k! \ F (0), (w′)∞ ∈ Y, and furthermore, x = (0k!1)∞ ∈ Y, and x has period
k!+1 ≡ 1 (mod 2). Also, to show that Y is irreducible, it is enough to check that two
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arbitrary words u = u1u2 . . . um, v = v1v2 . . . vn ∈ B(Y) with lengths m,n ≥ 2k! can
be concatenated through a word z so that uzv ∈ B(Y). In fact, it is enough to show
that uzv contains no words from F (0) as subwords. This is because if w is a word with
length n ≥ 2k! containing no words from F (0) as subwords, then w ∈ B(Y). Indeed,
if we write w = αγβ with |α| = |β| = k!, then it is easily verified that the bi-infinite
sequence (αα)∞γ(ββ)∞ is in Y.

Now take two arbitrary words u = u1u2 . . . um, v = v1v2 . . . vn ∈ B(Y), where
m,n ≥ 2k!. For the words u and v, we can assume v1 = vk!+1 = um−k!+1. (If
not, replace v by v′ = vk!v, which satisfies v′

1 = v′
k!+1. If it now happens that

v′
1 6= um−k!+1, then further replace v′ by v′′ = v′

1v1 . . . vk!−1v
′ = vk!v1 . . . vk!v so that

v′′
1 = v′′

k!+1 = um−k!+1 holds. Clearly, the existence of a word z′ so that uz′v′ ∈ B(X )
or uz′v′′ ∈ B(X ) shows the existence of a word z so that uzv ∈ B(X ).)

For the concatenated word uv, the length-2k! subwords of uv starting at ui,
1 ≤ i ≤ m−2k!+1, or vj , 1 ≤ j ≤ n−2k!+1, are clearly not in F (0) since u, v ∈ B(Y).
Furthermore, the length-2k! subwords starting at ui, m−2k!+2 ≤ i ≤ m−k!+1, are
not in F (0) since they contain um−k!+1 and v1 satisfying v1 = um−k!+1, and similarly,
neither are the length-2k! subwords starting at ui, m − k! + 2 ≤ i ≤ m. Hence, uv
contains no words in F (0) as required.

(c) It is easy to see that T
(X )
seq ≥ k+1. The definition of X implies that X ∩P = ∅.

Since any bi-infinite sequence of period k or less also has k! as a period, we conclude
that X contains no sequences of period k or less.

As for T
(X )
graph, first observe that the proof of (b) in fact shows, via Theorem 3.1,

that the MS presentation GX of X is irreducible. Therefore, if we can show that

per(GX ) = 2, then we are done since T
(X )
graph ≥ 2 from (a) and Theorem 4.14.

Consider the bi-infinite sequences x = (0k!1)∞ and x = (0k!12)∞. Both x and x̂

are in X as neither contains words in F (0) as subwords. Therefore, for each subword
u of x with length 2k!, there exist in GX two states, u(0) ∈ V(0) and u(1) ∈ V(1),
corresponding to u, and similarly, for each subword û of x̂ with length 2k!, there exist
two states, û(0) ∈ V(0) and û(1) ∈ V(1), corresponding to û. Now let us focus on the
state u(0) ∈ V(0) and u(1) ∈ V(1), where both u(0) and u(1) correspond to 0k!10k!−1, a
subword of x. Since 0k!10k!10k!−1 is a subword of x, there exists a path γij generating
010k!−1 which starts at u(i) and terminates at u(j) for some i, j ∈ {0, 1}. However,
the length of the path γij is k! + 1 ≡ 1 (mod 2). Therefore, from the structure
of the MS presentation GX , the starting state u(i) and the terminal state u(j) of
γij cannot be the same. It implies that u(0) is contained in the cycle with length
2(k! + 1) generating (010k!−1)2. Similarly, for the state û(0) ∈ V(0) corresponding to
0k!120k!−2, since 0k!120k!120k!−2 is a subword of x̂, there is a path (cycle) with length
k! + 2, generating 02120k!−2, starting and terminating at û(0) ∈ V(0).

Since GX is irreducible, per(GX ) = per(u(0)) = per(û(0)). Thus, per(GX ) is a
common divisor of 2(k! + 1) and k! + 2. As k! + 1 and k! + 2 are coprime, we see
that per(GX ) divides 2. On the other hand, from (a) and Theorem 4.14, we have that
2|per(GX ). Hence, per(GX ) = 2.

5. Zeta Functions of the PFT’s Xk. The zeta function of a sofic shift S is
a generating function for the number of period-n sequences in S. To be precise, the
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zeta function ζS(t) of a sofic shift S is defined to be

ζS(t) = exp

(
∞∑

n=1

|Pn(S)| tn/n

)
, (3)

where Pn(S) is the set of periodic sequences in S with period n.

