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PHASE TRANSITIONS FOR THE UNIFORM DISTRIBUTION IN
THE PATTERN MAXIMUM LIKELIHOOD PROBLEM AND ITS

BETHE APPROXIMATION∗

CHUN LAM CHAN† , WINSTON FERNANDES‡ , NAVIN KASHYAP§ , AND MANJUNATH

KRISHNAPUR¶

Abstract. The pattern maximum likelihood (PML) estimate, introduced by Orlitsky et al., is
an estimate of the multiset of probabilities in an unknown probability distribution p, the estimate
being obtained from n independent and identically distributed samples drawn from p. The PML
estimate involves solving a difficult optimization problem over the set of all probability mass functions
of finite support. In this paper, we describe an interesting phase transition phenomenon in the PML
estimate: at a certain sharp threshold, the uniform distribution goes from being a local maximum
to being a local minimum for the optimization problem in the estimate. We go on to consider the
question of whether a similar phase transition phenomenon also exists in the Bethe approximation
of the PML estimate, the latter being an approximation method with origins in statistical physics.
We show that the answer to this question is a qualified “yes.” Our analysis involves the computation
of the mean and variance of the (i, j)th entry, ai,j , in a random k × k nonnegative integer matrix
A with row and column sums all equal to M , drawn according to a distribution that assigns to A a

probability proportional to Πi,j
(M−ai,j)!

ai,j !
.
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1. Introduction. Consider the estimation problem in which, given a sequence
of n independent and identically distributed (i.i.d.) samples from a fixed but unknown
probability distribution p supported on some discrete alphabet, we are required to
estimate the multiset of probabilities in p. In particular, we need not determine the
correspondence between the symbols of the underlying alphabet and the probabilities
in the multiset. Such a problem arises naturally in the context of universal com-
pression of large-alphabet sources [1] and has several other applications, for example,
population estimation from a small number of samples [2]. The multiset of empirical
frequencies of the symbols observed in the n samples is a straightforward estimate
of the multiset of probabilities in p; this estimate corresponds to the maximum like-
lihood (ML) estimate of p. However, when the sample size, n, is smaller than the
size of the support of the underlying distribution p, the ML estimate may not give a
good estimate of the multiset of probabilities in p. An alternative estimate that has
been proposed for this regime is the pattern maximum likelihood (PML) estimate,
introduced by Orlitsky et al. [1], [2] and described below.
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The pattern ψ or ψ(xn) of a sequence xn = x1, . . . , xn is a data structure that
keeps track of the order of occurrence and the multiplicities of the distinct symbols
in the sequence xn; for a precise definition, see section 2. The PML distribution of a
pattern ψ is the multiset of probabilities that maximizes the probability of observing
a sequence with pattern ψ. It has been argued [2], [3], [4] that for a sequence xn

sampled from an unknown underlying probability distribution p, the PML distribution
of ψ(xn) is a good estimate of the multiset of probabilities in p, even in situations
where n is much smaller than the support size of p. However, for the purposes of this
paper, we view the PML distribution purely as an interesting mathematical object.

The problem of determining the PML distribution (henceforth termed the “PML
problem”) of a given pattern ψ appears to be computationally hard [4], [5], [6], [7], [8],
[9]. It turns out that the PML problem can be very well approximated by its Bethe
approximation [10], [11], a technique with roots in statistical physics. The optimiza-
tion problem in the Bethe approximation can usually be solved highly efficiently using
belief propagation algorithms [12].

In this paper, we are concerned with a remarkable phase transition phenomenon1

observed in the PML problem. For a positive integer k, let Uk denote the uniform
distribution on k symbols. Given a pattern ψ, we can explicitly compute a quantity
Υ(ψ) such that for all k < Υ(ψ), Uk is a local maximum, among all distributions p
with support size k, for the optimization problem within the PML problem, and for
all k > Υ(ψ), Uk is a local minimum. On the basis of this observation, we proposed
in [13] a heuristic algorithm for determining whether the uniform distribution is the
PML distribution of a given pattern ψ.

Given that the Bethe approximation is a very good proxy for the PML distribu-
tion, it is natural to ask whether the phase transition phenomenon described above
extends to the Bethe approximation as well. We are able to give a qualified affirmative
answer to this question. Our answer is given in terms of a sequence of “degree-M
optimization problems” such that the degree-1 problem is the original PML problem,
and as M →∞, we obtain the Bethe approximation. We show that for all sufficiently
large M , the degree-M optimization problems admit a phase transition phenomenon
very similar to that described above for the PML problem. While this falls just short
of proving that the Bethe approximation itself admits such a phase transition, it lends
strong support in favor of this assertion.

The bulk of our proof of the existence of phase transitions in the degree-M op-
timization problems involves analyzing a certain probability distribution, denoted by
Qk,M , on the set of k× k nonnegative integer matrices with all row and column sums
equal to M . This probability distribution and our analysis of it via a discrete Gaussian
approximation may be of independent interest.

The remainder of this paper is organized as follows. In section 2, we provide the
definitions needed to describe the PML problem, after which we state and prove the
corresponding phase transition phenomenon (Theorem 2.1). The Bethe approxima-
tion is described in section 3. This section also explains the notion of “degree-M
lifted permanents” defined by Vontobel [14], which is used to define our degree-M
optimization problems. Section 4 contains a precise statement (Theorem 4.1) of the
phase transition phenomenon in the degree-M problems, the proof of which occupies
much of the rest of the paper. In particular, section 5 collects together the prop-

1Our use of the term “phase transition” here is inspired by statistical physics, where the term is
often used to describe abrupt changes in behavior of physical (especially, thermodynamical) systems.
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erties of the probability distribution Qk,M that are used in the proof. The paper
concludes in section 6 with a discussion of the gap remaining in a rigorous proof of
the phase transition phenomenon in the Bethe approximation. Some of the more
technical proofs from sections 3–5 are presented in appendices.

2. The PML problem and a phase transition phenomenon. Throughout
this paper, we use Z+ to denote the set of nonnegative integers and R+ to denote
the set of nonnegative reals. For a positive integer k, we use [k] to denote the set
{1, 2, . . . , k}. For any countable set X , we let ΠX denote the set of all probability
distributions on X :

ΠX :=

{
p = (p(x))x∈X : p(x) ≥ 0 ∀x ∈ X ,

∑
x∈X

p(x) = 1

}
.

For any positive integer k, we let Uk denote the uniform distribution on [k].

2.1. Patterns and PML. Given a sequence xn = x1, . . . , xn over some alpha-
bet, the pattern of xn is the sequence ψ = ψ1, ψ2, . . . , ψn obtained by replacing each
xj by the order of its first occurrence in xn [4], [10]. More precisely, for each symbol
x occurring in xn, let ν(x) denote the number of distinct symbols seen in the shortest
prefix of xn that ends in the symbol x. Then, ψj = ν(xj) for j = 1, 2, . . . , n. The
pattern ψ(xn) is defined to have length n and size m, where m is the number of dis-
tinct symbols in xn. For example, the word “sleepless” has pattern 123342311, which
is of length 9 and size 4. We will canonically represent a pattern ψ as 1µ12µ2 . . .mµm ,
where µj is the multiplicity of the symbol j, i.e., the number of times j appears, in
ψ. Note that µ1 + · · · + µm = n. The pattern ψ in our example has canonical form
1322334.

Let ψ be a given pattern of length n, and let p = (p(x))x∈X be a probability
distribution over a discrete (possibly countably infinite) set X . The probability that
n i.i.d. samples drawn from the distribution p form a sequence with pattern ψ is given
by

(1) P (ψ;p) :=
∑

xn:ψ(xn)=ψ

n∏
i=1

p(xi).

Clearly, all patterns ψ with the same canonical form 1µ12µ2 . . .mµm will have the
same pattern probability P (ψ;p). Indeed, if p = (p1, . . . , pk) ∈ Π[k] with k ≥ m,
then we can write

(2) P (ψ;p) =
∑
σ

m∏
i=1

pµiσ(i),

where the summation runs over all one-to-one maps σ : [m]→ [k].
The right-hand side of (2) can be expressed in an alternative form using the

notion of a permanent of a matrix. The permanent of a real k × k matrix Θ = (θi,j)
is defined as

perm(Θ) :=
∑
π

k∏
i=1

θi,π(i),

where the summation is over all permutations π : [k] → [k]. With this, it can be
verified that (2) can be rewritten as

(3) P (ψ;p) =
1

(k −m)!
perm(Θ(ψ;p)),
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where Θ(ψ;p) is the k × k matrix (θi,j) with θi,j = p
µj
i ; here, we set2 µj = 0 for

m+ 1 ≤ j ≤ k. The 1
(k−m)! term in (3) comes from the fact that each one-to-one map

σ : [m]→ [k] in the sum (2) can be extended to a permutation π : [k]→ [k] in exactly
(k −m)! different ways.

The PML probability of a pattern ψ of size m is defined as

(4) PPML(ψ) := max
p

P (ψ;p),

the maximum being taken over all discrete distributions p of support size at least
m. Any distribution that attains the maximum above is called a PML distribution
of ψ, denoted by pPML(ψ). For the purposes of this paper, we will assume that the
maximum is indeed attained by some discrete distribution p.3 In this case, there is
always a PML distribution with finite support [2]. Hence, we have

(5) PPML(ψ) = max
k≥m

max
p∈Π[k]

P (ψ;p).

It should be pointed out that, for any k ≥ m, P (ψ;p) is a continuous function of
p over the compact set Π[k], as is evident from (2), and hence, the maximum in
maxp∈Π[k]

P (ψ;p) is indeed attained.
The problem of determining the PML distribution of a pattern seems to be compu-

tationally difficult in general [2], [4], [5], [6], [7], [8], [9]. Algorithms for approximating
the PML distribution have been proposed by Orlitsky et al. [4] and Vontobel [10].
Vontobel’s algorithm, in particular, uses the Bethe approximation, about which we
will have much more to say in section 3.

2.2. Phase transition in the PML problem. Consider now the potentially
simpler decision problem of determining whether the PML distribution of a given
pattern is a uniform distribution. A natural approach to this problem would be to
find a test for whether, for any fixed k ≥ m, the uniform distribution Uk achieves
the maximum in maxp∈Π[k]

P (ψ;p). In attempting this approach, we discovered a
striking phase transition phenomenon in the PML problem. To describe this, we
introduce some notation. For a pattern ψ of size m, and an integer k ≥ m, let
βψk : Π[k] → [0, 1] be the function defined by the mapping p 7→ P (ψ;p). The phase
transition phenomenon is made precise in the following theorem.

Theorem 2.1. For a pattern ψ of length n with canonical form 1µ12µ2 . . .mµm ,
m ≥ 2, define

(6) Υ(ψ) :=
n2 − n∑m
i=1 µ

2
i − n

.

Then, for all integers k ≥ m, the following holds: when k < Υ(ψ), the uniform

distribution Uk is a local maximum of the function βψk , and when k > Υ(ψ), Uk is a
local minimum.

We clarify a point concerning the statement of the theorem. Note that Υ(ψ) is
finite iff ψ 6= 123 . . . n. When ψ = 123 . . . n, we take Υ(ψ) to be ∞.

2For consistency, we define 00 = 1. This is also in keeping with the convention used in Defini-
tion 3.1 that 0 log 0 = 0.

3In general, to guarantee that the maximum is always attained, we must allow “mixed” distri-
butions; see [1], [2].
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Proof of Theorem 2.1. The proof approach is based on that of Theorem 20 in [14].
Let p = Uk, so that p is in the interior of the simplex Π[k]. Pick an arbitrary direction

ξ ∈ Rk \ {0}, normalized so that ‖ξ‖2 = 1, such that for all t within a sufficiently
small interval around 0, the point p(t) = p + t ξ continues to lie within Π[k]. Note

that this implies that
∑k
j=1 ξj = 0. Consider the function g(t) = P (ψ;p(t)). We will

show that, independent of the choice of ξ, we have g′(0) = 0, g′′(0) < 0 if k < Υ(ψ),
and g′′(0) > 0 if k > Υ(ψ). This clearly suffices to prove the theorem.

Now, from (2), g(t) is expressible as
∑
σ gσ(t), where gσ(t) =

∏m
i=1(pσ(i) +

t ξσ(i))
µi . Differentiation, together with the fact that pj = 1

k for all j, yields g′σ(0) =
1

kn−1

∑m
i=1 µiξσ(i). Hence,

g′(0) =
∑
σ

g′σ(0) =
1

kn−1

m∑
i=1

µi
∑
σ

ξσ(i).

For any fixed i ∈ [m], the inner summation
∑
σ ξσ(i) can be evaluated as follows. As σ

ranges over all one-to-one maps from [m] to [k], for each j ∈ [k], σ(i) takes the value

j exactly (k−1)!
(k−m)! times. Hence,

∑
σ ξσ(i) = (k−1)!

(k−m)!

