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Abstract

Bidirectional relaying, where a relay helps two user nodes to exchange messages, has been an active
area of recent research. In the compute-and-forward strategy for bidirectional relaying, the relay computes
a function of the two messages using the naturally-occurring sum of symbols simultaneously transmitted by
user nodes in a Gaussian multiple access channel, and the computed function value is forwarded to the user
nodes in an ensuing broadcast phase. This paper studies a problem in which the two user nodes wish to
exchange messages using an untrusted relay. It is desired to have statistical independence, or perfect secrecy,
between the sum of symbols transmitted by the user nodes and the individual messages. A coding scheme
using nested lattices is described. It is shown that the scheme achieves perfect secrecy, and an achievable
rate is found. The security conditions are relaxed to strong secrecy, and a coding scheme that achieves this
is described. The results are then extended to the multi-hop line network and achievable rates under the
two security constraints are found. The coding schemes described in this paper are explicit, to the extent
that, given a pair of nested lattices that satisfy certain “goodness” properties, we specify the probability
distributions for randomization at the encoders to achieve the desired secrecy criteria.

I. Introduction

Consider a network having three nodes, denoted by A, B and R. The nodes A and B, henceforth called the

user nodes, wish to exchange information with each other. However, they are connected only to R, and not to

each other directly. The node R acts as a bidirectional relay between A and B, and facilitates communication

from A to B, and from B to A in the reverse direction. All nodes are assumed to operate in half-duplex

mode (they cannot transmit and receive simultaneously), and all links between nodes are wireless (unit

channel gain) additive white Gaussian noise (AWGN) channels. Bidirectional relaying in such settings has

been studied extensively in the recent literature [2], [23], [28], [34], [36].
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We use the compute-and-forward framework proposed in [23], [34] for bidirectional relaying, and we

briefly describe a binary version for completeness and clarity. Suppose that A and B possess bits X and

Y , respectively. We will assume that X and Y are generated independently and uniformly at random. The

goal in bidirectional relaying is to transmit X to B and Y to A through R. To achieve this goal, a compute-

and-forward protocol takes place in two phases as shown in Fig. 2: (1) the (Gaussian) multiple access phase

or the MAC phase, where the user nodes simultaneously transmit to the relay, and (2) the broadcast phase,

where the relay transmits to the user nodes. In the MAC phase, the user nodes A and B independently

modulate their bits X and Y into real valued symbols U and V , respectively. The relay receives an instance

of a random variable W , which can be modeled as

W = U + V + Z, (1)

where it is assumed that the links A→ R and B→ R have unit gain, Z denotes additive white Gaussian noise

independent of U and V , and communication is assumed to be synchronized. Using W , the relay computes

the XOR of the two message bits, i.e., X ⊕ Y , and in the broadcast phase, encodes it into a real symbol

which is transmitted to the two users over a broadcast channel. Note that A and B can recover Y and X,

respectively, from X ⊕ Y .

A R B

Fig. 1. Bidirectional relay
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Fig. 2. Bidirectional relaying: (a)MAC phase, (b)Broadcast phase
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In a compute-and-forward bidirectional relaying problem such as the above, we study the scenario where

an additional secrecy constraint is imposed on the relay R. Specifically, we require that, in the MAC phase,

the relay remain ignorant of the individual bits X and Y , while still being able to compute the XOR X ⊕Y

reliably. We study the problem under two secrecy constraints. First, we demand that the relay be fully

ignorant of the individual bits, i.e., that the random variables U + V , X, and Y be pairwise independent.

More generally, the user nodes encode the messages X and Y into d-dimensional real vectors U and V

respectively, and we require U+V to be statistically independent of the individual messages. This is referred

to as perfect secrecy, or Shannon secrecy in the literature. The problem of secure bidirectional relaying in

presence of an untrusted relay under a perfect secrecy constraint has not been studied prior to this work,

and this is a major contribution of this paper. We use a coding scheme that uses a pair of nested lattices

(Λ(d),Λ(d)
0 ), with Λ(d)

0 ⊂ Λ(d). The messages are mapped to the cosets of the coarse lattice Λ(d)
0 in the fine

lattice Λ(d). Given a message (say the jth coset, Λj) at the user node, the output of the encoder is a random

point chosen from that coset according to a distribution pj . This distribution is obtained by sampling and

normalizing over Λj , a well-chosen density function f on Rd. We will show that if the characteristic function

of f is supported within the fundamental Voronoi region of the Fourier dual of Λ(d)
0 , then it is possible to

achieve perfect secrecy. We then study the average transmit power and achievable rates for reliable and

secure communication. We will show that a transmission rate of 1
2 log2

P
σ2 − log2 2e is achievable with perfect

secrecy. Our coding scheme for security is explicit, in that given any pair of nested lattices, we precisely

specify the distributions pj that must be used to obtain independence between U + V and the individual

messages.

We later relax the secrecy constraint, and only demand that the mutual information between U + V, and

the individual messages be arbitrarily small for large block lengths, also referred to as strong secrecy [22].

We again use a nested lattice coding scheme, but now the distributions pj are obtained by sampling and

normalizing a Gaussian function, instead of a density having a compactly supported characteristic function.

The idea of using probability mass functions (pmfs) obtained by sampling Gaussians was used [20] in the

context of the Gaussian wiretap channel, and we will make use of the techniques developed there. Using

this scheme, we show that a rate of 1
2 log2

P
σ2 − 1

2 log2 2e is achievable. The rate can be further improved to
1
2 log2

( 1
2 + P

σ2

)
− 1

2 log2 2e using random dithering at the encoders and MMSE equalization at the relay [12],

[23].

It is worth emphasizing the basic idea behind the construction of encoders in our coding schemes. Given

a pair of nested lattices, the user nodes send points from the fine lattice in the nested lattice pair according

to a pmf obtained by sampling a well-chosen density function at the fine lattice points. The choice of the

density function determines the level of security that is achievable.

We will restrict our study exclusively to the MAC phase, since there is no security requirement in the

broadcast phase and the relay can use a capacity-approaching code to broadcast X ⊕ Y to the users.

After discussing secure bidirectional relaying, we show that the principles can be extended to the multi-hop
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line network [16] and find achievable transmission rates under the two secrecy constraints.

In prior work, the problem of secure bidirectional relaying in the presence of an untrusted relay was studied

by He and Yener in [16], who showed that the mutual information rate, defined to be 1
dI(X; U + V) =

1
dI(Y ; U + V) goes to zero for large blocklengths, d. They later studied the problem under a strong secrecy

constraint in [17], and gave a scheme based on nested lattice codes and universal hash functions. The

achievable rates guaranteed by our strongly secure scheme is slightly lower than that obtained in [17].

However, our scheme is more explicit, in that given a pair of nested lattices that satisfy certain properties 1,

we specify exactly what distribution must be used to obtain strong secrecy.

Lattice codes have been proposed for secure communication in different scenarios, particularly the Gaussian

wiretap channel (see e.g., [4], [26], [20]). They have also been proposed for use in interference networks [1],

and for secret key generation using correlated Gaussian sources [25].

Organization of the paper

We establish some basic notation, and recall some basic lattice definitions in Section II. We describe

the secure bidirectional relaying problem in Section III, and then proceed to design coding schemes under

the perfect secrecy constraint in Section IV. The main result under the perfect secrecy constraint is given

in Theorem 1. We give a randomized encoding scheme for any arbitrary nested lattice code that achieves

perfect secrecy in the absence of noise in Section V, then study the effect of additive noise and find achievable

transmission rates in Section VI. Thereafter, we study the same problem under a strong secrecy constraint,

design coding schemes, and evaluate the performance in Section VII, with the main result summarized in

Theorem 17. We extend the results to a multi-hop line network in Section VIII. Most of the technical proofs

are given in appendices.

II. Definitions and Notation

We first describe the notation we will use throughout the paper. We denote the set of real numbers by R,

and integers by Z. We use the notation R+ for the set of nonnegative real numbers. The number of elements

in a finite set S is denoted by |S|. Random vectors are denoted in boldface upper case, e.g., U, and their

instances in boldface lower case, as in u. The components of the vectors are denoted in normal font, e.g.,

x = [x1 x2]T . Matrices are represented in sans-serif, as in H. The Euclidean (`2) norm of a column vector h

is denoted by ‖h‖. The identity matrix of size M ×M is denoted by IM . If X is a random variable, then

H(X) denotes the entropy of X, and expectation over the random variable X is denoted by EX(·). The

probability of an event A is denoted by Pr[A]. For random variables X,Y , the notation X ⊥⊥ Y means that

X and Y are independent. The mutual information between X and Y is denoted by I(X;Y ).

1Unfortunately, there are no explicit constructions of lattices that satisfy these properties, but only existence results based
on probabilistic arguments.
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Let f(n) and g(n) be a sequence of positive real numbers. We say that g(n) = o(f(n)) if g(n)/f(n)→ 0

as n→∞. Also, g(n) = on(1) if g(n)→ 0 as n→∞. Furthermore, g(n) = Ω(f(n)) if there exists a constant

K > 0 such that g(n) > Kf(n) for all sufficiently large n, and g(n) = O(f(n)) if there exists a constant

K > 0 such that g(n) < Kf(n) for all sufficiently large n.

A. Lattices in Rd

We briefly recall some definitions of lattices and their properties. For a more detailed treatment, see

e.g., [3], [6].

Let k, d be positive integers with k ≤ d. Suppose u1,u2, . . . ,uk are linearly independent column vectors

in Rd. Then the set of all integer-linear combinations of the ui’s, Λ = {
∑k
i=1 aiui : ai ∈ Z, 1 ≤ i ≤ k}, is

called a k-dimensional lattice in Rd. It is easy to verify that Λ forms an Abelian group under componentwise

addition. The collection of vectors {u1,u2, . . . ,uk} is called a basis for the lattice Λ, and it is a standard

fact that the basis of a lattice is not unique.

The k × d matrix A := [u1 u2 · · ·uk]T is called a generator matrix of Λ, and we say that the vectors

u1,u2, . . . ,uk generate Λ. We write Λ = ATZd := {ATx : x ∈ Zd}. If Λ is full-rank (i.e., Λ is a d-dimensional

lattice in Rd), then the determinant of Λ, denoted by detΛ is defined to be |detA|. It is a standard fact that

detΛ does not depend on the generator matrix. Unless mentioned otherwise, we will henceforth consider

only full-rank lattices in Rd.

If Λ and Λ0 are two lattices in Rd such that Λ0 ⊂ Λ, then we say that Λ0 is a sublattice of Λ, or Λ0 is

nested within Λ. We call Λ0 the coarse lattice and Λ the fine lattice. The number of cosets of Λ0 in Λ is

called the index of Λ0 in Λ, denoted by |Λ/Λ0|. It is a standard fact that |Λ/Λ0| = detΛ0/detΛ [3, Theorem

5.2].

If A is a generator matrix of a lattice Λ, then Λ∗ := {A−1z : z ∈ Zd} is called the dual lattice of Λ. The

dual lattice Λ∗ is also equal to {x ∈ Rd :
∑d
i=1 xiyi ∈ Z for every y ∈ Λ}[3]. The Fourier dual of Λ, denoted

Λ̂, is defined as 2πΛ∗.

For any x ∈ Rd, we define the nearest neighbour quantizer QΛ(x) := arg minλ∈Λ‖x−λ‖ to be the function

which maps x to the closest point in Λ. The fundamental Voronoi region of Λ is defined as V(Λ) := {y :

QΛ(y) = 0}. The volume of the fundamental Voronoi region, vol(V(Λ)) is equal to detΛ [3], [6].

For any x ∈ Rd, we define the modulo-Λ operation as [x] mod Λ := x−QΛ(x). In other words, [x] mod Λ

gives the quantization error of the nearest neighbour quantizer QΛ(·). Figure 3 illustrates the QΛ(·) and the

modulo-Λ operations.

The covering radius of Λ, denoted by rcov(Λ) is defined as the radius of the smallest closed ball in Rd

centered at 0 which contains V(Λ). The effective radius, reff(Λ) is defined as the radius of a ball in Rd having

the same volume as that of V(Λ). The packing radius of Λ is the radius of the largest open ball centered at

0 which is contained in V(Λ). Clearly, rcov(Λ) ≥ reff(Λ) ≥ rpack(Λ). These parameters are illustrated for the

hexagonal lattice in Fig. 4.
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Fig. 3. Illustrating the QΛ(.) and the [.] mod Λ operation for the Z2 lattice.
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Fig. 4. Illustrating the covering, packing and effective radii of the hexagonal lattice.

The normalized second moment per dimension of Λ is defined as

GΛ = 1
d {detΛ}1+2/d

∫
V(Λ)
‖y‖2dy. (2)

III. Description of the Problem

The general set-up is as follows: two user nodes, denoted by A and B, possess messages taking values

independently and uniformly in a finite set. For the purposes of computation at the relay, the messages are

mapped into random variables X and Y taking values in a finite Abelian group G(d), where the choice of G(d)

is left to the system designer. The mapping is such that the random variables X and Y remain uniformly

distributed over G(d), and we will see later that this distribution helps in achieving secrecy. The addition
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operation in the group G(d) is denoted ⊕. For a given message X at node A, the encoder at A generates

a random d-dimensional real vector U. In a similar fashion, for a given Y , the encoder at B generates a

random vector V. The user nodes transmit their respective vectors to the relay simultaneously, and at the

end of the MAC phase, the relay obtains

W = U + V + Z, (3)

where Z is a Gaussian random vector, with zero mean and covariance matrix σ2Id, with Id being the d× d

identity matrix, and + denotes componentwise real addition. The coding scheme at each user node must

ensure that the relay can recover X ⊕ Y reliably from W, and one of the following:

• the mutual information between W and the individual messages, I(W;X) and I(W;Y ) is exactly zero2

(perfect secrecy)

• I(W;X) and I(W;Y ) can be made arbitrarily small for all sufficiently large d (strong secrecy).

We in fact impose a slightly stronger security criterion than the one mentioned above. Even in the absence of

noise, the mutual information between W = U+V and the individual messages must be either zero (perfect

secrecy) or can be made arbitrarily small for all sufficiently large d (strong secrecy). Since the additive noise

is independent of everything else, X → U + V → U + V + Z forms a Markov chain, and using the data

processing inequality (see e.g., [7]), I(X; U+V+Z) ≤ I(X; U+V). Likewise, I(Y ; U+V+Z) ≤ I(Y ; U+V).

Therefore, any scheme that achieves perfect (strong) secrecy in the absence of noise will also achieve perfect

(strong) secrecy in a noisy channel.

The messages must also be protected from corruption by the additive noise in the multiple access channel.

The user nodes need to communicate X ⊕ Y to the relay with arbitrarily low probability of error. Since the

messages are uniformly distributed over G(d), 1
d log2 |G(d)| gives the average number of bits of information

sent to the relay by each user node in one channel use in the MAC phase. Our aim will be to ensure secure

computation of X ⊕ Y at the highest possible rate (which we define to be 1
d log2 |G(d)|) for a given power

constraint at the user nodes. To formalize these notions, we have the following definition:

Definition 1. For a positive integer d, a (d,M (d)) code for the MAC phase of the bidirectional relay channel

with user nodes A, B and relay R consists of the following:

1) Messages: Nodes A and B possess messages X and Y , respectively, drawn independently and uniformly

from a finite Abelian group G(d) with M (d) = |G(d)| elements.

2) Codebook: The codebook, denoted by C, is a discrete subset of Rd, not necessarily finite. The elements

of C are called codewords. The codebook consists of all those vectors that are allowed to be transmitted

by the user nodes to the relay.

3) Encoder: The encoder is a randomized mapping from G(d) to Rd, specified by the distribution pU|X(u|x) =

Pr[U = u|X = x] for all u ∈ C and x ∈ G(d). The same encoder is used at both nodes, A and B.

2Equivalently, we want W ⊥⊥ X and W ⊥⊥ Y .
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At node A, given a message x ∈ G(d) as input, the encoder outputs a codeword u ∈ C at random,

according to pU|X(u|x). Similarly, at node B, with y as input, the encoder outputs v ∈ C according to

pV|Y (v|y) = pU|X(v|y). The encoding of x and y are done independently. The rate of the code is defined

to be

R(d) = log2M
(d)

d
. (4)

The code has an average transmit power per dimension defined as

P (d) = 1
d
E‖U‖2 = 1

d
E‖V‖2. (5)

4) Decoder: The relay R receives a vector W ∈ R(d) as given in (3). The decoder, D(d) : Rd → G(d) maps

the received vector to an element of the set of messages. The average probability of error of the decoder

is defined as

η(d) := E
(
Pr[D(d)(W) 6= X ⊕ Y ]

)
where E denotes expectation over the messages, X,Y , and over the encoders (U,V given X,Y ).

