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Abstract

Bidirectional relaying, where a relay helps two user nodes to exchange messages, has been an active
area of recent research. In the compute-and-forward strategy for bidirectional relaying, the relay computes
a function of the two messages using the naturally-occurring sum of symbols simultaneously transmitted by
user nodes in a Gaussian multiple access channel, and the computed function value is forwarded to the user
nodes in an ensuing broadcast phase. This paper studies a problem in which the two user nodes wish to
exchange messages using an untrusted relay. It is desired to have statistical independence, or perfect secrecy,
between the sum of symbols transmitted by the user nodes and the individual messages. A coding scheme
using nested lattices is described. It is shown that the scheme achieves perfect secrecy, and an achievable
rate is found. The security conditions are relaxed to strong secrecy, and a coding scheme that achieves this
is described. The results are then extended to the multi-hop line network and achievable rates under the
two security constraints are found. The coding schemes described in this paper are explicit, to the extent
that, given a pair of nested lattices that satisfy certain “goodness” properties, we specify the probability

distributions for randomization at the encoders to achieve the desired secrecy criteria.

I. INTRODUCTION

Consider a network having three nodes, denoted by A, B and R. The nodes A and B, henceforth called the
user nodes, wish to exchange information with each other. However, they are connected only to R, and not to
each other directly. The node R acts as a bidirectional relay between A and B, and facilitates communication
from A to B, and from B to A in the reverse direction. All nodes are assumed to operate in half-duplex
mode (they cannot transmit and receive simultaneously), and all links between nodes are wireless (unit
channel gain) additive white Gaussian noise (AWGN) channels. Bidirectional relaying in such settings has

been studied extensively in the recent literature [2], [23], [28], [34], [36].
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We use the compute-and-forward framework proposed in [23], [34] for bidirectional relaying, and we
briefly describe a binary version for completeness and clarity. Suppose that A and B possess bits X and
Y, respectively. We will assume that X and Y are generated independently and uniformly at random. The
goal in bidirectional relaying is to transmit X to B and Y to A through R. To achieve this goal, a compute-
and-forward protocol takes place in two phases as shown in Fig. 2} (1) the (Gaussian) multiple access phase
or the MAC phase, where the user nodes simultaneously transmit to the relay, and (2) the broadcast phase,
where the relay transmits to the user nodes. In the MAC phase, the user nodes A and B independently
modulate their bits X and Y into real valued symbols U and V, respectively. The relay receives an instance

of a random variable W, which can be modeled as
W=U+V+7Z (1)

where it is assumed that the links A — R and B — R have unit gain, Z denotes additive white Gaussian noise
independent of U and V', and communication is assumed to be synchronized. Using W, the relay computes
the XOR of the two message bits, i.e., X &Y, and in the broadcast phase, encodes it into a real symbol
which is transmitted to the two users over a broadcast channel. Note that A and B can recover Y and X,

respectively, from X @Y.

Fig. 1. Bidirectional relay

(b)

Relay
R

Fig. 2. Bidirectional relaying: (a)MAC phase, (b)Broadcast phase
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In a compute-and-forward bidirectional relaying problem such as the above, we study the scenario where
an additional secrecy constraint is imposed on the relay R. Specifically, we require that, in the MAC phase,
the relay remain ignorant of the individual bits X and Y, while still being able to compute the XOR X &Y
reliably. We study the problem under two secrecy constraints. First, we demand that the relay be fully
ignorant of the individual bits, i.e., that the random variables U + V, X, and Y be pairwise independent.
More generally, the user nodes encode the messages X and Y into d-dimensional real vectors U and V
respectively, and we require U4V to be statistically independent of the individual messages. This is referred
to as perfect secrecy, or Shannon secrecy in the literature. The problem of secure bidirectional relaying in
presence of an untrusted relay under a perfect secrecy constraint has not been studied prior to this work,
and this is a major contribution of this paper. We use a coding scheme that uses a pair of nested lattices
(A(d),Aéd)), with A(()d) C A, The messages are mapped to the cosets of the coarse lattice Aéd) in the fine
lattice AD. Given a message (say the jth coset, A;) at the user node, the output of the encoder is a random
point chosen from that coset according to a distribution p;. This distribution is obtained by sampling and
normalizing over A, a well-chosen density function f on R?. We will show that if the characteristic function
of f is supported within the fundamental Voronoi region of the Fourier dual of Aéd), then it is possible to
achieve perfect secrecy. We then study the average transmit power and achievable rates for reliable and
secure communication. We will show that a transmission rate of % log, % —log, 2e is achievable with perfect
secrecy. Our coding scheme for security is explicit, in that given any pair of nested lattices, we precisely
specify the distributions p; that must be used to obtain independence between U + V and the individual
messages.

We later relax the secrecy constraint, and only demand that the mutual information between U+ V, and
the individual messages be arbitrarily small for large block lengths, also referred to as strong secrecy [22).
We again use a nested lattice coding scheme, but now the distributions p; are obtained by sampling and
normalizing a Gaussian function, instead of a density having a compactly supported characteristic function.
The idea of using probability mass functions (pmfs) obtained by sampling Gaussians was used [20] in the
context of the Gaussian wiretap channel, and we will make use of the techniques developed there. Using
this scheme, we show that a rate of %logz % — %logQ 2e is achievable. The rate can be further improved to
% log, (% + %) — % log, 2e using random dithering at the encoders and MMSE equalization at the relay [12],
[23].

It is worth emphasizing the basic idea behind the construction of encoders in our coding schemes. Given
a pair of nested lattices, the user nodes send points from the fine lattice in the nested lattice pair according
to a pmf obtained by sampling a well-chosen density function at the fine lattice points. The choice of the
density function determines the level of security that is achievable.

We will restrict our study exclusively to the MAC phase, since there is no security requirement in the
broadcast phase and the relay can use a capacity-approaching code to broadcast X @Y to the users.

After discussing secure bidirectional relaying, we show that the principles can be extended to the multi-hop
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line network [I6] and find achievable transmission rates under the two secrecy constraints.

In prior work, the problem of secure bidirectional relaying in the presence of an untrusted relay was studied
by He and Yener in [I6], who showed that the mutual information rate, defined to be 1Z(X;U + V) =
éI (Y; U+ V) goes to zero for large blocklengths, d. They later studied the problem under a strong secrecy
constraint in [I7], and gave a scheme based on nested lattice codes and universal hash functions. The
achievable rates guaranteed by our strongly secure scheme is slightly lower than that obtained in [I7].
However, our scheme is more explicit, in that given a pair of nested lattices that satisfy certain properties EL
we specify exactly what distribution must be used to obtain strong secrecy.

Lattice codes have been proposed for secure communication in different scenarios, particularly the Gaussian
wiretap channel (see e.g., [4], [26], [20]). They have also been proposed for use in interference networks [I],

and for secret key generation using correlated Gaussian sources [25].

Organization of the paper

We establish some basic notation, and recall some basic lattice definitions in Section [[Il We describe
the secure bidirectional relaying problem in Section [[TI} and then proceed to design coding schemes under
the perfect secrecy constraint in Section [[V] The main result under the perfect secrecy constraint is given
in Theorem [} We give a randomized encoding scheme for any arbitrary nested lattice code that achieves
perfect secrecy in the absence of noise in Section[V] then study the effect of additive noise and find achievable
transmission rates in Section [VI] Thereafter, we study the same problem under a strong secrecy constraint,
design coding schemes, and evaluate the performance in Section [VII, with the main result summarized in
Theorem We extend the results to a multi-hop line network in Section [VIII, Most of the technical proofs

are given in appendices.

II. DEFINITIONS AND NOTATION

We first describe the notation we will use throughout the paper. We denote the set of real numbers by R,
and integers by Z. We use the notation R™ for the set of nonnegative real numbers. The number of elements
in a finite set S is denoted by |S|. Random vectors are denoted in boldface upper case, e.g., U, and their
instances in boldface lower case, as in u. The components of the vectors are denoted in normal font, e.g.,
x = |17 22]T. Matrices are represented in sans-serif, as in H. The Euclidean (£?) norm of a column vector h
is denoted by ||hl||. The identity matrix of size M x M is denoted by lp;. If X is a random variable, then
H(X) denotes the entropy of X, and expectation over the random variable X is denoted by Ex(-). The
probability of an event A is denoted by Pr[A]. For random variables X,Y’, the notation X 1l Y means that
X and Y are independent. The mutual information between X and Y is denoted by Z(X;Y).

1Unfortunately, there are no explicit constructions of lattices that satisfy these properties, but only existence results based

on probabilistic arguments.
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Let f(n) and g(n) be a sequence of positive real numbers. We say that g(n) = o(f(n)) if g(n)/f(n) — 0
as n — oo. Also, g(n) = 0,(1) if g(n) — 0 as n — oo. Furthermore, g(n) = Q(f(n)) if there exists a constant
K > 0 such that g(n) > K f(n) for all sufficiently large n, and g(n) = O(f(n)) if there exists a constant
K > 0 such that g(n) < K f(n) for all sufficiently large n.

A. Lattices in R?

We briefly recall some definitions of lattices and their properties. For a more detailed treatment, see
e.g., [31, [6].

Let k,d be positive integers with k < d. Suppose uj, us,...,u, are linearly independent column vectors
in R?. Then the set of all integer-linear combinations of the u;’s, A = {Zle au; ca; € 2,1 <i <k}, is
called a k-dimensional lattice in RY. It is easy to verify that A forms an Abelian group under componentwise
addition. The collection of vectors {uj,ug,...,ux} is called a basis for the lattice A, and it is a standard
fact that the basis of a lattice is not unique.

The k x d matrix A := [u; ug ---uy)T is called a generator matriz of A, and we say that the vectors
U, Uy, ..., u; generate A. We write A = ATZ? := {ATx : x € Z4}. If A is full-rank (i.e., A is a d-dimensional
lattice in RY), then the determinant of A, denoted by detA is defined to be |detA|. It is a standard fact that
detA does not depend on the generator matrix. Unless mentioned otherwise, we will henceforth consider
only full-rank lattices in R,

If A and Ay are two lattices in R? such that Ag C A, then we say that Ag is a sublattice of A, or Ag is
nested within A. We call Ay the coarse lattice and A the fine lattice. The number of cosets of Ay in A is
called the index of Ag in A, denoted by |A/Ag|. It is a standard fact that |[A/Ag| = detAg/detA [3, Theorem
5.2].

If A is a generator matrix of a lattice A, then A* := {A™1z : z € Z9} is called the dual lattice of A. The
dual lattice A* is also equal to {x € R? : 2?21 x;y; € Z for every y € A}3]. The Fourier dual of A, denoted
A, is defined as 2w A*.

For any x € RY, we define the nearest neighbour quantizer Q(x) := arg min, ¢, ||x—A|| to be the function
which maps x to the closest point in A. The fundamental Voronoi region of A is defined as V(A) := {y :
Qa(y) = 0}. The volume of the fundamental Voronoi region, vol(V(A)) is equal to detA [3], [6].

For any x € R?, we define the modulo-A operation as [x] mod A := x — Q4 (x). In other words, [x] mod A
gives the quantization error of the nearest neighbour quantizer Q4 (+). Figure [3|illustrates the Q(:) and the
modulo-A operations.

The covering radius of A, denoted by reov(A) is defined as the radius of the smallest closed ball in R?
centered at 0 which contains V(A). The effective radius, reg(A) is defined as the radius of a ball in R? having
the same volume as that of V(A). The packing radius of A is the radius of the largest open ball centered at
0 which is contained in V(A). Clearly, reov(A) > Tem(A) > rpack(A). These parameters are illustrated for the

hexagonal lattice in Fig. [
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Fig. 4. Illustrating the covering, packing and effective radii of the hexagonal lattice.

The normalized second moment per dimension of A is defined as

1 / 9
A= 7 lyll“dy. (2)
d {detA}1+2/d V(A)

III. DESCRIPTION OF THE PROBLEM

The general set-up is as follows: two user nodes, denoted by A and B, possess messages taking values
independently and uniformly in a finite set. For the purposes of computation at the relay, the messages are
mapped into random variables X and Y taking values in a finite Abelian group G(®), where the choice of G(%)
is left to the system designer. The mapping is such that the random variables X and Y remain uniformly

distributed over G(?, and we will see later that this distribution helps in achieving secrecy. The addition
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operation in the group G(@ is denoted @. For a given message X at node A, the encoder at A generates
a random d-dimensional real vector U. In a similar fashion, for a given Y, the encoder at B generates a
random vector V. The user nodes transmit their respective vectors to the relay simultaneously, and at the

end of the MAC phase, the relay obtains
W=U+V+7Z, (3)

where Z is a Gaussian random vector, with zero mean and covariance matrix o2lg, with l; being the d x d
identity matrix, and 4+ denotes componentwise real addition. The coding scheme at each user node must
ensure that the relay can recover X @ Y reliably from W, and one of the following:

o the mutual information between W and the individual messages, Z(W; X ) and Z(W;Y) is exactly zerﬂ

(perfect secrecy)

e Z(W; X) and Z(W;Y) can be made arbitrarily small for all sufficiently large d (strong secrecy).

We in fact impose a slightly stronger security criterion than the one mentioned above. Even in the absence of
noise, the mutual information between W = U+ V and the individual messages must be either zero (perfect
secrecy) or can be made arbitrarily small for all sufficiently large d (strong secrecy). Since the additive noise
is independent of everything else, X — U+ V — U+ V + Z forms a Markov chain, and using the data
processing inequality (see e.g., [7]), Z(X; U+ V+Z) < Z(X; U+ V). Likewise, Z(Y; U+ V+Z) < Z(Y;U+V).
Therefore, any scheme that achieves perfect (strong) secrecy in the absence of noise will also achieve perfect
(strong) secrecy in a noisy channel.

The messages must also be protected from corruption by the additive noise in the multiple access channel.
The user nodes need to communicate X @Y to the relay with arbitrarily low probability of error. Since the
messages are uniformly distributed over G4, élog2 |G(4D)] gives the average number of bits of information
sent to the relay by each user node in one channel use in the MAC phase. Our aim will be to ensure secure
computation of X &Y at the highest possible rate (which we define to be élogQ |G(D)]) for a given power

constraint at the user nodes. To formalize these notions, we have the following definition:

Definition 1. For a positive integer d, a (d, M(d)) code for the MAC phase of the bidirectional relay channel
with user nodes A, B and relay R consists of the following:

1) Messages: Nodes A and B possess messages X and Y, respectively, drawn independently and uniformly
from a finite Abelian group GD with M = |G(D| elements.

2) Codebook: The codebook, denoted by C, is a discrete subset of RY, not necessarily finite. The elements
of C are called codewords. The codebook consists of all those vectors that are allowed to be transmitted
by the user nodes to the relay.

3) Encoder: The encoder is a randomized mapping from G(D to R?, specified by the distribution puix (ulr) =
PrU = u|X = z] for allu € C and x € G, The same encoder is used at both nodes, A and B.

2Equivalently, we want W 1. X and W 1L Y.
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At node A, given a message © € GD as input, the encoder outputs a codeword u € C at random,
according to py|x (u|x). Similarly, at node B, with y as input, the encoder outputs v € C according to
pviy (V|y) = puix (Vly). The encoding of x and y are done independently. The rate of the code is defined
to be

(4)
The code has an average transmit power per dimension defined as
1 1
PY = ZE|U|? = -E| V. 5
“E|[U|? = ZE|V]| 5)

4) Decoder: The relay R receives a vector W € R as given in (@ The decoder, D@ : R — G maps
the received vector to an element of the set of messages. The average probability of error of the decoder
is defined as

0D = E(PrD'D(W) # X @Y)])

where E denotes expectation over the messages, X,Y, and over the encoders (U, V given X,Y ).