∑k
j=1 ξj = 0 by choice of ξ. Thus,

g′(0) = 0.
Next, we compute g′′(0) =

∑
σ g
′′
σ(0). Straightforward computations yield

g′′σ(0) =
1

kn−2

( m∑
i=1

µiξσ(i)

)2

−
m∑
i=1

µiξ
2
σ(i)

 .
We rewrite the term within square brackets as

m∑
i=1

µi(µi − 1)ξ2
σ(i) +

∑
(i,`):i6=`

µiµ`ξσ(i)ξσ(`).

Summing over all one-to-one maps σ : [m]→ [k], we obtain

g′′(0) =
1

kn−2

 m∑
i=1

µi(µi − 1)
∑
σ

ξ2
σ(i) +

∑
(i,`):i 6=`

µiµ`
∑
σ

ξσ(i)ξσ(`)

.
As above,

∑
σ ξ

2
σ(i) = (k−1)!

(k−m)!

∑k
j=1 ξ

2
j which, since ‖ξ‖2 = 1, means that

∑
σ ξ

2
σ(i) =

(k−1)!
(k−m)! . Similarly, for i 6= `,

∑
σ ξσ(i)ξσ(`) = (k−2)!

(k−m)!

∑
(s,t)∈[k]2:s 6=t ξsξt. We also have

0 = (
∑k
j=1 ξj)

2, from which we obtain
∑k
j=1 ξ

2
j = −

∑
(s,t)∈[k]2:s6=t ξsξt. Hence, again

using the fact that ‖ξ‖2 = 1, we have
∑
σ ξσ(i)ξσ(`) = − (k−2)!

(k−m)! . Putting it all together,

we find that

g′′(0) = C

(k − 1)

m∑
i=1

µi(µi − 1)−
∑

(i,`)∈[m]2:i6=`

µiµ`

 ,
where C = 1

kn−2

(k−2)!
(k−m)! is a positive constant independent of ξ. Further simplification

using the fact that
∑m
i=1 µi = n yields

g′′(0) = C

[
k

(
m∑
i=1

µ2
i − n

)
− (n2 − n)

]
,

from which the desired result follows.



602 CHAN, FERNANDES, KASHYAP, AND KRISHNAPUR

Theorem 2.1 shows that the uniform distribution Uk is either a local maximum or
a local minimum of βψk for all integers k ≥ m, except perhaps at the threshold Υ(ψ).
Indeed, if Υ(ψ) happens to be an integer, then for k = Υ(ψ), it is possible that Uk is
not a local extremum but only a saddle point. For example, for ψ = 1122, we have
Υ(ψ) = 3, and it may be verified that U3 is not a local extremum for βψ3 . This is
also a good place to point out that if Υ(ψ) happens to not be an integer, so that it
lies strictly between two integers υ and υ+ 1, then any Υ′(ψ) ∈ (υ, υ+ 1) would also

work as a threshold: indeed, for m ≤ k ≤ υ, Uk is a local maximum for βψk , and for
k ≥ υ + 1, Uk is a local minimum.

As a simple corollary of the theorem, we see that a necessary condition for the
PML distribution of a pattern ψ to be uniform is that Υ(ψ) ≥ m. However, this
condition is not sufficient in general. In [13], we derive a slightly stronger necessary
condition using Theorem 2.1, which is used as the basis for a heuristic algorithm that
determines whether a given pattern has a uniform PML distribution.

The intent of this paper, however, is to investigate whether the phase transition
phenomenon reported in Theorem 2.1 extends to the Bethe approximation of the PML
problem, which we describe in the next section.

3. The Bethe approximation. The Bethe approximation is a method whose
origins lie in statistical physics [15], [16]. In the interest of brevity, we describe
this approximation only in the context of the PML problem. The motivation and
justification behind the definitions in this section are discussed in detail in [14].

3.1. The Bethe PML problem. From (3), we see that computing the pattern
probability P (ψ;p) is equivalent to computing the permanent of the matrix Θ(ψ;p).
It is well-known that computing the permanent of a matrix is hard in general; for-
mally, the problem is #P-complete [17]. Many approximation algorithms have been
developed for this problem (e.g., [18], [19]), of which the ones based on the Bethe
approximation [20], [21], [14] are relevant to us.

Let Dk denote the set of k × k doubly stochastic matrices. In the following
definition, we use the convention that 0 log 0 = 0.

Definition 3.1 (see [14], Corollary 15). The Bethe permanent of a nonnegative
k × k matrix Θ = (θi,j), with θi,j ≥ 0 for all i, j, is defined as

permB(Θ) := max
Γ∈Dk

exp (−FB(Γ,Θ)) ,

where for Γ = (γi,j) ∈ Dk, we have FB(Γ) = UB(Γ,Θ)−HB(Γ), with

UB(Γ,Θ) := −
∑
i,j

γi,j log(θi,j),

HB(Γ) := −
∑
i,j

γi,j log(γi,j) +
∑
i,j

(1− γi,j) log(1− γi,j).

The function FB(Γ,Θ) in the above definition is called the Bethe free energy
function. If the pair (Γ,Θ) is such that γi,j > 0 but θi,j = 0 for some (i, j), we
define FB(Γ,Θ) = ∞, and correspondingly, exp(−FB(Γ,Θ)) = 0. With these defi-
nitions, exp(−FB(Γ,Θ)) is a continuous function of (Γ,Θ), so that for any fixed Θ,
exp(−FB(Γ,Θ)) attains a maximum on the compact set Dk. Hence, permB(Θ) is
well-defined.

For positive matrices Θ, we can write

permB(Θ) = exp

(
− min

Γ∈Dk
FB(Γ,Θ)

)
.



PHASE TRANSITIONS IN THE PML PROBLEM 603

Vontobel [14, Corollary 23] showed that for any positive matrix Θ, FB(Γ,Θ) is a convex
function of Γ ∈ Dk, so that minΓ∈Dk FB(Γ,Θ) is a convex program. Vontobel further
proved that the sum-product algorithm (belief propagation) can be used to find this
minimum, and hence permB(Θ), highly efficiently. Since the Bethe permanent is often
a very good proxy for the actual permanent [10], [11], [21], [22], having an efficient
algorithm to compute it is particularly useful.

For a pattern ψ of size m and a probability distribution p ∈ Π[k], k ≥ m, we
define, in analogy with (3), the quantity

(7) PB(ψ;p) :=
1

(k −m)!
permB(Θ(ψ;p)).

We then have 0 ≤ PB(ψ;p) ≤ P (ψ;p) ≤ 1, the inequalities holding for the following
reasons:

• the first inequality is simply a consequence of the nonnegativity of the Bethe
permanent;

• the second inequality is because of the fact that perm(Θ) ≥ permB(Θ) for
any nonnegative matrix Θ, an inequality proved by Gurvits [23], [24];

• the last inequality is a consequence of the fact that P (ψ;p) is a probability.
Thus, PB(ψ;p) can be viewed as a probability as well.

With this, we define, in analogy with (4) and (5), the Bethe PML probability of
a pattern ψ to be

(8) PBPML(ψ) := sup
k≥m

max
p∈Π[k]

PB(ψ;p).

A couple of clarifications on this definition may be needed. One is that for any
positive integer k, maxp∈Π[k]

PB(ψ;p) is well-defined. This is because χ(Γ,p) :=

exp
{
−FB(Γ,Θ(ψ;p))

}
, as a function of (Γ,p), is continuous on the compact set

Dk × Π[k]. This implies that permB(Θ(ψ;p)) = maxΓ∈Dk χ(Γ,p) is a continuous
function of p. Hence, PB(ψ;p), being a continuous function of p, must attain a
maximum on the compact set Π[k].

A second clarification is that it is not known whether the supremum in (8) is
always achieved at some finite k, although empirical evidence suggests that this may
indeed be the case [11]. Empirically again, the Bethe PML distribution, defined as
any distribution p for which PB(ψ;p) = PBPML(ψ), is a very good approximation
of the PML distribution of a pattern ψ. The “Bethe PML problem” of determining
the Bethe PML distribution is also considerably easier to solve numerically than the
original PML problem [10], [11].

The question we are interested in addressing is whether the Bethe PML problem
exhibits a phase transition analogous to that described for the PML problem in The-
orem 2.1. To answer this, we must understand when the uniform distribution Uk is a
local maximum or a local minimum in Π[k] for the function p 7→ permB(Θ(ψ;p)). A
direct approach analogous to that used in the proof of Theorem 2.1 seems difficult as
we only have a description of permB as a solution to a convex optimization problem.
Instead, we take an indirect approach via the degree-M lifted permanents discussed
next.

3.2. Degree-M lifted permanents. As an alternative to defining the Bethe
permanent as a solution to an optimization problem, Vontobel gave a combinatorial
characterization of this quantity, which we describe here. Let Θ = (θi,j) be a given
k × k matrix with nonnegative entries. For a positive integer M , let PM denote the
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set of all M ×M permutation matrices. Further, let Pk×kM be the set of all kM × kM
matrices of the form

(9) Λ =


Λ(1,1) Λ(1,2) · · · Λ(1,k)

Λ(2,1) Λ(2,2) · · · Λ(2,k)

...
...

. . .
...

Λ(k,1) Λ(k,2) · · · Λ(k,k)


with Λ(i,j) ∈ PM for all i, j. For a Λ as above, define

(10) Θ� Λ :=


θ1,1Λ(1,1) θ1,2Λ(2,1) · · · θ1,kΛ(1,k)

θ2,1Λ(2,1) θ2,2Λ(2,2) · · · θ1,kΛ(2,k)

...
...

. . .
...

θk,1Λ(k,1) θk,2Λ(k,2) · · · θk,kΛ(k,k)

 .

Definition 3.2 (see [14], Definition 38). The degree-M lifted permanent of Θ is
defined to be

permB,M (Θ) :=
〈
perm(Θ� Λ)

〉1/M
,

where the angular brackets represent the arithmetic average of perm(Θ � Λ) as Λ

ranges over the (M !)k
2

matrices in Pk×kM . Equivalently,
〈
perm(Θ � Λ)

〉
is the ex-

pected value of perm(Θ� Λ), the expectation being taken over Λ chosen uniformly at
random from Pk×kM .

Note that when M = 1, permB,M (Θ) is equal to perm(Θ). At the other extreme,
as M →∞, Vontobel [14, Theorem 39] has shown the following identity:

(11) lim sup
M→∞

permB,M (Θ) = permB(Θ).

Thus, degree-M lifted permanents interpolate between perm(Θ) and permB(Θ). The
advantage of using degree-M lifted permanents as an indirect means of understanding
the Bethe permanent is that they can be expressed in a form that is more amenable
to analysis. To this end, we introduce a piece of notation that will find much use in
this paper. Given positive integers k and M , we let Ak,M denote the set of all k × k
nonnegative integer matrices whose row and column sums are all equal to M .

Proposition 3.3. For any k × k matrix Θ = (θi,j) and any positive integer M ,
we have [

permB,M (Θ)
]M

= (M !)2k−k2
∑

(ai,j)∈Ak,M

∏
(i,j)∈[k]2

θ
ai,j
i,j

(M − ai,j)!
(ai,j)!

.

Using multinomial coefficients, the identity above can be expressed in an alterna-
tive, more evocative form:4

(12)[
permB,M (Θ)

]M
=

∑
(ai,j)∈Ak,M

 ∏
(i,j)∈[k]2

θ
ai,j
i,j

 ∏k
i=1

(
M

ai,1,...,ai,k

)∏k
j=1

(
M

a1,j ,...,ak,j

)∏
(i,j)∈[k]2

(
M
ai,j

) .

Proposition 3.3 is proved in Appendix A.

4It is also possible to recover this form from Lemma 29 in [25].
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4. Phase transition in the Bethe PML problem. As mentioned at the
end of section 3.1, we take an indirect approach, via degree-M lifted permanents, to
the question of the existence of a phase transition phenomenon in the Bethe PML
problem. This approach is based on the intuition that the large-M behavior of these
lifted permanents will, by virtue of (11), shed light on the behavior of the Bethe
permanent. With this program in mind, we define for a pattern ψ of size m ≥ 2,
and integers k ≥ m and M ≥ 1, a function βψk,M : Π[k] → R+ that maps p ∈ Π[k] to
permB,M (Θ(ψ;p)). Recall that Uk denotes the uniform distribution on [k]. The aim
of this section is to prove the following result.

Theorem 4.1. Let ψ be a pattern of length n having canonical form 1µ12µ2 . . .
mµm , m ≥ 2. There is a threshold ΥB(ψ) such that for all integers k ≥ m, the
following holds for all sufficiently large M:

• when k < ΥB(ψ), Uk is a local maximum for βψk,M ; and

• when k > ΥB(ψ), Uk is a local minimum for βψk,M .
When m = 2, the threshold ΥB(ψ) may be taken to be the following:

ΥB(ψ) =


∞ if µ1 = µ2 = 1,

2 + δ if µ1 = µ2 > 1,

1 + δ otherwise

for an arbitrary choice of δ ∈ (0, 1). When m ≥ 3, ΥB(ψ) may be chosen to closely
mimic the threshold Υ(ψ) of Theorem 2.1 in the following sense:

• if Υ(ψ) =∞ (which happens iff ψ = 123 . . . n), then ΥB(ψ) =∞;

• if Υ(ψ) <
√
n+1√
n−1

, then we may take ΥB(ψ) = Υ(ψ);

• in all other cases, we may take

ΥB(ψ) =
U + n2 − 2n+

√
(n2 + 2n− U)2 − 4n3

2(U − n)
,

where U =
∑m
i=1 µ

2
i , so that Υ(ψ)− 1 ≤ ΥB(ψ) < Υ(ψ) holds.