Theorem 4.7 shows that periodic sequences in the PFT’s Xk (as defined in Sec-
tion 4.1) can only have periods that are multiples of 2⌈log2 k⌉. Thus, for any n 6≡ 0
(mod 2⌈log2 k⌉), the number of period-n sequences in Xk is zero. It turns out that the
number of periodic sequences in Xk with a period n ≡ 0 (mod 2⌈log2 k⌉) can actu-
ally be counted by a direct argument, thus allowing us to compute, via (3), the zeta
function of Xk.

The count of periodic sequences in Xk is particularly simple in the case when k
is a power of 2, which is what we present here. The case when k is not a power of 2
can also be handled by similar arguments, but that requires a little more effort.

Theorem 5.1. Let j ≥ 0, and consider the PFT Xk with k = 2j. For the set,
Pn(Xk), of periodic sequences in Xk with period n, we have

|Pn(X1)| =

{
21+n/2 − 1 if n is even

1 if n is odd,

and when k = 2j ≥ 2,

|Pn(Xk)| =

{
2k−1 (2(n−k+2)/2 − 1) if n ≡ 0 (mod k)

0 otherwise.

Hence, the zeta function ζXk
(t) of Xk with k = 2j is given by

ζXk
(t) =





1 + t

1 − 2t2
when k = 1

(1 − tk)
k−12k−1

(
1 − (2t2)

k/2
)k−1 2k/2

otherwise

Proof. Throughout this proof, we call a bi-infinite sequence x (resp. a word w)

normal with respect to (wrt) Xk if f 6≺i x (resp. if f 6≺i w) for any f ∈ F
(0)
k and even

integer i. Let Nn(Xk) denote the set of periodic sequences x in Pn(Xk) such that x

is normal wrt Xk, and similarly, let Mn(Xk) denote the set of periodic sequences x in
Pn(Xk) such that σ(x) is normal wrt Xk. Then, we have Pn(Xk) = Nn(Xk)∪Mn(Xk),
so |Pn(Xk)| is given by |Nn(Xk)| + |Mn(Xk)| − |Nn(Xk) ∩ Mn(Xk)|. Observe that
|Nn(Xk)| = |Mn(Xk)| since the map σ|Nn(Xk) : Nn(Xk) −→ Mn(Xk), which is the
shift map on Nn(Xk), is bijective. Also, for x ∈ Pn(Xk), it follows easily from the

definitions that x ∈ Nn(Xk) ∩ Mn(Xk) iff f 6≺ x for any f ∈ F
(0)
k .

First we focus on X1. Recall that F1 = ({0}, ∅). When n is even, observe
that x = (x0x1 . . . xn−1)

∞ ∈ Nn(X1) if and only if xi = 1 for any even integer i,
0 ≤ i ≤ n − 1 (but xi′ can be 0 or 1 for any odd integer i′, 0 ≤ i′ ≤ n − 1). Since n
is even, the number of odd integers between 0 and n − 1 is n/2, so |Nn(X1)| = 2n/2,
and hence, |Mn(X1)| = 2n/2 as well. Also, 1∞ is the only periodic sequence in
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Nn(X1)∩Mn(X1). Hence, |Pn(X1)| = 2×22/n−1. On the other hand, when n is odd,
x = (x0x1 . . . xn−1)

∞ ∈ Pn(X1) iff x = 1∞, since if there is an integer i, 0 ≤ i ≤ n−1,
such that xi = 0, then xi = xi+n = 0 and exactly one of i and i + n is even. Hence,
|Pn(X1)| = 1.

Next consider Xk when k = 2j for some j ≥ 1. Clearly, |Pn(Xk)| = 0 when
n 6≡ 0 (mod k) from Theorem 4.7, so suppose n = tk for some t ≥ 1. Recall from
Proposition 4.4 that for each w = w1w2 . . . wk ∈ Σk, ψk−1(w) is given by w1 ⊕ w2 ⊕

· · · ⊕ wk, and therefore, f = f1f2 . . . fk ∈ F
(0)
k iff f1 ⊕ f2 ⊕ · · · ⊕ fk = 0.

We first count the number of bi-infinite sequences in Ntk(Xk). Note that if x =
(x0x1 . . . xtk−1)

∞ is in Ntk(Xk), then clearly, x0x1 . . . xtk−1 must be normal wrt Xk.
The converse is also true, as we now show. Suppose that a word x = x0x1 . . . xtk−1 ∈
Σtk is normal wrt Xk, i.e., ⊕i+k−1

m=i xm = 1 for any even integer 0 ≤ i ≤ (t − 1)k.