IV. PERFECT SECRECY

We first study the case where perfect statistical independence between U+ V and the individual messages
is required, and the relay must be able to reliably compute X @Y (where @ denotes addition within G(®))
from the received vector. To summarize, we have the following requirements for secure compute-and-forward:
(S1) (U, X) L (V,Y).

(S2) (U+V) 1l X and (U4+V) LY.

(S3) U+ V almost surely determines X &Y.

If conditions (S1)—(S3) are satisfied, the relay has no means of finding the individual messages. Property (S3)
ensures that the relay can decode X @Y, which can then be encoded/modulated for further transmission
over the broadcast channel. On reception of the broadcast message, since user A (resp. B) knows X (resp.
Y'), it can recover Y (resp. X).

If the relay only had access to X @ Y instead of U + V, the problem of secure communication would
have been trivial due to the uniformity and independence of X and Y. However, the relay receives the real
sum of U and V, which makes the problem harder. For example, suppose that d = 1, and G(!) = Z,, the
group of integers modulo 2. Consider the coding scheme U = X, and V =Y. Then, in the absence of noise,
whenever U+ V =0 or U+ V = 2, the relay can determine both X and Y.

The performance of a coding scheme is generally evaluated in terms of the average transmit power, and

the transmission rate. To make these notions formal, we define achievable power-rate pairs as follows.

Definition 2. A power-rate pair (P,R) is achievable with perfect secrecy if, for every § > 0, there exists a

sequence of (d, MD) codes such that
o conditions (S1)-(S3) are satisfied for all d,

May 18, 2013 DRAFT



and for all sufficiently large d,

o the transmission rate, R'Y is greater than R — §;
o the average transmit power per dimension P9, is less than P + 6; and

o the average probability of decoding error, ¥, is less than 6.

The objective of the next couple of sections will be to prove the following result.

Theorem 1. A power-rate pair of
1 P
<7), 5108y —5 — 1032(2e)>

is achievable with perfect secrecy in the MAC phase of the bidirectional relay.

V. PERFECT SECRECY: THE NOISELESS SETTING

To get a clear picture as to how secure communication can be achieved, we first describe the binary case.
The messages X and Y are chosen independently and uniformly at random from {0, 1}, or equivalently, the
set of integers modulo-2 (G = Zs). They are modulated to U and V respectively, which take values in R.
Studying the one-dimensional case will give us the intuition needed to tackle the general case, and we will
see that the techniques developed here extend quite naturally to the d-dimensional setting.

We will show that there exist distributions on U and V that permit secure computation defined by
properties (S1)—(S3). This is somewhat surprising since we cannot have non-degenerate real valued random

variables U,V that satisfy (U + V) 1L U and (U + V) 1L V, as shown in the following proposition:

Proposition 2. Let U and V be independent real-valued random variables, and let + denote addition over
R. Then, we have (U+V) 1L U and (U+V) IL V iff U and V are constant a.s. (i.e., there exist a,b € R
such that PrilU =a] = Pr[V =b] =1).

Proof: The “if” part is trivial, so let us prove the “only if” part. Let W = U 4V, so that by assumption,
U, V and W are pairwise independent. Let ¢y, ¢y and ¢y denote the characteristic functions of U, V' and
W, respectively. In particular, pw = pypy. From U = W — V', we also have that oy = pw @y, where oy
denotes the complex conjugate of ¢y. Putting the two equalities together, we obtain ¢ = ¢r|ev|?. To be
precise, oy (t) = pu(t)|pv(t)]? for all t € R.

Now, characteristic functions are continuous and take the value 1 at ¢ = 0. Hence, ¢y is non-zero within
the interval [—d, d] for some 6 > 0. Thus, |pv ()| = 1 for all ¢ € [—4, J]. By a basic property of characteristic
functions (see Lemma 4 of Section XV.1 in [I5]), this implies that there exists b € R such that ¢y (t) = e
for all ¢t € R, thus proving that V' = b with probability 1.

A similar argument using V =W — U shows that U is also constant with probability 1. ]
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A. Secure Computation of XOR at the Relay

In this section, X and Y are independent and identically distributed (iid) uniform binary random variables
(rvs), and X @Y denotes their modulo-2 sum (XOR). We describe a construction of integer-valued rvs U
and V satisfying (S1)—(S3).

1) Conditions on PMFs and Characteristic Functions: We first derive conditions under which integer-
valued rvs U and V can satisfy properties (S1)-(S3) stated in Section We introduce some notation: for
k € Z, let py(k) = Pr[U = k], py (k) = Pr[V = k], and for a € {0,1}, let py|o(k) = Pr[U = k | X = 4],
pvia(k) = Pr[V =k | Y = a]. Thus, py = (1/2)(pyjo + pu1) and pv = (1/2)(pvio + pvi1)-

Property (S1) is equivalent to requiring that the joint probability mass function (pmf) of (U,V, X,Y) be
expressible as

puvxy (k,l,a,b) = (1/2)(1/2)PU\a(k)PV\b(l) (6)

for k,l € Z and a,b € {0,1}. Without the requirement that U +V 1 X and U +V 1 Y, it is trivial to
define U and V such that (S3) is satisfied: for example, take U = X and V =Y. Property (S3) is satisfied

by any U,V such that
pU‘o(k) = pv|0(1€) =0 for all odd k € Z,

pu (k) =pyvi(k) =0 for all even k € Z.

(7)

Finally, we turn our attention to (52). We want (U+V) AL X and (U+V) LY. Let us define, for k € Z,
pusv(k) = Pr[U +V = k], and for a € {0,1}, pyivix=a(k) =Pr[U+V =k | X = a] and pyyvjy—a(k) =
Pr[U+V =k |Y = a]. Assuming (U, X) 1L (V,Y), we have pyiv = pu * pv, Pu+v|X=a = PUa * PV, and
PU4V|Y=a = PU * Pv|a, Where * denotes the convolution operation. Thus, when (U, X) 1L (V,Y’), (S2) holds
iff

PU * PV = PUja ¥ PV = PU * Pv|a for a € {0,1}. (8)

It helps to view this in the Fourier domain. Let ¢y, ¢v, ¢y|, etc. denote the respective characteristic

functions of the pmfs py, pv, py|. etc. — for example, py|4(t) = Zkezpma(k)eikt. Then, is equivalent

to

YUYV = Pulapv = Yupyie for a € {0,1}. 9)

Note that oy = (1/2)(¢ujo + vupn) and v = (1/2)(@yio + @v)1). Hence, @[) should be viewed as a
requirement on the conditional pmfs py|, and py 4, a € {0,1}.

In summary, we have the following lemma.

Lemma 3. Suppose that the conditional pmfs py|, and py|q, a € {0,1}, satisfy @ and (@ Then, the rvs
U, V, X, Y with joint pmf given by @ have properties (S1)—(53).

The observations made up to this point also allow us to prove the following negative resultﬂ

3In fact, a stronger negative result can be shown — see Proposition
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Proposition 4. Properties (51)—(53) cannot be satisfied by integer-valued rvs U,V that are finitely supported.

Proof: Suppose that U and V are finitely supported Z-valued rvs. Then, ¢y (t) and ¢y (t) are finite
linear combinations of some exponentials e?*1?, ... et Equivalently, the real and imaginary parts of g
and ¢y are trigonometric polynomials. Thus, either ¢ (resp. ¢y ) is identically zero, or it has a discrete
set of zeros. The former is impossible as ¢ (0) = ¢y (0) = 1. Now, suppose that (S1) and (S2) are satisfied,
which means that @ must hold. The equality pyeyv = puey, in @ implies that oy, (t) = @v(t) for all ¢
such that ¢y (t) # 0. But since ¢y (t) has a discrete set of zeros, continuity of characteristic functions in fact
implies that ¢y |4(t) = @y (t) for all £. An analogous argument shows that ¢y, (t) = ¢y (t) for all ¢. Hence,
Ul X and V UL Y. From this, and (S1), we obtain that U +V 1L X @Y, thus precluding (S3). ]

Practical communication systems generally have a maximum power constraint, which means that we would
like to have U,V being finitely supported. But from Proposition [} we see that it is not possible to have
finitely supported U, V' that permit secure computation of the XOR at the relay. Therefore, in order to ensure
secure computation, we will have to relax the criterion to an average power constraint on the user nodes.
This means that we require finite-variance, integer-valued random variables U, V', with infinite support, that
satisfy properties (S1)—(S3), or equivalently, the hypotheses of Lemma

We now give a construction of U,V that satisfy the hypotheses of Lemma [B] We will choose a density
function whose characteristic function is finitely supported. The random variables U and V are chosen
according to a distribution obtained by sampling and appropriately normalizing this density function. To
study this in more detail, we rely upon methods and results from Fourier analysis. The key tool we need is the
Poisson summation formula, which we briefly recall here. Our description is based largely on Section XIX.5

in [15].

B. The Poisson Summation Formula

Let ¢ be the characteristic function of a real-valued random variable X, such that [~ |t(t)|dt < co. In
particular, v is continuous and ¥(0) = 1. Since v is absolutely integrable, the random variable X has a
continuous density f. The Poisson summation formula [I5, Chapter XIX, equation (5.9)] states that for any
T > 0 and s € R, we have for all ( € R,

> (¢ 2nm/T) e T =T N F(RT + 5) e FTHC, (10)

n=—oo k=—o0

provided that the series on the left converges to a continuous function ¥(¢). Note that ¥(0) =7 >~ ___ f(kT+
s), which is a non-negative quantity. If ¥'(0) # 0, then dividing both sides of by ¥(0) yields the important
fact that ¥(¢)/¥(0) is the characteristic function of a discrete random variable supported within the set
F(ET + s).

A special case of interest is when ¢ is compactly supported. Let T' > 0 be such that ¢(t) = 0 whenever

{kT + s : k € Z}, the probability mass at the point kT + s being equal to f(kT +s)/ > re

—00

[t| > 7/T. It is straightforward to see that the series on the left-hand-side of converges to a continuous

May 18, 2013 DRAFT



12

function ¥, and that ¥(0) = ¢(0) = 1. Indeed, the series may be written as ¢'*¢W((), where

V()= Y ¢(C+2nm/T)e=CF2nm/T),
Note that U is periodic with period 27/T. In fact, T is simply the periodic extension, with period 27 /T,
of ¥(t)e™t. Now, 1 (being a characteristic function) is continuous, and hence, so is ¥. We conclude that
W(¢) = e*CW(() is a continuous function. Furthermore, ¥(0) = (0) = 1, From this, we infer that ¥ is the
characteristic function of a discrete rv, as explained above. In fact, by plugging in ( = 0 in we obtain
that ¢(0) =T, f(kT + s), which shows that ), f(kT +s) = 1/T. For future reference, we record this in

the form of a proposition.

Proposition 5. Let ¢ be a characteristic function such that 1 (t) = 0 whenever |t| > 7 /T for some T > 0,

and let f be the corresponding probability density function. Then, for any s € R, the function ¥ : R — C
defined by

v(¢) = f: (¢ + 2nm)T) e 5Cnm/T)

n=-—oo
is the characteristic function of a discrete random variable supported within the set {kT + s : k € Z}. The
probability mass at the point kT + s is equal to T f(kT + s).

It should be noted that compactly supported characteristic functions do indeed exist — see e.g., [15],
Section XV.2, Table 1], [10], [31]. We also give an explicit construction after the proof of Theorem [7]in the
next subsection.

1) Multi-dimensional Version: We will also need a multi-dimensional version of the Poisson summation
formula (see e.g., [32, Chapter VII, Section 2]). It is more natural to express this in terms of lattices. Let A
be a lattice in R%. Recall from Section [[I-Al that A denotes the Fourier dual of A.

Let 1) : R* — C now be the characteristic function of an R%-valued random variable, such that [5, [¢(t)|dt <
00. Let the corresponding density function be f : R? — R. The Poisson summation formula in R? can be
expressed as follows: for any s € R?, we have for all ¢ € R?,

> (¢ +mn)e ™ = (det AD) Y f(k +5) erRFS 9, (11)

neA keA
provided that the series on the left converges to a continuous function ¥(¢). It should be pointed out that
texts in Fourier analysis typically state the Poisson summation formula for an arbitrary ¢' function f, and
would then require that f and v decay sufficiently quickly — see e.g., [32], Chapter VII, Corollary 2.6] or
B, Eq. (17.1.2)] — for to hold. However, as argued by Feller in proving (10), in the special case of a
non-negative ¢! function f, it is sufficient to assume that the left-hand-side of converges to a continuous
function ¥(¢).

The following d-dimensional extension of Proposition [5| follows easily from .
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Fig. 5. Example of a characteristic function supported within V(2Z2).

Proposition 6. Let A be a full-rank lattice in R%. Let ¢ : R* — C be a characteristic function such that
() =0 for all t ¢ V(A), and let f: R — R be the corresponding probability density function. Then, for
any s € Re, the function VU : R — C defined by

Z¢C+n —i(n,s)

is the characteristic function of a random variable supported within the set A +s:= {k+s:k € A}. The
probability mass at the point k + s is equal to (det A) f(k +s).

C. General Construction
We now describe the construction of integer-valued random variables that satisfy (S1)-(S3). Let ¢ be a
characteristic function (of a continuous random variable X)) with the properties that
(C1) ¥(t) =0 for |t| > w/2, and
(C2) ¥(t) is real and non-negative for all ¢ € RJf]

Note that since v is real-valued, it must be an even function: ¥ (—t) = ¢(¢) for all t € R. Also, 9(0) = 1.

Since v is integrable over R, by the Fourier inversion formula, the random variable X has a continuous

4There is no loss of generality in imposing this requirement. Suppose that a random variable X has characteristic function
1, which is complex-valued in general. Let X1, X2 be iid rvs with the same distribution as X. Then, X1 — X2 has characteristic
function ) = |¢]2.
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Fig. 6. A generic characteristic function supported on [—m/2, 7/2].

e(t)
1

-m -n2 10 m2 m

Fig. 7. ¢¥(t) = max{0,1 — 2|¢t|/7}.

density f. Note that Proposition [5| holds for T' < 2.
A generic such v is depicted in Figure @ As a specific example (see Table 1 of Section XV.2 in [I5]), a

random variable with density function

oy =4 et (12
Z,(1—cosmz/2) ifx#0

22

has characteristic function
/ f(z) e™™ dr = max{0,1 — 2|t|/7}.

Figure [7] shows a plot of this characteristic function.

Reverting to our generic characteristic function v, let ¢ be the periodic function with period 27 that
agrees with ¢ on [—m, 7], as depicted in Figure [8] Note that ¢(¢) = > .o ¥(¢ + 27n). Thus, applying
Proposition 5| with 7' =1 and s = 0, we find that ¢ is the characteristic function of an integer-valued random
variable, with pmf given by

p(k) = f(k) for all k € Z. (13)

Next, for s = 0,1, define ¢, as follows: for { € R,

ps(Q)= Y W(C+nme T,

n=—oo

It is easily seen that g is the periodic extension of ¢ with period m, i.e., ¢q is the periodic function with
period 7 that agrees with ¢ on [—m/2,7/2], as depicted at the top of Figure |§| for a generic ¥ shown in
Figure [6]

On the other hand, ¢, is periodic with period 27: its graph is obtained from that of ¢y by reflecting about
the (-axis every second copy of 1, as depicted at the bottom of Figure [9]
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Fig. 8. Period-27 extension of generic ¢ from Figure @
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Fig. 9. The periodic functions o and 1 derived from 1.

Applying Proposition [5| with 7= 2 and s € {0, 1}, we get that ¢ and ¢, are characteristic functions of

rvs supported within the even and odd integers, respectively. The pmf corresponding to g is given by

2f(k) if k is an even integer
po(k) = (14)
0 otherwise.

and that corresponding to ¢ is

2f(k) if k is an odd integer
pi(k) = (15)
0 otherwise.