The theorem does not explicitly give a comparison between the thresholds Υ(ψ)
and ΥB(ψ) in the case when m = 2. This has been done only so that a clean
statement of the result could be given. Indeed, there is a close relationship between
the two thresholds even in this case: it can be shown using Theorem 2.1 that when
m = 2,

Υ(ψ) =

{
∞ if µ1 = µ2 = 1,

2 + 1
µ1−1 if µ1 = µ2 > 1,

and Υ(ψ) lies in the interval (1, 3) otherwise.
In summary, Theorem 4.1 strongly indicates that the Bethe PML problem exhibits

a phase transition phenomenon very similar to that proved in Theorem 2.1 for the
PML problem. Unfortunately, this does not quite prove that there is indeed such a
phase transition in the Bethe PML problem. We make some remarks concerning this
in section 6.

The rest of this section is devoted to a proof of Theorem 4.1. The proof proceeds
along the same lines as that of Theorem 2.1, except that the calculations are messier.
To preserve the flow of this section, we have moved the proofs of some intermediate
lemmas, which mainly involve tedious calculations, to the appendices. Also, Propo-
sition 4.4 below, which is also an intermediate step in the proof of Theorem 4.1, but
which could be considered an interesting result in its own right, is proved in section 5.
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Let p = Uk, which lies in the interior of Π[k]. Pick an arbitrary direction ξ ∈
Rk \ {0}, normalized so that ‖ξ‖2 = 1, such that for all t within a sufficiently small
interval around 0, the point p(t) = p+ t ξ continues to lie within Π[k]. Note that this

implies that
∑k
j=1 ξj = 0.

Given a patternψ with multiplicities (µ1, . . . , µm), m ≥ 2, and integers k ≥ m and

M ≥ 1, define the function Gk,M (t) = βψk,M (p(t)).5 As in the proof of Theorem 2.1,
the idea is to show that G′k,M (0) = 0 and that for a suitable choice of ΥB independent
of ξ, the sign of G′′k,M (0) depends, for all sufficiently large M , only on whether k < ΥB

or k > ΥB. We will in fact prove the statement about the second derivative in the
following equivalent form: there exists a threshold ΥB independent of ξ such that

(13) lim
M→∞

G′′k,M (0) < 0 ∀ k < ΥB and lim
M→∞

G′′k,M (0) > 0 ∀ k > ΥB.

It is straightforward to show that G′k,M (0) = 0; a proof of this will be given in
Appendix B as part of the proof of Lemma 4.3 below. To express G′′kM (0), we consider
once again the set, Ak,M , of k × k nonnegative integer matrices all of whose row and
column sums are equal to M . For A = (ai,j) ∈ Ak,M , define

(14) w(A) :=
∏

(i,j)∈[k]2

(M − ai,j)!
(ai,j)!

,

and let

(15) Zk,M :=
∑

A∈Ak,M

w(A).

Then,

Qk,M (A) :=
1

Zk,M
w(A)

defines a probability distribution on Ak,M . We will study this probability distribution
in more detail in section 5. For now, we state and prove a simple fact about the
distribution Qk,M , which we will need to prove some of the other results in this
section.

Lemma 4.2. For any entry ai,j of a random matrix A ∈ Ak,M chosen according
to the distribution Qk,M , we have

E[ai,j ] =
1

k
M.

Proof. Note that w(A), and, consequently, the probability function Qk,M (A), is
invariant to row and column permutations of A. Therefore, the expected value E[ai,j ]
must be a constant independent of (i, j). This constant can be explicitly evaluated as
follows:

E[ai,j ] =
1

k

k∑
`=1

E[ai,`] =
1

k
E
[ k∑
`=1

ai,`

]
=

1

k
M,

the last equality using the fact that
∑k
`=1 ai,` = M .

5Here, and for the remainder of this section, we will suppress the dependence on ψ in our notation;

thus, we write Gk,M (t) instead of Gψk,M (t), ΥB instead of ΥB(ψ), and so on.
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The above fact is used to derive the expression for G′′k,M (0) given next. Let
Vark,M (a1,1) denote the variance of the entry a1,1 in a random matrix A ∈ Ak,M
chosen according to the distribution Qk,M .

Lemma 4.3. We have G′k,M (0) = 0 and

G′′k,M (0) = [(M !)2k−k2 ]
1
M

(Zk,M )
1
M k1−n

[
k2

(k − 1)2

Vark,M (a1,1)

M

(
k

m∑
i=1

µ2
i − n2

)
− n

]
.

The proof of the lemma is deferred to Appendix B. The quantities Zk,M and
Vark,M (a1,1) can be determined explicitly for k = 2 and asymptotically as M → ∞
for k ≥ 3.

Proposition 4.4.
(a) Z2,M = M + 1 and Var2,M (a1,1) = 1

12M(M + 2).
(b) For k ≥ 3, we have

lim
M→∞

[(M !)2k−k2 ]
1
M

(Zk,M )
1
M =

(k − 1)k(k−1)

kk(k−2)

and

lim
M→∞

1

M
Vark,M (a1,1) =

(k − 1)3

k3(k − 2)
.

The proof of the proposition will be given in section 5. We digress for a moment
from the main line of our argument to record a simple consequence of Proposition 4.4,
which may be of some interest. For any integer k ≥ 2, let Jk denote the k× k matrix
all of whose entries equal 1. It is clear from Proposition 3.3 that permB,M (Jk) =

[(M !)2k−k2 ]
1
M (Zk,M )

1
M . Proposition 4.4 thus shows that

lim
M→∞

permB,M (Jk) =
(k − 1)k(k−1)

kk(k−2)

for k ≥ 2. (The fact that this expression holds for k = 2 as well is verifiable from
Z2,M = M + 1.) It should be pointed out that a slightly weaker version of this

equality, namely, lim supM→∞ permB,M (Jk) = (k−1)k(k−1)

kk(k−2) , can be inferred from the
work of Vontobel [14]. Indeed, this follows from (11) and the proof of Lemma 48 in
[14], which shows that permB(Jk) equals the expression on the right-hand side above.

Returning to the main line of our argument, as another direct consequence of
Lemma 4.3 and Proposition 4.4, we have the following result.

Corollary 4.5.
(a) When k = m = 2,

lim
M→∞

G′′2,M (0) =

{
−n 21−n if µ1 = µ2,

+∞ if µ1 6= µ2.

(b) When k ≥ 3 (and k ≥ m),

(16) lim
M→∞

G′′k,M (0) =
(k − 1)k(k−1)

kk(k−2)
k1−n

[
k − 1

k(k − 2)

(
k

m∑
i=1

µ2
i − n2

)
− n

]
.
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Proof. Only part (a) requires a note of explanation. When k = m = 2, the term
k
∑m
i=1 µ

2
i − n2 in the expression for G′′k,M (0) in Lemma 4.3 reduces to 2(µ2

1 + µ2
2)−

(µ1 + µ2)2, which equals (µ1 − µ2)2.

For our purposes, it is only the sign of limM→∞G′′k,M (0) that matters, so we will
make much use of the weaker corollary below. As in the statement of Theorem 4.1,
we set U =

∑m
i=1 µ

2
i .

Corollary 4.6.
(a) When k = m = 2, we have limM→∞G′′2,M (0) < 0 if µ1 = µ2 and limM→∞

G′′2,M (0) > 0 if µ1 6= µ2.
(b) When k ≥ 3, we have limM→∞G′′k,M (0) ≶ 0 if

k2(U − n)− k(U + n2 − 2n) + n2 ≶ 0.

Proof. It suffices to point out that the condition in part (b) above is equivalent
to the term within square brackets in (16) being negative or positive.

Thus, when k ≥ 3, the sign of limM→∞G′′k,M (0) depends only on where k lies in

relation to the roots of the quadratic polynomial x2(U − n) − x(U + n2 − 2n) + n2.
Note that U =

∑m
i=1 µ

2
i ≥

∑m
i=1 µi = n, with equality iff µi = 1 for all i ∈ [m],

i.e., ψ = 123 . . . n. The lemma below summarizes the behavior of the roots of the
quadratic equation.

Lemma 4.7. For n ≥ 2, write q(x) = x2(U −n)−x(U +n2− 2n) +n2, which has

discriminant D = (n2 + 2n− U)2 − 4n3. Recall that Υ = n2−n
U−n .

(1) If U = n (which happens iff ψ = 123 . . . n), then q(x) = −x(n2 − n) + n2 has
n
n−1 as its only root. Since n

n−1 ≤ 2, we have q(k) < 0 for all k ≥ 3.
(2) If U > n, then we have exactly one of the following two cases:

(a) The discriminant D is strictly negative, which happens iff Υ <
√
n+1√
n−1

,

so that q(x) has no roots. In this case, q(k) > 0 for all k.
(b) The quadratic has two real roots ρ1 ≤ ρ2 given by

ρ1 =
U + n2 − 2n−

√
D

2(U − n)
and ρ2 =

U + n2 − 2n+
√
D

2(U − n)
.

In this case, we have 1 < ρ1 ≤ 2, so that q(k) < 0 for 3 ≤ k < ρ2, and
q(k) > 0 for all k > ρ2. Furthermore, Υ− 1 ≤ ρ2 < Υ holds.

The proof of the lemma is given in Appendix C. We now have the tools required
to complete the proof of Theorem 4.1.

Proof of Theorem 4.1. Recall that the goal is to show that there is a threshold ΥB

independent of the direction vector ξ such that (13) holds. From Corollary 4.5, we see
that limM→∞G′′k,M (0) is independent of ξ. With this, the m ≥ 3 case of Theorem 4.1
follows directly from Corollary 4.6(b) and Lemma 4.7.

The m = 2 case requires a few additional details to be checked. When µ1 = µ2 =
1, Corollary 4.6 and Lemma 4.7(1) show that limM→∞G′′k,M (0) < 0 for all k ≥ 2, and
hence, we can take ΥB =∞.

When µ1 = µ2 > 1, we need to argue that (13) holds for any ΥB ∈ (2, 3).
Corollary 4.6(a) shows that limM→∞G′′k,M (0) < 0 for k = 2. Therefore, it remains to
show that limM→∞G′′k,M (0) > 0 for all k ≥ 3. Similarly, when µ1 6= µ2, we need to
show that limM→∞G′′k,M (0) > 0 for all k ≥ 2, so that we can take ΥB ∈ (1, 2) in this
case. Again, Corollary 4.6(a) takes care of the k = 2 case, so we are left with k ≥ 3.
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In summary, we must show that if (µ1, µ2) 6= (1, 1), then limM→∞G′′k,M (0) > 0 for
all k ≥ 3. For this, we will appeal to Lemma 4.7(2).

If the discriminant D is negative, then we are done by Lemma 4.7(2)(a). So, we
may assume that D ≥ 0, in which case the situation of Lemma 4.7(2)(b) applies. It
suffices to show that when (µ1, µ2) 6= (1, 1), then ρ2 ≤ 2. So, let (µ1, µ2) = (a, b)
for some (a, b) 6= (1, 1). Note that D = (2(a + b) + 2ab)2 − 4(a + b)3 = 4[(a +
b + ab)2 − (a + b)3]. Using the fact that (a + b)3 ≥ 4ab(a + b), we obtain D ≤
4[(a+ b+ ab)2 − 4ab(a+ b)] = 4(a+ b− ab)2. Thus,

√
D ≤ 2|a+ b− ab|, and hence,

(17) ρ2 = 1 +
n2 − U +

√
D

2(U − n)
≤ 1 +

ab+ |a+ b− ab|
a2 + b2 − (a+ b)

.

Now, for positive integers a, b, if ab < a + b, then b = 1. If (a, b) = (2, 1), then
observe that D = −8 < 0, which cannot happen. So we can have ab < a + b only if
b = 1 and a ≥ 3. In this case, (17) becomes ρ2 ≤ 1 + a+1

a2−a < 2, the last inequality

holding for any a > 1 +
√

2.
Finally, if ab ≥ a+ b, then (17) reduces to

ρ2 ≤ 1 +
2ab− (a+ b)

a2 + b2 − (a+ b)
,

which is at most 2. We have thus shown that ρ2 ≤ 2 whenever (µ1, µ2) 6= (1, 1), which
completes the proof of the m = 2 case of the theorem.