IV. Perfect Secrecy

We first study the case where perfect statistical independence between U+V and the individual messages

is required, and the relay must be able to reliably compute X ⊕ Y (where ⊕ denotes addition within G(d))

from the received vector. To summarize, we have the following requirements for secure compute-and-forward:

(S1) (U, X) ⊥⊥ (V, Y ).

(S2) (U + V) ⊥⊥ X and (U + V) ⊥⊥ Y .

(S3) U + V almost surely determines X ⊕ Y .

If conditions (S1)–(S3) are satisfied, the relay has no means of finding the individual messages. Property (S3)

ensures that the relay can decode X ⊕ Y , which can then be encoded/modulated for further transmission

over the broadcast channel. On reception of the broadcast message, since user A (resp. B) knows X (resp.

Y ), it can recover Y (resp. X).

If the relay only had access to X ⊕ Y instead of U + V, the problem of secure communication would

have been trivial due to the uniformity and independence of X and Y . However, the relay receives the real

sum of U and V, which makes the problem harder. For example, suppose that d = 1, and G(1) = Z2, the

group of integers modulo 2. Consider the coding scheme U = X, and V = Y . Then, in the absence of noise,

whenever U + V = 0 or U + V = 2, the relay can determine both X and Y .

The performance of a coding scheme is generally evaluated in terms of the average transmit power, and

the transmission rate. To make these notions formal, we define achievable power-rate pairs as follows.

Definition 2. A power-rate pair (P,R) is achievable with perfect secrecy if, for every δ > 0, there exists a

sequence of (d,M (d)) codes such that

• conditions (S1)–(S3) are satisfied for all d,

May 18, 2013 DRAFT



9

and for all sufficiently large d,

• the transmission rate, R(d), is greater than R− δ;

• the average transmit power per dimension P (d), is less than P + δ; and

• the average probability of decoding error, η(d), is less than δ.

The objective of the next couple of sections will be to prove the following result.

Theorem 1. A power-rate pair of (
P, 1

2 log2
P
σ2 − log2(2e)

)
is achievable with perfect secrecy in the MAC phase of the bidirectional relay.

V. Perfect secrecy: The Noiseless Setting

To get a clear picture as to how secure communication can be achieved, we first describe the binary case.

The messages X and Y are chosen independently and uniformly at random from {0, 1}, or equivalently, the

set of integers modulo-2 (G = Z2). They are modulated to U and V respectively, which take values in R.

Studying the one-dimensional case will give us the intuition needed to tackle the general case, and we will

see that the techniques developed here extend quite naturally to the d-dimensional setting.

We will show that there exist distributions on U and V that permit secure computation defined by

properties (S1)–(S3). This is somewhat surprising since we cannot have non-degenerate real valued random

variables U, V that satisfy (U + V ) ⊥⊥ U and (U + V ) ⊥⊥ V , as shown in the following proposition:

Proposition 2. Let U and V be independent real-valued random variables, and let + denote addition over

R. Then, we have (U + V ) ⊥⊥ U and (U + V ) ⊥⊥ V iff U and V are constant a.s. (i.e., there exist a, b ∈ R

such that Pr[U = a] = Pr[V = b] = 1).

Proof: The “if” part is trivial, so let us prove the “only if” part. Let W = U+V , so that by assumption,

U , V and W are pairwise independent. Let ϕU , ϕV and ϕW denote the characteristic functions of U , V and

W , respectively. In particular, ϕW = ϕUϕV . From U = W − V , we also have that ϕU = ϕWϕV , where ϕV
denotes the complex conjugate of ϕV . Putting the two equalities together, we obtain ϕU = ϕU |ϕV |2. To be

precise, ϕU (t) = ϕU (t)|ϕV (t)|2 for all t ∈ R.

Now, characteristic functions are continuous and take the value 1 at t = 0. Hence, ϕU is non-zero within

the interval [−δ, δ] for some δ > 0. Thus, |ϕV (t)| = 1 for all t ∈ [−δ, δ]. By a basic property of characteristic

functions (see Lemma 4 of Section XV.1 in [15]), this implies that there exists b ∈ R such that ϕV (t) = eibt

for all t ∈ R, thus proving that V = b with probability 1.

A similar argument using V = W − U shows that U is also constant with probability 1.
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A. Secure Computation of XOR at the Relay

In this section, X and Y are independent and identically distributed (iid) uniform binary random variables

(rvs), and X ⊕ Y denotes their modulo-2 sum (XOR). We describe a construction of integer-valued rvs U

and V satisfying (S1)–(S3).

1) Conditions on PMFs and Characteristic Functions: We first derive conditions under which integer-

valued rvs U and V can satisfy properties (S1)–(S3) stated in Section III. We introduce some notation: for

k ∈ Z, let pU (k) = Pr[U = k], pV (k) = Pr[V = k], and for a ∈ {0, 1}, let pU |a(k) = Pr[U = k | X = a],

pV |a(k) = Pr[V = k | Y = a]. Thus, pU = (1/2)(pU |0 + pU |1) and pV = (1/2)(pV |0 + pV |1).

Property (S1) is equivalent to requiring that the joint probability mass function (pmf) of (U, V,X, Y ) be

expressible as

pUVXY (k, l, a, b) = (1/2)(1/2)pU |a(k)pV |b(l) (6)

for k, l ∈ Z and a, b ∈ {0, 1}. Without the requirement that U + V ⊥⊥ X and U + V ⊥⊥ Y , it is trivial to

define U and V such that (S3) is satisfied: for example, take U = X and V = Y . Property (S3) is satisfied

by any U, V such that
pU |0(k) = pV |0(k) = 0 for all odd k ∈ Z,

pU |1(k) = pV |1(k) = 0 for all even k ∈ Z.
(7)

Finally, we turn our attention to (S2). We want (U +V ) ⊥⊥ X and (U +V ) ⊥⊥ Y . Let us define, for k ∈ Z,

pU+V (k) = Pr[U + V = k], and for a ∈ {0, 1}, pU+V |X=a(k) = Pr[U + V = k | X = a] and pU+V |Y=a(k) =

Pr[U + V = k | Y = a]. Assuming (U,X) ⊥⊥ (V, Y ), we have pU+V = pU ∗ pV , pU+V |X=a = pU |a ∗ pV , and

pU+V |Y=a = pU ∗ pV |a, where ∗ denotes the convolution operation. Thus, when (U,X) ⊥⊥ (V, Y ), (S2) holds

iff

pU ∗ pV = pU |a ∗ pV = pU ∗ pV |a for a ∈ {0, 1}. (8)

It helps to view this in the Fourier domain. Let ϕU , ϕV , ϕU |a etc. denote the respective characteristic

functions of the pmfs pU , pV , pU |a etc. — for example, ϕU |a(t) =
∑
k∈Z pU |a(k)eikt. Then, (8) is equivalent

to

ϕUϕV = ϕU |aϕV = ϕUϕV |a for a ∈ {0, 1}. (9)

Note that ϕU = (1/2)(ϕU |0 + ϕU |1) and ϕV = (1/2)(ϕV |0 + ϕV |1). Hence, (9) should be viewed as a

requirement on the conditional pmfs pU |a and pV |a, a ∈ {0, 1}.

In summary, we have the following lemma.

Lemma 3. Suppose that the conditional pmfs pU |a and pV |a, a ∈ {0, 1}, satisfy (7) and (9). Then, the rvs

U, V,X, Y with joint pmf given by (6) have properties (S1)–(S3).

The observations made up to this point also allow us to prove the following negative result.3

3In fact, a stronger negative result can be shown — see Proposition 10.
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Proposition 4. Properties (S1)–(S3) cannot be satisfied by integer-valued rvs U, V that are finitely supported.

Proof: Suppose that U and V are finitely supported Z-valued rvs. Then, ϕU (t) and ϕV (t) are finite

linear combinations of some exponentials eik1t, . . . , eiknt. Equivalently, the real and imaginary parts of ϕU
and ϕV are trigonometric polynomials. Thus, either ϕU (resp. ϕV ) is identically zero, or it has a discrete

set of zeros. The former is impossible as ϕU (0) = ϕV (0) = 1. Now, suppose that (S1) and (S2) are satisfied,

which means that (9) must hold. The equality ϕUϕV = ϕUϕV |a in (9) implies that ϕV |a(t) = ϕV (t) for all t

such that ϕU (t) 6= 0. But since ϕU (t) has a discrete set of zeros, continuity of characteristic functions in fact

implies that ϕV |a(t) = ϕV (t) for all t. An analogous argument shows that ϕU |a(t) = ϕU (t) for all t. Hence,

U ⊥⊥ X and V ⊥⊥ Y . From this, and (S1), we obtain that U + V ⊥⊥ X ⊕ Y , thus precluding (S3).

Practical communication systems generally have a maximum power constraint, which means that we would

like to have U, V being finitely supported. But from Proposition 4, we see that it is not possible to have

finitely supported U, V that permit secure computation of the XOR at the relay. Therefore, in order to ensure

secure computation, we will have to relax the criterion to an average power constraint on the user nodes.

This means that we require finite-variance, integer-valued random variables U, V , with infinite support, that

satisfy properties (S1)–(S3), or equivalently, the hypotheses of Lemma 3.

We now give a construction of U, V that satisfy the hypotheses of Lemma 3. We will choose a density

function whose characteristic function is finitely supported. The random variables U and V are chosen

according to a distribution obtained by sampling and appropriately normalizing this density function. To

study this in more detail, we rely upon methods and results from Fourier analysis. The key tool we need is the

Poisson summation formula, which we briefly recall here. Our description is based largely on Section XIX.5

in [15].

B. The Poisson Summation Formula

Let ψ be the characteristic function of a real-valued random variable X, such that
∫∞
−∞ |ψ(t)|dt <∞. In

particular, ψ is continuous and ψ(0) = 1. Since ψ is absolutely integrable, the random variable X has a

continuous density f . The Poisson summation formula [15, Chapter XIX, equation (5.9)] states that for any

T > 0 and s ∈ R, we have for all ζ ∈ R,
∞∑

n=−∞
ψ(ζ + 2nπ/T ) e−is(2nπ/T ) = T

∞∑
k=−∞

f(kT + s) ei(kT+s)ζ , (10)

provided that the series on the left converges to a continuous function Ψ(ζ). Note that Ψ(0) = T
∑∞
k=−∞ f(kT+

s), which is a non-negative quantity. If Ψ(0) 6= 0, then dividing both sides of (10) by Ψ(0) yields the important

fact that Ψ(ζ)/Ψ(0) is the characteristic function of a discrete random variable supported within the set

{kT + s : k ∈ Z}, the probability mass at the point kT + s being equal to f(kT + s)/
∑∞
k=−∞ f(kT + s).

A special case of interest is when ψ is compactly supported. Let T > 0 be such that ψ(t) = 0 whenever

|t| ≥ π/T . It is straightforward to see that the series on the left-hand-side of (10) converges to a continuous
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function Ψ, and that Ψ(0) = ψ(0) = 1. Indeed, the series may be written as eisζΨ̃(ζ), where

Ψ̃(ζ) =
∞∑

n=−∞
ψ(ζ + 2nπ/T ) e−is(ζ+2nπ/T ).

Note that Ψ̃ is periodic with period 2π/T . In fact, Ψ̃ is simply the periodic extension, with period 2π/T ,

of ψ(t)e−ist. Now, ψ (being a characteristic function) is continuous, and hence, so is Ψ̃. We conclude that

Ψ(ζ) = eisζΨ̃(ζ) is a continuous function. Furthermore, Ψ(0) = ψ(0) = 1, From this, we infer that Ψ is the

characteristic function of a discrete rv, as explained above. In fact, by plugging in ζ = 0 in (10) we obtain

that ψ(0) = T
∑
k f(kT + s), which shows that

∑
k f(kT + s) = 1/T . For future reference, we record this in

the form of a proposition.

Proposition 5. Let ψ be a characteristic function such that ψ(t) = 0 whenever |t| ≥ π/T for some T > 0,

and let f be the corresponding probability density function. Then, for any s ∈ R, the function Ψ : R → C

defined by

Ψ(ζ) =
∞∑

n=−∞
ψ(ζ + 2nπ/T ) e−is(2nπ/T )

is the characteristic function of a discrete random variable supported within the set {kT + s : k ∈ Z}. The

probability mass at the point kT + s is equal to Tf(kT + s).

It should be noted that compactly supported characteristic functions do indeed exist — see e.g., [15,

Section XV.2, Table 1], [10], [31]. We also give an explicit construction after the proof of Theorem 7 in the

next subsection.

1) Multi-dimensional Version: We will also need a multi-dimensional version of the Poisson summation

formula (see e.g., [32, Chapter VII, Section 2]). It is more natural to express this in terms of lattices. Let Λ

be a lattice in Rd. Recall from Section II-A that Λ̂ denotes the Fourier dual of Λ.

Let ψ : Rd → C now be the characteristic function of an Rd-valued random variable, such that
∫
Rd |ψ(t)|dt <

∞. Let the corresponding density function be f : Rd → R. The Poisson summation formula in Rd can be

expressed as follows: for any s ∈ Rd, we have for all ζ ∈ Rd,∑
n∈Λ̂

ψ(ζ + n) e−i〈n, s〉 = (det Λ(d))
∑
k∈Λ

f(k + s) ei〈k+s, ζ〉, (11)

provided that the series on the left converges to a continuous function Ψ(ζ). It should be pointed out that

texts in Fourier analysis typically state the Poisson summation formula for an arbitrary `1 function f , and

would then require that f and ψ decay sufficiently quickly — see e.g., [32, Chapter VII, Corollary 2.6] or

[3, Eq. (17.1.2)] — for (11) to hold. However, as argued by Feller in proving (10), in the special case of a

non-negative `1 function f , it is sufficient to assume that the left-hand-side of (11) converges to a continuous

function Ψ(ζ).

The following d-dimensional extension of Proposition 5 follows easily from (11).
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Fig. 5. Example of a characteristic function supported within V(2Z2).

Proposition 6. Let Λ be a full-rank lattice in Rd. Let ψ : Rd → C be a characteristic function such that

ψ(t) = 0 for all t /∈ V(Λ̂), and let f : Rd → R be the corresponding probability density function. Then, for

any s ∈ Rd, the function Ψ : Rd → C defined by

Ψ(ζ) =
∑
n∈Λ̂

ψ(ζ + n) e−i〈n, s〉

is the characteristic function of a random variable supported within the set Λ + s := {k + s : k ∈ Λ}. The

probability mass at the point k + s is equal to (det Λ) f(k + s).

C. General Construction

We now describe the construction of integer-valued random variables that satisfy (S1)–(S3). Let ψ be a

characteristic function (of a continuous random variable X) with the properties that

(C1) ψ(t) = 0 for |t| ≥ π/2, and

(C2) ψ(t) is real and non-negative for all t ∈ R.4

Note that since ψ is real-valued, it must be an even function: ψ(−t) = ψ(t) for all t ∈ R. Also, ψ(0) = 1.

Since ψ is integrable over R, by the Fourier inversion formula, the random variable X has a continuous

4There is no loss of generality in imposing this requirement. Suppose that a random variable X has characteristic function
ψ, which is complex-valued in general. Let X1, X2 be iid rvs with the same distribution as X. Then, X1−X2 has characteristic
function ψψ̄ = |ψ|2.
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−π −π/2 0 π/2 π

1

t

ψ(t)

Fig. 6. A generic characteristic function supported on [−π/2, π/2].

−π −π/2 0 π/2 π

1

ψ(t)

t

Fig. 7. ψ(t) = max{0, 1− 2|t|/π}.

density f . Note that Proposition 5 holds for T ≤ 2.

A generic such ψ is depicted in Figure 6. As a specific example (see Table 1 of Section XV.2 in [15]), a

random variable with density function

f(x) =


1
4 if x = 0

2
π2x2 (1− cosπx/2) if x 6= 0

(12)

has characteristic function ∫ ∞
−∞

f(x) eitx dx = max{0, 1− 2|t|/π}.

Figure 7 shows a plot of this characteristic function.

Reverting to our generic characteristic function ψ, let ϕ be the periodic function with period 2π that

agrees with ψ on [−π, π], as depicted in Figure 8. Note that ϕ(ζ) =
∑∞
n=−∞ ψ(ζ + 2πn). Thus, applying

Proposition 5 with T = 1 and s = 0, we find that ϕ is the characteristic function of an integer-valued random

variable, with pmf given by

p(k) = f(k) for all k ∈ Z. (13)

Next, for s = 0, 1, define ϕs as follows: for ζ ∈ R,

ϕs(ζ) =
∞∑

n=−∞
ψ(ζ + nπ)e−isnπ.

It is easily seen that ϕ0 is the periodic extension of ψ with period π, i.e., ϕ0 is the periodic function with

period π that agrees with ψ on [−π/2, π/2], as depicted at the top of Figure 9 for a generic ψ shown in

Figure 6.