From 7, we have p(k) = 3(po(k) + p1(k)) for all k € Z.
Finally, note that since ¢g(t) and 1 (t) differ from ¢(t) only when (t) = 0, we have
¥ = ppo = py1. (16)

We can now prove the following theorem.

Theorem 7. Let X,Y be iid Bernoulli(1/2) rvs. Suppose that we are given a probability density function
f : R — R" with a non-negative real characteristic function v such that (t) = 0 for |t| > n/2. Set
PUjo = Ppvio = Po and pyjy = py1 = p1, where pg and p1 are as in and|(19). Then, the resulting Z-valued
rvs U and V satisfy properties (S1)-(S3). Additionally, the rvs U and V have finite variance iff ¢ is twice

differentiable, in which case the variance equals —"(0).
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Proof: From the given characteristic function 1), determine the associated probability density f via

Fourier inversion:
1 > —itx
f@) =50 [ e
T J_co
Define the pmfs pg and p; as in (14) and (15). Set pyjo = pyvjo = po and py|; = py|1 = p1. This implies that

pu = pv = p, where p is as defined in .
Clearly, holds. To verify @, note that, by virtue of , we have for a € {0,1},

Yupv = ¢° = ppq.

But, by construction, vyvvie = voue = ¢Pa-

Therefore, by Lemma the random variables (U, V, X, Y') with joint pmf given by @ have the properties
(S1)—(S3).

It remains to prove the last statement in the theorem. This follows from the fact [I5, pp. 512-513] that
a probability distribution F' with characteristic function y has finite variance iff x is twice differentiable;
in this case, x'(0) = ip and x”(0) = —p2, where p and ug are the mean and second moment of F. Thus,
the pmf p under consideration has finite variance (to be precise, the distribution specified by p has finite
variance) iff ¢ is twice differentiable. By construction, ¢ is twice differentiable iff ¢ is twice differentiable.
In this case, as ¢ is real, so is ¢’'(0), which implies that p has zero mean. Hence, the variance of p is equal
to its second moment, and the final assertion of the theorem follows, since ¢”(0) = 9" (0). ]

Based on Theorem [7] secure computation of XOR at the relay works as follows: the nodes A and B
modulate their bits independently to an integer k, with probability po(k) (from ) if the bit is 0, or
with probability p; (k) (from ) if the bit is 1. The probability distributions can be chosen such that the
modulated symbols have finite average power. The average transmit power is equal to the variance of the
modulated random variable, which is —t"(0), and a handle on this can be obtained by choosing v carefully.
The relay receives the sum of the two integers, which is independent of the individual bits X and Y (of A
and B respectively). However, the XOR of the two bits can be recovered at R with probability 1. This is
done by simply mapping the received integer W to 1, if W is odd, and 0 if W is even. To gain a better
understanding of the construction of the rvs, let us see an example.

As recorded previously (see Table 1 of [15], Section XV.2]), the probability density function f given in
has characteristic function

P(t) = max{0,1 — 2|t|/7}.

This function is plotted in Figure [7}
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From 7, we have

i ifk=0
p(k) =
—Z2(1—coskr/2) ifk#0
1 if k=0
-2 ifkisodd
— 71'2]{}2 (17)
— ifk=2 (mod 4)
0 otherwise
i if k=0
po(k) =4 =5, if k=2 (mod 4) (18)
0 otherwise
and
2 ifkisodd
prk)=4"" (19)
0 otherwise.

Note that the pmf p in (17) does not have a finite second moment, and indeed, v is not differentiable at
0. However, it is possible to construct compactly supported, twice-differentiable characteristic functions 1.
We give here an explicit construction of such a characteristic function.

Consider the density (from [I5, Section XV.2, Table 1])

% ifz=0
flz) = (20)
I;C% ifx#£0
which has characteristic function
F(t) = max{0,1 — |¢|} (21)

The function f has a triangular graph as in Figure |7} except that the base is [—1,1]. In particular, f(¢) =0
for |t| > 1.
The function g = f * f, where * denotes convolution, can be explicitly computed to be
P —t2+2 if <1
g(t) = (fx ))t) = { L2 - |t))? if1< [t <2 (22)
0 otherwise

Proposition 8. The function h(z) = (3n%/4) [f(mz/4)]?, with f as in (@), is a density function whose

characteristic function is given by
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where g is as in @ The function ¥ is non-negative with ¥(t) = 0 for |t| > w/2. Furthermore, 1 is twice
differentiable, with 1" (0) = —48 /2.

Thus, rvs U and V can be constructed as in Theorem [7| with var(U) = var(V) = 48/72.

Proof of Proposition @ The stated properties of the function ¢ can be directly verified from . We will
show here that h is a density function with characteristic function .

Note first that f defined in is also a probability density function — it is non-negative and its integral
over (—o0,00) is 1. By Fourier inversion, its characteristic function is 27 f. Therefore, g = f * f is a density
with characteristic function 472 f2.

Now, f? is integrable since (f)? is integrable (see corollary to Theorem 3 of Section XV.3 of [I5]). Hence,

( = f(x f f?(y)dy) is a probability density function. The integral in the denominator can be
explicitly evaluated by means of the Plancherel identity:

| rwa=g [ epda-

the last equality following from . Thus, h(z) = 37 f3(x).

From the fact that 472f2 is the characteristic function of g, it follows by Fourier inversion that A has
characteristic function given by ¢(t) = 2g(t). Hence, h(z) = (m/4)h(rz/4) is a density function with
characteristic function (4t /7), which is precisely 1)(t). O

Remark 9. [t is even possible to construct compactly supported C*° characteristic functions. Constructions
of such functions are given in [31)]. In fact, [T1|] constructs compactly supported characteristic functions i
such that the corresponding density functions f are even functions satisfying lim, .. ™ f(x) = 0 for all
m > 0. This implies that all the absolute moments [°_|z|™ f(x)dz ewist, and hence, ¥ is a C* function
(see [15, p. 512]). If such a characteristic function ) is used in the construction described in Theorem@ then
the resulting Z-valued rvs U,V will have pmfs py (k), pv (k) whose tails decay faster than any polynomial in

k. To be precise, limy_, 00 k™py (k) = limg—, 00 K™y (k) = 0 for any m > 0.

The above remark shows that we can have Z-valued rvs U,V satisfying properties (S1)—(S3), with pmfs
decaying faster than any polynomial. However, the rate of decay cannot be much faster than that. Indeed, it
is not possible to construct Z-valued rvs with exponentially decaying pmfs that satisfy properties (S1)—(S3).
Define a pmf p(k), k € Z, to be light-tailed if there are positive constants C' and X such that p(k) < CA~I*l

for all sufficiently large |k|.

Proposition 10. Properties (S1)-(53) cannot be satisfied by integer-valued rvs U, V' having light-tailed pmfs.
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Proofﬂ Suppose that U,V are Z-valued rvs satisfying (S1) and (S2). Using ¢y = (1/2)(¢uo + vu1) and
ov = (1/2)(pvio + vi1) in @7 we readily obtain

2 2 2 2
o = Pup and oy =@y (23)

If U,V have light-tailed pmfs, then py|, and py|e, @ € {0,1}, must also be light-tailed, since py|, < 2pu
and py|, < 2py. The key observation is that the characteristic function of a light-tailed pmf is real-analytic,
i.e., it has a power series expansion > >~ ¢,t™, with ¢, € C, that is valid for all ¢ € R [2I, Chapter 7].
Thus, ¢y, and @y g, for a € {0, 1}, are real-analytic. It is an easy fact, provable by comparing power series
coefficients, that if functions ¢ and h are real-analytic and ¢g? = h2, then either ¢ = h or ¢ = —h. Applying
this to , we find that ¢y19 = &9y, and similarly for V. In fact, since ¢y and ¢y cannot be identically
0, we actually have pyj0 = vy = ¢u, and similarly for V. This implies that U 1L X and V 1L Y. From
this, and (S1), we obtain that U +V 1L X @Y, thus precluding (S3). ]

D. Eaxtension to Finite Abelian Groups

A close look at the modulations in the previous section reveals the following structure: we had a fine
lattice A = Z and a coarse lattice Ay = 2Z, with the quotient group A/Ag, consisting of the two cosets 2Z
and 1 + 27, making up the probabilistically-chosen modulation alphabet. Given a message X € A/Ag, the
encoder outputs a random point from the coset X according to a carefully chosen probability distribution.
Note that the quotient group in this case is isomorphic to Zs, and this enables recovery of the XOR of
the bits (addition in Zs) from integer addition of transmitted symbols modulo the coarse lattice. Also, the
choice of the probability distribution (from Theorem @ ensures that the choice of coset at each transmitter
is independent of the integer sum at the relay. We shall extend the construction described in the previous
subsection to d dimensions, thereby obtaining a scheme that satisfies properties (S1)—(S3).

Now, any finite Abelian group G can be expressed as the quotient group A/Ag for some pair of nested
lattices Ag € A. Indeed, any such G is isomorphic to a direct sum of cyclic groups: G = Zy, $Zn, B - -BZLn,
for some positive integers Ni, Na,..., Ny [I8, Theorem 2.14.1]. Here, Zy, denotes the group of integers
modulo-N;. Taking A = Z? and Ag = AT Z¢, where A is the diagonal matrix diag(N1, Na, ..., Ni), we have
G = A/Ag. So, the finite Abelian group case is equivalent to considering the quotient group, i.e., the group
of cosets, of a coarse lattice Ay within a fine lattice A. These lattices may be taken to be full-rank lattices
in R?.

As an example, let N > 2 be an integer, and let Zy = {0,1,..., N — 1} denote the set of integers modulo
N. Let X,Y be iid random variables uniformly distributed over Zy, and let X &Y now denote their modulo-
N sum. Similar to the binary case discussed so far, given a non-negative real characteristic function v such

that ¢(t) = 0 for [t| > /N, we can construct Z-valued random variables U,V jointly distributed with

5This proof was conveyed to the authors by Manjunath Krishnapur.
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X,Y, for which properties (S1)—(S3) hold. In this case, the finite Abelian group can be taken as the group
of cosets of the coarse lattice NZ within the fine lattice Z, which is isomorphic to Zy.

Let Ag be a sublattice of A of index M (i.e., the number of cosets of Ag in A is M). List the cosets of Ag
in A as Ag,Aq,...,Ap—1, which constitute the quotient group G = A/Ag. As before, ® denotes addition
within G.

Consider rvs X, Y uniformly distributed over G. We wish to construct rvs U, V taking values in A, having
the properties (S1)-(S3). The following theorem shows that this is possible. Here, RT denotes the set of all

non-negative real numbers.

Theorem 11. Suppose that 1) : RY — RY is the characteristic function of a probability density function
f:RY — RY, such that (t) =0 fort ¢ V(f\o), where Ay is the Fourier dual of Ag. For j=0,1,...,. M —1,
define the pmf p; as follows:

| det A0|f(k) Zf k e Aj
pjk) = (24)
0 otherwise.

Finally, define a random variable U (resp. V') jointly distributed with X (resp. Y') as follows: if X = A,
(resp. Y = A;), U (resp. V) is a random point from A; picked according to the distribution p;. Then,
the resulting A-valued rvs U,V satisfy properties (S1)-(53). Additionally, if 1 is twice differentiable, then
E|U|> = E|V|? = =V24(0), where V2 =% 92 is the Laplacian operator.

j=1%J

As with Theorem [7] and XOR, the above theorem allows for secure computation at the relay of the group
operation X @Y. The theorem is proved in a manner completely analogous to Theorem[7} the main difference
being that the multi-dimensional Poisson summation formula is used in place of . The interested reader
is directed to Appendix A for the proof.

Constructing compactly supported twice-differentiable (or even C°°) characteristic functions ¢ : R? — R,
d > 1, is straightforward, given our previous constructions of such functions from R to R™. Suppose that
for i =1,2,...,d, ¥; : R — RT is the characteristic function of a random variable X;, such that 1;(t) = 0
for [t| > A;, with \; > 0, and X3, Xo, ..., Xy are mutually independent. Then, ¥ (t1,...,tq) = H?:l ¥ (t;)
is the characteristic function of the random vector X = (X7,..., X4). Note that ¢ is compactly supported:
P(t) =0 for t ¢ H?Zl(—)\i, Ai). Moreover, if the ;s are twice-differentiable (or C°°) for all ¢, then so is 1.

Our objective is to design codes (as defined in Definition (1)) for secure computation at the relay. With
the construction described above, the rate of the code depends on the number of cosets, M, of Ay in A.
For a given average power constraint, the system designer is usually faced with the task of maximizing
the rate. Equivalently, for a given rate, the average transmit power must be kept as small as possible. The
transmit power is equal to the second moment of U (or V). Therefore, while any characteristic function
supported within V(Ag) suffices for the construction of Theorem we must use a ¢ for which —V?21(0) is

the least among such ’s. This would yield random variables U and V of least second moment (and hence
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least transmit power), and having the desired properties.

It is evident that by simply scaling the nested lattice pair, the average transmit power may be made
as small as required. Suppose that the random vectors U and V, distributed over a fine lattice A, have
second moment P. Then, for any « > 0, the random variables U’ = aU and V' = oV, distributed over
al = {az : z € A} have second moment o P. Choosing a small enough o would suffice to satisfy the power
constraint. However, as we will see in the following sections, when we have to deal with the additive noise
in the MAC channel, it is not possible to scale down the lattice arbitrarily if the probability of error is to
be made small. Also, for a given (fixed) coarse lattice, it turns out that the second moment (which depends
solely on the choice of 1) cannot be made arbitrarily small. Indeed, the following result, adapted from
[T0], gives a precise and complete answer to the question of how small —V?2¢(0) can be for a characteristic

function ¢ supported within a ball of radius p in R%.

Theorem 12 ([10], Theorem 5.1). Fiz a p > 0. If ¢ is a characteristic function of a random variable
distributed over RY such that 1(t) = 0 for ||t|| > p, then

2 L=

- VR(0) 2 5, (25)

hS)

with equality iff (t) = ¥(t/p) for 1 = waFwy. Here, wa(t) = vq Qd(2||tHj%) for ||It]] < 1/2 and wy(t) =0
for |It|| > 1/2, and
wakwq(t) = /wd(T)wd(t +T7)dT

denotes the folded-over self convolution of wq, with wq(t) denoting the complex conjugate of wq(t). Also, ji
denotes the first positive zero of the Bessel function Jy. Furthermore, fort € R,

2 d—2

Qut) =T(d/2)(3) 7 Jap2(®

and
45573
2

i =
T RT3 (js)

where T'(-) denotes the Gamma function. The density f corresponding to the minimum-variance v is given

by F(x) = (o), where 2
ol
169 =ea <J <||x|/2>2> | (26)

where
.d—2
4595
2

T Jdnd20(d)2)

Remark 13. Observe that Theorem is true for any nested lattice pair (A, ANg). As long as ¥(t) is a
characteristic function supported within V(Ao), we have an encoding scheme that satisfies (S1)-(S3). If we
restrict 1 to be supported within a ball of radius p, which is contained within V(Ao), then Theorem gives
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us a suitable candidate for v that can be used to obtain perfect secrecy. Since we are interested in minimizing
the transmission power, we can choose p to be as large as Tpack(AO); where rpack(AO) denotes the packing
radius of Ao. Hence, we now have a coding scheme that achieves perfect secrecy for any arbitrary nested
lattice pair. This is rather interesting, since earlier work on weak and strong secrecy using lattices [16], [177],
[20] invariably required that the nested lattices satisfy certain goodness properties. Therefore, ours is a very
general result, and explicit in the sense that once we fix the nested lattice pair, we can exactly specify what

distribution should be used to randomize at the encoder to obtain secrecy.