5. The probability distribution Qk,M . The main aim of this section is to
prove Proposition 4.4. For convenience, we recall the relevant definitions first. We
useAk,M to denote the set of k×k nonnegative integer matrices whose row and column
sums are all equal to M . The probability distribution Qk,M on Ak,M is defined by
setting, for A ∈ Ak,M , Qk,M (A) := 1

Zk,M
w(A), where w(A) and Zk,M are given by

(14) and (15). We are especially interested in determining Vark,M (a1,1), the variance
of the entry a1,1 in a random matrix A = (ai,j) ∈ Ak,M chosen according to the
distribution Qk,M .

Recall from Lemma 4 that the expected value E[ai,j ] is a constant independent
of (i, j) due to the fact that Qk,M (A) is invariant to row and column permutations of
A. This invariance of Qk,M (A) also implies that the variance of ai,j is independent of
(i, j). Nonetheless, the explicit computation of Vark,M (a1,1) seems difficult in general,
with the notable exception of the case when k = 2.

Observe that A2,M consists precisely of the matrices[
a M − a

M − a a

]
with a ∈ {0, 1, . . . ,M}. For any such matrix A, we have w(A) = 1, and hence,
Z2,M = |A2,M | = M + 1. In particular, Q2,M is just the uniform distribution on
A2,M . It follows that Var2,M (a1,1) is the variance of a random variable uniformly
distributed on {0, 1, . . . ,M}. An easy calculation shows this to be 1

12M(M + 2), thus
completing the proof of part (a) of Proposition 4.4.

Henceforth, we consider the case when k ≥ 3. Our interest is in the regime where
k is fixed and M goes to ∞.

5.1. Estimating Zk,M . To estimate the normalization constant Zk,M , we make
use of the fact that

w∗k,M ≤ Zk,M ≤ w∗k,M |Ak,M |,
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where w∗k,M := maxA∈Ak,M w(A). As we will see below, it is possible to explicitly
determine w∗k,M . In the regime of interest to us, w∗k,M grows superexponentially in

M . Since |Ak,M | ≤ (M + 1)k
2

, a quantity that is polynomial in M , we see that the
asymptotics of Zk,M are governed by the asymptotics of w∗k,M .

Write M = qk + r, where q = bM/kc and r = M − kq. Note that we have
0 ≤ r < k. Let u = (u1, . . . , uk) ∈ Zk+ be defined by ui = q + 1 for 1 ≤ i ≤ r, and
ui = q for r + 1 ≤ i ≤ k. Clearly,

∑
i ui = M . Let U be the circulant matrix having

u as its first row. The fact that U is a circulant matrix assures us that it is in Ak,M .

Proposition 5.1. The matrix U maximizes w(A) among all A ∈ Ak,M , and
hence,

w∗k,M = w(U) =

[(
M − (q + 1)

)
!

(q + 1)!

]kr [
(M − q)!

q!

]k(k−r)

.

Before giving a proof of the proposition, we briefly discuss its implications. In
the regime of fixed k and M → ∞, routine algebraic manipulations using Stirling’s
approximation yield

(18) lim
M→∞

[(M !)2k−k2 ]
1
M

(w∗k,M )
1
M =

(k − 1)k(k−1)

kk(k−2)
.

Thus, w∗k,M grows superexponentially in M , so that as observed above, its asymp-
totic behavior governs that of Zk,M . Consequently, in the left-hand side of (18), we
may replace w∗k,M with Zk,M , thereby obtaining the first equality stated in Proposi-
tion 4.4(b).

Our proof of Proposition 5.1 is based upon the theory of majorization [26]. For
any vector x = (x1, . . . , xk) ∈ Rk, let x↓ = (x[1], . . . , x[k]) denote the permutation

of the components of x such that x[1] ≥ · · · ≥ x[k]. A vector x ∈ Rk is said to be

majorized by a vector y ∈ Rk, denoted by x � y, if for ` = 1, . . . , k − 1, we have

∑̀
i=1

x[i] ≤
∑̀
i=1

y[i],

and
∑k
i=1 x[i] =

∑k
i=1 y[i] (or equivalently,

∑k
i=1 xi =

∑k
i=1 yi).

The next lemma plays an important role in our proof of Proposition 5.1. Let us
define Sk,M to be the set of vectors x = (x1, . . . , xk) ∈ Zk+ such that

∑k
i=1 xi = M .

Also, recall from above our definition of the vector u = (u1, . . . , uk) ∈ Sk,M with
ui = q + 1 for 1 ≤ i ≤ r, and ui = q for r + 1 ≤ i ≤ k, where q = bM/kc and
r = M − kq.

Lemma 5.2. The vector u is majorized by every x ∈ Sk,M .

Proof. Consider an arbitrary x ∈ Sk,M . By definition,
∑k
i=1 ui =

∑k
i=1 xi = M ,

so we must show that
∑`
i=1 u[i] ≤

∑`
i=1 x[i] for ` = 1, . . . , k − 1. Suppose that∑`

i=1 u[i] >
∑`
i=1 x[i] for some ` ∈ {1, . . . , k−1}. Note that

∑`
i=1 u[i] = `q+min(`, r).

Thus,

`x[`+1] ≤
∑̀
i=1

x[i] <
∑̀
i=1

u[i] = `q + min(`, r),

from which we infer that x[`+1] < q+ min(1, r/`). Since x[`+1] must be an integer, we
deduce that x[`+1] ≤ q.
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On the other hand, we also have

(k − `)x[`+1] ≥
k∑

i=`+1

x[i] = M −
∑̀
i=1

x[i]

> M −
∑̀
i=1

u[i]

= qk + r −
(
`q + min(`, r)

)
≥ q(k − `).

Hence, x[`+1] > q, which contradicts the inequality x[`+1] ≤ q deduced previously.

Therefore, our assumption that
∑`
i=1 u[i] >

∑`
i=1 x[i] cannot hold.

A function φ : Zk+ → R is said to be Schur-concave if for all x,y ∈ Zk+,

x � y =⇒ φ(x) ≥ φ(y).

Note that if x and y are permutations of each other, then x↓ = y↓, so that both
x � y and y � x hold. Hence, a Schur-concave function φ must be symmetric, which
means that φ(x) = φ(y) whenever x and y are permutations of each other.

A characterization of Schur-concave functions is given in [26, Chapter 3, A.2.b],
which we adapt to our context in the proposition below.

Proposition 5.3. A function φ : Zk+ → R is Schur-concave iff it is symmet-
ric, and for each choice of nonnegative integers s, x3, . . . , xk, the function φ(x, s −
x, x3, . . . , xk) is monotonically decreasing in x for x ≥ s/2.

Now, define the function φ : Zk+ → R as follows:

(19) φ(x1, . . . , xk) =

k∏
j=1

(∑
6̀=j x`

)
!

xj !
.

An application of Proposition 5.3 shows that this function φ is Schur-concave. Indeed,
φ is obviously symmetric. We claim that, for any choice of nonnegative integers
s, x3, . . . , xk, the function ϕ(x) := φ(x, s − x, x3, . . . , xk) is monotonically decreasing
in x for integers x ≥ s/2. To see this, first verify that

ϕ(x+ 1)

ϕ(x)
=

(x+ 1 + x3 + · · ·+ xk)(s− x)

(x+ 1)(s− x+ x3 + · · ·+ xk)
.

Now, we must show that for x ≥ s/2, this ratio is at most 1, or equivalently, (x+ 1 +
x3 + · · ·+xk)(s−x)−(x+1)(s−x+x3 + · · ·+xk) ≤ 0. Upon some rearrangement and
cancellation of like terms, the left-hand side becomes (x3 + · · ·+ xk)(s− x− (x+ 1)),
which is at most 0 when x ≥ s/2.

Proof of Proposition 5.1. For any A ∈ Ak,M , let a1, . . . ,ak denote the rows of A.

Note that w(A) =
∏k
i=1 φ(ai), where φ is as defined in (19).

Since all row sums of A are equal to M , the row vectors a1, . . . ,ak are all in Sk,M .
By Lemma 5.2 and Schur-concavity of φ, we have

w(A) =

k∏
i=1

φ(ai) ≤
k∏
i=1

φ(u) = w(U),
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which proves the proposition.

We remark that with a little bit of extra work, it can be shown that when k
divides M (and k ≥ 3), the matrix U , which in this case has all entries equal to M/k,
uniquely maximizes w(A) among A ∈ Ak,M . When k does not divide M , any matrix
obtained by permuting the rows and columns of U is also a maximizer.

5.2. Estimating Vark,M(a1,1). Recalling that the variance of ai,j is indepen-
dent of (i, j), we have

Vark,M (a1,1) =
1

k2

∑
i,j

Vark,M (ai,j) =
1

k2
E
[∑
i,j

(ai,j −M/k)2

]
.

We will recast this in terms of the matrix U defined previously. Recall that this matrix
has all its entries ui,j equal to either bM/kc or dM/ke.

For any matrix T = (ti,j), we use ‖T‖2 to denote the sum
∑
i,j t

2
i,j . Observe that

E[‖A− U‖2] = E
[∑
i,j

(ai,j − ui,j)2

]

= E
[∑
i,j

(
(ai,j −M/k)− (ui,j −M/k)

)2]

= E
[∑
i,j

(ai,j −M/k)2

]
+ E

[∑
i,j

(ui,j −M/k)2

]
.

Hence,

(20)

∣∣∣∣Vark,M (a1,1)− 1

k2
E[‖A− U‖2]

∣∣∣∣ =
1

k2
E
[∑
i,j

(ui,j −M/k)2

]
< 1.

Thus, for our purposes, it suffices to estimate E[‖A− U‖2].
Our strategy to estimate E[‖A−U‖2] is to approximate the distribution Qk,M by

a suitably chosen discrete Gaussian distribution. The implementation of this strategy
rests upon the following lemma, which we prove in Appendix D.

Lemma 5.4. Fix k ≥ 3. Let ρ = M/k, and for A ∈ Ak,M , let T = (ti,j) = A−U .
If ρ ≥ 4 and maxi,j |ti,j | ≤ 1

9ρ, then∣∣∣∣log
w(A)

w(U)
− log

w̃(A)

w̃(U)

∣∣∣∣ ≤ 4

ρ2

∑
i,j

(|ti,j |+ 1)3 +
3

2ρ

∑
i,j

|ti,j |,

where w̃(A) := exp{− 1
2 ·

k−2
k−1 ·

1
ρ

∑
i,j t

2
i,j}.

We note in passing that w̃(U) = 1, so that w̃(A)
w̃(U) is simply w̃(A). Still, we have

chosen to write this as w̃(A)
w̃(U) so as to enable a direct comparison with w(A)

w(U) .

Taking cue from Lemma 5.4, we define a discrete Gaussian measure on the set,
Ãk,M , of all k × k integer (not necessarily nonnegative) matrices A = (ai,j) with row
and column sums equal to M . For any such matrix A, define

w̃(A) := exp

− 1

2σ2
k,M

∑
i,j

t2i,j

,
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where (ti,j) = A − U and σ2
k,M := k−1

k−2

(
M
k

)
. We then define a probability measure

Q̃k,M on Ãk,M as follows: for A ∈ Ãk,M ,

Q̃k,M (A) :=
1

Z̃k,M
w̃(A),

where Z̃k,M :=
∑
A∈Ãk,M w̃(A).

Let Ẽ[·] denote expectation with respect to the measure Q̃k,M . To be clear, when

we write Ẽ[‖A−U‖2], we mean
∑
A∈Ãk,M ‖A−U‖

2 Q̃k,M (A), while E[‖A−U‖2] refers

to
∑
A∈Ak,M ‖A−U‖

2Qk,M (A). The following lemma, proved in Appendix E, shows

that E[‖A− U‖2] is well-approximated by Ẽ[‖A− U‖2] as M →∞.

Lemma 5.5. E[‖A− U‖2] = Ẽ[‖A− U‖2] + o(M).

The usefulness of this lemma stems from the fact that Ẽ[‖A − U‖2] can be esti-

mated very accurately. To do this, we express Ẽ[‖A − U‖2] in a different form. For

any A ∈ Ãk,M , note that A−U is an integer matrix all of whose row and column sums

are equal to 0, i.e., A−U ∈ Ãk,0. For simplicity, let Tk := Ãk,0. We then have Ẽ[‖A−
U‖2] = 1

Z̃

∑
T∈Tk ‖T‖

2 exp
{
− 1

2σ2
k,M
‖T‖2

}
, where Z̃ :=

∑
T∈Tk exp

{
− 1

2σ2
k,M
‖T‖2

}
.

For any T = (ti,j) ∈ Tk, each of the entries in the kth row and column of T is
linearly dependent on the entries ti,j , 1 ≤ i, j ≤ k − 1. To be precise,

ti,k = −
k−1∑
j=1

ti,j , i = 1, . . . , k − 1;

tk,j = −
k−1∑
i=1

ti,j , j = 1, . . . , k − 1;

tk,k = −
k−1∑
i=1

ti,k =

k−1∑
i=1

k−1∑
j=1

ti,j .