On the other hand, ϕ1 is periodic with period 2π: its graph is obtained from that of ϕ0 by reflecting about

the ζ-axis every second copy of ψ, as depicted at the bottom of Figure 9.
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−π −π/2 0−3π/2−2π−5π/2−3π π/2 π 3π/2 2π 5π/2 3π

1

ϕ(t)

t

Fig. 8. Period-2π extension of generic ψ from Figure 6.

−π −π/2 0−3π/2−2π−5π/2−3π π/2 π 3π/2 2π 5π/2 3π

1

−3π −5π/2 −2π −3π/2 −π −π/2 0 π/2 π 3π/2 2π 5π/2 3π

1

−1

11

t

ϕ0(t)

t

ϕ1(t)

Fig. 9. The periodic functions ϕ0 and ϕ1 derived from ψ.

Applying Proposition 5 with T = 2 and s ∈ {0, 1}, we get that ϕ0 and ϕ1 are characteristic functions of

rvs supported within the even and odd integers, respectively. The pmf corresponding to ϕ0 is given by

p0(k) =

2f(k) if k is an even integer

0 otherwise.
(14)

and that corresponding to ϕ1 is

p1(k) =

2f(k) if k is an odd integer

0 otherwise.
(15)

From (13)–(15), we have p(k) = 1
2 (p0(k) + p1(k)) for all k ∈ Z.

Finally, note that since ϕ0(t) and ϕ1(t) differ from ϕ(t) only when ϕ(t) = 0, we have

ϕ2 = ϕϕ0 = ϕϕ1. (16)

We can now prove the following theorem.

Theorem 7. Let X,Y be iid Bernoulli(1/2) rvs. Suppose that we are given a probability density function

f : R → R+ with a non-negative real characteristic function ψ such that ψ(t) = 0 for |t| ≥ π/2. Set

pU |0 = pV |0 = p0 and pU |1 = pV |1 = p1, where p0 and p1 are as in (14) and 15). Then, the resulting Z-valued

rvs U and V satisfy properties (S1)–(S3). Additionally, the rvs U and V have finite variance iff ψ is twice

differentiable, in which case the variance equals −ψ′′(0).
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Proof: From the given characteristic function ψ, determine the associated probability density f via

Fourier inversion:

f(x) = 1
2π

∫ ∞
−∞

ψ(t)e−itx dt.

Define the pmfs p0 and p1 as in (14) and (15). Set pU |0 = pV |0 = p0 and pU |1 = pV |1 = p1. This implies that

pU = pV = p, where p is as defined in (13).

Clearly, (7) holds. To verify (9), note that, by virtue of (16), we have for a ∈ {0, 1},

ϕUϕV = ϕ2 = ϕϕa.

But, by construction, ϕUϕV |a = ϕV ϕU |a = ϕϕa.

Therefore, by Lemma 3, the random variables (U, V,X, Y ) with joint pmf given by (6) have the properties

(S1)–(S3).

It remains to prove the last statement in the theorem. This follows from the fact [15, pp. 512–513] that

a probability distribution F with characteristic function χ has finite variance iff χ is twice differentiable;

in this case, χ′(0) = iµ and χ′′(0) = −µ2, where µ and µ2 are the mean and second moment of F . Thus,

the pmf p under consideration has finite variance (to be precise, the distribution specified by p has finite

variance) iff ϕ is twice differentiable. By construction, ϕ is twice differentiable iff ψ is twice differentiable.

In this case, as ϕ is real, so is ϕ′(0), which implies that p has zero mean. Hence, the variance of p is equal

to its second moment, and the final assertion of the theorem follows, since ϕ′′(0) = ψ′′(0).

Based on Theorem 7, secure computation of XOR at the relay works as follows: the nodes A and B

modulate their bits independently to an integer k, with probability p0(k) (from (14)) if the bit is 0, or

with probability p1(k) (from (15)) if the bit is 1. The probability distributions can be chosen such that the

modulated symbols have finite average power. The average transmit power is equal to the variance of the

modulated random variable, which is −ψ′′(0), and a handle on this can be obtained by choosing ψ carefully.

The relay receives the sum of the two integers, which is independent of the individual bits X and Y (of A

and B respectively). However, the XOR of the two bits can be recovered at R with probability 1. This is

done by simply mapping the received integer W to 1, if W is odd, and 0 if W is even. To gain a better

understanding of the construction of the rvs, let us see an example.

As recorded previously (see Table 1 of [15, Section XV.2]), the probability density function f given in

(12) has characteristic function

ψ(t) = max{0, 1− 2|t|/π}.

This function is plotted in Figure 7.
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From (13)–(15), we have

p(k) =


1
4 if k = 0

2
π2k2 (1− cos kπ/2) if k 6= 0

=



1
4 if k = 0

2
π2k2 if k is odd

4
π2k2 if k ≡ 2 (mod 4)

0 otherwise

(17)

p0(k) =


1
2 if k = 0

8
π2k2 if k ≡ 2 (mod 4)

0 otherwise

(18)

and

p1(k) =


4

π2k2 if k is odd

0 otherwise.
(19)

Note that the pmf p in (17) does not have a finite second moment, and indeed, ψ is not differentiable at

0. However, it is possible to construct compactly supported, twice-differentiable characteristic functions ψ.

We give here an explicit construction of such a characteristic function.

Consider the density (from [15, Section XV.2, Table 1])

f(x) =


1

2π if x = 0

1−cos x
πx2 if x 6= 0

(20)

which has characteristic function

f̂(t) = max{0, 1− |t|} (21)

The function f̂ has a triangular graph as in Figure 7, except that the base is [−1, 1]. In particular, f̂(t) = 0

for |t| ≥ 1.

The function g = f̂ ∗ f̂ , where ∗ denotes convolution, can be explicitly computed to be

g(t) = (f̂ ∗ f̂)(t) =


1
2 |t|

3 − t2 + 2
3 if |t| ≤ 1

1
6 (2− |t|)3 if 1 ≤ |t| ≤ 2

0 otherwise

(22)

Proposition 8. The function h(x) = (3π2/4) [f(πx/4)]2, with f as in (20), is a density function whose

characteristic function is given by

ψ(t) = 3
2 g( 4t

π ),
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where g is as in (22). The function ψ is non-negative with ψ(t) = 0 for |t| ≥ π/2. Furthermore, ψ is twice

differentiable, with ψ′′(0) = −48/π2.

Thus, rvs U and V can be constructed as in Theorem 7 with var(U) = var(V ) = 48/π2.

Proof of Proposition 8. The stated properties of the function ψ can be directly verified from (22). We will

show here that h is a density function with characteristic function ψ.

Note first that f̂ defined in (21) is also a probability density function — it is non-negative and its integral

over (−∞,∞) is 1. By Fourier inversion, its characteristic function is 2πf . Therefore, g = f̂ ∗ f̂ is a density

with characteristic function 4π2f2.

Now, f2 is integrable since (f̂)2 is integrable (see corollary to Theorem 3 of Section XV.3 of [15]). Hence,

h̃(x) = f2(x)/(
∫∞
−∞ f2(y) dy) is a probability density function. The integral in the denominator can be

explicitly evaluated by means of the Plancherel identity:∫ ∞
−∞

f2(y) dy = 1
2π

∫ ∞
−∞

[f̂(t)]2 dt = 1
2π g(0) = 1

3π ,

the last equality following from (22). Thus, h̃(x) = 3πf2(x).

From the fact that 4π2f2 is the characteristic function of g, it follows by Fourier inversion that h̃ has

characteristic function given by ψ̃(t) = 3
2 g(t). Hence, h(x) = (π/4)h̃(πx/4) is a density function with

characteristic function ψ̃(4t/π), which is precisely ψ(t).

Remark 9. It is even possible to construct compactly supported C∞ characteristic functions. Constructions

of such functions are given in [31]. In fact, [31] constructs compactly supported characteristic functions ψ

such that the corresponding density functions f are even functions satisfying limx→∞ xmf(x) = 0 for all

m > 0. This implies that all the absolute moments
∫∞
−∞ |x|

mf(x) dx exist, and hence, ψ is a C∞ function

(see [15, p. 512]). If such a characteristic function ψ is used in the construction described in Theorem 7, then

the resulting Z-valued rvs U, V will have pmfs pU (k), pV (k) whose tails decay faster than any polynomial in

k. To be precise, limk→∞ kmpU (k) = limk→∞ kmpV (k) = 0 for any m > 0.

The above remark shows that we can have Z-valued rvs U, V satisfying properties (S1)–(S3), with pmfs

decaying faster than any polynomial. However, the rate of decay cannot be much faster than that. Indeed, it

is not possible to construct Z-valued rvs with exponentially decaying pmfs that satisfy properties (S1)–(S3).

Define a pmf p(k), k ∈ Z, to be light-tailed if there are positive constants C and λ such that p(k) ≤ Cλ−|k|

for all sufficiently large |k|.

Proposition 10. Properties (S1)–(S3) cannot be satisfied by integer-valued rvs U, V having light-tailed pmfs.
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Proof.5 Suppose that U, V are Z-valued rvs satisfying (S1) and (S2). Using ϕU = (1/2)(ϕU |0 + ϕU |1) and

ϕV = (1/2)(ϕV |0 + ϕV |1) in (9), we readily obtain

ϕ2
U |0 = ϕ2

U |1 and ϕ2
V |0 = ϕ2

V |1. (23)

If U, V have light-tailed pmfs, then pU |a and pV |a, a ∈ {0, 1}, must also be light-tailed, since pU |a ≤ 2pU
and pV |a ≤ 2pV . The key observation is that the characteristic function of a light-tailed pmf is real-analytic,

i.e., it has a power series expansion
∑∞
n=0 cnt

n, with cn ∈ C, that is valid for all t ∈ R [21, Chapter 7].

Thus, ϕU |a and ϕV |a, for a ∈ {0, 1}, are real-analytic. It is an easy fact, provable by comparing power series

coefficients, that if functions g and h are real-analytic and g2 = h2, then either g = h or g = −h. Applying

this to (23), we find that ϕU |0 = ±ϕU |1, and similarly for V . In fact, since ϕU and ϕV cannot be identically

0, we actually have ϕU |0 = ϕU |1 = ϕU , and similarly for V . This implies that U ⊥⊥ X and V ⊥⊥ Y . From

this, and (S1), we obtain that U + V ⊥⊥ X ⊕ Y , thus precluding (S3).

D. Extension to Finite Abelian Groups

A close look at the modulations in the previous section reveals the following structure: we had a fine

lattice Λ = Z and a coarse lattice Λ0 = 2Z, with the quotient group Λ/Λ0, consisting of the two cosets 2Z

and 1 + 2Z, making up the probabilistically-chosen modulation alphabet. Given a message X ∈ Λ/Λ0, the

encoder outputs a random point from the coset X according to a carefully chosen probability distribution.

Note that the quotient group in this case is isomorphic to Z2, and this enables recovery of the XOR of

the bits (addition in Z2) from integer addition of transmitted symbols modulo the coarse lattice. Also, the

choice of the probability distribution (from Theorem 7) ensures that the choice of coset at each transmitter

is independent of the integer sum at the relay. We shall extend the construction described in the previous

subsection to d dimensions, thereby obtaining a scheme that satisfies properties (S1)–(S3).

Now, any finite Abelian group G can be expressed as the quotient group Λ/Λ0 for some pair of nested

lattices Λ0 ⊆ Λ. Indeed, any such G is isomorphic to a direct sum of cyclic groups: G ∼= ZN1⊕ZN2⊕· · ·⊕ZNk
for some positive integers N1, N2, . . . , Nk [18, Theorem 2.14.1]. Here, ZNj denotes the group of integers

modulo-Nj . Taking Λ = Zd and Λ0 = AT Zd, where A is the diagonal matrix diag(N1, N2, . . . , Nk), we have

G ∼= Λ/Λ0. So, the finite Abelian group case is equivalent to considering the quotient group, i.e., the group

of cosets, of a coarse lattice Λ0 within a fine lattice Λ. These lattices may be taken to be full-rank lattices

in Rd.

As an example, let N ≥ 2 be an integer, and let ZN = {0, 1, . . . , N − 1} denote the set of integers modulo

N . Let X,Y be iid random variables uniformly distributed over ZN , and let X⊕Y now denote their modulo-

N sum. Similar to the binary case discussed so far, given a non-negative real characteristic function ψ such

that ψ(t) = 0 for |t| ≥ π/N , we can construct Z-valued random variables U, V , jointly distributed with

5This proof was conveyed to the authors by Manjunath Krishnapur.
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X,Y , for which properties (S1)–(S3) hold. In this case, the finite Abelian group can be taken as the group

of cosets of the coarse lattice NZ within the fine lattice Z, which is isomorphic to ZN .

Let Λ0 be a sublattice of Λ of index M (i.e., the number of cosets of Λ0 in Λ is M). List the cosets of Λ0

in Λ as Λ0,Λ1, . . . ,ΛM−1, which constitute the quotient group G = Λ/Λ0. As before, ⊕ denotes addition

within G.

Consider rvs X,Y uniformly distributed over G. We wish to construct rvs U, V taking values in Λ, having

the properties (S1)–(S3). The following theorem shows that this is possible. Here, R+ denotes the set of all

non-negative real numbers.

Theorem 11. Suppose that ψ : Rd → R+ is the characteristic function of a probability density function

f : Rd → R+, such that ψ(t) = 0 for t /∈ V(Λ̂0), where Λ̂0 is the Fourier dual of Λ0. For j = 0, 1, . . . ,M − 1,

define the pmf pj as follows:

pj(k) =

|det Λ0|f(k) if k ∈ Λj

0 otherwise.
(24)

Finally, define a random variable U (resp. V ) jointly distributed with X (resp. Y ) as follows: if X = Λj
(resp. Y = Λj), U (resp. V ) is a random point from Λj picked according to the distribution pj. Then,

the resulting Λ-valued rvs U, V satisfy properties (S1)–(S3). Additionally, if ψ is twice differentiable, then

E‖U‖2 = E‖V ‖2 = −∇2ψ(0), where ∇2 =
∑d
j=1 ∂

2
j is the Laplacian operator.

As with Theorem 7 and XOR, the above theorem allows for secure computation at the relay of the group

operation X⊕Y . The theorem is proved in a manner completely analogous to Theorem 7, the main difference

being that the multi-dimensional Poisson summation formula is used in place of (10). The interested reader

is directed to Appendix A for the proof.

Constructing compactly supported twice-differentiable (or even C∞) characteristic functions ψ : Rd → R+,

d ≥ 1, is straightforward, given our previous constructions of such functions from R to R+. Suppose that

for i = 1, 2, . . . , d, ψi : R → R+ is the characteristic function of a random variable Xi, such that ψi(t) = 0

for |t| ≥ λi, with λi > 0, and X1, X2, . . . , Xd are mutually independent. Then, ψ(t1, . . . , td) =
∏d
i=1 ψi(ti)

is the characteristic function of the random vector X = (X1, . . . , Xd). Note that ψ is compactly supported:

ψ(t) = 0 for t /∈
∏d
i=1(−λi, λi). Moreover, if the ψis are twice-differentiable (or C∞) for all i, then so is ψ.

Our objective is to design codes (as defined in Definition 1) for secure computation at the relay. With

the construction described above, the rate of the code depends on the number of cosets, M , of Λ0 in Λ.

For a given average power constraint, the system designer is usually faced with the task of maximizing

the rate. Equivalently, for a given rate, the average transmit power must be kept as small as possible. The

transmit power is equal to the second moment of U (or V). Therefore, while any characteristic function ψ

supported within V(Λ̂0) suffices for the construction of Theorem 11, we must use a ψ for which −∇2ψ(0) is

the least among such ψ’s. This would yield random variables U and V of least second moment (and hence
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least transmit power), and having the desired properties.

It is evident that by simply scaling the nested lattice pair, the average transmit power may be made

as small as required. Suppose that the random vectors U and V, distributed over a fine lattice Λ, have

second moment P . Then, for any α > 0, the random variables U′ = αU and V′ = αV, distributed over

αΛ := {αz : z ∈ Λ} have second moment α2P . Choosing a small enough α would suffice to satisfy the power

constraint. However, as we will see in the following sections, when we have to deal with the additive noise

in the MAC channel, it is not possible to scale down the lattice arbitrarily if the probability of error is to

be made small. Also, for a given (fixed) coarse lattice, it turns out that the second moment (which depends

solely on the choice of ψ) cannot be made arbitrarily small. Indeed, the following result, adapted from

[10], gives a precise and complete answer to the question of how small −∇2ψ(0) can be for a characteristic

function ψ supported within a ball of radius ρ in Rd.