Then, ⊕
(h+1)k−1
m=hk xm = ⊕

(h+1)k+1
m=hk+2 xm = 1 for any 0 ≤ h ≤ t − 2, so we have x0 ⊕

x1 = xk ⊕ xk+1 = · · · = x(t−1)k ⊕ x(t−1)k+1. Hence, x(t−1)k+2 ⊕ · · · ⊕ xtk−1 ⊕
x0 ⊕ x1 = x(t−1)k+2 ⊕ · · · ⊕ xtk−1 ⊕ x(t−1)k ⊕ x(t−1)k+1 = 1. Therefore, the word
x′ = x′

0x
′
1 . . . x′

tk−1 = x2x3 . . . xtk−1x0x1 is also normal wrt Xk. In other words,

if x = x0x1 . . . xtk−1 ∈ Σtk is normal wrt Xk, then so is x2x3 . . . xtk−1x0x1. This
implies that the periodic bi-infinite sequence x = x∞ is normal wrt Xk, and thus,
x ∈ Ntk(Xk).

Thus, |Ntk(Xk)| is equal to the number of words x0x1 . . . xtk−1 ∈ Σtk that are
normal wrt Xk. We can generate all such words x0x1 . . . xtk−1 as follows.

1. Choose x0x1 . . . xk−1 so that x0x1 . . . xk−1 6∈ F
(0)
k . We have |Σk\F

(0)
k | = 2k−1

choices for x0x1 . . . xk−1.
2. As for xkxk+1 . . . xtk−1, there is a unique choice for xi, for any even i ∈ {k, k+

1, . . . , tk − 1}, such that xi−k+1xi−k+2 . . . xi 6∈ F
(0)
k (i.e., ⊕i

m=i−k+1xm =
1); but when i is odd, there are no restrictions on xi. Since there are
(tk − k)/2 odd numbers between k and tk − 1, we have 2(tk−k)/2 choices for
xkxk+1 . . . xtk−1. (This count also holds for t = 1, since xkxk+1 . . . xtk−1 = ǫ
in this case.)

Therefore, we have in total 2k−12(tk−k)/2 words x0x1 . . . xtk−1 that are normal wrt
Xk, and hence, |Ntk(Xk)| = |Mtk(Xk)| = 2k−12(tk−k)/2.

Finally, we count the number of bi-infinite sequences that are in Ntk(Xk) ∩

Mtk(Xk). These are the sequences x in Ptk(Xk) such that f 6≺ x for all f ∈ F
(0)
k .

An argument similar to that made above for sequences in Ntk(Xk) shows that x =

(x0x1 . . . xtk−1)
∞ ∈ Ptk(Xk) contains no words from F

(0)
k as subwords iff x0x1 . . . xtk−1

contains no words from F
(0)
k as subwords. To construct x0x1 . . . xtk−1 ∈ Σtk that

does not contain any word in F
(0)
k as a subword, we only have the freedom to

choose x0x1 . . . xk−1 to be a word in Σk \ F
(0)
k . Once this is chosen, all other xi’s

(k ≤ i ≤ tk − 1) are uniquely determined. Indeed, each such xi must be chosen so

that ⊕i
m=i−k+1xm = 1. It follows that |Ntk(Xk) ∩ Mtk(Xk)| = |Σk \ F

(0)
k | = 2k−1.

Therefore,

|Ptk(Xk)| = |Ntk(Xk)| + |Mtk(Xk)| − |Ntk(Xk) ∩ Mtk(Xk)|

= 2(2k−12(tk−k)/2) − 2k−1 = 2k−1(2(tk−k+2)/2 − 1),

which is the stated formula for |Pn(Xk)| when n ≡ 0 (mod k).

The expression for ζXk
(t) can now be obtained from (3) by a simple calculation.
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The above proof also yields an expression for the zeta function of the SFT Yk,

k = 2j , with forbidden set F ′ = F
(0)
k . Observe that the set Pn(Yk) of periodic se-

quences in Yk with period n is equal to Nn(Xk)∩Mn(Xk). We thus have the following
corollary.

Corollary 5.2. Let k = 2j, j ≥ 0, and consider the SFT Yk with forbidden set
F ′ = ψ−(k−1)({0}). For the set Pn(Yk) of periodic sequences in Yk with period n, we
have

|Pn(Yk)| =

{
2k−1 if n ≡ 0 (mod k)

0 otherwise

Hence, the zeta function ζYk
(t) of Yk is given by

ζYk
(t) =

1

(1 − tk)
k−12k−1 .