It follows that ‖T‖2 is a positive definite quadratic form in the (k− 1)2 variables ti,j ,
1 ≤ i, j ≤ k − 1. Hence, we can write6

‖T‖2 = t′Bt,

where t ∈ Z(k−1)2 is a vector with coordinates ti,j , 1 ≤ i, j ≤ k − 1 (in some fixed
linear order), and B is a symmetric positive definite matrix. With this, we have

Ẽ[‖A− U‖2] =
1

Z̃

∑
t∈Z(k−1)2

t′Bt exp

{
− 1

2σ2
k,M

t′Bt

}
,

where Z̃ can now be written as

Z̃ =
∑

t∈Z(k−1)2

exp

{
− 1

2σ2
k,M

t′Bt

}
.

6To avoid notational confusion, we write t′, x′, etc., instead of tT , xT , etc., to denote the
transpose of t, x, etc.
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Thus, we see that Ẽ[‖A − U‖2] is equal to the expected value of t′Bt, where t is

a random vector in Z(k−1)2 distributed according to the discrete Gaussian measure
1

Z̃
exp{− 1

2σ2
k,M

t′Bt}. The lemma below is a direct consequence of Proposition F.2 in

Appendix F.

Lemma 5.6. We have

Ẽ[‖A− U‖2] = (k − 1)2σ2
k,M +O

(
exp(−ckM)

)
,

where ck is a positive constant depending only on k.

Equation (20) and Lemmas 5.5 and 5.6 suffice to prove that

Vark,M (a1,1) =
(k − 1)2

k2
σ2
k,M + o(M),

from which we obtain the second statement of Proposition 4.4(b).

6. Concluding remarks. The two main results of this paper, namely,
Theorems 2.1 and 4.1, encapsulate an abrupt transition in behavior of the uni-
form distribution Uk in relation to the mapping βψk,M : Π[k] → R+ defined by
p 7→ permB,M (Θ(ψ;p)). While the former theorem concerns the M = 1 case, the
latter theorem holds for all sufficiently large M . Our proofs of these theorems involve
picking an arbitrary unit vector ξ ∈ Rk such that p(t) = Uk + tξ lies within Π[k] for
all t within a sufficiently small interval around 0, and analyzing the first and second
derivatives at t = 0 of the function Gk,M (t) = βψk,M (p(t)).

Unfortunately, we have not been able to extend this proof technique to de-
duce an analogous result for the mapping βψk,∞ : Π[k] → [0, 1] defined by p 7→
permB(Θ(ψ;p)). The main technical obstacle here is the fact that the corresponding

function Gk,∞(t) = βψk,∞(p(t)) may not be differentiable. (We do know that this
function is continuous, since permB(ψ;p) was noted to be a continuous function of
p in the paragraph following (8).) Note that the identity (11) only allows us to say
that lim supM→∞Gk,M (t) = Gk,∞(t) pointwise in t. By itself, this is insufficient to
claim the differentiability of Gk,∞.

It would be possible to prove the desired result if we could show that the func-
tions Gk,M satisfy the following two conditions within a sufficiently small interval I
about 0: (i) limM→∞Gk,M (t) exists pointwise on I, and (ii) the first three derivatives
of Gk,M are uniformly bounded on I. Indeed, using the properties of equicontin-
uous and uniformly convergent functions (for example, Theorems 7.17 and 7.25 in
[27]), we can then deduce that Gk,∞ is twice-differentiable in the interior of I. More-
over, we would have limM→∞Gk,M (t) = Gk,∞(t), limM→∞G′k,M (t) = G′k,∞(t), and
limM→∞G′′k,M (t) = G′′k,∞(t) for all t in the interior of I. In particular, these hold
at t = 0. From this, we could conclude, via Lemma 4.3 and Corollary 4.6, that the
mapping βψk,∞ admits a phase transition at the same threshold as in Theorem 4.1.

We would unhesitatingly conjecture that condition (i) above is true, but we are
less sure about condition (ii). It is actually not difficult to show that G′k,M is uniformly
bounded within some small interval I, but the uniform boundedness of the second and
third derivatives presents difficulties. It is in fact entirely possible that this approach
will not work, as it may be the case that Gk,∞ is not differentiable. However, we do
believe that the ultimate result is still true: there is sufficient numerical evidence in
favor of there being a phase transition at the threshold ΥB(ψ), defined in Theorem 4.1,
for the uniform distribution in the Bethe PML problem.
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Appendix A. Proof of Proposition 3.3. From Definition 3.2, we see that
permB,M (Θ) involves the permanents of kM × kM matrices Θ � Λ as in (10). Each
such permanent involves a sum over permutations π : [kM ] → [kM ]. We identify a
permutation π : [kM ] → [kM ] with the permutation matrix in PkM whose (s, t)th
entry is a 1 iff π(s) = t; in a slight abuse of notation, we let π denote this permutation
matrix as well. We will find it convenient to view any matrix π ∈ PkM as a block
matrix of the form

(21) π =


π(1,1) π(1,2) · · · π(1,k)

π(2,1) π(2,2) · · · π(2,k)

...
...

. . .
...

π(k,1) π(k,2) · · · π(k,k)

 ,

where for 1 ≤ i, j ≤ k, the (i, j)th block π(i,j) is the M ×M submatrix of π located
at the intersection of the rows and columns indexed by (i − 1)M + 1, . . . , iM and
(j − 1)M + 1, . . . , jM , respectively. Let ai,j(π) denote the number of 1s in π(i,j).

Given two 0/1-matrices P = (pi,j) and Q = (qi,j) of the same size, we write P ≤ Q
if for all i, j, we have pi,j ≤ qi,j (or equivalently, pi,j = 1 =⇒ qi,j = 1). Using the
newly introduced notation, we observe that

(22) perm(Θ� Λ) =
∑

π∈PkM :π≤Λ

∏
(i,j)∈[k]2

θ
ai,j(π)
i,j ,

since permutations π 6≤ Λ contribute only 0s to the permanent. Hence,〈
perm(Θ� Λ)

〉
= (M !)−k

2 ∑
Λ∈Pk×kM

∑
π∈PkM :π≤Λ

∏
(i,j)∈[k]2

θ
ai,j(π)
i,j

= (M !)−k
2 ∑
π∈PkM

∑
Λ∈Pk×kM :π≤Λ

∏
(i,j)∈[k]2

θ
ai,j(π)
i,j .(23)

Now, for a given π ∈ PkM , the number of matrices Λ as in (9) such that π ≤ Λ is
equal to

∏
(i,j)∈[k]2(M − ai,j(π))!. This is because, for each (i, j), π(i,j) determines

the positions of ai,j(π) 1s in Λ(i,j), and the positions of the remaining 1s in Λ(i,j) can
be chosen in (M − ai,j(π))! ways to make Λ(i,j) a permutation matrix. Therefore,
carrying on from (23), we have

(24)
〈
perm(Θ� Λ)

〉
= (M !)−k

2 ∑
π∈PkM

∏
(i,j)∈[k]2

(M − ai,j(π))! θ
ai,j(π)
i,j .

For any π ∈ PkM , the k × k matrix A(π) := (ai,j(π)) is a nonnegative integer
matrix whose row and column sums are all equal to M . Recall that, just prior to the
statement of Proposition 3.3, we introduced the notation Ak,M to denote the set of
all such k × k matrices. Thus, we can write (24) as

(25)
〈
perm(Θ� Λ)

〉
= (M !)−k

2 ∑
A=(ai,j)∈Ak,M

|PkM (A)|
∏

(i,j)∈[k]2

(M − ai,j)! θ
ai,j
i,j ,

where PkM (A) := {π ∈ PkM : A(π) = A}. Therefore, the proof of Proposition 3.3
would be complete once we prove the following lemma.
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Lemma A.1. For A = (ai,j) ∈ Ak,M , we have

|PkM (A)| = (M !)2k∏
(i,j)∈[k]2(ai,j)!

.

Proof. Given a matrix A = (ai,j) ∈ Ak,M , we can construct permutation matrices
π ∈ PkM such that A(π) = A by following the three steps described below. Our
description views a kM × kM matrix π as a k × k block matrix as in (21).

1. Fix an i ∈ [k]. For each j ∈ [k], pick ai,j rows of π(i,j) within which to place
1s. Since π cannot have two 1s in the same row, the number of ways in which
these ai,j rows, j = 1, . . . , k, can be picked is the multinomial coefficient(

M
ai,1,...,ai,k

)
. Then, letting i range over [k], we see that the number of ways

in which rows of π can be so chosen is
∏
i

(
M

ai,1,...,ai,k

)
.

2. Fix a j ∈ [k]. For each i ∈ [k], pick ai,j columns of π(i,j) within which to

place 1s. By a similar argument as above, this can be done in
(

M
a1,j ,...,ak,j

)
ways. So, letting j range over [k], we see that the number of ways in which
columns of π can be so chosen is

∏
j

(
M

a1,j ,...,ak,j

)
.

3. Fix a pair (i, j) ∈ [k] × [k], and consider the submatrix of π(i,j) formed by
the points of intersection of the ai,j rows and columns chosen in the first
two steps. For π to be a permutation matrix, this submatrix should be a
permutation matrix as well. Hence, there are (ai,j)! ways of placing 0s and
1s within this submatrix. All other entries of π(i,j) must be 0s. Letting (i, j)
range over [k]× [k], we determine the number of possible choices in this step
to be

∏
i,j(ai,j)!.

Thus, putting together the counts in the three steps, we obtain

|PkM (A)| =

[∏
i

(
M

ai,1, . . . , ai,k

)][∏
j

(
M

a1,j , . . . , ak,j

)][∏
i,j

(ai,j)!

]
,

which simplifies to the expression in the statement of the lemma.

Appendix B. Proof of Lemma 4.3. We introduce some convenient notation
to be used in the proof. For A = (ai,j) ∈ Ak,M , define γA(t) :=

∏
i,j(pi + tξi)

µjai,j

and γ(t) :=
∑
A∈Ak,M w(A)γA(t). We will need the values of γ(0), γ′(0), and γ′′(0),

for which we need to compute γA(0), γ′A(0), and γ′′A(0).
Determining γA(0) is easy: since pi = 1

k for all i ∈ [k], we have

γA(0) =
∏
i,j

(
1

k

)µjai,j
= k−

∑
i,j µjai,j = k−Mn,

the last equality using
∑
i ai,j = M , and

∑
j µj = n. Hence,

(26) γ(0) =
∑
A

w(A)γA(0) = k−MnZk,M .

Similarly, taking the derivative of γA(t), it is straightforward to show that

γ′A(0) = k1−Mn
∑
i,j

ξiµjai,j ,
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and hence,

γ′(0) =
∑
A

w(A)γ′A(0) = k1−Mn
∑
i,j

ξiµj
∑
A

ai,jw(A).

Now,
∑
A ai,jw(A) = Zk,ME[ai,j ], where E[·] denotes expectation taken with respect

to a random matrix A ∈ Ak,M distributed according to Qk,M . By Lemma 4, E[ai,j ]
is a constant independent of (i, j), and hence,

(27) γ′(0) = k1−MnZk,M (const.)

(∑
i

ξi

)(∑
j

µj

)
= 0,

since
∑
i ξi = 0 by choice of the direction vector ξ.

Calculation of the second derivative γ′′(0) requires a lot more work. To start
with, routine differentiation yields

γ′′A(0) = k2−Mn

(∑
i,j

ξiµjai,j

)2

−
∑
i,j

ξ2
i µjai,j

 ,
which we can plug into

γ′′(0) =
∑
A

w(A)γ′′A(0) = Zk,ME[γ′′A(0)]

to get

γ′′(0) = Zk,Mk
2−Mn

E
[(∑

i,j

ξiµjai,j

)2]
−
∑
i,j

ξ2
i µjE[ai,j ]


= Zk,Mk

2−Mn

E
[(∑

i,j

ξiµjai,j

)2]
− Mn

k

 .(28)

For the second equality above, we used Lemma 4 and
∑
i,j ξ

2
i µj = (

∑
i ξ

2
i )(
∑
j µj) =

n, since ‖ξ‖2 = 1.

To determine E
[(∑

i,j ξiµjai,j
)2]

, we write

(29) E
[(∑

i,j

ξiµjai,j

)2]
=
∑
i,j

ξ2
i µ

2
jE[a2

i,j ] +
∑

(i,j),(i′,j′):
(i,j)6=(i′,j′)

ξiξi′µjµj′E[ai,jai′,j′ ].