Theorem 12 ([10], Theorem 5.1). Fix a ρ > 0. If ψ is a characteristic function of a random variable

distributed over Rd such that ψ(t) = 0 for ‖t‖ ≥ ρ, then

−∇2ψ(0) ≥ 4
ρ2 j

2
d−2

2
, (25)

with equality iff ψ(t) = ψ̃(t/ρ) for ψ̃ = ωd∗̃ωd. Here, ωd(t) = γd Ωd(2‖t‖j d−2
2

) for ‖t‖ ≤ 1/2 and ωd(t) = 0

for ‖t‖ > 1/2, and

ωd∗̃ωd(t) =
∫
ωd(τ )ωd(t + τ )dτ

denotes the folded-over self convolution of ωd, with ωd(t) denoting the complex conjugate of ωd(t). Also, jk
denotes the first positive zero of the Bessel function Jk. Furthermore, for t ∈ R,

Ωd(t) = Γ(d/2)
(2
t

) d−2
2
J d−2

2
(t)

and

γ2
d =

4jd−2
d−2

2

πd/2Γ(d/2)J2
d
2
(j d−2

2
)
,

where Γ(·) denotes the Gamma function. The density f corresponding to the minimum-variance ψ is given

by f(x) = ρdf̃(ρx), where

f̃(x) = cd

(
Ωd(‖x‖/2)

j2
d−2

2
− (‖x‖/2)2

)2

, (26)

where

cd =
4jd−2

d−2
2

4dπd/2Γ(d/2)
.

Remark 13. Observe that Theorem 11 is true for any nested lattice pair (Λ,Λ0). As long as ψ(t) is a

characteristic function supported within V(Λ0), we have an encoding scheme that satisfies (S1)–(S3). If we

restrict ψ to be supported within a ball of radius ρ, which is contained within V(Λ̂0), then Theorem 12 gives
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us a suitable candidate for ψ that can be used to obtain perfect secrecy. Since we are interested in minimizing

the transmission power, we can choose ρ to be as large as rpack(Λ̂0), where rpack(Λ̂0) denotes the packing

radius of Λ̂0. Hence, we now have a coding scheme that achieves perfect secrecy for any arbitrary nested

lattice pair. This is rather interesting, since earlier work on weak and strong secrecy using lattices [16], [17],

[20] invariably required that the nested lattices satisfy certain goodness properties. Therefore, ours is a very

general result, and explicit in the sense that once we fix the nested lattice pair, we can exactly specify what

distribution should be used to randomize at the encoder to obtain secrecy.

VI. The Gaussian Noise Setting

Given any nested lattice pair, we now have a scheme whereby the relay can compute X ⊕ Y from U + V,

but cannot determine X or Y separately. We next consider the scenario where the symbols received by the

relay are corrupted by noise, and prove the achievability of the power-rate pairs described in Theorem 1.

Recall that in the MAC phase, the relay receives

W = U + V + Z,

where Z is zero-mean iid Gaussian noise with variance σ2. The coding scheme that we use is largely based

on the work in [12], [23], and is described below.

A. Coding Scheme for Perfect Secrecy

We now describe the sequence of (d,M (d)) (recall Definition 1) codes that achieve perfect secrecy.

Code: A (Λ(d),Λ(d)
0 ) nested lattice code consists of a pair of full-rank nested lattices Λ(d)

0 ⊆ Λ(d) in Rd. The

messages are chosen from the group G(d) = Λ(d)/Λ(d)
0 , whose M (d) := |Λ(d)/Λ(d)

0 | elements are listed as

Λ0,Λ1, . . . ,ΛM(d)−1.

Encoding: We have messages X,Y at nodes A, B that are independent rvs, uniformly distributed over G(d).

We first pick a characteristic function ψ supported within V(Λ̂(d)
0 ), as needed in Theorem 11. We impose

the restriction that ψ be supported within a ball centered at 0 with radius equal to the packing radius,

rpack(Λ̂(d)
0 ), of the dual lattice Λ̂(d)

0 . Recall that the packing radius is, by definition, the largest radius of

a ball centered at 0 that is contained within V(Λ̂(d)
0 ). So, if ψ(t) = 0 for ‖t‖ ≥ rpack(Λ̂0), then ψ(t) is

certainly supported within V(Λ̂0). If X = Λj , node A transmits a random vector U ∈ Λj picked according to

the distribution pj of Theorem 11. Similarly, if Y = Λk, node B transmits a random vector V ∈ Λk picked

according to the distribution pk. The rate of transmission from A or B is R(d) = 1
d log2M

(d). The average

transmit power per dimension at each node is P (d) = −∇2ψ(0)
d , as in Theorem 11.

From Theorem 12, we see that an average transmit power per dimension as low as

P (d) =
4j2

d−2
2

d
(
rpack(Λ̂(d)

0 )
)2 , (27)
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v
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wu Estimate

of X ⊕ Y
QΛ(·)

Fig. 10. The operations performed by the user nodes and the relay.

is achievable by a suitable choice of ψ. It was shown in [33] (see also [14]) that the first positive zero of the

Bessel function Jk can be written as jk = k + bk1/3 + O(k−1/3), where b is a constant independent of k.

Therefore,

P (d) = d

rpack2(Λ̂(d)
0 )

(1 + od(1)), (28)

where od(1)→ 0 as d→∞, is achievable by a suitable choice of ψ using Theorem 12.

Decoding: The relay R receives W = U + V + Z, where Z is a Gaussian noise vector with d independent

N (0, σ2) components, which are all independent of U and V. The relay estimates Λj ⊕ Λk to be the coset

of Λ(d)
0 represented by the closest vector to W in the lattice Λ(d), which we denote by QΛ(d)(W).

Security: Since the noise Z is independent of everything else, Theorem 11 shows that W is independent of

the individual messages X,Y . Hence, even in the noisy setting, perfect security continues to be guaranteed

at the relay for any choice of the nested lattice code.

Reliability and achievable rate: Let η(d) denote the average probability that QΛ(W) is different from the

coset to which U + V belongs. From Definition 2 of achievable power-rate pairs, a pair (P,R) is achievable

if for every δ > 0, there exists a sequence of nested lattice codes (Λ(d),Λ(d)
0 ) for which the following hold for

sufficiently large d: R(d) > R− δ, P (d) < P + δ and η(d) < δ.

For a given nested lattice pair, from Theorem 12, we know the minimum average transmit power per

dimension that guarantees perfect secrecy (subject to the condition that the characteristic function is

supported within a ball of radius rpack(Λ̂(d)
0 )), and the pmf pj that achieves the minimum. The choice

of the nested lattices determines the error performance of the decoder, and consequently determines reliable

transmission rates. For a given transmission power constraint, it is desirable to maximize rate, without

compromising on the reliability of computation. The average transmit power, as given by (27), is a function of

rpack(Λ̂(d)
0 ) which is a property of the Fourier dual of the coarse lattice. On the other hand, the transmission

rate depends on the number of cosets of Λ(d)
0 in Λ(d), which is the number of fine lattice points in the

fundamental Voronoi region of the coarse lattice, V(Λ(d)
0 ). In order to maximize the rate, we must pack in as

many points of Λ(d) as possible in V(Λ(d)
0 ). But having the points of Λ(d) too close together adversely affects

the error performance of the coding scheme in the presence of noise. A trade-off must be made, and we need

to find the maximum rate below which reliable computation of X ⊕ Y can be guaranteed. We will restrict
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the class of nested lattice pairs to those which give good error performance in the presence of AWGN so

that the relay can compute X ⊕ Y reliably. To guarantee secure and reliable computation at the relay, we

restrict the class of nested lattice pairs (Λ(d),Λ(d)
0 ) to those which satisfy the following properties6:

(G1) The sequence of coarse lattices, {Λ(d)
0 }, is good for covering and AWGN channel coding.

(G2) The sequence of dual lattices, {Λ̂(d)
0 }, is good for packing.

(G3) The sequence of fine lattices, {Λ(d)}, is good for AWGN channel coding.

Unlike prior work on nested lattices [1], [12], [23], [25] which required {Λ(d)
0 } and {Λ(d)} to satisfy properties

(G1) and (G3) above, we have the additional requirement that the Fourier dual, {Λ(d)
0 } must be good for

packing. While the existence of nested lattices that satisfy (G1) and (G2) is well established [12], [13], [23],

the existence of lattices whose duals simultaneously satisfy these goodness properties seems to be unexplored.

In the next section, we will describe a construction of nested lattices based on [12], [23] and show that there

are nested lattices that satisfy the above properties.

B. Good Ensembles of Nested Lattices with Good Duals

Let d and k be positive integers with k ≤ d, and let q be a prime number. Let Zq denote the field of

integers modulo q.

1) Choose a k × d matrix G uniformly at random over Zk×dq . This is done by choosing each element of

G (there are dk of them) uniformly over Zq, and independently of the other entries. Note that G need

not be full-rank. However, the probability that G is full-rank goes to 1 as (d− k) tends to ∞ [13]. The

linear code over Zq generated by G is denoted by C(G).

2) Apply Construction A on the code generated above. This is done as follows:

(c1) The codebook generated using G is C(G) = {(GTy) mod q : y ∈ Zkq}.

(c2) The codebook is then scaled so that the codeword coordinates are restricted to lie within the d-

dimensional unit cube: C′ = (1/q)C(G) = {(1/q)x : x ∈ C(G)}. The points in the set C′ lie on the

vertices of a rectangular grid of side 1/q sitting within the unit cube.

(c3) The lattice is obtained by repeating these points over the entire space, Rd, i.e., Λ̃(C) = C′ + Zd :=

{c + x : c ∈ C′,x ∈ Zd}.

Following the terminology used in [13], we will henceforth call the above as the (d, k, q) ensemble. Also, from

the construction, it is clear that Zd is a sublattice of Λ̃(C). More detail regarding Construction-A lattices

can be found in [6].

We now describe the construction of the (Λ(d),Λ(d)
0 ) nested lattice codes. This is based on [12], [23]. Choose

a sequence of coarse lattices {Λ(d)
0 }, each Λ(d)

0 selected uniformly at random from the (d, k, q) ensemble,

where k and q may be functions of d chosen beforehand. Let A(d) be the lattice generator matrix of Λ(d)
0 ,

6For definitions of lattices good for covering, packing, and AWGN channel coding, the reader is directed to Appendix B.
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for d = 1, 2, .... For this choice of {Λ(d)
0 }, we construct another ensemble of lattices from which we pick the

sequence of fine lattices {Λ(d)}. This consists of two steps:

(f1) Choose a sequence of lattices, {Λ̃(d)
f }, with each Λ̃(d)

f coming from the (d, k1, q1) ensemble of Construction-

A lattices. The parameters k1 and q1 could be possibly different from k and q. As mentioned earlier,

Λ̃(d)
f contains Zd as a sublattice. If the generator matrix of Λ̃(d)

f has full rank, then the number of cosets

of Zd in Λ̃(d)
f is qk1

1 .

(f2) The lattice Λ̃(d)
f is subjected to a linear transformation by the matrix (A(d))T , to get Λ(d) = (A(d))T Λ̃(d)

f :=

{(A(d))Ty : y ∈ Λ̃(d)
f } .

We will call this ensemble of (Λ(d),Λ(d)
0 ) pairs as the (d, k, q, k1, q1) ensemble. The lattice pair can be

scaled appropriately so as to satisfy the average power constraint. We have M (d) = |Λ(d)/Λ(d)
0 | = qk1

1

with probability tending to 1 as d− k tends to ∞ [23]. Hence, the rate of the (Λ(d),Λ(d)
0 ) code will be

R(d) = k1

d
log2(q1). (29)

By choosing q1 and k1 appropriately, the rate can be varied.

In order to obtain nested lattices from the (d, k, q, k1, q1) ensemble that satisfy properties (G1)–(G3), we

will restrict the choice of k, q, k1, q1. We will make sure the values of these parameters can be chosen so that,

in spite of the restriction, the transmission rate, as given by (29), can be chosen freely.

1) Choice of k, q, k1, q1: Let Λ be a full-rank lattice chosen from the (d, k, q) ensemble. From the construc-

tion, we can see that Λ has Zd as a sublattice. The nesting ratio of the (Λ,Zd) nested lattice pair, equal to

qk, is equal to the ratio of the volume of the fundamental Voronoi region of Zd to that of Λ. The volume of

V(Λ) is in turn equal to the volume of a d-dimensional ball of radius reff(Λ), and hence,

qk =
Γ
(
d
2 + 1

)
πd/2 (reff(Λ))d

(30)

Rearranging, we get

reff(Λ) =
(

Γ
(
d
2 + 1

)
πd/2qk

)1/d

. (31)

We choose

k = β0d, and k1 = β1d, (32)

for some 0 < β0, β1 < 1/2, and q and q1 are prime numbers chosen such that

lim
d→∞

d

q1
= 0, and r

(0)
min < reff(Λ(d)

0 ) < 2r(0)
min, (33)

for some 0 < r
(0)
min < 1/4. It is possible to choose primes that satisfy the above conditions. Choosing q1 to

grow faster than d is sufficient to satisfy the first condition. To see that q can be chosen so as to satisfy the

second constraint, substitute (30) in (33) ,

Γ
(
d
2 + 1

)
πd/2

(
2r(0)

min

)d < qk <
Γ
(
d
2 + 1

)
πd/2

(
r

(0)
min

)d .
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Since k = β0d, we can rewrite the above inequalities as follows: Γ
(
d
2 + 1

)
πd/2

(
2r(0)

min

)d


1
β0d

< q < 21/β0

 Γ
(
d
2 + 1

)
πd/2

(
2r(0)

min

)d


1
β0d

.

Let α denote the left hand side of the above inequality. From (32), we have β0 < 1/2, and hence it is enough

to show that there exists a prime q which satisfies α < q < 4α. For any α > 3/2, there exists an integer n

such that α < n ≤ α+ 1, and 2n < 4α (since for α > 3/2, 2(α+ 1) < 4α− 1). By Bertrand’s postulate (see

e.g., [29]), for every positive integer n, there exists a prime number between n and 2n, and therefore, we

can choose a prime q satisfying (33). We then have the following lemma, which is proved in Appendix C.

Lemma 14. Let (Λ(d),Λ(d)
0 ) be a nested lattice pair chosen uniformly at random from the (d, k, q, k1, q1)

ensemble, with the parameters k, q, k1, q1 chosen so as to satisfy (32) and (33). Then, the probability that

(Λ(d),Λ(d)
0 ) satisfies (G1)–(G3) tends to one as d approaches infinity.

C. Achievable Rate

We now find achievable transmission rates for reliable and secure computation of X⊕Y at the relay. This

is largely based on [12], [23], [24]. We find sufficient conditions on the transmission rate to ensure that the

probability of error in decoding X ⊕ Y from W goes to zero for large block lengths. To study the error

performance of the decoder, let us study the relay in more detail. Recall from Section II-A that QΛ(d)(·)

denotes the lattice quantizer that maps a d-dimensional real vector to the closest point in Λ(d). Similarly,

QΛ(d)
0

(·) is the lattice quantizer that maps vectors in Rd to the closest point in Λ(d)
0 . Let D(·) denote the

decoder map as defined in Section VI-A. The quantity D(W) is the estimate of X ⊕ Y made by the relay,

and equal to the coset of Λ(d)
0 to which QΛ(d)(W) belongs. This is the same as the coset represented by

QΛ(d)([W] mod Λ(d)
0 ).

Each lattice point in Λ(d)∩V(Λ(d)
0 ) is a coset representative for a coset of Λ(d)

0 in Λ(d). This is illustrated in

Fig. 11. Suppose that Λj and Λk are the cosets which represent the messages X and Y respectively. Let X =

[U] mod Λ(d)
0 and Y = [V] mod Λ(d)

0 be the coset representatives of Λj and Λk respectively. Then, Λj ⊕ Λk
has [X + Y] mod Λ(d)

0 as its representative. Therefore, the estimate D(W) has Ŵ = [QΛ(d)(W)] mod Λ(d)
0

as its coset representative. This is equal to Ŵ = [QΛ(d)([W] mod Λ(d)
0 )] mod Λ(d)

0 . Let W̃ = [W] mod Λ(d)
0 .

Then, Ŵ = [QΛ(d)(W̃)] mod Λ(d)
0 . As a consequence of the transmitter-receiver operations, the “effective”

channel from X,Y to W̃ can be written as follows [23]:

W̃ = [U + V + Z] mod Λ(d)
0

= [
(

[U + V] mod Λ(d)
0

)
+ Z] mod Λ(d)

0

= [
(

[X + Y] mod Λ(d)
0

)
+ Z] mod Λ(d)

0
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λ2

λ0

λ4
λ3

Fig. 11. Different cosets of Λ0 in Λ in two dimensions. The coset representative of Λj within V(Λ0) is λj .