VI. THE GAUSSIAN NOISE SETTING

Given any nested lattice pair, we now have a scheme whereby the relay can compute X &Y from U+ 'V,
but cannot determine X or Y separately. We next consider the scenario where the symbols received by the
relay are corrupted by noise, and prove the achievability of the power-rate pairs described in Theorem

Recall that in the MAC phase, the relay receives
W=U+V+17Z,

where Z is zero-mean iid Gaussian noise with variance o2. The coding scheme that we use is largely based

on the work in [12], [23], and is described below.

A. Coding Scheme for Perfect Secrecy

We now describe the sequence of (d, M(?) (recall Definition |1 codes that achieve perfect secrecy.
Code: A (A(d), A(()d)) nested lattice code consists of a pair of full-rank nested lattices Agd) C A in R, The
messages are chosen from the group G@ = A(d)/Aéd), whose M(4) = |A(d)/Aéd)| elements are listed as
Aoy A1y ooy Ajpay_q-
Encoding: We have messages X,Y at nodes A, B that are independent rvs, uniformly distributed over G(®).
We first pick a characteristic function v supported within V([\(()d)), as needed in Theorem We impose
the restriction that i be supported within a ball centered at 0 with radius equal to the packing radius,
rpack(f\(()d)L of the dual lattice IA\(()d). Recall that the packing radius is, by definition, the largest radius of
a ball centered at O that is contained within V(Aéd)). So, if Y(t) = 0 for ||t > rpack(Ao), then t(t) is
certainly supported within V(Ao). If X = A;, node A transmits a random vector U € A; picked according to
the distribution p; of Theorem Similarly, if Y = Ak, node B transmits a random vector V € Ay picked
according to the distribution ps. The rate of transmission from A or B is R4 = élogQ M@, The average
transmit power per dimension at each node is P(4) = w, as in Theorem

From Theorem [I2] we see that an average transmit power per dimension as low as

4ji_»
2

pd — —z
d <7"pack (/A\(()d)))
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Channel
User node A v 7: Relay R
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Fig. 10. The operations performed by the user nodes and the relay.

is achievable by a suitable choice of 1. It was shown in [33] (see also [I4]) that the first positive zero of the
Bessel function J; can be written as jp = k + bk'/3 + O(k’l/?’), where b is a constant independent of k.
Therefore,

P@ — W(”Od“”’ (28)
where 04(1) — 0 as d — o0, is achievable by a suitable choice of 1) using Theorem
Decoding: The relay R receives W = U + V + Z, where Z is a Gaussian noise vector with d independent
N(0,0?%) components, which are all independent of U and V. The relay estimates A; ® Ay to be the coset
of A(()d) represented by the closest vector to W in the lattice A(4, which we denote by Q) (W).
Security: Since the noise Z is independent of everything else, Theorem |E| shows that W is independent of
the individual messages X,Y. Hence, even in the noisy setting, perfect security continues to be guaranteed

at the relay for any choice of the nested lattice code.

Reliability and achievable rate: Let n(® denote the average probability that Qs (W) is different from the

coset to which U+ V belongs. From Definition [2| of achievable power-rate pairs, a pair (P, R) is achievable
if for every § > 0, there exists a sequence of nested lattice codes (A(®, A((Jd)) for which the following hold for
sufficiently large d: R4 >R —§, P4 < P +§ and 5@ < 6.

For a given nested lattice pair, from Theorem [I2] we know the minimum average transmit power per
dimension that guarantees perfect secrecy (subject to the condition that the characteristic function is
supported within a ball of radius rpack(liéd))), and the pmf p; that achieves the minimum. The choice
of the nested lattices determines the error performance of the decoder, and consequently determines reliable
transmission rates. For a given transmission power constraint, it is desirable to maximize rate, without
compromising on the reliability of computation. The average transmit power, as given by , is a function of
Tpack (Agd)) which is a property of the Fourier dual of the coarse lattice. On the other hand, the transmission
rate depends on the number of cosets of Aéd) in A, which is the number of fine lattice points in the
fundamental Voronoi region of the coarse lattice, V(A(()d)). In order to maximize the rate, we must pack in as
many points of A9 as possible in V(A(()d)). But having the points of A9 too close together adversely affects
the error performance of the coding scheme in the presence of noise. A trade-off must be made, and we need

to find the maximum rate below which reliable computation of X &Y can be guaranteed. We will restrict
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the class of nested lattice pairs to those which give good error performance in the presence of AWGN so
that the relay can compute X @ Y reliably. To guarantee secure and reliable computation at the relay, we
restrict the class of nested lattice pairs (A(d), Agd)) to those which satisfy the following propertie@

(G1) The sequence of coarse lattices, {A(()d)}7 is good for covering and AWGN channel coding.

(G2) The sequence of dual lattices, {Aéd)}, is good for packing.

(G3) The sequence of fine lattices, {A(D}, is good for AWGN channel coding.
Unlike prior work on nested lattices [1], [12], [23], [25] which required {A(()d)} and {A(D} to satisfy properties
(G1) and (G3) above, we have the additional requirement that the Fourier dual, {A((Jd)} must be good for
packing. While the existence of nested lattices that satisfy (G1) and (G2) is well established [12], [13], [23],
the existence of lattices whose duals simultaneously satisfy these goodness properties seems to be unexplored.
In the next section, we will describe a construction of nested lattices based on [12], [23] and show that there

are nested lattices that satisfy the above properties.

B. Good Ensembles of Nested Lattices with Good Duals

Let d and k be positive integers with k < d, and let ¢ be a prime number. Let Z, denote the field of

integers modulo gq.

1) Choose a k x d matrix G uniformly at random over ZZXd. This is done by choosing each element of
G (there are dk of them) uniformly over Z,, and independently of the other entries. Note that G need
not be full-rank. However, the probability that G is full-rank goes to 1 as (d — k) tends to co [I3]. The
linear code over Z, generated by G is denoted by C(G).

2) Apply Construction A on the code generated above. This is done as follows:

(¢1) The codebook generated using G is C(G) = {(G”y) mod ¢ : y € Z¥}.

(c2) The codebook is then scaled so that the codeword coordinates are restricted to lie within the d-
dimensional unit cube: ¢’ = (1/q)C(G) = {(1/¢)x : x € C(G)}. The points in the set C’ lie on the
vertices of a rectangular grid of side 1/¢ sitting within the unit cube.

(c3) The lattice is obtained by repeating these points over the entire space, R i.e., /~\(C) =C' +74% .=
{c+x:cel xeZ}.

Following the terminology used in [I3], we will henceforth call the above as the (d, k, q) ensemble. Also, from
the construction, it is clear that Z? is a sublattice of /~\(C) More detail regarding Construction-A lattices
can be found in [6].

We now describe the construction of the (A(®, A(()d)) nested lattice codes. This is based on [12], [23]. Choose

a sequence of coarse lattices {Aéd)}, each Aéd) selected uniformly at random from the (d,k,q) ensemble,

where k and ¢ may be functions of d chosen beforehand. Let A(¥) be the lattice generator matrix of A(()d),

SFor definitions of lattices good for covering, packing, and AWGN channel coding, the reader is directed to Appendix B.
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for d =1, 2,.... For this choice of {Aéd)}, we construct another ensemble of lattices from which we pick the

sequence of fine lattices {A(9)}. This consists of two steps:

(f1) Choose a sequence of lattices, {]\E,d) }, with each ]\;d) coming from the (d, k1, ¢1) ensemble of Construction-
A lattices. The parameters k; and ¢; could be possibly different from k and g. As mentioned earlier,
Agcd) contains Z? as a sublattice. If the generator matrix of Agcd) has full rank, then the number of cosets
of Z¢ in A;d) is i

(f2) The lattice [chd) is subjected to a linear transformation by the matrix (A(4)7 to get A(4) = (A(d))Tf\gcd) =
{(AD)Ty:y e A%} .

We will call this ensemble of (A(d),Aéd)) pairs as the (d,k,q,k1,q1) ensemble. The lattice pair can be

scaled appropriately so as to satisfy the average power constraint. We have M@ = |A(@) /Aéd)| = qfl

with probability tending to 1 as d — k tends to oo [23]. Hence, the rate of the (A(®, Aéd)) code will be
k
R = = log, (). (29)

By choosing ¢; and k; appropriately, the rate can be varied.

In order to obtain nested lattices from the (d, k, g, k1, q1) ensemble that satisfy properties (G1)—(G3), we
will restrict the choice of k, g, k1, ;. We will make sure the values of these parameters can be chosen so that,
in spite of the restriction, the transmission rate, as given by , can be chosen freely.

1) Choice of k, q, k1, q1: Let A be a full-rank lattice chosen from the (d, k, ¢) ensemble. From the construc-
tion, we can see that A has Z? as a sublattice. The nesting ratio of the (A, Z?) nested lattice pair, equal to
¢", is equal to the ratio of the volume of the fundamental Voronoi region of Z% to that of A. The volume of
V(A) is in turn equal to the volume of a d-dimensional ball of radius r.g(A), and hence,
. Ty

w2 (ren(A))”

4 1/d
re(A) = (Fii/jqkl)) ~ 3D

q (30)

Rearranging, we get

We choose

k= ﬁod7 and kl = 51d, (32)
for some 0 < By, 51 < 1/2, and ¢ and ¢; are prime numbers chosen such that

d
lim — =0, and rr(r?i)n < reg(Agd)) <2, (33)

d—oo (1 min?

for some 0 < rr(r?i)n < 1/4. It is possible to choose primes that satisfy the above conditions. Choosing ¢; to
grow faster than d is sufficient to satisfy the first condition. To see that ¢ can be chosen so as to satisfy the
second constraint, substitute in ,
r(4+1 I'(¢+1
(441) _ o T+

wd/2 (ZTi?i)n)d ! /2 (rﬁ?i)n)d.
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Since k = Pod, we can rewrite the above inequalities as follows:

Bod Bod
d d
I'(5+1) < g <20 I(§+1)
d/2 (276(0) )d nd/2 (27&(0) )d

Let a denote the left hand side of the above inequality. From , we have By < 1/2, and hence it is enough
to show that there exists a prime ¢ which satisfies & < ¢ < 4a. For any a > 3/2, there exists an integer n
such that @ < n < a+1, and 2n < 4o (since for a > 3/2, 2(a+ 1) < 4a — 1). By Bertrand’s postulate (see
e.g., [29]), for every positive integer n, there exists a prime number between n and 2n, and therefore, we

can choose a prime ¢ satisfying . We then have the following lemma, which is proved in Appendix C.

Lemma 14. Let (A(d)7A(()d)) be a nested lattice pair chosen uniformly at random from the (d,k,q, k1, q1)
ensemble, with the parameters k,q,k1,q1 chosen so as to satisfy @ and . Then, the probability that
(A(d),Aéd)) satisfies (G1)—(G3) tends to one as d approaches infinity.

C. Achievable Rate

We now find achievable transmission rates for reliable and secure computation of X @Y at the relay. This
is largely based on [12], [23], [24]. We find sufficient conditions on the transmission rate to ensure that the
probability of error in decoding X & Y from W goes to zero for large block lengths. To study the error
performance of the decoder, let us study the relay in more detail. Recall from Section that Qaw ()
denotes the lattice quantizer that maps a d-dimensional real vector to the closest point in A% . Similarly,
Q AL (-) is the lattice quantizer that maps vectors in R? to the closest point in Aéd). Let D(-) denote the
decoder map as defined in Section The quantity D(W) is the estimate of X @Y made by the relay,
and equal to the coset of Aéd) to which QA (W) belongs. This is the same as the coset represented by
Qac ([W] mod AL,

Each lattice point in A NV(ALY) is a coset representative for a coset of AL in A(). This is illustrated in
Fig. Suppose that A; and Ay are the cosets which represent the messages X and Y respectively. Let X =
[U] mod Aéd) and Y = [V] mod A((Jd) be the coset representatives of A; and Ay respectively. Then, A; @& Ay
has [X 4+ Y] mod A(()d) as its representative. Therefore, the estimate D(W) has W = [Q @ (W)] mod A(()d)
as its coset representative. This is equal to W = [Q 4 ([W] mod Aéd))] mod A(()d). Let W = [W] mod A(()d).
Then, W = [Qr@ (W)] mod A(()d). As a consequence of the transmitter-receiver operations, the “effective”

channel from X,Y to W can be written as follows [23]:
W = [U+V + Z] mod A{"
= [([U + V] mod A((Jd)) + Z] mod A((Jd)

_ [([X +Y] mod Af{‘)) +Z) mod A
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— Encoder

| Channel

w

[[] mod Ag —=[QA(+)] mod Ay —

|
|
|
|
Lo

— Encoder

+y] mod Ay, % i
[x+y]mo %_[] mod Ay P+ [Q(+)] mod A -

Equivalent MLAN channel

Fig. 12. MAC phase of the bidirectional relay and equivalent MLAN channel representation

A channel of the form W = [X + N] mod A(()d), where IN denotes the noise vector, is called a A(()d)—modulo
lattice additive noise (A(()d)—MLAN) channel [I2]. The random variable W behaves like the output of a point-
to-point transmission over a A(()d)—MLAN channel, with the transmitted vector being [X + Y] mod Agd).
Looking from W, the “effective” channel is a Aéd)—MLAN channel, and the relay has to decode [X + Y] mod
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Aéd) reliably from W. This is illustrated in Fig. We will use the properties of the A(()d)—MLAN channel
to determine achievable rate regions for our coding scheme.
We choose a sequence of nested lattice pairs that satisfy (G1)—(G3), with each nested lattice pair coming

from a (d,k,q,k1,q1) ensemble, where k,q, k1 and ¢; satisfy and . Using the coding scheme of

Section [VI-A} we can achieve perfect secrecy. From 1} an average transmit power of (4]'%%2 / (drgack(f&(()d)))

can be achieved. Since the sequence of nested lattice pairs satisfy the goodness properties (G1)—(G3), we

have the following result which follows from [12], [23].

Proposition 15. Let M > 0 be a constant, and {A(d), A(()d)} be a sequence of nested lattice pairs that satisfy

(G1)—(G3). Then, any rate less than R := %log2 (U—AZ) s achievable with perfect secrecy using the sequence of

VAM A (d) __VdM __ p (d)
rcﬁ(Aéd>) A ’ chf(/\(()d>) AO ’

nested lattice pairs

Proof: See Appendix D. [ |
1) Relating the Power and Rate: From 7 we know that as long as the average transmit power per
dimension is less than (d/rpaCkQ(Agd))) (1 4+ 04(1)), we can guarantee perfect secrecy at the relay. From
Proposition|15] we see that as long as the transmission rate is less than 1 log, (reg? (Aéd)) /(do?)), the relay can
reliably compute X &Y from W. In order to achieve positive rates, we need reff(Aéd)) to grow at least as fast
as Vd, i.e., reH(A((Jd)) = Q(+/d). Furthermore, to satisfy an average power constraint, we require rpack(j&(()d)) =
Q(v/d). The rate is an increasing function of reg(Aéd)), and the average transmit power per dimension is
a decreasing function of rpack(f\(()d)). Since we want to maximize the rate for a given power constraint, we
would like both Teﬂ‘(A(()d)) and rpack(f&éd)) to be as large as possible. However, for any lattice A((Jd), we have
TCOV(Aéd))rpack (Agd)) < 7d [3, Theorem 18.3], and since T'eﬂ‘(A(()d)) < rpack(A(()d)), we get reg(Aéd))rpaCk([\(()d)) <
wd. Hence, to obtain positive rates and at the same time satisfy the power constraint, both Teﬁ‘(Aéd)) and
rpack(f\(()d)) must grow roughly as v/d. Therefore, we seek lattices satisfying properties (G1)—(G3), for which
the product 'f'eﬁ?(A(()d)>Tpack(A(()d)) is close to the upper bound of wd.
For a sequence of Construction-A coarse lattices satisfying (G1) and (G3), we can find an asymptotic

lower bound for (1 /d)rCH(Aéd))rpaCk(Agd)) as the following theorem shows.