As argued for E[ai,j ], the expected value E[a2
i,j ] is also a constant independent of

(i, j). With this, the first term on the right-hand side of (29) can be expressed as

(30)
∑
i,j

ξ2
i µ

2
jE[a2

i,j ] = E[a2
1,1]
∑
j

µ2
j

using ‖ξ‖2 = 1.
Turning our attention to the second term on the right-hand side of (29), we note

that for (i, j) 6= (i′, j′), by virtue of the invariance of Qk,M with respect to row and
column permutations,

(31) E[ai,jai′,j′ ] =

{
E[a1,1a2,2] if i 6= i′ and j 6= j′,

E[a1,1a1,2] otherwise.
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Now,

E[a1,1a1,2] =
1

k − 1

k∑
j=2

E[a1,1a1,j ] =
1

k − 1
E
[
a1,1

k∑
j=2

a1,j

]

=
1

k − 1
E
[
a1,1(M − a1,1)

]
=

1

k − 1

[
M2

k
− E[a2

1,1]

]
,(32)

where we used Lemma 4 to get the last equality. By a similar argument,

E[a1,1a2,2] =
1

k − 1
E
[
a1,1

k∑
i=2

ai,2

]
=

1

k − 1
E
[
a1,1(M − a1,2)

]
=

1

k − 1

[
M2

k
− E[a1,1a1,2]

]
=

1

(k − 1)2

[
k − 2

k
M2 + E[a2

1,1]

]
,(33)

this time using (32) to get the last equality. Plugging (30)–(33) into (29), and then
performing some careful bookkeeping, we eventually obtain

E
[(∑

i,j

ξiµjai,j

)2]
=

k

(k − 1)2
Vark,M (a1,1)

[
k
∑
j

µ2
j − n2

]
,

and hence,

(34) γ′′(0) = Zk,Mk
2−Mn

 k

(k − 1)2
Vark,M (a1,1)

[
k
∑
j

µ2
j − n2

]
− Mn

k

 .

Finally, by Proposition 3.3, we have

Gk,M (t) = permB,M (Θ(ψ;p(t))) = [(M !)2k−k2 ]
1
M γ(t)

1
M .

Taking the derivative with respect to t and setting t = 0, we obtain

G′k,M (0) = [(M !)2k−k2 ]
1
M

1

M
γ(0)

1
M−1γ′(0) = 0,

since γ′(0) = 0—see (27).
Similarly, calculating the second derivative at t = 0, we get

G′′k,M (0) = [(M !)2k−k2 ]
1
M

1

M
γ(0)

1
M
γ′′(0)

γ(0)
.

Plugging in the expressions for γ(0) and γ′′(0) given in (26) and (34), respectively, we
obtain the expression for G′′k,M (0) recorded in the statement of Lemma 4.3.

Appendix C. Proof of Lemma 4.7. Part (1) of the lemma is obvious, so we
concern ourselves with part (2). Here, there are two claims that need proof:

Claim C.1. The discriminant D is strictly negative iff Υ <
√
n+1√
n−1

.

Claim C.2. When D ≥ 0, so that real roots ρ1 and ρ2 exist, we have 1 < ρ1 ≤ 2
and Υ− 1 ≤ ρ2 < Υ.

Proof of Claim C.1. Note thatD = (n2+2n−U)2−4n3 < 0 iff |n2+2n−U| < 2n3/2.
We may remove the absolute value in the latter condition since n2 > U . Thus, D < 0
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iff n2 + 2n−U < 2n3/2, which upon some rearrangement becomes U −n > (n−
√
n)2.

Thus, recalling that Υ = n2−n
U−n , we see that D < 0 is equivalent to

Υ <
n2 − n

(n−
√
n)2

.

Upon canceling the common factor
√
n(n −

√
n), the right-hand side simplifies to√

n+1√
n−1

.

Proof of Claim C.2. We start by writing ρ1 = 1+ n2−U−
√
D

2(U−n) . To show that ρ1 > 1,

it suffices to show that n2−U >
√
D, or equivalently, (n2−U)2 > D. Routine algebra

shows that (n2 − U)2 −D = 4nU , which is of course positive.
For the rest of this proof, it will be convenient to define a = U−n, b = U+n2−2n

and c = n2, so that q(x) = ax2 − bx+ c. With this, ρ1 = b−
√
b2−4ac
2a .

We now give a proof for ρ1 ≤ 2. Suppose that ρ1 ≥ 2. We would then have
b − 4a ≥

√
b2 − 4ac. This yields two inequalities that must necessarily be satisfied:

b−4a ≥ 0 and (b−4a)2 ≥
√
b2 − 4ac. The latter inequality simplifies to 4a−2b+c ≥ 0,

so that the two inequalities that must be satisfied are

(35) b− 4a ≥ 0 and 4a− 2b+ c ≥ 0.

Plugging in the expressions for a, b, and c, we obtain n2 + 2n ≥ 3U and 2U ≥ n2.
Combining these inequalities, we get

(36)
1

2
n2 ≤ U ≤ 1

3
(n2 + 2n),

and hence, 1
2n

2 ≤ 1
3 (n2 + 2n). Upon rearrangement, this becomes n2− 4n ≤ 0, which

yields 0 ≤ n ≤ 4.
As we do not consider pattern lengths n < 2, we must deal with n = 2, 3, 4.

Plugging these values of n into (36), we obtain (n,U) = (2, 2), (3, 5), and (4, 8) as
the only valid solutions. The assumption of part (2) of the lemma is that U > n, so
we cannot have (n,U) = (2, 2). Also, (n,U) = (3, 5) is not possible as this yields a
negative discriminant. We are thus forced to conclude that if ρ1 ≥ 2, then (n,U) =
(4, 8). Indeed, in this case, we have q(x) = 4x2 − 16x + 16, so that ρ1 = ρ2 = 2.
We have thus proved that ρ1 ≤ 2 always holds, and in fact, it holds with equality iff
(n,U) = (4, 8), i.e., ψ = 1222.

To prove that Υ− 1 ≤ ρ2 < Υ, consider the difference ρ2 −Υ. It may be verified
that this difference can be expressed as

ρ2 −Υ =
1

2(U − n)

[
−(n2 − U) +

√
(n2 − U)2 − 4n(U − n)

]
,

which is obviously strictly negative, given that U > n and n2 > U . Thus, ρ2 < Υ.
Now, suppose ρ2−Υ ≤ −1. Then, using the expression given above for ρ2−Υ, we

must have
√

(n2 − U)2 − 4n(U − n) ≤ n2 +2n−3U . This yields two inequalities to be
satisfied: n2 + 2n− 3U ≥ 0 and (n2 − U)2 − 4n(U − n) ≤ (n2 + 2n− 3U)2. The latter
inequality can be manipulated into the following equivalent form: 4(U−n)(2U−n2) ≥
0. Since U > n, this inequality is satisfied iff 2U ≥ n2. Thus, ρ2 − Υ ≤ −1 only if
the inequalities in (36) hold. As argued earlier, these inequalities are satisfied only
if (n,U) = (4, 8), in which case it may be verified that ρ2 − Υ = −1. This proves
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that ρ2 ≥ Υ− 1 always holds, and again, it holds with equality iff (n,U) = (4, 8), i.e.,
ψ = 1222.

This completes the proof of Lemma 4.7.

Appendix D. Proof of Lemma 5.4. Throughout the proof, we fix k ≥ 3.
We introduce some convenient notation: ρ := M/k, εi,j := ui,j − ρ, and f(x) :=
x(M + 1− x). Now, consider the ratio w(A)/w(U) = w(U + T )/w(U):

w(U + T )

w(U)

=
∏

(i,j):ti,j 6=0

(
M − (ui,j + ti,j)

)
!

(M − ui,j)!
ui,j !

(ui,j + ti,j)!

=
∏

(i,j):ti,j<0

f(ui,j − |ti,j |+ 1) · · · f(ui,j)
∏

(i,j):ti,j>0

1

f(ui,j + 1) · · · f(ui,j + ti,j)

=
∏

(i,j):ti,j<0

f(ui,j − |ti,j |+ 1) · · · f(ui,j)

f(ρ)|ti,j |

∏
(i,j):ti,j>0

f(ρ)ti,j

f(ui,j + 1) · · · f(ui,j + ti,j)
.

The last equality above holds because
∑
i,j ti,j = 0. Thus,

(37)

log
w(U + T )

w(U)
=

∑
(i,j):ti,j<0

0∑
`=−|ti,j |+1

log
f(ui,j + `)

f(ρ)
−

∑
(i,j):ti,j>0

ti,j∑
`=1

log
f(ui,j + `)

f(ρ)
.

Now, we need estimates for the summands log
f(ui,j+`)
f(ρ) . Observe that, since

ui,j + ti,j = ai,j ≥ 0, the integers ` that appear in (37) all satisfy ui,j + ` ≥ 1. We
will make use of this observation a little later.

We first derive useful estimates for the ratios
f(ui,j+`)
f(ρ) . Note that f(x2)−f(x1) =

(x2− x1)(M + 1− (x1 + x2)). Using this and the fact that M = kρ, we can write, for
` ∈ Z,

f(ui,j + `)

f(ρ)
= 1 +

f(ui,j + `)− f(ρ)

f(ρ)

= 1 +
(`+ εi,j)((k − 2)ρ− `− εi,j + 1)

ρ((k − 1)ρ+ 1)

= 1 +

(
`+ εi,j
ρ

)(
k − 2

k − 1

)
(1 + γ(`)),(38)

where 1 + γ(`) =
(
1− `+εi,j−1

(k−2)ρ

)(
1 + 1

(k−1)ρ

)−1
. Observe that

(39) 1 + γ(`) ≤ 1− `+ εi,j − 1

(k − 2)ρ
≤ 1 +

|`|+ 2

(k − 2)ρ
,

using εi,j ∈ (−1, 1). On the other hand, using
(
1 + 1

(k−1)ρ

)−1 ≥ 1 − 1
(k−1)ρ , we also

have

1 + γ(`) ≥
(

1− `+ εi,j − 1

(k − 2)ρ

)(
1− 1

(k − 1)ρ

)
= 1− `+ εi,j

(k − 2)ρ
+

ρ+ `+ εi,j − 1

(k − 1)(k − 2)ρ2
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= 1− `+ εi,j
(k − 2)ρ

+
`+ ui,j − 1

(k − 1)(k − 2)ρ2

≥ 1− `+ εi,j
(k − 2)ρ

(40)

since, as observed earlier, `+ui,j ≥ 1 for the integers ` that appear in (37). It should

also be pointed out that the first inequality above requires 1 − `+εi,j−1
(k−2)ρ to be non-

negative. If 1 − `+εi,j−1
(k−2)ρ < 0, then 1 + γ(`) is still lower bounded by (40), since we

now have 1 + γ(`) =
(
1− `+εi,j−1

(k−2)ρ

)(
1 + 1

(k−1)ρ

)−1 ≥ 1− `+εi,j−1
(k−2)ρ .

Thus, from (38)–(40), we obtain for any integer ` occurring in (37),

(41)
f(ui,j + `)

f(ρ)
= 1 + ζ(`)(1 + γ(`)),

where ζ(`) = (k−2
k−1 )(

`+εi,j
ρ ), and |γ(`)| ≤ |`|+2

(k−2)ρ . Observe that for |`| ≥ 1, |ζ(`)(1 +

γ(`))| ≤ 2|`|
ρ (1 + 3|`|

ρ ), which is at most 1
2 for |`|ρ ≤

1
9 . (Indeed, it is easy to check that

2x(1+3x) ≤ 1
2 for |x| ≤ 1

12 (
√

15−2) = 0.1560 . . ..) Also, verify that |ζ(0)(1+γ(0))| ≤
1
ρ (1 + 2

(k−2)ρ ) ≤ 1
ρ (1 + 2

ρ ), which is at most 3
8 for ρ ≥ 4. Henceforth, we assume ρ ≥ 4

and |`|ρ ≤
1
9 , in keeping with the hypotheses of the lemma.

From (41), via the inequality x−x2 ≤ log(1 +x) ≤ x, valid for |x| ≤ 1
2 , we obtain

−
[
ζ(`)(1 + γ(`))

]2 ≤ log
f(ui,j + `)

f(ρ)
− ζ(`)(1 + γ(`)) ≤ 0,

and hence,

ζ(`)γ(`)−
[
ζ(`)(1 + γ(`))

]2 ≤ log
f(ui,j + `)

f(ρ)
− ζ(`) ≤ ζ(`)γ(`).

It follows that

(42)

∣∣∣∣log
f(ui,j + `)

f(ρ)
− ζ(`)

∣∣∣∣ ≤ |ζ(`)γ(`)|+
[
ζ(`)(1 + γ(`))

]2
.

Now, |ζ(`)γ(`)| ≤ 1
k−1

(|`|+1)(|`|+2)
ρ2 ≤ 2

k−1 ( |`|+1
ρ )2 ≤ ( |`|+1

ρ )2. Furthermore, |1+γ(`)| ≤
1 + |γ(`)| ≤ 1 + |`|+2

ρ ≤ 1 + 1
9 + 1

4 = 29
18 , as we have assumed |`|ρ ≤

1
9 and ρ ≥ 4. From

this, we get |(ζ(`)(1 + γ(`))| ≤ 29
18
|`|+1
ρ . Plugging these estimates into (42), we obtain

(43)

∣∣∣∣log
f(ui,j + `)

f(ρ)
− ζ(`)

∣∣∣∣ ≤ (1 +
292

182

)(
|`|+ 1

ρ

)2

≤ 4

(
|`|+ 1

ρ

)2

.