+

X

w

z

+

[·] mod Λ0

[·] mod Λ0

Y
v

z

[x + y] mod Λ0

Equivalent MLAN channel

Encoder

Encoder

User node A

User node B

Channel
Relay R

[QΛ(·)] mod Λ0
ŵ

[QΛ(·)] mod Λ0

u

w̃

w̃ ŵ

Fig. 12. MAC phase of the bidirectional relay and equivalent MLAN channel representation

A channel of the form W = [X + N] mod Λ(d)
0 , where N denotes the noise vector, is called a Λ(d)

0 -modulo

lattice additive noise (Λ(d)
0 -MLAN) channel [12]. The random variable W̃ behaves like the output of a point-

to-point transmission over a Λ(d)
0 -MLAN channel, with the transmitted vector being [X + Y] mod Λ(d)

0 .

Looking from W̃, the “effective” channel is a Λ(d)
0 -MLAN channel, and the relay has to decode [X+Y] mod
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Λ(d)
0 reliably from W̃. This is illustrated in Fig. 12. We will use the properties of the Λ(d)

0 -MLAN channel

to determine achievable rate regions for our coding scheme.

We choose a sequence of nested lattice pairs that satisfy (G1)–(G3), with each nested lattice pair coming

from a (d, k, q, k1, q1) ensemble, where k, q, k1 and q1 satisfy (32) and (33). Using the coding scheme of

Section VI-A, we can achieve perfect secrecy. From (27), an average transmit power of
(

4j2
d−2

2
/(dr2

pack(Λ̂(d)
0 )
)

can be achieved. Since the sequence of nested lattice pairs satisfy the goodness properties (G1)–(G3), we

have the following result which follows from [12], [23].

Proposition 15. Let M > 0 be a constant, and {Λ(d),Λ(d)
0 } be a sequence of nested lattice pairs that satisfy

(G1)–(G3). Then, any rate less than R := 1
2 log2

( M
σ2

)
is achievable with perfect secrecy using the sequence of

nested lattice pairs
{ √

dM
reff(Λ(d)

0 )
Λ(d),

√
dM

reff(Λ(d)
0 )

Λ(d)
0

}
.

Proof: See Appendix D.

1) Relating the Power and Rate: From (28), we know that as long as the average transmit power per

dimension is less than
(
d/rpack

2(Λ̂(d)
0 )
)

(1 + od(1)), we can guarantee perfect secrecy at the relay. From

Proposition 15, we see that as long as the transmission rate is less than 1
2 log2(reff

2(Λ(d)
0 )/(dσ2)), the relay can

reliably compute X⊕Y from W. In order to achieve positive rates, we need reff(Λ(d)
0 ) to grow at least as fast

as
√
d, i.e., reff(Λ(d)

0 ) = Ω(
√
d). Furthermore, to satisfy an average power constraint, we require rpack(Λ̂(d)

0 ) =

Ω(
√
d). The rate is an increasing function of reff(Λ(d)

0 ), and the average transmit power per dimension is

a decreasing function of rpack(Λ̂(d)
0 ). Since we want to maximize the rate for a given power constraint, we

would like both reff(Λ(d)
0 ) and rpack(Λ̂(d)

0 ) to be as large as possible. However, for any lattice Λ(d)
0 , we have

rcov(Λ(d)
0 )rpack(Λ̂(d)

0 ) ≤ πd [3, Theorem 18.3], and since reff(Λ(d)
0 ) ≤ rpack(Λ(d)

0 ), we get reff(Λ(d)
0 )rpack(Λ̂(d)

0 ) ≤

πd. Hence, to obtain positive rates and at the same time satisfy the power constraint, both reff(Λ(d)
0 ) and

rpack(Λ̂(d)
0 ) must grow roughly as

√
d. Therefore, we seek lattices satisfying properties (G1)–(G3), for which

the product reff(Λ(d)
0 )rpack(Λ̂(d)

0 ) is close to the upper bound of πd.

For a sequence of Construction-A coarse lattices satisfying (G1) and (G2), we can find an asymptotic

lower bound for (1/d)reff(Λ(d)
0 )rpack(Λ̂(d)

0 ),7 as the following theorem shows.

Lemma 16. Let {Λ(d)
0 } be a sequence of coarse lattices, with each Λ(d)

0 chosen from a (d, k, q) ensemble and

k, q satisfying (32) and (33). If {Λ(d)
0 } satisfies conditions (G1)–(G2), then,

lim
d→∞

reff(Λ(d)
0 )rpack(Λ̂(d)

0 )
d

≥ 1
2e . (34)

Proof: See Appendix H.

7The product reff(Λ(d)
0 )rpack(Λ̂(d)

0 ) is invariant to scaling of Λ(d)
0 . This is because, for a constant α > 0, reff(αΛ(d)

0 ) =
αreff(Λ(d)

0 ), and if Λ′ = αΛ(d)
0 , then the Fourier dual of Λ′ is (1/α)Λ̂(d)

0 .
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D. Proof of Theorem 1

Let us choose reff(Λ(d)
0 ) = 1

2e
√
dP, for a constant P > 0. Fix a δ > 0. Using Lemma 16, we see that

rpack(Λ̂(d)
0 ) ≥ d

2ereff(Λ(d)
0 )

(1− od(1)) ≥
√
d√
P

(1− od(1)). (35)

From (28), we see that perfect secrecy can be achieved with an average power constraint as low as P (d) =(
d/rpack

2(Λ̂(d)
0 )
)

(1 + od(1)). Combining this and (35), perfect secrecy can be achieved with an average

transmission power,8

P (d) < P + δ (36)

for all sufficiently large d. From Proposition 15, we have seen that the average probability of error can be

made to go down to zero as long as

R(d) < R := 1
2 log2

P
(2e)2σ2 . (37)

Therefore, for every δ > 0, we can choose a sequence of nested lattice codes such that for all sufficiently

large d, we have R(d) > R− δ, P (d) < P + δ and η(d) < δ. Hence, a power-rate pair of(
P, 1

2 log2
P
σ2 − log2 2e

)
is achievable with perfect secrecy, concluding the proof of Theorem 1.

VII. Strong Secrecy

Let us quickly summarize the coding scheme used to obtain perfect secrecy. We chose a pair of nested

lattices (Λ(d),Λ(d)
0 ), where Λ(d)

0 ⊆ Λ(d), and the messages were chosen uniformly over the quotient group,

Λ(d)/Λ(d)
0 . Given a message (coset) Λj , the user node transmits a point from that coset according to a

distribution pj , which is obtained by sampling (and appropriately normalizing) a distribution f over Rd, at

precisely those lattice points that belong to the coset Λj . As long as the characteristic function corresponding

to f is supported within the fundamental Voronoi region of the Fourier dual of Λ(d)
0 , perfect secrecy can be

obtained. We imposed an additional constraint, that the characteristic function corresponding to f must be

supported within a ball of radius rpack(Λ̂(d)
0 ). Using this, we obtained the minimum average transmit power,

and found an achievable rate.

A natural question that arises is what happens if we choose a density f for which the support of the

characteristic function goes beyond V(Λ̂(d)
0 ). Suppose that we choose a characteristic function, ψ(t), which

is supported within a ball of radius ρ > rpack(Λ̂(d)
0 ), and choose the characteristic function φU |X=x(t) =∑

n∈Λ̂(d)
0
ψ(t + n)e−i〈n,x〉. Clearly, we cannot expect perfect secrecy, but can we at least obtain strong

secrecy? Let us choose ψ to be the characteristic function of the minimum-variance distribution in (26),

8Recall that a sequence f(d) is said to be equal to od(1) if f(d)→ 0 as d→∞; and hence (1+od(1))/(1−od(1))2 = 1+od(1).
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with the support of ψ chosen to be a ball of radius ρ. Let us choose ρ = min{2reff(Λ̂(d)
0 ), 2rpack(Λ̂(d)

0 )} 9.

Doing so would give us an improved rate of 1
2 log2

P
σ2 − log2 e. However, for such a coding scheme, we are

only able to show that the `2 norm of the difference between pU+V,X and pU+V pX goes to zero as d→∞.

Knowing only that the `2 norm of the difference between pU+V,X and pU+V pX goes to zero as d→∞, we

cannot conclude whether strong secrecy is obtained. In fact, by itself, the `2 norm is not a good measure

of secrecy. In any case, we will use a different approach to obtaining strong secrecy, and show that an even

higher transmission rate of 1
2 log2

P
σ2 − 1

2 log2 2e is achievable.

Instead of using distributions with finitely supported characteristic functions, we will use a sampled

Gaussian density for signaling. Such a scheme was used in context of the wiretap channel in [20] with

encouraging results, and we will do the same here.

A. The Sampled Gaussian Function

We now introduce some notation that will be used in the sequel. Let Λ be a lattice in Rd. For any x, z ∈ Rd,

and any κ > 0, we define the sampled Gaussian function to be

gκ,x(z) := 1
(2πκ2)d/2

e−
‖z−x‖2

2κ2 . (38)

We also define

gκ,x(Λ) :=
∑
λ∈Λ

gκ,x(λ). (39)

We will use gκ(z) and gκ(Λ) to denote gκ,0(z) and gκ,0(Λ) respectively.

B. Coding Scheme for Strong Secrecy

Code: Following Section VI-A, we use a (Λ(d),Λ(d)
0 ) nested lattice code, with Λ(d)

0 ⊆ Λ(d). As before, the

messages are chosen from G(d) := Λ(d)/Λ(d)
0 , and ⊕ is the addition operation on G(d). The M (d) := |G(d)|

cosets of Λ(d)
0 in Λ(d) are denoted by Λ0, . . . ,ΛM(d)−1.

Encoding: For a coset Λj of Λ(d)
0 in Λ(d), let λj denote its representative within V(Λ(d)

0 ) (see Fig. 11 for an

illustration). Fix a κ > 0. Corresponding to the message Λj , the user node transmits a random lattice point

from Λj , according to the distribution

pj(u) =


gκ(u)

gκ,λj (Λ(d)
0 )

, if u ∈ Λj ,

0, otherwise.
(40)

Decoding: As in the perfect secrecy scenario, the relay uses a lattice decoder. If W is the vector received in

the MAC phase, then the relay estimates X ⊕ Y to be the coset represented by the vector in Λ(d) closest to

W.

9 If we have ρ > 2rpack(Λ̂(d)
0 ), then

∑
n∈Λ̂(d)

0
ψ(t + n)e−i〈n,x〉 would have to be normalized to make this a characteristic

function, and this makes analysis more complicated.
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Achievable power-rate pair: A power-rate pair of (P,R) is achievable if for every δ > 0, there exists a

sequence of (Λ(d),Λ(d)
0 ) nested lattice codes so that for all sufficiently large d,

• the average transmit power per dimension is less than P + δ:

P (d) := 1
d
E‖U‖2 = 1

d
E‖V‖2 < P + δ;

• the transmission rate is greater than R− δ:

R(d) := 1
d

log2M
(d) > R− δ;

• the average probability of decoding X ⊕ Y incorrectly from W is less than δ; and

• the mutual information between each message and U + V is less than δ:

I(X; U + V) = I(Y ; U + V) < δ.

We will show the following result.

Theorem 17. For any P ≥ 4eσ2, a power-rate pair of(
P, 1

2 log2
P
σ2 −

1
2 log2 2e

)
can be achieved with strong secrecy using the coding scheme of Section VII-B.

C. Strong Secrecy in the Absence of Noise

We will first prove that the scheme described in the previous section achieves strong secrecy. Let us

establish some more notation. Let pU+V (·) denote the distribution of U +V , and for any x ∈ Λ(d)∩V(Λ(d)
0 ),

let pU+V |x(·) denote the distribution of U+V conditioned on the event that X is the coset to which x belongs.

We will show that for every x in Λ(d)∩V(Λ(d)
0 ) the variational distance between pU+V and pU+V |x(·), defined

as

V(pU+V , pU+V |x) :=
∑

w∈Λ(d)

|pU+V (w)− pU+V |x(w)|, (41)

goes to zero exponentially in the dimension d. Therefore, the average variational distance between the joint

pmf of U + V and X, and the product of the marginals,

dV :=
∑

x∈Λ(d)∩V(Λ(d)
0 )

1
|G(d)|

V(pU+V , pU+V |x),

also goes to zero exponentially in d. We can then use the following lemma, which relates the mutual

information and the variational distance.

Lemma 18 ([9], Lemma 1). For |G(d)| ≥ 4, we have

I(X; U + V) ≤ dV
(

log2 |G(d)| − log2 dV
)
. (42)
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Since |G(d)| grows exponentially in d, it is sufficient to have dV going to zero as o(1/d) for I(X; U + V)

to go to zero. The exponential decay of the average variational distance will guarantee that the mutual

information also decays exponentially in d. In order to have dV going to zero exponentially in d, we will

require the coarse and fine lattices to satisfy certain properties. For any lattice Λ in Rd, and any θ > 0, the

flatness factor εΛ(θ) is defined as [20], [5]

εΛ(θ) :=
maxx∈V(Λ) |

(∑
λ∈Λ gθ,λ(x)

)
− (1/detΛ)|

(1/detΛ) . (43)

Following [20], we define a sequence of lattices {Λ(d)} to be secrecy-good if

εΛ(d)(θ) ≤ 2−Ω(d) for all θ such that (det(Λ(d)))2/d

2πθ2 < 1.

It was shown in [20] that there exist lattices that are secrecy-good and also satisfy all the goodness properties

described in Appendix B.

Let us choose κ in (40) to be equal to
√
P. We can bound the variational distance in terms of the flatness

factor of the coarse lattice as follows:

Theorem 19. If the sequence of nested lattice pairs {Λ(d),Λ(d)
0 } satisfies ε(d) := εΛ(d)

0
(
√
P/2) < 1/2, then

for every x ∈ Λ(d) ∩ V(Λ(d)
0 ), we have

V(pU+V , pU+V |x) ≤ 216ε(d). (44)

A proof of the above theorem is given in Appendix F.

Furthermore, if the flatness factors of both the coarse and fine lattices go to zero as d goes to infinity,

then we can bound the average transmit power per dimension:

Lemma 20. As d → ∞, if the flatness factors εΛ(d)
0

(
√
P/2), and εΛ(d)(

√
P/2) both converge to zero, then

the average transmit power per dimension, 1
dE‖U‖

2 = 1
dE‖V‖

2, converges to P.

Proof: See Appendix G.

From Theorem 19 and Lemma 18, we see that strong secrecy can be obtained in the noiseless scenario.

Since the noise is independent of everything else, we have strong secrecy in a noisy channel as well. To

see why this is the case, observe that X → (U + V) → (U + V + Z) forms a Markov chain. Using the

data-processing inequality, we see that I(X; U + V + Z) ≤ I(X; U + V), verifying our claim.

D. Achievable Rate and Proof of Theorem 17

We choose our sequence of nested lattices {Λ(d),Λ(d)
0 } so as to satisfy the following properties:

(L1) The sequence of coarse lattices, {Λ(d)
0 }, is good for covering, MSE quantization, and AWGN channel

coding10.

10For the definitions of lattices good for covering, MSE quantization, and AWGN channel coding, see Appendix B.
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(L2) The sequence of coarse lattices, {Λ(d)
0 }, is secrecy-good.

(L3) The sequence of fine lattices, {Λ(d)}, is good for AWGN channel coding.

(L4) The sequence of fine lattices, {Λ(d)}, is secrecy-good.

It was shown in [20] that such a sequence of nested lattices indeed exists11. Using (L2), to have the flatness

factor εΛ(d)
0

(
√
P/2)→ 0, the coarse lattices must be scaled so that(

det(Λ(d)
0 )
)2/d

2π(P/2) < 1. (45)

Let us choose
(

det(Λ(d)
0 )
)2/d

= πP − δ, for some arbitrary δ > 0, so as to satisfy (45).

In order to have εΛ(d)(
√
P/2)→ 0 as d→∞, we require(

det(Λ(d))
)2/d

2π(P/4) < 1. (46)

Since |G(d)|det(Λ(d)) = det(Λ(d)
0 ) [3, Theorem 5.2], we can rewrite (46) as follows:

1
|G(d)|2/d

(
det(Λ(d)

0 )
)2/d

π(P/2) < 1.

But then, we have
(

det(Λ(d)
0 )
)2/d

= πP − δ, and hence, the above requirement reduces to

|G(d)|2/d > 2(
1− δ

πP
) .

In other words,
1
d

log2 |G(d)| > 1
2 −

1
2 log2

(
1− δ

πP

)
. (47)

From Lemma 20, we have the average transmit power converging to P as long as εΛ(d)
0

(
√
P/2) and εΛ(d)(

√
P/2)

tend to zero as d→∞. Our choice of
(

det(Λ(d)
0 )
)2/d

= πP−δ ensured that (45) is satisfied and εΛ(d)
0

(
√
P/2)→

0. As long as (47) is satisfied, we also have εΛ(d)(
√
P/2)→ 0, and the average power converges to P. Therefore,

we see that requiring the average transmit power to converge to P places a constraint on the transmission

rate.