Lemma 16. Let {A(()d)} be a sequence of coarse lattices, with each A(()d) chosen from a (d, k,q) ensemble and
k,q satisfying and . If {A(()d)} satisfies conditions (G1)—(G2), then,

d A (d
lim 7"eﬁ“(A(() ))Tpack(Aé )) > i
d—oo d 2e

(34)

Proof: See Appendix H. [ |

"The product reg(Aéd))rpack(i\éd)) is invariant to scaling of Aéd>. This is because, for a constant o > 0, Teﬁ‘(OZAéd)) =
areg(/\éd>), and if A’ = ozA(()d), then the Fourier dual of A’ is (l/a)f\gﬁ.
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D. Proof of Theorem[]]

Let us choose reg(Agd)) = 5-V/dP, for a constant P > 0. Fix a § > 0. Using Lemma we see that

2 (d) d

roack(AYY) > m(l—odm)z (1 — 0a(1)). (35)

NS

From , we see that perfect secrecy can be achieved with an average power constraint as low as P4 =
(d/rpaCkQ(Aéd))) (1 + 04(1)). Combining this and , perfect secrecy can be achieved with an average
transmission powerﬁ

PYD <Pis (36)

for all sufficiently large d. From Proposition we have seen that the average probability of error can be
made to go down to zero as long as

1 P
(d) -— Zlogy ————
R <R: 5 1083 (2202 (37)

Therefore, for every d > 0, we can choose a sequence of nested lattice codes such that for all sufficiently

large d, we have R(9) >R —§, P < P +§ and (¥ < §. Hence, a power-rate pair of

1 P
(73, 3 log, P log, 26)

is achievable with perfect secrecy, concluding the proof of Theorem O

VII. STRONG SECRECY

Let us quickly summarize the coding scheme used to obtain perfect secrecy. We chose a pair of nested
lattices (A(d),A(()d)), where Aéd) C A and the messages were chosen uniformly over the quotient group,
AlD /A(()d). Given a message (coset) Aj, the user node transmits a point from that coset according to a
distribution p;, which is obtained by sampling (and appropriately normalizing) a distribution f over RY, at
precisely those lattice points that belong to the coset A;. As long as the characteristic function corresponding
to f is supported within the fundamental Voronoi region of the Fourier dual of A(()d), perfect secrecy can be
obtained. We imposed an additional constraint, that the characteristic function corresponding to f must be
supported within a ball of radius rpack(f\(()d)). Using this, we obtained the minimum average transmit power,
and found an achievable rate.

A natural question that arises is what happens if we choose a density f for which the support of the
Ag)

characteristic function goes beyond V(Ay ). Suppose that we choose a characteristic function, ¥ (t), which

is supported within a ball of radius p > rpack(f&(()d)), and choose the characteristic function ¢y x—x(t) =
ZDGA(d) P(t + n)e_“n’x). Clearly, we cannot expect perfect secrecy, but can we at least obtain strong
0

secrecy? Let us choose 9 to be the characteristic function of the minimum-variance distribution in ,

8Recall that a sequence f(d) is said to be equal to og(1) if f(d) — 0 as d — oo; and hence (1+04(1))/(1—04(1))? = 1+o04(1).
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with the support of ¥ chosen to be a ball of radius p. Let us choose p = min{QTCH(Aéd)), 27"pack(f&(()d))} El
Doing so would give us an improved rate of %logQ % — log, e. However, for such a coding scheme, we are
only able to show that the ¢2 norm of the difference between pu+v,x and pyyvpx goes to zero as d — oo.
Knowing only that the £2 norm of the difference between py v x and pyivpx goes to zero as d — oo, we
cannot conclude whether strong secrecy is obtained. In fact, by itself, the 2 norm is not a good measure
of secrecy. In any case, we will use a different approach to obtaining strong secrecy, and show that an even
higher transmission rate of §log, 5 — 1 log, 2e is achievable.

Instead of using distributions with finitely supported characteristic functions, we will use a sampled

Gaussian density for signaling. Such a scheme was used in context of the wiretap channel in [20] with

encouraging results, and we will do the same here.

A. The Sampled Gaussian Function

We now introduce some notation that will be used in the sequel. Let A be a lattice in R%. For any x,z € R?,
and any x > 0, we define the sampled Gaussian function to be

1 _lz—x)?
gK’X(Z) = W@ 212, (38)

We also define
Grx(A) = ZQK,X(A) (39)

AEA

We will use g.(z) and g,(A) to denote g, 0(z) and g, 0(A) respectively.

B. Coding Scheme for Strong Secrecy

Code: Following Section we use a (A(d),A(()d)) nested lattice code, with A(()d) C A As before, the
messages are chosen from G(%) := A(d)/Aéd), and @ is the addition operation on G(¥). The M4 .= |G(@|
cosets of A(()d) in A are denoted by Ag,..., Ay ;-

Encoding: For a coset A; of Aéd) in A let \; denote its representative within V(A(()d)) (see Fig. [11| for an
illustration). Fix a x > 0. Corresponding to the message A;, the user node transmits a random lattice point
from Aj, according to the distribution

g (1) f .
— I, ifue Ay,
pj(u) = § (40)

0, otherwise.

Decoding: As in the perfect secrecy scenario, the relay uses a lattice decoder. If W is the vector received in
the MAC phase, then the relay estimates X @Y to be the coset represented by the vector in A(® closest to
W.

9 If we have p > 2rpack(f\éd)), then an[\“’” ¥t + n)e~"™X) would have to be normalized to make this a characteristic
0

function, and this makes analysis more complicated.
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Achievable power-rate pair: A power-rate pair of (P, R) is achievable if for every ¢ > 0, there exists a

sequence of (A4, A(()d)) nested lattice codes so that for all sufficiently large d,

o the average transmit power per dimension is less than P + §:
1 1
PW%:EEMMQngnw2<P+&

o the transmission rate is greater than R — §:

Mﬁzéb&MW>R7&

o the average probability of decoding X &Y incorrectly from W is less than d; and

o the mutual information between each message and U + V is less than 4:
I(X;U4+V)=Z(Y; U+ V) < 0.
We will show the following result.

Theorem 17. For any P > 4ec?, a power-rate pair of

1 P 1
(77, 3 log, i log, 26)

can be achieved with strong secrecy using the coding scheme of Section [VII-B|

C. Strong Secrecy in the Absence of Noise

We will first prove that the scheme described in the previous section achieves strong secrecy. Let us
establish some more notation. Let pyy 1 (-) denote the distribution of U +V, and for any x € A4 N V(A((Jd))7
let py4vx(-) denote the distribution of U+V conditioned on the event that X is the coset to which x belongs.
We will show that for every x in A(4) ﬂV(Aéd)) the variational distance between py v and py v x(-), defined

as

V<pU+VapU+V|x) = Z \pU+v(W) _pU+V\x(W)|7 (41)
weA(d)

goes to zero exponentially in the dimension d. Therefore, the average variational distance between the joint

pmf of U + V and X, and the product of the marginals,

1
dy = Z MV(pU+VapU+V\x)v
xeADY(A{D)

also goes to zero exponentially in d. We can then use the following lemma, which relates the mutual

information and the variational distance.

Lemma 18 ([9], Lemma 1). For |G?| > 4, we have

I(X;U+ V) < dv (log, |G)] ~ log, dv ) (42)
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Since |G(®| grows exponentially in d, it is sufficient to have dy going to zero as o(1/d) for Z(X; U + V)
to go to zero. The exponential decay of the average variational distance will guarantee that the mutual
information also decays exponentially in d. In order to have dy going to zero exponentially in d, we will
require the coarse and fine lattices to satisfy certain properties. For any lattice A in R¢, and any 6 > 0, the
flatness factor e, (0) is defined as [20], [5]

maxxev(a) | (Zaen 90.2(x)) — (1/detA))|
(1/detA)
Following [20], we define a sequence of lattices {A(¥} to be secrecy-good if

(det(A(D))2/d
2162

It was shown in [20] that there exist lattices that are secrecy-good and also satisfy all the goodness properties

en(0) = . (43)

exc (8) < 27 for all # such that < 1.

described in Appendix B.
Let us choose k in to be equal to vP. We can bound the variational distance in terms of the flatness

factor of the coarse lattice as follows:

Theorem 19. If the sequence of nested lattice pairs {A(d),Aéd)} satisfies €@ 1= ey (v/P/2) < 1/2, then
0
for every x € Al N V(Aéd)), we have

V(pu+v, pusvix) < 216, (44)

A proof of the above theorem is given in Appendix F.
Furthermore, if the flatness factors of both the coarse and fine lattices go to zero as d goes to infinity,

then we can bound the average transmit power per dimension:

Lemma 20. As d — oo, if the flatness factors €, (\/P/2), and ex (VP/2) both converge to zero, then
0

the average transmit power per dimension, SE||U|? = YE[V||?, converges to P.

Proof: See Appendix G. [ ]
From Theorem and Lemma (18] we see that strong secrecy can be obtained in the noiseless scenario.
Since the noise is independent of everything else, we have strong secrecy in a noisy channel as well. To
see why this is the case, observe that X — (U + V) — (U4 V + Z) forms a Markov chain. Using the
data-processing inequality, we see that Z(X; U +V + Z) < Z(X; U 4 V), verifying our claim.

D. Achievable Rate and Proof of Theorem [17]

We choose our sequence of nested lattices {A(d), Aéd)} so as to satisfy the following properties:

(L1) The sequence of coarse lattices, {Aéd)}, is good for covering, MSE quantization, and AWGN channel

codinﬂ

10For the definitions of lattices good for covering, MSE quantization, and AWGN channel coding, see Appendix B.
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(L2) The sequence of coarse lattices, {A(()d)}, is secrecy-good.
(L3) The sequence of fine lattices, {A(¥}, is good for AWGN channel coding.

(L4) The sequence of fine lattices, {A(®}, is secrecy-good.

It was shown in [20] that such a sequence of nested lattices indeed existﬂ Using (L2), to have the flatness
factor €L (v/P/2) — 0, the coarse lattices must be scaled so that

(det(Agd>))2/ !

) <L (45)

2/d
Let us choose (det(Aéd))) = 7P — §, for some arbitrary d > 0, so as to satisfy .

In order to have e, (VP/2) — 0 as d — oo, we require

(det(A@))*1
27T(77/4)

Since |G@|det(A4)) = det(A(()d)) [3, Theorem 5.2], we can rewrite li as follows:

L (aeg)™

< 1. (46)

< 1.
GEOPR/E =(P/2)
(d) 2/d .
But then, we have (det(AO )) = 1P — J, and hence, the above requirement reduces to
IG@|?/d > — -
(1-=%)

In other words,

1 1 1 )

=1 @] > = -2 1—— ). 4

dOg2|(Gr |>2 5 1082 P (47)

rom Lemma we have the average transmit power converging to P as long as €, (1) and €, ) (V
B L 20 h h g i ging to P as long A P/2 dey P/2
0

2/d
tend to zero as d — oo. Our choice of (det(A(()d))) = mP—0 ensured that is satisfied and €, (@) (\/P/2) =
0
0. As long as is satisfied, we also have €, ) (vV/P/2) — 0, and the average power converges to P. Therefore,
we see that requiring the average transmit power to converge to P places a constraint on the transmission
rate.

Since the sequence of fine lattices is good for AWGN channel coding, the probability of error in decoding
(det(A(®))/*

2meo?

X @Y from U+ V + Z can be made to decay to zero as d — co as long as

2/d
) (det(A(()d)))
|G(d)|(2/d) 2meo?

> 1, or

> 1. (48)

Since we have chosen det(A(()d)) =7P -, reduces to
1 o 1 pP-2

M Although it was not explicitly mentioned in [20] that the coarse lattices satisfy property (L2), the construction implicitly

guarantees that the requirement is satisfied.
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Since § is arbitrary, we can conclude that as long as

1 P 1
R < 3 log, (02> - §log2 2e, (49)

the probability of error can be made to go down to zero as d goes to infinity.

If we choose P > 4ec?, then the right hand side of exceeds that of . Therefore, for any P > 4ec?

1 P 1
(’P7 5 log, (02> ~3 log, 26)

can be achieved with strong secrecy using nested lattice codes, concluding the proof of Theorem O

we see that a power-rate pair of

E. Improving the Rate

The rate can be further improved using random dithering and MMSE equalization at the relay [12], [23].
The user nodes generate dither vectors D; (at node A) and Dy (at node B) independently and uniformly
at random from the fundamental Voronoi region V(Agd)). For Dy = dy, and D5 = ds, let us define d; :=
[x+d;] mod Aéd), and dy := [y-+d,] mod A[()d), where x,y € A(d)ﬂV(Aéd)). For a message X = A; € A(d)/Aéd)
at node A, having coset representative x in A(%) ﬁV(Aé‘i))7 user node A transmits u € (Aéd) + &1> = {\+d; :
A€ A(()d)} according to

79*/5(2)(@ , ifue A(()d) +d,
pi(uld;) = { Svraha) : (50)
0 otherwise.

)

Node B transmits v € (A(()d) + Elg) in a similar fashion.

A careful study of the proof of Theorem [19| shows that the theorem still holds even if a translate (by a
vector ¢ € R?) of the coarse and fine lattices are used for signaling, i.e., (Aéd) +c, A 4 c) are used instead
of (A, Aéd)), and hence adding a dither at the source does not affect security.

Note that ZAeAé@ goa(x) = ZAGAéd) go,x(A), which is equal to gg}x(A(()d)). From this, and using the
definition of flatness factor, we see that |det(A(()d))ggyx(A(()d)) -1 < EALD (0). Rearranging, we get 1 A 9) <
detAéd)g‘g,x(A(()d)) <1+ 6A5d>(9). Substituting this in , we get

detA(()d)g\/TD(u)
1-— EAgd) (\/f)

detAéd)g\/f(u)

< pj(uldy) <
1+€A(()d)(\/73) J( | 1)

for u € A(()d) + c~117 and p;(uld;) = 0 otherwise. Let fiy denote the density of U and V. Then, fy(u) =
1
fdleV(Agd>)pj(u|d1)m. Hence,

gﬁ(u) u gﬁ(u)
1+€Agd)(\/73) Sf ( )S 1761\8{1)(\/73)7

Therefore, U and V converge in distribution to a Gaussian vector with zero-mean and variance vP as

long as eA(d>(\/73) — 0. From [20, Remark 3], we have 6A<d>(\/73) < €, (y/P/2). Therefore, as long as
0 0 0
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€ A(@( P/2) — 0 (which we need anyway, to obtain strong secrecy), U and V converge in distribution to
the Gaussian random vector.

The relay uses a linear MMSE estimator. It computes W := [o*W — Dy — Dy] mod Agd), where o* =
(2P)/(2P + o?). The estimate of X @Y is the coset represented by the closest vector in Aéd) to W. The

term W can be written as [23]
W = [X + Y] mod A 4+ (1 — *)(U + V) + *Z] mod A{.