From (43), we can deduce estimates for sums of the form
∑
` log

f(ui,j+`)
f(ρ) , which

we can use in (37). Indeed, for an integer t < 0, with |t| ≤ 1
9ρ, we have∣∣∣∣∣∣

0∑
`=−|t|+1

log
f(ui,j + `)

f(ρ)
−

0∑
`=−|t|+1

ζ(`)

∣∣∣∣∣∣ ≤ 4

ρ2

0∑
`=−|t|+1

(|`|+ 1)2,

which yields
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∣∣∣∣∣∣
0∑

`=−|t|+1

log
f(ui,j + `)

f(ρ)
+

1

2

(
k − 2

k − 1

)(
1

ρ

)[
|t|2 + |t|(2εi,j − 1)

]∣∣∣∣∣∣
≤ 2

3ρ2

[
|t|(|t|+ 1)(2|t|+ 1)

]
.

The above bound can be brought into the following looser but simpler form:

(44)

∣∣∣∣∣∣
0∑

`=−|t|+1

log
f(ui,j + `)

f(ρ)
+

1

2

(
k − 2

k − 1

)(
t2

ρ

)∣∣∣∣∣∣ ≤ 4|t|3

ρ2
+

3|t|
2ρ

.

Similarly, for an integer 0 < t ≤ 1
9ρ, we can obtain

(45)

∣∣∣∣∣
t∑
`=1

log
f(ui,j + `)

f(ρ)
− 1

2

(
k − 2

k − 1

)(
t2

ρ

)∣∣∣∣∣ ≤ 4(t+ 1)3

ρ2
+

3t

2ρ
.

Lemma 5.4 readily follows from (37), (44), and (45).

Appendix E. Proof of Lemma 5.5. As in Lemma 5.4 and Appendix D, we
fix k ≥ 3 and set ρ = M

k . We assume ρ ≥ 4 throughout.
We will use the notation introduced after the statement of Lemma 5.5 in

section 5.2. In particular, the measure Q̃k,M defined on the set Ãk,M is equiva-

lent to a discrete Gaussian measure on Z(k−1)2 , which assigns to each t ∈ Z(k−1)2 the
mass 1

Z̃
exp
(
− 1

2σ2
k,M

t′Bt
)
, where σ2

k,M = k−1
k−2ρ and B is a symmetric positive definite

matrix.
Let δ ∈ (0, 1

6 ) be fixed, and define

Ak,M (δ) :=
{
A ∈ Ak,M : max

i,j
|ti,j | ≤ ρ

1
2 +δ
}
,

where T = (ti,j) = A − U . By Lemma 5.4, it follows that for any A ∈ Ak,M (δ), we
have ∣∣∣∣log

w(A)

w(U)
− log

w̃(A)

w̃(U)

∣∣∣∣ ≤ ĉkρ− 1
2 +3δ,

where ĉk is a positive constant depending only on k. Thus, for A ∈ Ak,M (δ), we have

(46) w̃(A) exp(−ĉkρ−
1
2 +3δ) ≤ w(A)

w(U)
≤ w̃(A) exp(ĉkρ

− 1
2 +3δ),

noting that w̃(U) = 1. Since − 1
2 + 3δ < 0, this shows that, as M → ∞ (so that

ρ → ∞), the ratio w(A)/w(U) is well-approximated by w̃(A) for all A ∈ Ak,M (δ).
From this, we will be able to deduce that, as M → ∞, the contributions made to
E[‖A− U‖2] and Ẽ[‖A− U‖2] by matrices in A ∈ Ak,M (δ) are nearly the same. The
next two lemmas show that the matrices outside Ak,M (δ) make vanishingly small
contributions to both the expected values.

Lemma E.1. Let B̃k,M (δ) = Ãk,M \ Ak,M (δ). We have∑
A∈B̃k,M (δ)

‖A− U‖2Q̃k,M (A) ≤ κk ρ2 exp

(
−k − 2

2k
ρ2δ

)
,

where κk is a constant depending only on k.



PHASE TRANSITIONS IN THE PML PROBLEM 623

Proof. For any A ∈ Ãk,M , if the entries of T = A − U are bounded above in

magnitude by ρ
1
2 +δ, then A must have nonnegative entries, and hence, A ∈ Ak,M (δ).

Therefore, for any A ∈ B̃k,M (δ), we have ‖A− U‖2 =
∑
i,j t

2
i,j ≥ ρ1+2δ. Hence,∑

A∈B̃k,M (δ)

‖A− U‖2 Q̃k,M (A) ≤
∑

A∈Ãk,M :‖A−U‖2≥ρ1+2δ

‖A− U‖2 Q̃k,M (A),

and the lemma follows by applying Proposition F.3 in Appendix F with R = ρ1+2δ

and τ = 1
k .

Lemma E.2. Let Bk,M (δ) = Ak,M \ Ak,M (δ). There is a positive constant c′k
depending only on k such that for all A ∈ Bk,M (δ), the bound

(47)
w(A)

w(U)
≤ exp(−c′kρ2δ)

holds for all sufficiently large M . Consequently, there is a positive constant c′′k de-
pending only on k such that

(48)
∑

A∈Bk,M (δ)

‖A− U‖2 w(A)

w(U)
≤ exp(−c′′kρ2δ)

holds for all sufficiently large M .

Proof. Given the bound in (47), the bound in (48) follows readily. Indeed, from
the definition of U given in section 5.1, it is straightforward to verify that for any
A ∈ Ak,M , we have

‖A− U‖2 = ‖A‖2 − k2q2 + kr − 2

k∑
i=1

∑
j:ui,j=q+1

ai,j ≤ ‖A‖2 − k2q2 + kr.

Hence, for all M ≥ k (so that q ≥ 1), we have ‖A− U‖2 ≤ ‖A‖2 ≤ k2M2. Also, note

that |Bk,M (δ)| ≤ |Ak,M | ≤ (M + 1)k
2

. Therefore,∑
A∈Bk,M (δ)

‖A− U‖2 w(A)

w(U)
≤ k2M2|Bk,M (δ)| exp(−c′kρ2δ)

≤ exp
(
−c′kρ2δ +O(logM)

)
,

from which (48) follows.
The proof of (47) builds on (37). Recall that A − U = T , and note that

f(x)/f(ρ) ≥ 1 iff ρ ≤ x ≤ M + 1 − ρ. For all (i, j), define t̂i,j = min{|ti,j |, ρ
1
2 +δ}.

Then, for ti,j < 0, we have

(49)

0∑
`=−|ti,j |+1

log
f(ui,j + `)

f(ρ)
≤

0∑
`=−t̂i,j+1

log
f(ui,j + `)

f(ρ)
.

Also, for any ti,j > 0 such that ai,j = ui,j + ti,j ≤M + 1− ρ, we have

(50)

ti,j∑
`=1

log
f(ui,j + `)

f(ρ)
≥

t̂i,j∑
`=1

log
f(ui,j + `)

f(ρ)
.
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Now, consider A ∈ Bk,M (δ). Suppose first that ai,j ≤ M + 1 − ρ for all (i, j).
Then, from (37), (49), and (50), we have

(51) log
w(A)

w(U)
≤

∑
(i,j):ti,j<0

0∑
`=−t̂i,j+1

log
f(ui,j + `)

f(ρ)
−

∑
(i,j):ti,j>0

t̂i,j∑
`=1

log
f(ui,j + `)

f(ρ)
.

Now arguing as in the proof of Lemma 5.4 in Appendix D (in particular, using (44)
and (45)), we can bound the right-hand side above by

(52) − 1

2

(
k − 2

k − 1

)
1

ρ

∑
i,j

(t̂i,j)
2 +

4

ρ2

∑
i,j

(t̂i,j + 1)3 +
3

2ρ

∑
i,j

t̂i,j .

Now, since A ∈ Bk,M (δ), we have
∑
i,j(t̂i,j)

2 ≥ ρ1+2δ, so that the first term above

is upper bounded by − 1
2 (k−2
k−1 )ρ2δ. Using t̂i,j ≤ ρ

1
2 +δ, the remaining two terms are

upper bounded by ĉkρ
− 1

2 +3δ for some positive constant ĉk that depends only on k.
Hence, we have

log
w(A)

w(U)
≤ −1

2

(
k − 2

k − 1

)
ρ2δ + ĉkρ

− 1
2 +3δ.

This proves (47) for A ∈ Bk,M (δ) with maxi,j ai,j ≤M + 1− ρ.
It remains to consider the case of A ∈ Bk,M (δ) with maxi,j ai,j > M + 1 − ρ.

Now, the reason the approach used above to get to (47) no longer works is that if
ai,j > M + 1 − ρ, then (50) may not hold. So, what we do instead is to show that

for each such A, there exists an Ă ∈ Bk,M (δ) with maxi,j ăi,j ≤M + 1− ρ such that

w(A) ≤ w(Ă). As argued above, (47) holds for Ă; therefore, it holds for A as well.
We now prove the existence of an Ă as required. Let (i, j) be such that ai,j >

M + 1 − ρ. Then, since A ∈ Ak,M , the following must hold: (i) for all i′ 6= i
and j′ 6= j, we have ai′,j < ρ − 1 and ai,j′ < ρ − 1, and (ii) there exists some
i′ 6= i and j′ 6= j such that ai′,j′ > ρ. Now, consider the matrix A± which has
the same entries as A, except for the following: a±i,j = ai,j − 1, a±i′,j = ai′,j + 1,

a±i,j′ = ai,j′ + 1, and a±i′,j′ = ai′,j′ − 1. Note that A± is also in Bk,M (δ), since

a±i,j − ui,j > M − ρ− ui,j ≥M − 2ρ− 1 = (k − 2)ρ− 1 ≥ ρ− 1 > ρ
1
2 +δ for δ ∈ (0, 1

6 )
and ρ ≥ 4 (as assumed at the beginning of this appendix).

Let a1, . . . ,ak and a±1 , . . . ,a
±
k denote the rows of A and A±, respectively. Clearly,

a` = a±` for all ` /∈ {i, i′}. Moreover, it can be directly verified using the definition of
the function φ in (19) that φ(a`) ≤ φ(a±` ) for ` ∈ {i, i′}. With this, we have

w(A) =

k∏
`=1

φ(a`) ≤
k∏
`=1

φ(a±` ) = w(A±).

Note that the procedure of obtaining A± from A strictly reduces the (i, j)th entry
of A, and does not create any new entries larger than M + 1− ρ. If A± still contains
an entry larger than M + 1 − ρ, we apply the procedure to A± to produce a matrix
(A±)

±
, and so on. Carrying on in this manner, after finitely many steps, we will

obtain the desired matrix Ă.

Lemmas E.1 and E.2 allow us to obtain some useful bounds on the ratio E[‖A−U‖2]

Ẽ[‖A−U‖2]
.
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Lemma E.3. There exist positive constants c1,k and c2,k depending only on k,
such that for all sufficiently large M , we have

(53) exp(−c2,k ρ−
1
2 +3δ) ≤

∑
A∈Ak,M ‖A− U‖

2 w(A)
w(U)∑

A∈Ãk,M ‖A− U‖
2w̃(A)

≤ exp(c1,k ρ
− 1

2 +3δ)

and

(54) exp(−c2,k ρ−
1
2 +3δ) ≤

∑
A∈Ak,M

w(A)
w(U)∑

A∈Ãk,M w̃(A)
≤ exp(c1,k ρ

− 1
2 +3δ).

Hence, with c3,k = c1,k + c2,k, we have

(55) exp(−c3,k ρ−
1
2 +3δ) ≤ E[‖A− U‖2]

Ẽ[‖A− U‖2]
≤ exp(c3,k ρ

− 1
2 +3δ).

Proof. Note that (55) follows directly from (53) and (54), since by definition, we
have

E[‖A− U‖2] =

∑
A∈Ak,M ‖A− U‖

2 w(A)
w(U)∑

A∈Ak,M
w(A)
w(U)

and

Ẽ[‖A− U‖2] =

∑
A∈Ãk,M ‖A− U‖

2 w̃(A)∑
A∈Ãk,M w̃(A)

.

We will prove (53) only, as (54) is proved along similar lines. We first write∑
A∈Ak,M

‖A− U‖2 w(A)

w(U)
=

∑
A∈Ak,M (δ)

‖A− U‖2 w(A)

w(U)
+

∑
A∈Bk,M (δ)

‖A− U‖2 w(A)

w(U)
,

where Bk,M (δ) is as defined in Lemma E.2. Now, from (46) and (48), we have positive
constants ĉk and c′′k depending only on k, such that for all sufficiently large M ,

∑
A∈Ak,M

‖A− U‖2 w(A)

w(U)
≤ exp(ĉk ρ

− 1
2 +3δ)

∑
A∈Ak,M (δ)

‖A− U‖2w̃(A) + exp(−c′′kρ2δ).