Since the sequence of fine lattices is good for AWGN channel coding, the probability of error in decoding

X ⊕ Y from U + V + Z can be made to decay to zero as d→∞ as long as (det(Λ(d)))2/d

2πeσ2 > 1, or

1
|G(d)|(2/d)

(
det(Λ(d)

0 )
)2/d

2πeσ2 > 1. (48)

Since we have chosen det(Λ(d)
0 ) = πP − δ, (48) reduces to

1
d

log2 |G(d)| < 1
2 log2

(
P − δ

π

2eσ2

)
.

11Although it was not explicitly mentioned in [20] that the coarse lattices satisfy property (L2), the construction implicitly
guarantees that the requirement is satisfied.
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Since δ is arbitrary, we can conclude that as long as

R <
1
2 log2

(
P
σ2

)
− 1

2 log2 2e, (49)

the probability of error can be made to go down to zero as d goes to infinity.

If we choose P ≥ 4eσ2, then the right hand side of (49) exceeds that of (47). Therefore, for any P ≥ 4eσ2

we see that a power-rate pair of (
P, 1

2 log2

(
P
σ2

)
− 1

2 log2 2e
)

can be achieved with strong secrecy using nested lattice codes, concluding the proof of Theorem 17.

E. Improving the Rate

The rate can be further improved using random dithering and MMSE equalization at the relay [12], [23].

The user nodes generate dither vectors D1 (at node A) and D2 (at node B) independently and uniformly

at random from the fundamental Voronoi region V(Λ(d)
0 ). For D1 = d1, and D2 = d2, let us define d̃1 :=

[x+d1] mod Λ(d)
0 , and d̃2 := [y+d2] mod Λ(d)

0 , where x,y ∈ Λ(d)∩V(Λ(d)
0 ). For a message X = Λj ∈ Λ(d)/Λ(d)

0

at node A, having coset representative x in Λ(d)∩V(Λ(d)
0 ), user node A transmits u ∈

(
Λ(d)

0 + d̃1

)
:= {λ+d̃1 :

λ ∈ Λ(d)
0 } according to

pj(u|d1) =


g√P(u)

g√P,d̃1
(Λ(d)

0 )
, if u ∈ Λ(d)

0 + d̃1,

0, otherwise.
, (50)

Node B transmits v ∈
(

Λ(d)
0 + d̃2

)
in a similar fashion.

A careful study of the proof of Theorem 19 shows that the theorem still holds even if a translate (by a

vector c ∈ Rd) of the coarse and fine lattices are used for signaling, i.e., (Λ(d)
0 + c,Λ(d) + c) are used instead

of (Λ(d),Λ(d)
0 ), and hence adding a dither at the source does not affect security.

Note that
∑
λ∈Λ(d)

0
gθ,λ(x) =

∑
λ∈Λ(d)

0
gθ,x(λ), which is equal to gθ,x(Λ(d)

0 ). From this, and using the

definition of flatness factor, we see that |det(Λ(d)
0 )gθ,x(Λ(d)

0 )−1| ≤ εΛ(d)
0

(θ). Rearranging, we get 1−εΛ(d)
0

(θ) ≤

detΛ(d)
0 gθ,x(Λ(d)

0 ) ≤ 1 + εΛ(d)
0

(θ). Substituting this in (50), we get

detΛ(d)
0 g√P(u)

1 + εΛ(d)
0

(
√
P)
≤ pj(u|d1) ≤

detΛ(d)
0 g√P(u)

1− εΛ(d)
0

(
√
P)

for u ∈ Λ(d)
0 + d̃1, and pj(u|d1) = 0 otherwise. Let fU denote the density of U and V. Then, fU (u) =∫

d1∈V(Λ(d)
0 ) pj(u|d1) 1

detΛ(d)
0

. Hence,

g√P(u)
1 + εΛ(d)

0
(
√
P)
≤ fU (u) ≤

g√P(u)
1− εΛ(d)

0
(
√
P)
,

Therefore, U and V converge in distribution to a Gaussian vector with zero-mean and variance
√
P as

long as εΛ(d)
0

(
√
P) → 0. From [20, Remark 3], we have εΛ(d)

0
(
√
P) < εΛ(d)

0
(
√
P/2). Therefore, as long as
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εΛ(d)
0

(
√
P/2) → 0 (which we need anyway, to obtain strong secrecy), U and V converge in distribution to

the Gaussian random vector.

The relay uses a linear MMSE estimator. It computes Ŵ := [α∗W −D1 −D2] mod Λ(d)
0 , where α∗ :=

(2P)/(2P + σ2). The estimate of X ⊕ Y is the coset represented by the closest vector in Λ(d)
0 to Ŵ. The

term Ŵ can be written as [23]

Ŵ =
[
[X + Y] mod Λ(d)

0 + (1− α∗)(U + V) + α∗Z
]

mod Λ(d)
0 .

The density of the effective noise vector Zeff = (1−α∗)(U+V)+α∗Z can be bounded in terms of a zero-mean

Gaussian random vector with covariance matrix ((1−α∗)2
√
P +α∗σ2)Id, and the true pdf of Zeff converges

to the pdf of the Gaussian as d → ∞. The analysis in [12], [23] can be used in this setting, and it can be

shown that a power-rate pair of (
P, 1

2 log2

(
1
2 + P

σ2

)
− 1

2 log2 2e
)

is achievable with strong secrecy over the bidirectional relay.

Remark 21. In the perfect secrecy setting, we were not able to show that the technique of random dithering

and MMSE equalization can be used to obtain an additional 1/2 in the rate expression. As above, suppose that

each user node generates dither vectors, and d1,d2 be instances of the randomly generated dither vectors. Let

d̃1, d̃2 be as defined above. Let f(·) be a density function on Rd whose characteristic function is compactly

supported within V(Λ̂(d)
0 ). For a message X = Λj, user node A transmits U ∈ Λ(d)

0 + d̃1 according to

pj(u|d1) =

det Λ(d)
0 f(u), if u ∈ Λ(d)

0 + d̃1,

0, otherwise.
, (51)

Similarly, user node B transmits V ∈ Λ(d)
0 + d̃2 according to (51). As in the strong-secrecy case, suppose that

the relay computes Ŵ := [α∗W−D1−D2] mod Λ(d)
0 , where α∗ := (2P)/(2P +σ2). It can be shown that the

dithering does not affect security, and W is still independent of the individual messages X and Y . However,

the effective noise vector, Zeff = (1−α∗)(U+V)+α∗Z is not Gaussian, since U and V are not Gaussian. In

order to find the probability of decoding error, we require an upper bound on the probability that Zeff /∈ V(Λ(d)),

which is not straightforward unlike the Gaussian case. Consequently, one cannot say whether lattice decoding

achieve vanishingly small error probabilities in this situation, and it is hard to compute achievable rates.

Prior work on Strong Secrecy

The strongly secure scheme proposed by He and Yener in [17] also used nested lattice codes as we have

done here. They obtain strong secrecy using universal hash functions, and show the existence of a suitable

linear hash function that ensures that the mutual information decays exponentially in d. Unlike [17], we

have used a sampled Gaussian pmf for randomization at the encoder, and hence, for a given pair of nested

lattices, we explicitly specify the distribution used for randomization. Even using our scheme, the mutual
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S R2R1 RK D

Fig. 13. Multi-hop line network with K + 1 hops.

information goes down to zero exponentially in d. But unlike [17], which was valid under a maximum power

constraint at each node, the codebook we use is unbounded, so our scheme can only satisfy an average power

constraint. Also, the achievable rate in the scheme of He and Yener is slightly higher (by 1
2 log2

e
2 bits per

channel use). Our scheme has these two drawbacks but is still attractive because unlike [17], which is only

an existence result, we give an explicit randomization technique for security. The scheme in [17] was coupled

with an Algebraic Manipulation Detection (AMD) code [8] for Byzantine detection, and it was shown that

the probability of a Byzantine attack being undetected could be made to decay to zero exponentially in d.

We remark that our coding scheme can also be extended to this scenario, and be used as a replacement for

the nested lattice code in [17].

VIII. Multi-hop Line Network

We extend the results of the bidirectional relay setting to the multi-hop line network studied in [16]. In

this scenario, a source wants to transmit a message (or more than one message) to a destination via K relay

nodes. The structure of a multi-hop line network with K + 1 hops is shown in Fig. 13. It consists of K + 2

nodes: a source node, S, a destination node, D, and K relay nodes, R1, R2, . . . , RK . It is assumed that all links

are identical AWGN (zero mean, variance σ2) wireless links. All nodes are half-duplex and can communicate

only with their neighbours. Nodes broadcast their messages to their immediate neighbours.

We use the co-operative jamming protocol proposed by He and Yener [16]. The protocol consists of a

number of phases, each phase consisting of d channel uses. In any given phase, let Ui be the d-dimensional

vector transmitted by the ith node, and Wj be the vector received by the jth node, for i = 0, 1, . . . ,K + 1

and j = 0, 1, . . . ,K+1. Here, the source is considered to be the 0th node, and the destination, the (K+1)st

node. The nodes receive the superposition of the messages sent by their neighbours in that phase. Therefore,

for i = 1, 2, . . . ,K,

Wi = Ui−1 + Ui+1 + Zi, (52)

where Zi denotes additive white Gaussian noise (AWGN) with mean zero and variance σ2. Also,

W0 = U1 + Z0, (53)

and

WK+1 = UK + ZK+1. (54)

As earlier, Z0 and ZK+1 denote AWGN with mean zero and variance σ2.
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The source, S, has to send N messages, X1, X2, . . . , XN , to the destination D across the network. The

messages are assumed to be independent and uniformly distributed over the set of all messages.

The relays act as eavesdroppers. It is assumed that the relays do not co-operate with each other, i.e., the

information available at a relay is not shared with the other relays. Also, the relays do not tamper with the

message in any manner. As remarked by He and Yener in [16], this also takes care of the situation wherein

the eavesdropper has access to one of the relays, but it is not known which relay has been compromised.

Therefore, the problem is to send the message to the destination via a line network of K independent, honest

but curious relays. We study this problem mainly under the strong secrecy constraint, but the arguments

can easily be extended to the perfect secrecy scenario.

1) The Communication Scheme: We use the scheme proposed by He and Yener [16] for relaying. For

clarity and completeness, we will describe the protocol here. Let us choose a sequence of (Λ(d),Λ(d)
0 ) nested

lattice pairs that satisfy properties (L1)–(L4). The messages at the source are picked from the quotient

group G(d) := Λ(d)/Λ(d)
0 . Each node in the network employs the encoding and decoding scheme described

in Section VII-B. Let us define some more notation. For any vector w ∈ Rd, let D(w) denote the coset

represented by the closest vector to w in the lattice Λ(d), i.e., D(w) is obtained by passing w through the

lattice decoder of Section VII-B. Also, for any X ∈ G(d), having coset representative X in Λ(d) ∩ V(Λ(d)
0 ),

let E(X) denote the encoded form of X, i.e., E(X) is a random variable supported within the coset X, and

distributed according to pj(·) in (40).

• Each relay node i (i = 1, . . . ,K) generates a jamming signal, Ji, which is chosen uniformly at random

from G(d), and independently of everything else. If the source has to relay N messages to the destination,

then the destination generates N independent jamming signals, JK+l, for l = 1, 2, . . . , N .

• The communication takes place in 2N +K phases. Each phase consists of d channel uses.

• Let Wi[n] denote the d-dimensional vector received by the ith node in the nth phase, and let Vi[n] be

the vector transmitted by the ith node in the nth phase.

An average power constraint is imposed at the nodes.

1
d
E‖Vi[n]‖2 ≤ P (d), (55)

for i = 0, 1, . . . ,K + 1 and n = 1, 2, . . . ,K + 2N .

We define the rate of the scheme, R(d)
N , to be the number of bits of information transmitted per channel

use by the source in order to send N messages to the destination. Since it takes K + 2N phases for sending

N messages,

R
(d)
N := N

d(K + 2N) log2 |G(d)|. (56)

We say that a power-rate pair of (P,R) is achievable for N -message transmission with strong secrecy in a

multi-hop line network with K + 1 hops, if for every δ > 0, there exists a sequence of (Λ(d),Λ(d)
0 ) nested

lattice codes such that for all sufficiently large d, we have
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Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

S

S

S

S

R1

R1

R1

R1

R2

R2

R2

R2

R3

R3

R3

R3

J1 J1

J2 J2

X ⊕ J2 J3

X ⊕ J3 X ⊕ J3

X ⊕ J1

X ⊕ J2

S R1 R2 R3

D

D

D

D

D

J3

J4

X ⊕ J4 X ⊕ J4

Fig. 14. Secure relaying of a single message in a 4-hop relay network

Phase Messages available at node at the end of phase
S R1 R2 R3 D

0 X J1 J2 J3 J4

1 X, J1 J1 J1, J2 J3 J4

2 X, J1 J1, X ⊕ J2 J1, J2 J2, J3 J4

3 X, J1 J1, X ⊕ J2 J1, J2, X ⊕ J3 J2, J3 J3, J4

4 X, J1 J1, X ⊕ J2, X ⊕ J3 J1, J2, X ⊕ J3 J2, J3, X ⊕ J4 J3, J4

5 X, J1 J1, X ⊕ J2, X ⊕ J3 J1, J2, X ⊕ J3 J2, J3, X ⊕ J4 J3, J4, X

TABLE I
Messages available at various nodes at the end of each phase for the protocol in Fig. 14

• P (d) < P + δ;

• R
(d)
N > R− δ;

• the probability of the destination decoding X1, X2, . . . , XN incorrectly, η(d), is less than δ; and,

• the mutual information between the messages and the variables available at the kth relay, i.e.,

I(X1, . . . , XN ; Jk,Wk[1], . . . ,Wk[2N +K]) < δ.

We will describe the scheme for secure message relaying in the next section, and find achievable power-rate

pairs. Finally, letting the number of messages to go to infinity, we will show that

Theorem 22. A power-rate pair of (
P, 1

4 log2

(
P
σ2

)
− 1

2 log2 2e
)

is achievable with perfect secrecy; and for P > 4eσ2, a power-rate pair of(
P, 1

4 log2

(
P
σ2

)
− 1

4 log2 2e
)

is achievable with strong secrecy at the relay nodes in a multi-hop line network with K + 1 hops.
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2) Scheme of He and Yener for Multi-Hop Relaying: We now describe the scheme for secure relaying. The

case where S wants to send a single message, X, to the destination is illustrated for a network with three relays

in Fig. 14. Only the messages (elements of G(d)) transmitted by each node are indicated in the figure, and it

is assumed that actual transmitted vectors are the encoded versions of the messages indicated. The messages

available at various nodes at the end of each phase are tabulated in Table I. Suppose that N messages are

to be transmitted to the destination. Each relay node generates a jamming signal Ji, chosen uniformly at

random from G(d). The destination node generates N independent jamming signals JK+1, JK+2, . . . , JK+N .

Let us use the notation ⊕tp=1Xp to denote X1 ⊕X2 ⊕ · · · ⊕Xt.

• The source always transmits in phase 2t, for t = 1, . . . , N .

• The ith node (i = 1, 2, . . . ,K + 1) transmits in the (2t+ i)th phase, for t = 0, 1, . . . , N .

• In the ith phase (i = 1, . . . ,K + 1), the ith node broadcasts the jamming signal Ji (after encoding) to

its neighbours. Hence, the signal transmitted by the ith node in the ith phase is

Vi[i] = E(Ji).

• In the (2t+ i)th phase (t = 1, 2, . . . , N), the ith node sends

Vi[2t+ i] = E
(
(⊕tp=1Xp)⊕ Ji+t

)
. (57)

This holds for all nodes, i = 0, 1, . . . ,K + 1. The ith node evaluates (⊕tp=1Xp) ⊕ Ji+t by subtracting

the message transmitted by it in the (2t+ i− 2)nd phase from the message decoded in the (2t+ i− 1)st

phase.

In the first phase, R1 broadcasts E(J1) to the source and R2, and subsequently, the source can compute

X1 ⊕ J1, which it sends in the next phase. In the (2t − 1)st phase (t = 1, . . . , N), the source receives

E
(
(⊕t−1

p=1Xp) ⊕ Jt
)

from R1, and it can compute (⊕t−1
p=1Xp) ⊕ Jt, and hence (⊕tp=1Xp) ⊕ Jt, which is to be

sent to R1 in the next phase.

In the (i− 1)st phase, the ith relay receives E
(
X1⊕Ji

)
+E(Ji+1), from which it computes X1⊕Ji⊕Ji+1,

and since Ri knows Ji, it can find X1 ⊕ Ji+1, which has to be broadcast in the next phase. In general, in

the (2t + i − 1)st phase, Ri receives E
(
(⊕tp=1Xp) ⊕ Ji+t−1

)
+ E

(
(⊕t−1

p=1Xp) ⊕ Ji+t
)
. However, Ri had sent

E
(
(⊕t−1

p=1Xp)⊕ Ji+t−1
)

in the (2t+ i− 2)nd phase, and hence it can compute (⊕tp=1Xp)⊕ Ji+t, which is to

be encoded and sent in the (2t+ i)th phase.