The density of the effective noise vector Zeg = (1—a*)(U+V)+a*Z can be bounded in terms of a zero-mean
Gaussian random vector with covariance matrix ((1 —a*)2v/P + a*0?)ly, and the true pdf of Z.g converges

to the pdf of the Gaussian as d — co. The analysis in [12], [23] can be used in this setting, and it can be

1 1 P 1
(7), 5 10g2 (2 + 0_2) — 5 10g2 26)

is achievable with strong secrecy over the bidirectional relay.

shown that a power-rate pair of

Remark 21. In the perfect secrecy setting, we were not able to show that the technique of random dithering
and MMSE equalization can be used to obtain an additional 1/2 in the rate expression. As above, suppose that
each user node generates dither vectors, and dy,ds be instances of the randomly generated dither vectors. Let
dy,dy be as defined above. Let f(-) be a density function on R whose characteristic function is compactly

supported within V(Aéd)). For a message X = Aj, user node A transmits U € Af)d) +d; according to

det AS f(u), ifueAl? +d,,
pj(uldy) = : (51)
0, otherwise.
Similarly, user node B transmits V € A((Jd) +dy according to . As in the strong-secrecy case, suppose that
the relay computes W := [a*W — Dy — Dy] mod A(()d), where o* := (2P)/(2P + 0?). It can be shown that the
dithering does not affect security, and W is still independent of the individual messages X and Y. However,
the effective noise vector, Zeg = (1—a*)(U+V)+a*Z is not Gaussian, since U and 'V are not Gaussian. In
order to find the probability of decoding error, we require an upper bound on the probability that Z .y ¢ V(A(d)),
which is not straightforward unlike the Gaussian case. Consequently, one cannot say whether lattice decoding

achieve vanishingly small error probabilities in this situation, and it is hard to compute achievable rates.

Prior work on Strong Secrecy

The strongly secure scheme proposed by He and Yener in [I7] also used nested lattice codes as we have
done here. They obtain strong secrecy using universal hash functions, and show the existence of a suitable
linear hash function that ensures that the mutual information decays exponentially in d. Unlike [I7], we
have used a sampled Gaussian pmf for randomization at the encoder, and hence, for a given pair of nested

lattices, we explicitly specify the distribution used for randomization. Even using our scheme, the mutual
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Fig. 13. Multi-hop line network with K + 1 hops.

information goes down to zero exponentially in d. But unlike [17], which was valid under a maximum power
constraint at each node, the codebook we use is unbounded, so our scheme can only satisfy an average power
constraint. Also, the achievable rate in the scheme of He and Yener is slightly higher (by %log2 § bits per
channel use). Our scheme has these two drawbacks but is still attractive because unlike [I7], which is only
an existence result, we give an explicit randomization technique for security. The scheme in [I7] was coupled
with an Algebraic Manipulation Detection (AMD) code [8] for Byzantine detection, and it was shown that
the probability of a Byzantine attack being undetected could be made to decay to zero exponentially in d.
We remark that our coding scheme can also be extended to this scenario, and be used as a replacement for

the nested lattice code in [17].

VIII. MuLTI-HOP LINE NETWORK

We extend the results of the bidirectional relay setting to the multi-hop line network studied in [16]. In
this scenario, a source wants to transmit a message (or more than one message) to a destination via K relay
nodes. The structure of a multi-hop line network with K + 1 hops is shown in Fig. It consists of K + 2
nodes: a source node, S, a destination node, D, and K relay nodes, Ri,Rs,...,Ri. It is assumed that all links
are identical AWGN (zero mean, variance o2) wireless links. All nodes are half-duplex and can communicate
only with their neighbours. Nodes broadcast their messages to their immediate neighbours.

We use the co-operative jamming protocol proposed by He and Yener [I6]. The protocol consists of a
number of phases, each phase consisting of d channel uses. In any given phase, let U; be the d-dimensional
vector transmitted by the ith node, and W} be the vector received by the jth node, for i =0,1,..., K +1
and j =0,1,..., K+ 1. Here, the source is considered to be the Oth node, and the destination, the (K +1)st
node. The nodes receive the superposition of the messages sent by their neighbours in that phase. Therefore,
fori=1,2,..., K,

W;=U;-1+ U1 +Z, (52)

where Z; denotes additive white Gaussian noise (AWGN) with mean zero and variance o2. Also,
Wy = U + Zo, (53)

and
Wgi1=Ug +Zg11. (54)

As earlier, Zo and Zx 1 denote AWGN with mean zero and variance o2.
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The source, S, has to send N messages, X1, Xo,..., Xn, to the destination D across the network. The
messages are assumed to be independent and uniformly distributed over the set of all messages.

The relays act as eavesdroppers. It is assumed that the relays do not co-operate with each other, i.e., the
information available at a relay is not shared with the other relays. Also, the relays do not tamper with the
message in any manner. As remarked by He and Yener in [I6], this also takes care of the situation wherein
the eavesdropper has access to one of the relays, but it is not known which relay has been compromised.
Therefore, the problem is to send the message to the destination via a line network of K independent, honest
but curious relays. We study this problem mainly under the strong secrecy constraint, but the arguments
can easily be extended to the perfect secrecy scenario.

1) The Communication Scheme: We use the scheme proposed by He and Yener [I6] for relaying. For
clarity and completeness, we will describe the protocol here. Let us choose a sequence of (A, Agd)) nested
lattice pairs that satisfy properties (L1)—(L4). The messages at the source are picked from the quotient
group G(@ := A(d)/ Aéd). Each node in the network employs the encoding and decoding scheme described
in Section Let us define some more notation. For any vector w € R?, let D(w) denote the coset
represented by the closest vector to w in the lattice A i.e., D(w) is obtained by passing w through the
lattice decoder of Section Also, for any X € G¥, having coset representative X in A N V(A(()d)),
let £(X) denote the encoded form of X, i.e., £(X) is a random variable supported within the coset X, and
distributed according to p;(-) in ([40).

o Each relay node i (i = 1,..., K) generates a jamming signal, J;, which is chosen uniformly at random
from G(? | and independently of everything else. If the source has to relay N messages to the destination,
then the destination generates N independent jamming signals, Jg ., for I =1,2,... N.

e The communication takes place in 2N + K phases. Each phase consists of d channel uses.

o Let W;[n] denote the d-dimensional vector received by the ith node in the nth phase, and let V;[n] be

the vector transmitted by the ith node in the nth phase.

An average power constraint is imposed at the nodes.
1
~E[Viln][* < P, (55)

fori=0,1,..., K+landn=1,2,..., K +2N.
We define the rate of the scheme, RS\?), to be the number of bits of information transmitted per channel
use by the source in order to send N messages to the destination. Since it takes K + 2N phases for sending

N messages,

@._ N (d)

We say that a power-rate pair of (P, R) is achievable for N-message transmission with strong secrecy in a
multi-hop line network with K + 1 hops, if for every § > 0, there exists a sequence of (A%, A(()d)) nested

lattice codes such that for all sufficiently large d, we have
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Fig. 14. Secure relaying of a single message in a 4-hop relay network

MESSAGES AVAILABLE AT VARIOUS NODES AT THE END OF EACH PHASE FOR THE PROTOCOL IN FIG. E

. P(d)<P+5,
« RO >R -3

o the probability of the destination decoding X;, X5, ..

o the mutual information between the messages and the variables available at the kth relay, i.e.,

I(X1,..

.,XN;Jk,Wk[l],...,Wk[2N+KD < 0.

Phase Messages available at node at the end of phase
S R Ro R3 D
0 X Ji Jo J3 Ja
1 X, 1 J1 Ji, J2 J3 Ja
2 X, 1 Ji, X ® Jo Ji, J2 Ja2, J3 Ja
3 X, Ji, X @ J2 Ji, Jo, X B J3 Ja, J3 J3, Ja
4 X, N | I, XeJa, XPJ3 | Ji, o, XD J3 | J2, J3, X & Ja J3, Ja
5 X, N | i, XeJa, XPJ3z | Ji,Jo, XD J3 | Jo, J3, X D Js | J3, Ja, X
TABLE I

., Xn incorrectly, n(®, is less than §; and,

38

We will describe the scheme for secure message relaying in the next section, and find achievable power-rate

pairs. Finally, letting the number of messages to go to infinity, we will show that

Theorem 22. A power-rate pair of

is achievable with strong secrecy at the relay nodes in a multi-hop line network with K + 1 hops.

May 18, 2013

1 P 1
<777 1 log, <02) ~3 log, 2e>

is achievable with perfect secrecy; and for P > 4ed?, a power-rate pair of

1 P 1
(’P7 1 log, (02) 1 log, 26)
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2) Scheme of He and Yener for Multi-Hop Relaying: We now describe the scheme for secure relaying. The
case where S wants to send a single message, X, to the destination is illustrated for a network with three relays
in Fig. Only the messages (elements of G(9)) transmitted by each node are indicated in the figure, and it
is assumed that actual transmitted vectors are the encoded versions of the messages indicated. The messages
available at various nodes at the end of each phase are tabulated in Table ] Suppose that N messages are
to be transmitted to the destination. Each relay node generates a jamming signal J;, chosen uniformly at
random from G(?). The destination node generates N independent jamming signals Jx 41, Jx42,--., JKk+N-
Let us use the notation @;ZlXp to denote X1 & Xo @ -+ ® X;.

e The source always transmits in phase 2t, for t =1,..., N.

e The ith node (i =1,2,..., K + 1) transmits in the (2¢ 4 i)th phase, for t =0,1,..., N.

o In the ith phase (i = 1,..., K 4+ 1), the ith node broadcasts the jamming signal J; (after encoding) to

its neighbours. Hence, the signal transmitted by the ith node in the ith phase is

o In the (2t 4+ ¢)th phase (t =1,2,..., N), the ith node sends
Vi[2t +i] = E((@p=1Xp) @ Jise). (57)

This holds for all nodes, i = 0,1,..., K + 1. The ith node evaluates (®}_,X,) ® Jiy; by subtracting
the message transmitted by it in the (2t +¢ — 2)nd phase from the message decoded in the (2t 47— 1)st
phase.

In the first phase, Ry broadcasts £(J1) to the source and Ry, and subsequently, the source can compute
X1 ® Jp, which it sends in the next phase. In the (2¢ — 1)st phase (¢t = 1,...,N), the source receives
5((@;_:11Xp) ® J;) from Ry, and it can compute (@;_:ﬁXp) @ Ji, and hence (©]_, X)) ® J;, which is to be
sent to Ry in the next phase.

In the (i — 1)st phase, the ith relay receives S(Xl &) Ji) +&(Ji41), from which it computes X1 & J; B J;11,
and since R; knows J;, it can find X3 & J;41, which has to be broadcast in the next phase. In general, in
the (2¢ 4+ ¢ — 1)st phase, R; receives 5((@;:1)(1,) &) Jiﬂ,l) + 8((@;;11Xp) &) Jiﬂ). However, R; had sent
5((@;;11Xp) ® Jiti—1) in the (2t + i — 2)nd phase, and hence it can compute (®%_; X,) ® Jits, which is to
be encoded and sent in the (2¢ + 7)th phase.

On similar lines, the destination receives £(X1 @JK_H) in the (K'42)nd phase, and transmits E(X1 @JK+2)
in the (K 4 3)rd phase, since it knows Jx 1 which can be subtracted out of X1 ® Jx 1. In the (2t + K+ 1)st
phase, it can compute (Gf_,X,) & Jxy14¢ from E((®_ X,) ® Jx4t), which it receives from R in the
(2t + K)th phase.

3) Secrecy: We now show that using the coding scheme of Sectionat each node will guarantee strong

secrecy. The argument can be extended similarly for the perfect secrecy case. We will assume for convenience
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that all links are noiseless. Since the Gaussian noise is independent of everything else, application of the
data processing inequality as in Section [VII| reveals that secrecy can be obtained even in the noisy case.

Let {X,:p=1,...,N} denote the set of i.i.d. messages to be sent to the destination. Let us fix a k from
{1,2,..., K}. We will show that the total information about {X, : p=1,..., N} obtained by relay k at the
end of all relaying operations goes to zero as d goes to infinity.

In the (2t + k — 1)st phase, the kth relay receives
W2t +k— 1) = Ve 1[2t +k — 1] + Vi [2t + k — 1] (58)
= £((0h=1Xp) © Jri1) +E((O51X) @ Jhra ), (59)
for 1 <t < N. We also have,
Wik —1] = E(Jk-1).
Fort=1,2,..., N, let us define
Okt = {Jk, Jk—1, Wi[2m + k — 1] : 1 <m < ¢} (60)

to be the set of all random variables available at the kth relay at the end of the (2¢+k — 1)st phase. We also
define Oy ¢ := {Jk, Jx—1}. Note that Oy ,_1 C Oy for t = 1,2,...,N, and O y is the set of all random
variables available at the kth relay at the end of all phases. We have to show that Z(X1,..., Xn; 0, n) — 0

as d — oo.

Lemma 23. Let €@ := €A(d)(m) < 1/2. Then, the total information available at the kth relay node at
0

the end of all relaying phases can be bounded from above as follows:

I(X1,..., Xn;Opn) < Ne@ <log2 G| - log, e(d)> : (61)
Proof: See Appendix H. [ |
Since for our choice of nested lattices, (¥ — 0 exponentially in d, the mutual information Z(X1,..., XN;Op.N)

also goes to zero exponentially in d, thereby guaranteeing strong secrecy.

4) Achievable Rate and Proof of Theorem : Let us fix an arbitrary 6 > 0. It was shown in [I6], Section
IV-C] that using the nested lattice coding scheme of Section with (A(d),A(()d)) satisfying properties
(L1)—(L4), the probability of error, (¥ goes to zero as d goes to infinity. Hence, there exists a sequence of
lattice pairs such that for sufficiently large d, we can have (¥ < §. Moreover, from Theorem we can have
the average transmit power per dimension at each node to be less than P + 4, and % log, |G(@)| greater than
1logy 5 — 1 log, 2e— 4. Therefore, we can say that a power-rate pair of (73, m [log, (L&) — log, 26])
is achievable for the transmission of N messages using this scheme. Letting the number of messages, N, go

to infinity, we have the second part of Theorem Analogously, we can show that a power-rate pair of

(77, MTNNH) [logQ (%) — 2log, 26]) is achievable for the transmission of N messages with perfect secrecy
using the scheme of Section [[V] and we have the first part of the theorem. O
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IX. CONCLUSION

We have described two coding schemes for secure bidirectional relaying in presence of an honest-but-curious
relay. We saw that using pmfs generated from density functions having compactly supported characteristic
functions, one can obtain perfect secrecy. We saw that transmission rates below %log2 % — log, 2e can be
achieved. In order to achieve higher transmission rates, we relaxed the secrecy constraint, and only required
that the mutual information between U 4 V and the individual messages go to zero for large block lengths.
Using pmfs obtained from sampled Gaussian functions, we could achieve a rate of % log, (% + %) — % log, 2e.
These rates are within a constant gap of the best known achievable rate of %logg (% + %) without secrecy
constraints [23].

The main theme of this paper was the use of nested lattice codes, and explicit pmfs having infinite support
to obtain security. An inherent disadvantage of our scheme is that it is not possible to satisfy a maximum
power constraint. One could study the scenario where the support of the distributions we described are
truncated, and find the performance of such a scheme, and this is yet to be studied. Two key assumptions
made in this paper are that the messages are uniformly distributed, and the channel gains are unity. What
happens when these conditions are relaxed is left as future work. In this paper, we only found achievable
rates. As remarked in [I7], finding a converse result is much harder, and even without any secrecy constraints,

a nontrivial outer bound on the capacity of a bidirectional relay is not known.

APPENDIX A: PROOF OF THEOREM [L1]

We are given an index-M sublattice Ag of the lattice A. Recall from Section that (det Ag)/(det A) =
M. Let Ag,Aq,...,Ap—1 denote the M cosets of Ag in A. These constitute the elements of the quotient
group G = A/Ay.