(56)

It is easily verified that as M increases, the term exp(−c′′kρ2δ) goes to zero fast enough

that it can eventually be “absorbed” into the term exp(ĉk ρ
− 1

2 +3δ)
∑
A∈Ak,M (δ) ‖A−

U‖2w̃(A) by increasing the constant ĉk slightly. To be precise, for any constant
c1,k > ĉk, we have for all sufficiently large M ,∑

A∈Ak,M

‖A− U‖2 w(A)

w(U)
≤ exp(c1,k ρ

− 1
2 +3δ)

∑
A∈Ak,M (δ)

‖A− U‖2w̃(A)

≤ exp(c1,k ρ
− 1

2 +3δ)
∑

A∈Ãk,M

‖A− U‖2w̃(A),

which yields the second inequality in (53).
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To prove the first inequality in (53), we begin by noting that∑
A∈Ak,M

‖A− U‖2 w(A)

w(U)
≥

∑
A∈Ak,M (δ)

‖A− U‖2 w(A)

w(U)

≥ exp(−ĉk ρ−
1
2 +3δ)

∑
A∈Ak,M (δ)

‖A− U‖2 w̃(A)(57)

for all sufficiently large M , by (46). Now, as in Lemma E.1, let B̃k,M (δ) = Ãk,M \
Ak,M (δ), and consider∑
A∈Ãk,M

‖A− U‖2 w̃(A)

=
∑

A∈Ak,M (δ)

‖A− U‖2 w̃(A) +
∑

A∈B̃k,M (δ)

‖A− U‖2 w̃(A)

=
∑

A∈Ak,M (δ)

‖A− U‖2 w̃(A) + Z̃k,M
∑

A∈B̃k,M (δ)

‖A− U‖2 Q̃k,M (A)

≤
∑

A∈Ak,M (δ)

‖A− U‖2 w̃(A) + exp(−c′′′k ρ2δ)

for some positive constant c′′′k depending only on k, and for all sufficiently large M .
The last inequality above is obtained via Lemma E.1 and Proposition F.1. Thus, we
have ∑

A∈Ak,M (δ)

‖A− U‖2 w̃(A) ≥
∑

A∈Ãk,M

‖A− U‖2 w̃(A) − exp(−c′′′k ρ2δ)

for all sufficiently large M . Plugging this into (57), and noting as before that
exp(−c′′′k ρ2δ) goes to zero rapidly as M increases, we can readily deduce that for
any constant c2,k > ĉk, we have∑

A∈Ak,M

‖A− U‖2 w(A)

w(U)
≥ exp(−c2,k ρ−

1
2 +3δ)

∑
A∈Ãk,M

‖A− U‖2w̃(A)

for all sufficiently large M . The first inequality in (53) is thus proved.

We are now in a position to complete the proof of Lemma 5.5. From (55), it
follows that ∣∣∣E[‖A− U‖2]− Ẽ[‖A− U‖2]

∣∣∣ = Ẽ[‖A− U‖2]O
(
ρ−

1
2 +3δ

)
.

Since Ẽ[‖A− U‖2] = O(ρ) by Lemma 5.6,7 we conclude that∣∣∣E[‖A− U‖2]− Ẽ[‖A− U‖2]
∣∣∣ = O

(
ρ

1
2 +3δ

)
,

which proves Lemma 5.5.

Appendix F. Some properties of discrete Gaussian measures. In this
appendix, we consider a discrete Gaussian measure defined on Zd by µ(x) := 1

Z v(x),

7Lemma 5.6 is proved independently of Lemma 5.5.
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where v(x) = exp{− 1
2βx

′Vx} for x ∈ Zd, β > 0 and V a symmetric positive definite

matrix, and Z =
∑

x∈Zd v(x). Let X be a random variable distributed according to
the measure µ. We collect here some results on the measure µ that are used in this
paper. These results are valid in the regime where V is fixed and β →∞.

The main tool used in the proofs in this appendix is the Poisson summation
formula (see, e.g., [28, Chapter VII, Corollary 2.6] or [29, section 17]). This formula

applies to functions f : Rd → C, with Fourier transform f̂ defined for all ξ ∈ Rd as
f̂(ξ) =

∫
Rd f(x)ei〈ξ,x〉dx, such that

|f(x)|, |f̂(x)| ≤ C

1 + ‖x‖d+δ
∀ x ∈ Rd

for some constants C > 0 and δ > 0. For such functions f , the Poisson summation
formula states that

(58)
∑
x∈Zd

f(x) =
∑
ξ∈Zd

f̂(2πξ).

By a basic fact about the Gaussian density, the function v(x) = exp{− 1
2βx

TVx}

has Fourier transform v̂(ξ) = (2π)d/2β1/2

√
det V

exp(− 1
2β ξ

′V−1ξ). Hence, the Poisson sum-

mation formula applies, and we have

(59) Z =
∑
x∈Zd

v(x) =
∑
ξ∈Zd

v̂(2πξ) =
(2π)d/2β1/2

√
det V

Z∗,

where we define Z∗ :=
∑
ξ∈Zd exp(− 1

24π2β ξ′V−1ξ).
Clearly, Z∗ ≥ 1 since the ξ = 0 term in the sum evaluates to 1. In fact, as

β → ∞, Z∗ → 1. This is because ξ′V −1ξ is a positive definite quadratic form, so
that limβ→∞ exp(− 1

24π2β ξ′V−1ξ) equals 0 if ξ 6= 0 and equals 1 if ξ = 0. Thus,

Z → (2π)d/2β1/2

√
det V

. A rigorous statement of this convergence, along with an estimate of

the rate of convergence, is given in Proposition F.1 below. To obtain the convergence
rate estimate, we make use of some bounds on the quadratic form ξ′V −1ξ.

The matrix V−1 can be diagonalized as U ′Λ−1U , where U is an orthogonal matrix
and Λ = diag(λ1, . . . , λd) is a diagonal matrix composed of the eigenvalues, λ1, . . . , λd,
of V. Since V is symmetric and positive definite, its eigenvalues are all real and
positive. Thus, with η = Uξ, we have ξ′V−1ξ = η′Λ−1η =

∑d
i=1

1
λi
η2
i . Hence,

letting λmin and λmax denote the smallest and largest eigenvalues, respectively, of V,
we have

(60)
1

λmax
‖ξ‖2 =

1

λmax
‖η‖2 ≤ ξ′V−1ξ ≤ 1

λmin
‖η‖2 =

1

λmin
‖ξ‖2,

the equalities on either side being due to the fact that orthogonal transformations
preserve `2 norms.

Proposition F.1. In the regime where β →∞, we have

Z =
(2π)d/2β1/2

√
det V

[
1 +O

(
exp

(
− 2π2

λmax
β

))]
.
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Proof. Let C0 = 2π2

λmax
. It is enough to show that Z∗ = 1 +O

(
exp(−C0β)

)
. Since

Z∗ ≥ 1, we need a corresponding upper bound. This is done using (60) as follows:

Z∗ ≤
∑
ξ∈Zd

exp

(
−C0 β

d∑
i=1

ξ2
i

)
=

d∏
i=1

∑
ξi∈Z

exp

(
−C0β ξ

2
i

)

=

[∑
ξ∈Z

exp

(
−C0β ξ

2

)]d
≤
[∑
ξ∈Z

exp

(
−C0β |ξ|

)]d
.

The upper bound 1+O
(
exp(−C0β)

)
now follows from the geometric series summation

formula.

The Poisson summation formula also applies to the function ϑ(x) = x′Vx v(x).
Recall that if f has a twice-differentiable Fourier transform, then the function g(x) =

‖x‖2f(x) has Fourier transform ĝ(ξ) = −∆f̂(ξ), where ∆f̂ is the Laplacian of

f̂ . With f(x) = exp(− 1
2‖x‖

2), we have g(x) = ‖x‖2 exp(− 1
2‖x‖

2), and 1
βϑ(x) =

g(β−1/2V1/2x), where V1/2 is the symmetric positive definite square root of V. Now,

f̂(ξ) = (2π)d/2 exp(− 1
2‖ξ‖

2), from which straightforward computations yield ĝ(ξ) =

(2π)d/2(d− ‖ξ‖2) exp(− 1
2‖ξ‖

2). Thus, via a change of variable, we have

1

β
ϑ̂(ξ) =

(2π)d/2β1/2

√
det V

(d− βξ′V−1ξ) exp

(
−1

2
β ξ′V−1ξ

)
=

Z

Z∗
(d− β ξ′V−1ξ) exp

(
−1

2
β ξ′V−1ξ

)
,(61)

where we have used the identity in (59).

Proposition F.2. In the regime where β →∞, we have

Eµ[X′VX] =
1

Z

∑
x∈Zd

ϑ(x) = β d+O

(
β2 exp

(
− 2π2

λmax
β

))
.

Proof. Plugging (61) into the Poisson summation formula (58), we obtain

Eµ[X′VX] =
1

Z

∑
x∈Zd

ϑ(x) =
1

Z

∑
ξ∈Zd

ϑ̂(2πξ)

=
β

Z∗

∑
ξ∈Zd

(d− 4π2β ξ′V−1ξ) exp

(
−1

2
4π2β ξ′V−1ξ

)

= β d − 4π2β2

Z∗

∑
ξ∈Zd

ξ′V−1ξ exp

(
−1

2
4π2β ξ′V−1ξ

)
.(62)

It only remains to show that the final summation in (62) is O
(
exp(− 2π2

λmax
β)
)
.

Using (60), the summand can be bounded as

ξ′V−1ξ exp

(
−1

2
4π2β ξ′V−1ξ

)
≤ 1

λmin
‖ξ‖2 exp

(
−2π2

λmax
β‖ξ‖2

)
.

We then have
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∑
ξ∈Zd

ξ′V−1ξ exp

(
−1

2
4π2β ξ′V−1ξ

)

≤ 1

λmin

∑
ξ∈Zd

d∑
i=1

ξ2
i exp

(
−2π2

λmax
β

d∑
i=1

ξ2
i

)

=
1

λmin

d∑
i=1

∑
ξ∈Zd

ξ2
i exp

(
−2π2

λmax
β

d∑
i=1

ξ2
i

)

=
d

λmin

∑
ξ∈Zd

ξ2
1 exp

(
−2π2

λmax
β

d∑
i=1

ξ2
i

)

=
d

λmin

∑
ξ1∈Z

ξ2
1 exp

(
−2π2

λmax
β ξ2

1

) d∏
i=2

∑
ξi∈Z

exp

(
−2π2

λmax
β ξ2

i

)
=

d

λmin

∑
ξ∈Z

ξ2 exp

(
−2π2

λmax
β ξ2

) ∑
ξ∈Z

exp

(
−2π2

λmax
β ξ2

)d−1

≤ d

λmin

∑
ξ∈Z

ξ2 exp

(
−2π2

λmax
β |ξ|

) ∑
ξ∈Z

exp

(
−2π2

λmax
β |ξ|

)d−1

=
d

λmin
O

(
exp

(
− 2π2

λmax
β

))[
1 +O

(
exp

(
− 2π2

λmax
β

))]d−1

(63)

= O

(
exp

(
− 2π2

λmax
β

))
,

the equality in (63) being a consequence of standard geometric series summation
formulas.

Our final result estimates the contribution to Eµ[X′VX] = 1
Z

∑
x ϑ(x) made

by vectors x ∈ Zd with x′V x ≥ R for some (large) R > 0. To this end, define
Z(R) := {x ∈ Zd : x′V x ≥ R}.

Proposition F.3. For any R > 0 and 0 < τ < 1, we have

1

Z

∑
x∈Z(R)

ϑ(x) ≤ βd τ−( d2 +1) exp

(
− (1− τ)R

2β

)
.

Proof. For 0 < τ < 1, we write

1

Z

∑
x∈Z(R)

ϑ(x) =
1

Z

∑
x∈Z(R)

x′V x exp

(
−1− τ

2β
x′V x

)
exp

(
− τ

2β
x′V x

)

≤ exp

(
−1− τ

2β
R

)
1

Z

∑
x∈Zd

x′V x exp

(
− τ

2β
x′V x

)

= exp

(
−1− τ

2β
R

)
τ−1 1

Z

∑
x∈Zd

ϑ(τ
1
2x)
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= exp

(
−1− τ

2β
R

)
τ−( d2 +1) 1

Z

∑
ξ∈Zd

ϑ̂(2πτ−
1
2 ξ)(64)

≤ exp

(
−1− τ

2β
R

)
τ−( d2 +1) β

Z∗

∑
ξ∈Zd

d exp(−1

2
4π2τ−1β ξ′V−1ξ)(65)

≤ exp

(
−1− τ

2β
R

)
τ−( d2 +1) β

Z∗

∑
ξ∈Zd

d exp(−1

2
4π2β ξ′V−1ξ)

= exp

(
−1− τ

2β
R

)
τ−( d2 +1) βd.

In (64) above, we used the Poisson summation formula (58), and (65) follows
from (61).
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