On similar lines, the destination receives E
(
X1⊕JK+1

)
in the (K+2)nd phase, and transmits E

(
X1⊕JK+2

)
in the (K+3)rd phase, since it knows JK+1 which can be subtracted out of X1⊕JK+1. In the (2t+K+1)st

phase, it can compute (⊕tp=1Xp) ⊕ JK+1+t from E
(
(⊕tp=1Xp) ⊕ JK+t

)
, which it receives from RK in the

(2t+K)th phase.

3) Secrecy: We now show that using the coding scheme of Section VII-B at each node will guarantee strong

secrecy. The argument can be extended similarly for the perfect secrecy case. We will assume for convenience
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that all links are noiseless. Since the Gaussian noise is independent of everything else, application of the

data processing inequality as in Section VII reveals that secrecy can be obtained even in the noisy case.

Let {Xp : p = 1, . . . , N} denote the set of i.i.d. messages to be sent to the destination. Let us fix a k from

{1, 2, . . . ,K}. We will show that the total information about {Xp : p = 1, . . . , N} obtained by relay k at the

end of all relaying operations goes to zero as d goes to infinity.

In the (2t+ k − 1)st phase, the kth relay receives

Wk[2t+ k − 1] = Vk−1[2t+ k − 1] + Vk+1[2t+ k − 1] (58)

= E
(

(⊕tp=1Xp)⊕ Jk+t−1

)
+ E

(
(⊕t−1

p=1Xp)⊕ Jk+t

)
, (59)

for 1 ≤ t ≤ N . We also have,

Wk[k − 1] = E(Jk−1).

For t = 1, 2, . . . , N , let us define

Θk,t := {Jk, Jk−1,Wk[2m+ k − 1] : 1 ≤ m ≤ t} (60)

to be the set of all random variables available at the kth relay at the end of the (2t+k−1)st phase. We also

define Θk,0 := {Jk, Jk−1}. Note that Θk,t−1 ⊂ Θk,t for t = 1, 2, . . . , N , and Θk,N is the set of all random

variables available at the kth relay at the end of all phases. We have to show that I(X1, . . . , XN ; Θk,N )→ 0

as d→∞.

Lemma 23. Let ε(d) := εΛ(d)
0

(
√
P/2) < 1/2. Then, the total information available at the kth relay node at

the end of all relaying phases can be bounded from above as follows:

I(X1, . . . , XN ; Θk,N ) ≤ Nε(d)
(

log2 |G(d)| − log2 ε
(d)
)
, (61)

Proof: See Appendix H.

Since for our choice of nested lattices, ε(d) → 0 exponentially in d, the mutual information I(X1, . . . , XN ; Θk,N )

also goes to zero exponentially in d, thereby guaranteeing strong secrecy.
4) Achievable Rate and Proof of Theorem 22: Let us fix an arbitrary δ > 0. It was shown in [16, Section

IV-C] that using the nested lattice coding scheme of Section VII-B with (Λ(d),Λ(d)
0 ) satisfying properties

(L1)–(L4), the probability of error, η(d) goes to zero as d goes to infinity. Hence, there exists a sequence of

lattice pairs such that for sufficiently large d, we can have η(d) < δ. Moreover, from Theorem 17, we can have

the average transmit power per dimension at each node to be less than P + δ, and 1
d log2 |G(d)| greater than

1
2 log2

P
σ2 − 1

2 log2 2e−δ. Therefore, we can say that a power-rate pair of
(
P, N

2(K+2N+1)
[
log2

( P
σ2

)
− log2 2e

])
is achievable for the transmission of N messages using this scheme. Letting the number of messages, N , go

to infinity, we have the second part of Theorem 22. Analogously, we can show that a power-rate pair of(
P, N

2(K+2N+1)
[
log2

( P
σ2

)
− 2 log2 2e

])
is achievable for the transmission of N messages with perfect secrecy

using the scheme of Section IV, and we have the first part of the theorem.
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IX. Conclusion

We have described two coding schemes for secure bidirectional relaying in presence of an honest-but-curious

relay. We saw that using pmfs generated from density functions having compactly supported characteristic

functions, one can obtain perfect secrecy. We saw that transmission rates below 1
2 log2

P
σ2 − log2 2e can be

achieved. In order to achieve higher transmission rates, we relaxed the secrecy constraint, and only required

that the mutual information between U + V and the individual messages go to zero for large block lengths.

Using pmfs obtained from sampled Gaussian functions, we could achieve a rate of 1
2 log2

( 1
2 + P

σ2

)
− 1

2 log2 2e.

These rates are within a constant gap of the best known achievable rate of 1
2 log2

( 1
2 + P

σ2

)
without secrecy

constraints [23].

The main theme of this paper was the use of nested lattice codes, and explicit pmfs having infinite support

to obtain security. An inherent disadvantage of our scheme is that it is not possible to satisfy a maximum

power constraint. One could study the scenario where the support of the distributions we described are

truncated, and find the performance of such a scheme, and this is yet to be studied. Two key assumptions

made in this paper are that the messages are uniformly distributed, and the channel gains are unity. What

happens when these conditions are relaxed is left as future work. In this paper, we only found achievable

rates. As remarked in [17], finding a converse result is much harder, and even without any secrecy constraints,

a nontrivial outer bound on the capacity of a bidirectional relay is not known.

Appendix A: Proof of Theorem 11

We are given an index-M sublattice Λ0 of the lattice Λ. Recall from Section II-A that (det Λ0)/(det Λ) =

M . Let Λ0,Λ1, . . . ,ΛM−1 denote the M cosets of Λ0 in Λ. These constitute the elements of the quotient

group G = Λ/Λ0.

Suppose that X,Y are iid random variables, each uniformly distributed over G. For each j ∈ {0, 1, . . .M−

1}, let pj be a pmf supported within the coset Λj , so that pj(k) = 0 for k /∈ Λj . We define a random variable

U (resp. V ) jointly distributed with X (resp. Y ) as follows: if X = Λj (resp. Y = Λj), U (resp. V ) is a

random point from Λj picked according to the distribution pj . Then, U and V are identically distributed

with pU = pV = 1
M

∑M−1
i=0 pi. Let ϕU , ϕV and ϕj , j = 0, 1, . . . ,M − 1, be the characteristic functions

corresponding to pU , pV and pj , j = 0, 1, . . . ,M − 1, respectively. We have the following straightforward

generalization of Lemma 3.

Lemma 24. Suppose that ϕUϕV = ϕjϕV = ϕUϕj for j = 0, 1, . . . ,M − 1. Then, the random variables

(U, V,X, Y ) with joint pmf given by

pUVXY (k, l,Λi,Λj) = (1/M)(1/M)pi(k)pj(l)

for k, l ∈ Λ and Λi,Λj ∈ G (62)

have properties (S1)–(S3).
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We will now construct the characteristic functions ϕj that satisfy the above lemma. Let f be the (con-

tinuous) probability density function corresponding to the compactly supported characteristic function ψ in

the hypothesis of Theorem 11. The function f can be retrieved from ψ by Fourier inversion:

f(x) = 1
(2π)d

∫
Rd
ψ(t)e−i〈t,x〉 dt

= 1
(2π)d

∫
V(Λ̂0)

ψ(t)e−i〈t,x〉 dt (63)

Note that each coset Λj can be expressed as uj + Λ0 for some uj ∈ Λ. We set

ϕj(ζ) =
∑

n∈Λ̂0

ψ(ζ + n) e−i〈n,uj〉 (64)

for all ζ ∈ Rd. Then, by Proposition 6, we have that pj is supported within Λj , and

pj(k) = (det Λ0) f(k) for all k ∈ Λj . (65)

Finally, define

ϕ(ζ) =
∑
n∈Λ̂

ψ(ζ + n) (66)

for all ζ ∈ Rd.

We make two claims:

(i) ϕ2 = ϕϕj for j = 0, 1, . . . ,M − 1;

(ii) ϕ = ϕU = ϕV .

Given these claims, by Lemma 24, the random variables U, V satisfy the properties (L1)–(L3).

Both claims follow from the fact that Λ̂ is a sublattice of Λ̂0. (If a lattice Γ contains a sublattice Γ0, then

the dual Γ∗ is a sublattice of Γ∗0.) To see (i), we re-write (66) as

ϕ(ζ) =
∑
n∈Λ̂

ψ(ζ + n) e−i〈n,uj〉 (67)

This is possible because, for n ∈ Λ̂ = 2πΛ∗ and uj ∈ Λ, we have e−i〈n,uj〉 = 1. Comparing (64) and (67),

and noting that ψ is supported within V(Λ̂0), it is evident that supp(ϕ) := {ζ : ϕ(ζ) 6= 0} is contained in

supp(ϕj) := {ζ : ϕj(ζ) 6= 0}. Furthermore, for all ζ ∈ supp(ϕ), we have ϕ(ζ) = ϕj(ζ). Claim (i) directly

follows from this.

For Claim (ii), we note that V(Λ̂0) ⊆ V(Λ̂), since Λ̂ is a sublattice of Λ̂0. Hence, we can apply Proposition 6

to deduce that ϕ is the characteristic function of a pmf p supported within Λ, with

p(k) = (det Λ) f(k) for all k ∈ Λ.

Thus, from (65) and the fact that (det Λ0)/(det Λ) = M , we see that p = 1
M

∑M−1
j=0 pj . In other words,

p = pU = pV , which proves Claim (ii).

It remains to prove that if ψ is twice differentiable, then E‖U‖2 = −∇2ψ(0). Since U and V are identically

distributed, we would then also have E‖V‖2 = −∇2ψ(0). Write U = (U1, . . . , Ud), so that ‖U‖2 = U2
1 +
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· · · + U2
d . We want to show that E[U2

j ] = − ∂2

∂t2
j
ψ(0), for j = 1, . . . , d. For notational simplicity, we show

this for j = 1. Note that the characteristic function of Ui is given by ϕU1(t1) = ϕU (t1, 0, . . . , 0). As argued

in the proof of Theorem 7, E[U2
1 ] = −ϕ′′U1

(0). Now, ϕ′′U1
(0) = ∂2

∂t21
ϕU (0, 0, . . . , 0). From (66), we see that

ϕU = ψ in a small neighbourhood around 0 = (0, 0, . . . , 0). Therefore, ∂2

∂t21
ϕU (0) = ∂2

∂t21
ψ(0), and hence,

E[U2
1 ] = − ∂2

∂t21
ψ(0), as desired.

This concludes the proof of Theorem 11.

Appendix B: “Good” Lattice Properties

In this section, we briefly review certain “good” lattice properties, and some results in the literature. This

is almost entirely based on [13]. Let {Λ(d)} be a sequence of lattices, with each Λ(d) chosen uniformly at

random from a (d, k, q) ensemble described in Section VI-B. It was shown in [13] that with high probability,

{Λ(d)} is simultaneously good for covering, packing, mean-squared error (MSE) quantization, and AWGN

channel coding. Let us make these notions more formal.

We say that that the sequence of lattices {Λ(d)} is good for covering if

lim
d→∞

rcov(Λ(d))
reff(Λ(d))

= 1.

We say that {Λ(d)} is good for packing if

lim
d→∞

rpack(Λ(d))
reff(Λ(d))

>
1
2 .

Let GΛ(d) denote the normalized second moment per dimension of Λ(d), as defined in Section II-A. A sequence

of lattices {Λ(d)} is said to be good for MSE quantization if GΛ(d) → 1
2πe as d→∞.

Let Z be a zero-mean d-dimensional white Gaussian vector having second moment per dimension equal

to σ2. Let

µ :=
vol
(
V(Λ(d))2/d
σ2

Then we say that {Λ(d)} is good for AWGN channel coding if the probability that Z lies outside the

fundamental Voronoi region of Λ(d) is upper bounded by

Pr[Z /∈ V(Λ(d))] ≤ e−d
(
EU (µ)−od(1)

)
for all σ2 that satisfy µ ≥ 2πe. Here, EU (·), called the Poltyrev exponent is defined as follows:

EU (µ) =


µ

16πe , 8πe ≤ µ

1
2 ln µ

8π , 4πe ≤ µ ≤ 8πe
µ

4πe −
1
2 ln µ

2π , 2πe ≤ µ ≤ 4πe

(68)

Suppose that we use a subcollection of points from Λ(d) as the codebook for transmission over an AWGN

channel. Then, as long as
vol
(
V(Λ(d))2/d
σ2 ≥ 2πe,
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the probability that a lattice decoder decodes to a lattice point other than the one that was transmitted,

decays exponentially in the dimension d, with the exponent given by (68).

It is worth noting that the above “good” properties are invariant to scaling. If {Λ(d)} is a sequence of lattices

that is good for covering, packing, and AWGN channel coding, then for any α > 0, {αΛ(d)} is also good for

covering, packing and AWGN channel coding. This is because of the fact that rpack(αΛ(d)) = αrpack(Λ(d)),

rcov(αΛ(d)) = αrcov(Λ(d)), and reff(αΛ(d)) = αreff(Λ(d)).

Appendix C: Proof of Lemma 14

In proving Lemma 14, we use the following theorem from [13], which says that if the parameters k and q

are selected appropriately, then almost all lattices in a (d, k, q) ensemble satisfy the “goodness” properties

described in Appendix B.

Theorem 25 ([13], Theorem 5). Let 0 < rmin <
1
4 be chosen arbitrarily. Let Λ(d) be a sequence of lattices

selected uniformly at random from a (d, k, q) ensemble, such that

• k ≤ β1d for some 0 < β1 < 1, but k grows faster than log2 d, and

• q is chosen so that reff(Λ(d)), as given by (31), satisfies rmin < reff(Λ(d)) < 2rmin.

Then, the sequence of lattices Λ(d) is simultaneously good for covering, packing and MSE quantization, with

probability approaching 1 as d tends to infinity. If, in addition, we have β1 < 1/2, then the sequence of lattices

is also simultaneously good for AWGN channel coding with probability tending to 1 as d→∞.

Therefore, if we choose k and q that satisfy the hypotheses of Lemma 14, then from the above theorem,

the probability that a uniformly chosen Λ(d)
0 satisfies condition (G1) tends to 1 as d→∞.

Recall from Section II-A that if A is a generator matrix of a lattice Λ, then the dual lattice of Λ, denoted

by Λ∗, is the set of all integer linear combinations of the rows of A−1. It turns out that the dual of a

Construction-A lattice is also a Construction-A lattice, as seen from the following.

Proposition 26. Suppose that G is a k×d generator matrix of a (d, k) linear code C over Zq, q being prime,

and G having the form

G =
[

Ik B
]
,

where Ik denotes the k × k identity matrix. Let Λ(C) be the lattice obtained by employing Construction A on

the code C. Then, the matrix

A = 1
q

 Ik B

0 qI(d−k)

 (69)

is a generator matrix for the lattice Λ(C).

Proof: We want to show that ATZd := {ATy : y ∈ Zd} = Λ(C). We first prove that ATZd ⊆ Λ(C). By

definition, Λ(C) = {x ∈ Rd : (qx) mod q ∈ C}. Therefore, it is enough to show that (qAT z) mod q ∈ C for
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every z ∈ Zd. Fix a z ∈ Zd. Then,

(qAT z) mod q =


 Ik B

0 qI(d−k)

T [z1 z2 . . . zd]T

 mod q

=
( [

Ik B
]T

[z1 . . . zk]T

+
[

0 qI(d−k)

]T
[zk+1 . . . zd]T

)
mod q

=
([

Ik B
]T

[z1 . . . zk]T
)

mod q

= (GT ẑ) mod q ∈ C. (70)

For the converse, define C′ = { 1
qc : c ∈ C}. Then, Λ(C) = C′ + Zd := {c + z : c ∈ C′, z ∈ Zd}. The set

ATZd forms a group under (componentwise) addition. Hence, it is sufficient to show that C′ ⊆ ATZd, and

Zd ⊆ ATZd. Fix an arbitrary c ∈ C. Let c′ = 1
qc. By definition, there exists a x ∈ Zkq such that

c =
([

Ik B
]T

x
)

mod q

=

 x

BTx

 mod q =

 x

(BTx) mod q


=

 x

BTx

− q
 0

z′

 , (71)

for some z′ ∈ Zd−k. Therefore,

c =

 Ik B

0 qI(d−k)

T  x

−z′

 .
Hence, there exists

z =

 x

z′

 ∈ Zd

so that c′ = AT z. Therefore, we can say that C′ ⊆ ATZd. Next, consider z ∈ Zd. Let A∗ be as in Lemma 27,

and note that ATA∗ = Id, the d×d identity matrix. Let z′ = A∗z ∈ Zd. Then, AT z′ = AT (A∗z) = (ATA∗)z =

z. Hence, we can say that for every z ∈ Zd, there exists a z′ ∈ Zd so that z = AT z, and hence Zd ⊆ ATZd,

thus concluding the proof.