As remarked at the beginning of this section, arguments similar to those used in
the proof of Theorem 5.1 can also be used to count the number of period-n sequences
in Xk in the case when k is not a power of 2. However, in this case, it requires a little
more effort to show that for a word x0x1 . . . xn−1 ∈ Σn with n ≡ 0 (mod 2⌈log2 k⌉),
we have x = (x0x1 . . . xn−1)

∞ ∈ Nn(Xk) iff x0x1 . . . xn−1 is normal wrt Xk, and
that x = (x0x1 . . . xn−1)

∞ ∈ Nn(Xk) ∩ Mn(Xk) iff x0x1 . . . xn−1 contains no words

from F
(0)
k as subwords. For completeness, we offer without proof the expressions for

|Pn(Xk)| for arbitrary k ≥ 2 (k not necessarily a power of 2). For even values of k ≥ 2,
we have

|Pn(Xk)| =

{
2k−1 (2(n−k+2)/2 − 1) if n ≡ 0 (mod 2⌈log2 k⌉)

0 otherwise,

and for odd values of k ≥ 2, we have

|Pn(Xk)| =

{
2k−1 (2(n−k+3)/2 − 1) if n ≡ 0 (mod 2⌈log2 k⌉)

0 otherwise.

From the above, we can obtain expressions for the zeta functions of the Xk’s. For
k ≥ 2, setting K = 2⌈log2 k⌉, we have

ζXk
(t) =





(1 − tK)
K−12k−1

(
1 − (2t2)

K/2
)K−1 2k/2

if k is even

(1 − tK)
K−12k−1

(
1 − (2t2)

K/2
)K−1 2(k+1)/2

if k is odd.

These expressions could be useful as test cases for verifying the correctness of a general
formula for the zeta function of a PFT.

Appendix A. We prove here that the PFT Xk is irreducible iff 1 ≤ k ≤ 6. For
this, we will need to develop an understanding of the structure of the MS presentation,
GXk

, of Xk, constructed by means of the MS algorithm described in Section 2.
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For b ∈ {0, 1}, let b denote the complement of b, i.e., 0 = 1 and 1 = 0. Ob-

serve that f = f1f2 . . . fk−1fk ∈ F
(0)
k iff f ′ = f1f2 . . . fk−1fk 6∈ F

(0)
k and f ′′ =

f1f2 . . . fk−1fk 6∈ F
(0)
k , as ψk−1(f ′) 6= ψk−1(f) and ψk−1(f ′′) 6= ψk−1(f). From this,

we can infer some of the structure of the graph G′ constructed in Step 4 of the MS
algorithm. The graph G′ is a directed bipartite graph on a state set that is the disjoint

union of V(0) = Σk \F
(0)
k and V(1) = Σk. Each state in V(1) has exactly one outgoing

edge, which terminates in some state in V(0). Similarly, each state in V(1) has exactly
one incoming edge, which originates in some state in V(0). On the other hand, each

state in V(0) has two outgoing edges, one going to a state in F
(0)
k ⊂ V(1), and the other

going to a state in Σk \ F
(0)
k ⊂ V(1). And finally, each state in V(0) has two incoming

edges, one from a state in F
(0)
k ⊂ V(1), and the other from a state in Σk \F

(0)
k ⊂ V(1).

Since every state in G′ has incoming and outgoing edges, we see from Step 5 of
the MS algorithm that GXk

= G′. Noting further that each state in V(1) = Σk has a
path α of length k terminating at it, every word in Σk must be generated within a
bi-infinite path in GXk

(see Remark 2.1). Hence, Σk ⊂ B(Xk).

We need one more observation. The graph GXk
is irreducible iff, for each pair

of states V, V ′ in F
(0)
k ⊂ V(1), there is a path in GXk

starting at V and terminating

at V ′. This is because for any state U /∈ F
(0)
k , there exists a path starting at U

and terminating at a state in F
(0)
k , and another path starting at a state in F

(0)
k and

terminating at U .

Lemma A.1. For any k ≥ 1, Xk is irreducible iff its MS presentation GXk
is

irreducible.

Proof. Clearly, Xk is irreducible when GXk
is irreducible, by definition. Con-

versely, suppose GXk
is not irreducible. Then, as noted above, there must be a pair of

states V, V ′ ∈ F
(0)
k such that there is no path in GXk

that starts at V and terminates
at V ′. This implies that there is no word z so that V zV ′ ∈ B(Xk). However, both V
and V ′ are words in B(Xk). Hence, Xk is not irreducible.

Proposition A.2. Xk is irreducible iff 1 ≤ k ≤ 6.

Proof. Firstly, Xk is irreducible for 1 ≤ k ≤ 6 since its MS presentation may be
verified to be irreducible as a graph.

To show that Xk is not irreducible when k ≥ 7, it is enough to prove that X7 is
not irreducible. This is because Xk+1 = ψ−1(Xk) by Proposition 4.6(a), from which
we easily obtain that if Xk+1 is irreducible, then so must be Xk = ψ(Xk+1). However,
it may be directly verified by explicit construction that the MS presentation, GX7

, of
X7 is not irreducible. Hence, from Lemma A.1, we conclude that X7 is not irreducible.
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