Suppose that X, Y are iid random variables, each uniformly distributed over G. For each j € {0,1,... M —
1}, let p; be a pmf supported within the coset A;, so that p;(k) = 0 for k ¢ A;. We define a random variable
U (resp. V) jointly distributed with X (resp. Y) as follows: if X = A; (resp. Y = A;), U (resp. V) is a
random point from A; picked according to the distribution p;. Then, U and V are identically distributed
with py = py = % Zi]\ialpi. Let oy, ¢v and ¢;, j = 0,1,...,M — 1, be the characteristic functions
corresponding to py, py and p;, 7 = 0,1,..., M — 1, respectively. We have the following straightforward

generalization of Lemma [3]

Lemma 24. Suppose that pypyv = @jov = pup; for j = 0,1,...,M — 1. Then, the random variables
(U, V,X,Y) with joint pmf given by

puvxy (k1A Aj) = (1/M)(1/M)p;i(k)p; (1)

fork,1e A and Aj,A; € G (62)

have properties (51)-(53).
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We will now construct the characteristic functions ¢; that satisfy the above lemma. Let f be the (con-
tinuous) probability density function corresponding to the compactly supported characteristic function v in

the hypothesis of Theorem The function f can be retrieved from ¢ by Fourier inversion:

160 = g [ w00 at
L / Y(t)e X dg (63)
2 Jy(a)
Note that each coset A; can be expressed as u; + Ao for some u; € A. We set
pi(¢) =D Y(¢+m)e i) (64)
nelg

for all ¢ € R%. Then, by Proposition @ we have that p; is supported within A;, and

pj(k) = (det Ag) f(k) for all k € A;. (65)
Finally, define
p(¢) =D %(¢+m) (66)
nEA

for all ¢ € R<.

We make two claims:
(i) p? =pp; for j=0,1,...,M —1;
(ii) ¢ =pv =pv.
Given these claims, by Lemma the random variables U, V' satisfy the properties (L1)—(L3).

Both claims follow from the fact that A is a sublattice of Ao. (If a lattice T contains a sublattice Ty, then
the dual I'* is a sublattice of I'§.) To see (i), we re-write as

p(¢) =Y _w(+m)etimw (67)
neA

This is possible because, for n € A = 27A* and u; € A, we have e~ ) — 1. Comparing and ,
and noting that v is supported within V(A), it is evident that supp(y) := {¢ : ¢(¢) # 0} is contained in
supp(p;) = {¢ : ¢;(¢) # 0}. Furthermore, for all ¢ € supp(y), we have ¢(¢) = ¢;(¢). Claim (i) directly
follows from this.

For Claim (i), we note that V(Ag) C V(A), since A is a sublattice of Ag. Hence, we can apply Proposition@

to deduce that ¢ is the characteristic function of a pmf p supported within A, with
p(k) = (det A) f(k) for all k € A.

Thus, from 1) and the fact that (detAg)/(det A) = M, we see that p = 45 Zj]\/iglpj. In other words,
p = pu = pv, which proves Claim (ii).
It remains to prove that if ¢ is twice differentiable, then E[[U||* = —V24(0). Since U and V are identically

distributed, we would then also have E|[V]]* = —V21(0). Write U = (Uy,...,Uy), so that |U|]> = U2 +
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-+ UZ2. We want to show that E[sz] = fg—:?w(O), for j = 1,...,d. For notational simplicity, we show
this for j = 1. Note that the characteristic function of U; is given by ¢y, (t1) = vu(t1,0,...,0). As argued
in the proof of Theorem E[U?] = —¢p;,(0). Now, ¢ (0) = 6’9—;@(](0,0, ...,0). From 1@) we see that
pu = ¥ in a small neighbourhood around 0 = (0,0, ...,0). Therefore, g—;ng(O) = g—;zb(O), and hence,
‘1 ‘1
E[U?] = —g—;w(O), as desired.
1
This concludes the proof of Theorem O

APPENDIX B: “GooD” LATTICE PROPERTIES

In this section, we briefly review certain “good” lattice properties, and some results in the literature. This
is almost entirely based on [I3]. Let {A(¥} be a sequence of lattices, with each A(® chosen uniformly at
random from a (d, k, q) ensemble described in Section It was shown in [I3] that with high probability,
{AD} is simultaneously good for covering, packing, mean-squared error (MSE) quantization, and AWGN
channel coding. Let us make these notions more formal.

We say that that the sequence of lattices {AD} is good for covering if

. Tcov (A(d))
A a@) ~ b
We say that {A@} is good for packing if
. rpack(A(d)) 1
A0 A@)
Let G, s denote the normalized second moment per dimension of A(? | as defined in Section A sequence
of lattices {A(9} is said to be good for MSE quantization if Gy — 7 as d — oc.

Let Z be a zero-mean d-dimensional white Gaussian vector having second moment per dimension equal

to 2. Let 04
vol(V(A@D) /
o=
o
Then we say that {A@} is good for AWGN channel coding if the probability that Z lies outside the

fundamental Voronoi region of A is upper bounded by
Pr[Z ¢ V(A(d))] < e—d(EU(#)—Od(l))

for all 02 that satisfy u > 2me. Here, Ey(+), called the Poltyrev exponent is defined as follows:

o) 8me <
Ey(pn) = %ln &, 4me < pu < 8me (68)
ﬁ—%ln%, 2me < pu < 4me

Suppose that we use a subcollection of points from A(® as the codebook for transmission over an AWGN

channel. Then, as long as
vol (V(A@)*/1
————— 2> 2me,

g
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the probability that a lattice decoder decodes to a lattice point other than the one that was transmitted,
decays exponentially in the dimension d, with the exponent given by .

It is worth noting that the above “good” properties are invariant to scaling. If {A(d)} is a sequence of lattices
that is good for covering, packing, and AWGN channel coding, then for any a > 0, {aA(D} is also good for
covering, packing and AWGN channel coding. This is because of the fact that rpack(aA(d)) = arpack(A(d)),
Teov (QAD) = areoy (AD), and reg(aA @) = areg(AD).

APPENDIX C: PROOF OF LEMMA [14]

In proving Lemma we use the following theorem from [13], which says that if the parameters k and ¢
are selected appropriately, then almost all lattices in a (d, k, ¢) ensemble satisfy the “goodness” properties

described in Appendix B.

Theorem 25 ([I3], Theorem 5). Let 0 < 7y, < i be chosen arbitrarily. Let MY be a sequence of lattices

selected uniformly at random from a (d, k, q) ensemble, such that

o k< Bid for some 0 < By < 1, but k grows faster than log d, and

e q is chosen so that reﬁc(A(d)), as given by , satisfies Tmin < ’I‘eﬁ(A(d)) < 2Tmin.
Then, the sequence of lattices A is simultaneously good for covering, packing and MSE quantization, with
probability approaching 1 as d tends to infinity. If, in addition, we have 81 < 1/2, then the sequence of lattices

s also simultaneously good for AWGN channel coding with probability tending to 1 as d — oo.

Therefore, if we choose k and ¢ that satisfy the hypotheses of Lemma then from the above theorem,
the probability that a uniformly chosen Agd) satisfies condition (G7) tends to 1 as d — oc.

Recall from Section that if A is a generator matrix of a lattice A, then the dual lattice of A, denoted
by A*, is the set of all integer linear combinations of the rows of A~'. It turns out that the dual of a

Construction-A lattice is also a Construction-A lattice, as seen from the following.

Proposition 26. Suppose that G is a k x d generator matriz of a (d, k) linear code C over Z,, q being prime,

and G having the form
o[ e]

where |, denotes the k x k identity matriz. Let A(C) be the lattice obtained by employing Construction A on

the code C. Then, the matrix

1] 1 B
A== " (69)
q 0 ql(dfk)

is a generator matriz for the lattice A(C).

Proof: We want to show that ATZ? := {ATy : y € Z9} = A(C). We first prove that ATZ¢ C A(C). By
definition, A(C) = {x € R : (¢x) mod ¢q € C}. Therefore, it is enough to show that (¢gATz) mod ¢ € C for
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every z € Z%. Fix a z € Z%. Then,

(qATz) mod ¢ =

(1
+[0 aluw } (21 - 2] mod g
([ I zk]T> mod ¢

= (G"2) mod q € C. (70)

For the converse, define C' = {%c :c €C}. Then, AC) =C' +2% .= {c+z:c €z Z%. The set
AT7Z4 forms a group under (componentwise) addition. Hence, it is sufficient to show that ¢’ C ATZ?, and

74 C ATZ. Fix an arbitrary ¢ € C. Let ¢/ = %c. By definition, there exists a x € Z’; such that

c= ([ I, B }Tx) mod ¢

x x
= mod ¢ =
BTx (BTx) mod q
X 0 (1)
= —q )
BTx z'

for some z’ € Z%F. Therefore,

T
Ik B X
C =
0 ql(d k) —Z/
Hence, there exists

X
zZ = e z?

Z/

so that ¢/ = ATz. Therefore, we can say that C’ C ATZ4. Next, consider z € Z?. Let A* be as in Lemma
and note that ATA* = |, the d x d identity matrix. Let 2’ = A*z € Z¢. Then, ATz’ = AT(A*z) = (ATA*)z =
z. Hence, we can say that for every z € Z%, there exists a 2z’ € Z? so that z = ATz, and hence Z? C ATZ<,
thus concluding the proof. ]

It can be shown in a similar manner that if G has the form

c=[8 1]

then,

is a generator matrix for A(C).
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Lemma 27. LetC, G, A(C) be as in Proposition . Then, the dual of A(C), denoted by A*(C), has generator
matriz
I 0
A= | TF . (72)
-

Therefore, A*(C) = qA(Ct), where C* denotes the dual code of C.

Proof: Consider,

A L[ B gy B
410 qla-r 0 lg—p
1 i qli 0
a0 qla—r)
— 1.

Similarly, (A*)TA = I,.
Since a permutation of the rows of a generator matrix of a lattice also yields a valid generator matrix for

the same lattice,

—-BT |,_
At = (a—k)
qly 0

is also a generator matrix for A*(C). If C* denotes the dual code of C, then C* has a generator matrix [30]

G=| -BT |(d_k)}.

Therefore, we can conclude that the dual lattice, A*(C) is a g-scaled version of the lattice obtained by
applying Construction A to Ct, i.e., A*(C) = gA(Ch). [ |

Since, A*(C) = gA(C1), if the generator matrix is full-rank, then A(Ct) belongs to a (d,d —k, q) ensemble.
Therefore, from [I3], we can say that a randomly picked A(C) is good for packing and covering with
probability tending to 1 as d — oo, as long as d — k < (1d for some 0 < 4 < 1, and d — k grows faster than
log? d. From the definitions, we see that the properties of covering and packing goodness are invariant to
any scaling of the lattices. Therefore, if A(Ct) is good for packing and covering, then gA(C*), and hence
A*(C) is also good for packing and covering. Since the probability that {A(®} is packing- and covering-good
tends to one as d tends to oo, by the union bound, we can argue that if k = $1d for some (1 < 1/2, then
a randomly picked sequence of lattices is good for covering, packing and AWGN coding, together with the
property that its dual is good for packing and covering with probability going to 1 as d — oco. Therefore,
we can find a sequence of coarse lattices that satisfy (G1) and (Gs).

It was also shown in [23] Appendix B] (also see [I2]) that if the coarse lattices are good for covering
and AWGN channel coding, then as long as d/q; — 0 as d — oo, the probability that a uniformly chosen
sequence of fine lattices is good for AWGN channel coding tends to 1 as d — oo. This completes the proof
of Lemma [I4
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APPENDIX D: PROOF OF PROPOSITION [15]

We can make a stronger statement than Proposition [I5] and characterize the error exponent of the lattice
decoder, as the following lemma, adapted from [I2], says. As long as the transmission rate is less than
%logQ %, the error exponent is positive, and hence the probability of error goes to zero as d — oo. The
analysis of the error exponent is interesting in its own right, as it gives insights on the error performance of
the decoder when the coarse lattices do not satisfy the goodness properties discussed earlier. The lemma is

quite general, as it indicates how well one can do given an arbitrary sequence of coarse lattices.

Lemma 28. Let {Aéd)} be a sequence of coarse lattices satisfying reﬁc(A(()d)) =V dM for each d. Then, there
exists a sequence of lattices {ADY}, with Aéd) C A9 for all d, and R = Llog, |A(d)/Aéd)|, for which the

probability of error of decoding X ®Y at the relay is upper bounded by
PIDDUFV+Z) #a@yX =a,Y =y < e PaoB) (73)
where the exponent
Eag(RW) > By (2me 24 00 25 RO-000)) _ g, (4) — 6 (). (74)

Here, Ey(-) denotes the Poltyrev exponent given by (68), and §1(d) — 0 as d — oo. The quantities d>(d) and
d3(d), given by @) and , go to zero as d — oo provided that the sequence of coarse lattices are good for

covering and AWGN channel coding, respectively.

The quantities 9, 03 quantify how far the coarse lattices are from satisfying (G1) and show the deviation
from the ideal error performance.
Proof: Let us consider a fixed sequence of coarse lattices {Aéd)}. Recall that M (%) denotes the number of
distinct messages at each node. Let R := é logy M (@) denote the rate of transmission. We omit the superscript
(d) in R for convenience. As described in Section the decoder at the relay sees an effective Aéd)—MLAN

channel. We study the probability of error for a Aéd)—MLAN channel with additive Gaussian noise.

ZdR 2dR

Let us pick codewords uniformly at random over V(Aéd)). The messages are mapped to the
codewords. From [I2, Appendix B], (also see [IT]) the random coding error exponent, £} (R), for the A(()d)—

MLAN channel under minimum Euclidean distance decoding is lower bounded as

B, (F) > a3 tom, (solV(0S))) — 20a(2) — 8] = Som (=577 (75)

Here, p = 1/(1+p), and Z denotes the zero-mean Gaussian noise vector with second moment per dimension
equal to 02, and &,(d) = Pr[Z ¢ V(Aéd))}. The term, hz(Z) is the Renyi entropy of order p of the random
variable Z (with density fz), defined as follows.

2 ~log; < /a fz(a)"da>1/ﬁ. (76)

hp(Z) =
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Recall that rcﬁ(Aéd)) is the effective radius of Aéd). Then, (see e.g., [I3, Section II-DJ)

d/2
vol (V(A(d))) - M — __am i
0 (d+2)Gd (d+2)G(d) ’
where G(@ is the normalized second moment of the unit ball in d dimensions, and g 21? as d — oo.

Using this in , we get

i 1 1 1 @+2). 1 1
E}, (R) > org?é{lp[Q log, (2meM) — dhp(Z) —R-— 5 log, ( y 2reG } ~ 3 log, =0

Let us define

5u(d) = S log, <(d ! 2) 2mg(d>) , (78)

The term 61(d) — 0 as d — co. We also define

() = 1oes (=57 ) (79)

Since 6,(d) denotes the probability that the noise vector Z is not within V(A((]d)), the quantity d2(d) tells us

how good the coarse lattices are for AWGN channel coding.

Using and 7 can be written as

. 1 1
B}, (R) > max p| 5 log, (2meM) = hy(Z) — (R +61(d))] - b (d). (80)
Define C := %log2 (%) Then, optimizing the above equation with respect to p gives us (similar to [I2]

Appendix A])
B}, (R) > By (2re#2C- R0 _ g, (), (81)

for all transmission rates R that lie between C' — (log, 2)/2 and C. Here, Ey (-) denotes the Poltyrev exponent
given by . A similar argument also holds for the expurgated error exponent £ (R) [12], and

E% (R) > Ey (2we1+2<C—R-51<d>>) — 85(d), (82)

for R between 0 and C' — (log, 2)/2.

Observe that, in the analysis of the error exponent, the codewords are picked uniformly over V(Agd)). Now
suppose that the codewords are instead distributed uniformly over a fine grid within V(A(()d)), in particular,
over (qf 1A(()d)) N V(A((Jd))7 where ¢; is prime. Our codebook comes from the fine lattice, and these points are
distributed uniformly over (ql_ 1Aéd)> N V(Aéd)). This is the case if we pick a sublattice from the (d, k1, q1)
ensemble described in steps (f1)—(f2) as earlier [23] Lemma 3]. Then, this quantization of the input does not
affect the error exponent by a significant amount as long as d/q; goes to zero as d — oo. Indeed from [I2]

Appendix C], we have that

E},(R) > Ey (2#61+2(C_R_61(d))) — 02(d) — d5(d), (83)

May 18, 2013 DRAFT



49

where

27 (d)
5a(d) = Teor o) (1 42 ) : (84)

qo? %
with rCOV(A(()d)) being the covering radius of A(()d). If the sequence of coarse lattices is good for covering, and
d/q1 — 0 as d — oo, then d3(d) — 0 as d — oo. If, in addition, A(()d) is good for AWGN channel coding,

then, dz(d) — 0 as d — oo. n

APPENDIX E: PROOF OF LEMMA

For ease of notation, denote by r.g, the effective radius of Aéd). The index, d, in r.g has been dropped

but it must be understood that this is a function of d. Let C(®¥ denote the (d, k) code over Z4 that is used
to generate the coarse lattice. Using ,
p D(d/2+1)

/2 qd

2mereg?
where the second step uses Stirling’s approximation, and 04(1) is a term that approaches 0 as d — co. From

, k = Bod for some 0 < By < 1/2. Substituting this in the above, and raising both sides to the power

1/d, we get U /i
= (0] o) = (@B 1 o1 (80

Let Aéd)* denote the dual of A(()d)7 and reg* denote the effective radius of A(()d)*. Let Ag(C(9+) be the lattice ob-
tained by applying Construction-A on the dual of C(?) i.e., on C(¥+. As remarked in Appendix C, Ag(C(H+)
comes from a (d,d — k, q) ensemble. From Lemma Aéd)* = qAo(CDL). Therefore, (1/q)AD* = A(CD+)

will satisfy
/2

¢ =Vidn d 5 (14 04(1))

where 04(1) = 0 as d — oo. But TCH(%A(()d)*) = %Tcﬁ‘*, and hence, analogous to , we have

q?1=Fo) = \/dr 1+ 04(1)) (87)

(smetarea?) "

Rearranging,

rert = (dm)2a (14 0q(1))"/¢ (88)

V2Te

Let the packing radius of A" be rpac(AYY") = ~y(d)reg*. From the definition of the packing radius,
~v(d) < 1 for all d. Again, since the dual lattice is good for packing, limg—, o y(d) > 1/2. Also, since 04(1) — 0
as d — oo, we have (1 + 04(1))/% = (1 4+ 04(1)). Therefore, we have,

e

rer (86" rpaci (A6™") = H(d)resr(AG”)(dm) /> 2= (1 + 04(1))
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Substituting for ¢% from in the above equation, we get

ret(AS ) pack (M)
d

= 7(d) () /D (1 + 0(1)) (59)

Therefore, as d — oo, the above expression converges to a value greater than or equal to 1/4we. Using

rpack(f\(()d)) = QFTpaCk(A(()d)*), we get Lemma O

APPENDIX F: PROOF OF THEOREM [19]

The following lemma from [20] will be used in the proof.

Lemma 29 ([20], Lemma 4). Let A be a lattice in R?. Then, for all z € RY, and k > 0,

1 —ear(r) < Gr,z(N)
L+ea(r) = gu(A)

<1

For ease of notation, we will suppress the index d in €@, Aéd) and A, We will find upper and lower

bounds for py4 v (u) and pyyv|x(u), and then use these to get an upper bound on the absolute value of the
difference between the two.

For a message X chosen at node A, let x be the coset representative of X from ANV(Ag). For any subset
S C R, let 15(-) denote the indicator function of S, i.e., 1g(u) is 1 if u € S, and 0 otherwise. From ,
with kK = \/737 we have

9\/73(11)
buix(u) = 1prg4x(u). 90
U| ( ) g\/ﬁ_x(AO) o+ ( ) ( )
Let Gx := ANV(Ag), and M := |G| = |Gx|. Since the messages are uniformly distributed,
> (W) T(agx(w)
pu(u) = VP (Ao+x) ] (91)

o IvmxBbo) M

The flatness factor, ey, (6) is a decreasing function of # [20, Remark 3]. Therefore, ex, (VP) < e, (/P/2) = e,

and using Lemma
9.7(u) < 9.7(u) < 9,5(1) 1+
9y5(ho) T 9y (Do) T g m(Ao) 1 —€
Using this in , we get for u € A,

g/p(u gsu) 1+
7Mﬁ(A) SPU(U)SiMﬁ(Iz ‘.
975 (Ao) gy5(Mo) 1 —¢

We will require bounds on g z(A) in the proof. Rearranging the terms above,

(92)

(1 . E) pu(W)Mg 5(Ao) < g./5(w) < pu(w)Mg,/5(Ao).

Since py is a pmf supported over A, and ) ., pv(u) = 1, we can get

(1:) Mg (M) < g5(A) < Mg 5(Ao). 93)
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It can be similarly verified that for any a € R™,

(1_6) Mg jz (Do) < gz () < Mg /7 (Do)

We establish some more notation for convenience. Let

a(w) = g55(w) 9,780
- Mgyp(ho) 9,5(Mo)°

sy o [ VEEADOY (aym o (80))
T 9@(/\0) 97 (Ao) '

We can bound py v |x and pyiv as follows.

Lemma 30. For any lattice point w € A, and any x € Gx, we have

(15) atw) < pviow) < <1+€)2a<w>

1+e€ 1—e¢
B, w)a(w) < Py yie(w) < G - ) B, wya(w)

Proof: Let x be any fine lattice point from Gx. Then,

pUvix(W) = Z puix(t)pv (W —t)

teAo+x
Using and in the above equation, we obtain

tENo+x g\/ﬁ,fx(AO) Mg\/f(AO

< pU+V|x(W) <
teAo+x g\/f,fx(AO) Mg\/f(AO)

Consider the term

2x /Py’

_lel®  pe—w)®
3 9pt) g9ppw—-t) 1 1 e( o)
e IvP,—x(Bo) Mg p(ho) 95 (No) Mg p(Ao) 4=
- 1 Z e
Mg\/ﬁ(AO)g\ﬁ_ (Ao) (S (2nVP)
955 (W
g w
Mg\/*(A())g\/* ( tEAZ+x g 7

— v3p(W) g\/?g_x(AO)
Mg p(Ao) 9.5 —x(Ro)

51

(99)

(100)

Substituting this in , and writing this in terms of o and 3, we obtain . Similarly, bounding both py

and py from above and below using (92)), proceeding as above, and finally using (94) to bound g = ., (A),
/B w
2072

we get .
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Observe that 5(x,w) in is a ratio of two terms, both of which can be bounded using Lemma |29| to

G;Z)Sﬁ(x’w)g(ij- (101)

Let pyy and Pyiv respectively denote the upper and lower bounds for pyiy in , and let py v«

get

and Puivix respectively denote the upper and lower bounds for py y|x in . Then, we can say that

IpU4v|x(W) = pr4v(w)] is less than or equal to the maximum of [Py y|x(W) —BU+V(W)| and |BU+V|x(W) -

Pusv (W)l
Substituting for [Py v« (W) — BU_H/(W)\, we get
2
_ 1—e¢ 1+e€
Poviel) = 2y ()] = o) (155 ‘ (1) o) 1. (102)
However, from ([101]), we see that
2 3
1+e¢ 1+¢ 1+e€
1 < <
<(10) = (55) moem= (7).
3
and for € < 1/2, we have (%) < 1+ 64¢. Therefore,
_ 1—e¢
i) ~ By (W] < a(w) (15 ) e (103)

Similarly, expressing |BU+V‘X(W) —Py4v(W)| in terms of o and /3, and using the fact that ((1 —€)/(1 + 0)* >
1 — 8¢ for € < 1/2, we get

Py y1ul9) = P ()] < alw) (155 86 (104)

Rearranging , and observing that )\ pryv(w) =1, we have

(1) = Sem= (i), o

weA

Combining (103) and (104)), and summing over w,

2
1—¢ 1+e€
< 4
V(pu+v, pusvix) < E a(W)maX{<1+€>6 @(1_6) 86},

weA

and using (105)) to bound ., a(w) from above, we get

3
1

+ 6) 86} < max {64e, 27 x Se}
€

V(pu+v,pusvix) < max {6467 (1_

since € < 1/2. Therefore,

V(pu+v,pusvix) < 216,

thereby completing the proof. O
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APPENDIX G: PrROOF oF LEMMA [20]

The average transmit power per dimension is given by

1 1 1
SENUIE = ZE[VI2 = 37 (AP
AeA(D)

Using inequalities and from Appendix F, we can bound the average transmit power in terms of

€@ = eAé@(\/P/Q) as follows:
1— e\ 1 V10N 2 T+ed\1 s 9yp(N)
(Fm) 3 X 2 < gmvi < (55 ) 3 3 NP2y a0
AeA(d) A€A(D)
Now, Lemma 6 from [20] shows that as d — oo, the term 2 >\ ) [ A2 g‘ﬁ(i(d))) converges to P, provided

en@ (VP/2) — 0. Therefore, if both €4 and e, (vVP/2) tend to 0 as d — oo, then the average transmit

power per dimension converges to P. O

APPENDIX H: PROOF OoF LEMMA 23]

Recall that for t € {1,2,..., N}, O was defined to be the set {Ji, Jo—1, Wi[2m +k —1] : 1 <m < ¢}.

Making repeated use of the chain rule of mutual information (see e.g., [7]), we see that

N

(X1, .., XniOkn) = O T(Xy; O n| X1, .0, Xia)
=1

N N

= (X5 o Jeoa| Xao o Xon) + > Z(Xs W[2n 4+ k= 1)) X1, ., X1, O n1)
t=1 n=1
N N

:ZZ (Xe; We2n+k —1]| X1, ..., X1, Ok n—1), (107)

where the last step follows from the fact that I(Xt;J;g,Jk,1|X1,...,Xt,l) =0for 1 <t < N, since
the messages and the jamming signals are independent. We first show that conditioned on Xy,..., X;_1,
the message X; depends only on the vector received in the (2t + k — 1)st phase, Wg[2t + k — 1], and is
independent of the rest of the terms in O . We do this in two steps. First, we make the observation that
when conditioned on the first ¢ — 1 messages, X; does not depend on the variables obtained by the kth relay
in the first 2t + k£ — 2 phases. We then prove that when conditioned on X3, Xs..., X;_1, the message X;
is independent of everything received after the (2t + k — 1)st phase. In proving the following propositions,
we make use of the fact that if XY, and Z are random variables distributed over a finite group G, with X
being uniformly distributed over G and independent of (Y, Z), then X @Y is uniformly distributed over G
and independent of Z.

Proposition 31. Let 1 <t < N, andn,l € {1,2,...,t}. Then, the message X; is conditionally independent
of Opn-1 given X1, Xo,..., X;1.

Proof: From (B8), for any 1 < m < N, we have Wy [2m+k—1] = Vi_1[2m+k—1]+ Vi1 [2m+ &k —1].
From , we know that Vi_1[2m + k — 1] = E((B)2,Xp) & Jeam-1), so that Vi_1[2m + k — 1] is a
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function of X1,..., X, and Jgysm—1. Similarly, Vi1[2m + k — 1], is a function of Xy,..., X,,—1 and Jgqpm,.
Therefore, for n € {1,2,..., N}, O ,—1 consists of random variables which are all functions of Xi,..., X1
and Jg_1,- .., Jgrn—1, which are all independent of X; for n <t (even when conditioned on the first [ —1 < ¢
messages). Therefore, for all n,i <t, O ,_1 and X, are conditionally independent given Xq,...,X;—;. ®H

The following proposition says that for n > ¢, W[2n + k — 1] gives no information about the message X;

even when conditioned on the information obtained in the past.

Proposition 32. Let 1 <t < n < N.The vector Wi [2n+k — 1] received by the kth relay in the (2n+k—1)st

phase is independent of X1,...,X; and O 1.

Proof: From Proposition [31] and the fact that the messages are independent, we have for all t < n, that
X, is independent of Oy, ,—1 and X, ..., X;. Furthermore, since X,, is uniformly distributed over G, the
term (@;L:lXp ® Jktn-1), and hence, Vi_1[2n + k — 1] is independent of Oy, ,—1 and Xi,..., X;.

A similar observation that Ji, is independent of ©y, ,_; and Xi,..., Xy, tells us that @Z;llXp DB Jktn,
and hence, Vi41[2n + k — 1] is also independent of O ,,_1 and Xq,..., X;. Therefore, Wy[2n + k — 1] is
independent of O »_1 and Xy,..., X;. [ ]

We now evaluate the terms in . We can write

(X Wil2n+ k= 1]| X1, ..., Xim1, On 1) = H(Xe| X1, ., X1, O 1) — H(Xy| X1, -, Xem1, Opn).

From Proposition we have for all ¢ > n, ’H,(Xt|X1,...,Xt_1,@k7n) = H(Xt|X1,...,Xt_1,®k7n_1) =
H(X:). Therefore,
I(Xe; Wi[2n+ k —1]| X1,..., X4—1,Okn-1) =0 (108)

for all 1 < n < t < N. Using Proposition for all n > t, H(Wi[2n + k — 1]’X1,...,Xt,1,®k)n,1) =
HWi2n +k —1]| X1, ..., X4, O n_1) = H(Wi[2n + k — 1]), and hence

(X Wil2n+ k —1]| X1, ..., X4—1,0p,-1) =0 (109)

for all 1 <¢ < n < N. Therefore, (107) reduces to
N
T(X1,..., Xn;Opn) = Zz(xt; W2t +k — 1]| X1,..., X¢—1, Op—1). (110)

t=1
The mutual information Z(Xy; Wy [2t + k — 1] ’Xl, oy Xi—1,0,4-1) can be written in terms of conditional

entropies as
(X W2t + k — 1] X1, ..., Xim1,On—1) = H(Wg[2t + &+ 1]| X1, ..., X1, Op4-1)
— H(Wi[2t + k+1)| X1, ..., X¢, Op 1) (111)
Let us evaluate each of the terms on the right hand side. Consider the second term,
HWe[2t + k+ 1]|X1,.. ., X4, Op 1) > H(WR[2t + k + 1]| X1, .., X, B0 X ® Jpgt—1, Ope—1)

= H(W[2t + k+1]| @) Xp & Jpge—1) (112)
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The first step is true because conditioning reduces entropy. The second step requires more justification. We
have Wy (2t +k — 1] = Vi1 [2t + k — 1] + V1 [2t + &k — 1], where Vi1 [2t +k — 1] = E(D)_1 X, ® Jpyt-1),
and Vi1[2t+k—1] = 8(@;_:11Xp @ Jitt). Given EB;,:lXp ® Jgtt—1, the term Vi _1[2t+ k —1] is independent
of X1,...,X:,044—1. The jamming signal, Jy1, is independent of Oy, 1 (since all the terms in Oy ;1
depend only on the first k£ 4+ ¢ — 1 jamming signals), all the first ¢ messages, and @;ZlXp @ Jiyt—1. Hence,
Vit1[2t + k — 1] is also independent of ©y ;_1, the first ¢ messages and @;ZlXp @ Jitt—1, thus justifying
(112)).

Define X := ®;:1Xp & Jrqt—1, and Y := EB;_:llXp @ Ji4t. Recall that £(X) denotes the encoded form of
X, ie., £(X) is a random variable distributed over A@ according to . Then, we have,

HWe[2t + K+ 1]|X1,..., Xp, Op—1) = H(EX) + E(Y)]X),

From Proposition the first term of (111)), H(Wy[2t+k+1]| X1, ..., Xi—1,Ok,1—1) = H(Wi[2t+k-+1]). This,
in turn, is equal to H (£(X) 4+ E(Y)). Therefore, Z(X;; Wy [2t+k—1]|X1,..., X;—1,0k,¢—1) is bounded above
by Z(X;E(X) + £(Y)), and the random variables X and Y are independent and uniformly distributed over
G, From Theorem and Lemma I(X;E(X)+£(Y)) is upper bounded by €@ (log, |[G(9| — log, D).
Substituting this in , the lemma follows. O
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