It can be shown in a similar manner that if G has the form

G =
[

B Ik
]
,

then,

A = 1
q

 B Ik
qI(d−k) 0


is a generator matrix for Λ(C).
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Lemma 27. Let C, G, Λ(C) be as in Proposition 26. Then, the dual of Λ(C), denoted by Λ∗(C), has generator

matrix

A∗ =

 qIk 0

−BT I(d−k)

 . (72)

Therefore, Λ∗(C) = qΛ(C⊥), where C⊥ denotes the dual code of C.

Proof: Consider,

A(A∗)T = 1
q

 Ik B

0 qI(d−k)

 qIk −B

0 I(d−k)


= 1
q

 qIk 0

0 qI(d−k)


= Id.

Similarly, (A∗)TA = Id.

Since a permutation of the rows of a generator matrix of a lattice also yields a valid generator matrix for

the same lattice,

A∗1 =

 −BT I(d−k)

qIk 0


is also a generator matrix for Λ∗(C). If C⊥ denotes the dual code of C, then C⊥ has a generator matrix [30]

G =
[
−BT I(d−k)

]
.

Therefore, we can conclude that the dual lattice, Λ∗(C) is a q-scaled version of the lattice obtained by

applying Construction A to C⊥, i.e., Λ∗(C) = qΛ(C⊥).

Since, Λ∗(C) = qΛ(C⊥), if the generator matrix is full-rank, then Λ(C⊥) belongs to a (d, d−k, q) ensemble.

Therefore, from [13], we can say that a randomly picked Λ(C⊥) is good for packing and covering with

probability tending to 1 as d→∞, as long as d− k ≤ β1d for some 0 < µ < 1, and d− k grows faster than

log2 d. From the definitions, we see that the properties of covering and packing goodness are invariant to

any scaling of the lattices. Therefore, if Λ(C⊥) is good for packing and covering, then qΛ(C⊥), and hence

Λ∗(C) is also good for packing and covering. Since the probability that {Λ(d)} is packing- and covering-good

tends to one as d tends to ∞, by the union bound, we can argue that if k = β1d for some β1 < 1/2, then

a randomly picked sequence of lattices is good for covering, packing and AWGN coding, together with the

property that its dual is good for packing and covering with probability going to 1 as d → ∞. Therefore,

we can find a sequence of coarse lattices that satisfy (G1) and (G2).

It was also shown in [23, Appendix B] (also see [12]) that if the coarse lattices are good for covering

and AWGN channel coding, then as long as d/q1 → 0 as d → ∞, the probability that a uniformly chosen

sequence of fine lattices is good for AWGN channel coding tends to 1 as d→∞. This completes the proof

of Lemma 14.
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Appendix D: Proof of Proposition 15

We can make a stronger statement than Proposition 15, and characterize the error exponent of the lattice

decoder, as the following lemma, adapted from [12], says. As long as the transmission rate is less than
1
2 log2

M
σ2 , the error exponent is positive, and hence the probability of error goes to zero as d → ∞. The

analysis of the error exponent is interesting in its own right, as it gives insights on the error performance of

the decoder when the coarse lattices do not satisfy the goodness properties discussed earlier. The lemma is

quite general, as it indicates how well one can do given an arbitrary sequence of coarse lattices.

Lemma 28. Let {Λ(d)
0 } be a sequence of coarse lattices satisfying reff(Λ(d)

0 ) =
√
dM for each d. Then, there

exists a sequence of lattices {Λ(d)}, with Λ(d)
0 ⊆ Λ(d) for all d, and R(d) = 1

d log2 |Λ(d)/Λ(d)
0 |, for which the

probability of error of decoding X ⊕ Y at the relay is upper bounded by

Pr[D(d)(U + V + Z) 6= x⊕ y|X = x, Y = y] ≤ e−dEΛ0 (R(d)), (73)

where the exponent

EΛ0(R(d)) > EU

(
2πe1−2( 1

2 log2
M
σ2−R

(d)−δ1(d))
)
− δ2(d)− δ3(d). (74)

Here, EU (·) denotes the Poltyrev exponent given by (68), and δ1(d)→ 0 as d→∞. The quantities δ2(d) and

δ3(d), given by (79) and (84), go to zero as d→∞ provided that the sequence of coarse lattices are good for

covering and AWGN channel coding, respectively.

The quantities δ2, δ3 quantify how far the coarse lattices are from satisfying (G1) and show the deviation

from the ideal error performance.

Proof: Let us consider a fixed sequence of coarse lattices {Λ(d)
0 }. Recall that M (d) denotes the number of

distinct messages at each node. Let R := 1
d log2M

(d) denote the rate of transmission. We omit the superscript

(d) in R for convenience. As described in Section VI-C, the decoder at the relay sees an effective Λ(d)
0 -MLAN

channel. We study the probability of error for a Λ(d)
0 -MLAN channel with additive Gaussian noise.

Let us pick 2dR codewords uniformly at random over V(Λ(d)
0 ). The messages are mapped to the 2dR

codewords. From [12, Appendix B], (also see [11]) the random coding error exponent, ErΛ0
(R), for the Λ(d)

0 -

MLAN channel under minimum Euclidean distance decoding is lower bounded as

ErΛ0
(R) > max

0<ρ≤1
ρ
[1
d

log2

(
vol(V(Λ(d)

0 ))
)
− 1
d
hρ̄(Z)−R

]
− 1
d

log2

(
1

1− δz(d)

)
, (75)

Here, ρ̄ = 1/(1 +ρ), and Z denotes the zero-mean Gaussian noise vector with second moment per dimension

equal to σ2, and δz(d) = Pr[Z /∈ V(Λ(d)
0 )]. The term, hρ̄(Z) is the Renyi entropy of order ρ̄ of the random

variable Z (with density fZ), defined as follows.

hρ̄(Z) := ρ̄

1− ρ̄ log2

(∫
a
fZ(a)ρ̄da

)1/ρ̄
. (76)
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Recall that reff(Λ(d)
0 ) is the effective radius of Λ(d)

0 . Then, (see e.g., [13, Section II-D])

vol
(
V(Λ(d)

0 )
)

=
(
reff

2(Λ(d)
0 )

(d+ 2)G(d)

)d/2
=
(

dM
(d+ 2)G(d)

)d/2
,

where G(d) is the normalized second moment of the unit ball in d dimensions, and G(d) → 1
2πe as d → ∞.

Using this in (76), we get

ErΛ0
(R) > max

0<ρ≤1
ρ
[1

2 log2 (2πeM)− 1
d
hρ̄(Z)−R− 1

2 log2

(
(d+ 2)
d

2πeG(d)
)]
− 1
d

log2

(
1

1− δz(d)

)
,

(77)

Let us define

δ1(d) := 1
2 log2

(
(d+ 2)
d

2πeG(d)
)
, (78)

The term δ1(d)→ 0 as d→∞. We also define

δ2(d) = 1
d

log2

(
1

1− δz(d)

)
(79)

Since δz(d) denotes the probability that the noise vector Z is not within V(Λ(d)
0 ), the quantity δ2(d) tells us

how good the coarse lattices are for AWGN channel coding.

Using (78) and (79), (77) can be written as

ErΛ0
(R) > max

0<ρ≤1
ρ
[1

2 log2 (2πeM)− 1
d
hρ̄(Z)− (R+ δ1(d))

]
− δ2(d), (80)

Define C := 1
2 log2

( M
σ2

)
. Then, optimizing the above equation with respect to ρ gives us (similar to [12,

Appendix A])

ErΛ0
(R) > EU

(
2πe1+2(C−R−δ1(d))

)
− δ2(d), (81)

for all transmission rates R that lie between C−(log2 2)/2 and C. Here, EU (·) denotes the Poltyrev exponent

given by (68). A similar argument also holds for the expurgated error exponent ExΛ0
(R) [12], and

ExΛ0
(R) > EU

(
2πe1+2(C−R−δ1(d))

)
− δ2(d), (82)

for R between 0 and C − (log2 2)/2.

Observe that, in the analysis of the error exponent, the codewords are picked uniformly over V(Λ(d)
0 ). Now

suppose that the codewords are instead distributed uniformly over a fine grid within V(Λ(d)
0 ), in particular,

over
(
q−1
1 Λ(d)

0

)
∩V(Λ(d)

0 ), where q1 is prime. Our codebook comes from the fine lattice, and these points are

distributed uniformly over
(
q−1
1 Λ(d)

0

)
∩ V(Λ(d)

0 ). This is the case if we pick a sublattice from the (d, k1, q1)

ensemble described in steps (f1)–(f2) as earlier [23, Lemma 3]. Then, this quantization of the input does not

affect the error exponent by a significant amount as long as d/q1 goes to zero as d → ∞. Indeed from [12,

Appendix C], we have that

ErΛ0
(R) > EU

(
2πe1+2(C−R−δ1(d))

)
− δ2(d)− δ3(d), (83)
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where

δ3(d) = rcov
2(Λ(d)

0 )
q1σ2

(
1 + 1

2q1

)
, (84)

with rcov(Λ(d)
0 ) being the covering radius of Λ(d)

0 . If the sequence of coarse lattices is good for covering, and

d/q1 → 0 as d → ∞, then δ3(d) → 0 as d → ∞. If, in addition, Λ(d)
0 is good for AWGN channel coding,

then, δ2(d)→ 0 as d→∞.

Appendix E: Proof of Lemma 16

For ease of notation, denote by reff, the effective radius of Λ(d)
0 . The index, d, in reff has been dropped

but it must be understood that this is a function of d. Let C(d) denote the (d, k) code over Zq that is used

to generate the coarse lattice. Using (30),

qk = Γ(d/2 + 1)
πd/2reffd

=
√
dπ

(
d

2πereff2

)d/2
(1 + od(1)), (85)

where the second step uses Stirling’s approximation, and od(1) is a term that approaches 0 as d→∞. From

(32), k = β0d for some 0 < β0 < 1/2. Substituting this in the above, and raising both sides to the power

1/d, we get

qβ0 = (dπ) 1
2d

(
d

2πereff2

)1/2
(1 + od(1))1/d = (dπ) 1

2d

√
d√

2πereff
(1 + od(1)). (86)

Let Λ(d)∗
0 denote the dual of Λ(d)

0 , and reff
∗ denote the effective radius of Λ(d)∗

0 . Let Λ0(C(d)⊥) be the lattice ob-

tained by applying Construction-A on the dual of C(d), i.e., on C(d)⊥. As remarked in Appendix C, Λ0(C(d)⊥)

comes from a (d, d− k, q) ensemble. From Lemma 27, Λ(d)∗
0 = qΛ0(C(d)⊥). Therefore, (1/q)Λ(d)∗ = Λ(C(d)⊥)

will satisfy

qd−k =
√
dπ

 d

2πe
(
reff( 1

qΛ(d)∗)
)2


d/2

(1 + od(1))

where od(1)→ 0 as d→∞. But reff( 1
qΛ(d)∗

0 ) = 1
q reff

∗, and hence, analogous to (86), we have

qd(1−β0) =
√
dπ

(
d

2πe(1/q)2(reff∗)2

)d/2
(1 + od(1)) (87)

Rearranging,

reff
∗ = (dπ) 1

2d

√
dqβ0

√
2πe

(1 + od(1))1/d (88)

Let the packing radius of Λ(d)∗
0 be rpack(Λ(d)∗

0 ) = γ(d)reff
∗. From the definition of the packing radius,

γ(d) < 1 for all d. Again, since the dual lattice is good for packing, limd→∞ γ(d) ≥ 1/2. Also, since od(1)→ 0

as d→∞, we have (1 + od(1))1/d = (1 + od(1)). Therefore, we have,

reff(Λ(d)
0 )rpack(Λ(d)∗

0 ) = γ(d)reff(Λ(d)
0 )(dπ)(1/2d)

√
dqβ0

√
2πe

(1 + od(1))
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Substituting for qβ0 from (86) in the above equation, we get

reff(Λ(d)
0 )rpack(Λ(d)∗

0 )
d

= γ(d)(dπ)(1/d) 1
2πe (1 + od(1)) (89)

Therefore, as d → ∞, the above expression converges to a value greater than or equal to 1/4πe. Using

rpack(Λ̂(d)
0 ) = 2πrpack(Λ(d)∗

0 ), we get Lemma 16.

Appendix F: Proof of Theorem 19

The following lemma from [20] will be used in the proof.

Lemma 29 ([20], Lemma 4). Let Λ be a lattice in Rd. Then, for all z ∈ Rd, and κ > 0,

1− εΛ(κ)
1 + εΛ(κ) ≤

gκ,z(Λ)
gκ(Λ) ≤ 1.

For ease of notation, we will suppress the index d in ε(d), Λ(d)
0 and Λ(d). We will find upper and lower

bounds for pU+V (u) and pU+V |x(u), and then use these to get an upper bound on the absolute value of the

difference between the two.

For a message X chosen at node A, let x be the coset representative of X from Λ∩V(Λ0). For any subset

S ⊆ Rd, let 1S(·) denote the indicator function of S, i.e., 1S(u) is 1 if u ∈ S, and 0 otherwise. From (40),

with κ =
√
P, we have

pU |x(u) =
g√P(u)

g√P,−x(Λ0)1Λ0+x(u). (90)

Let GX := Λ ∩ V(Λ0), and M := |G(d)| = |GX |. Since the messages are uniformly distributed,

pU (u) =
∑

x∈GX

g√P(u)
g√P,−x(Λ0)

1(Λ0+x)(u)
M

. (91)

The flatness factor, εΛ0(θ) is a decreasing function of θ [20, Remark 3]. Therefore, εΛ0(
√
P) < εΛ0(

√
P/2) = ε,

and using Lemma 29,
g√P(u)
g√P(Λ0) ≤

g√P(u)
g√P,−x(Λ0) ≤

g√P(u)
g√P(Λ0)

1 + ε

1− ε .

Using this in (91), we get for u ∈ Λ,
g√P(u)

Mg√P(Λ0) ≤ pU (u) ≤
g√P(u)

Mg√P(Λ0)
1 + ε

1− ε . (92)

We will require bounds on g√P(Λ) in the proof. Rearranging the terms above,(
1− ε
1 + ε

)
pU (u)Mg√P(Λ0) ≤ g√P(u) ≤ pU (u)Mg√P(Λ0).

Since pU is a pmf supported over Λ, and
∑

u∈Λ pU (u) = 1, we can get(
1− ε
1 + ε

)
Mg√P(Λ0) ≤ g√P(Λ) ≤Mg√P(Λ0). (93)
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It can be similarly verified that for any a ∈ Rn,(
1− ε
1 + ε

)
Mg√P

2 ,a
(Λ0) ≤ g√P

2 ,a
(Λ) ≤Mg√P

2 ,a
(Λ0). (94)

We establish some more notation for convenience. Let

α(w) :=
g√2P(w)
Mg√P(Λ0)

g√P
2

(Λ0)

g√P(Λ0) , (95)

β(x,w) :=
(
g√P

2 ,
w
2 −x(Λ0)

g√P
2

(Λ0)

)(
g√P,−x(Λ0)
g√P(Λ0)

)−1

. (96)

We can bound pU+V |x and pU+V as follows.

Lemma 30. For any lattice point w ∈ Λ, and any x ∈ GX , we have(
1− ε
1 + ε

)
α(w) ≤ pU+V (w) ≤

(
1 + ε

1− ε

)2
α(w) (97)

β(x,w)α(w) ≤ pU+V |x(w) ≤
(

1 + ε

1− ε

)
β(x,w)α(w). (98)

Proof: Let x be any fine lattice point from GX . Then,

pU+V |x(w) =
∑

t∈Λ0+x

pU |x(t)pV (w− t)

Using (90) and (92) in the above equation, we obtain∑
t∈Λ0+x

g√P(t)
g√P,−x(Λ0)

g√P(w− t)
Mg√P(Λ0) ≤ pU+V |x(w) ≤

∑
t∈Λ0+x

g√P(t)
g√P,−x(Λ0)

g√P(w− t)
Mg√P(Λ0)

(
1 + ε

1− ε

)
. (99)

Consider the term

∑
t∈Λ0+x

g√P(t)
g√P,−x(Λ0)

g√P(w− t)
Mg√P(Λ0) = 1

g√P,−x(Λ0)
1

Mg√P(Λ0)
∑

t∈Λ0+x

e

(
− ‖t‖2

2P −
‖t−w‖2

2P

)
(2π
√
P)d

= 1
Mg√P(Λ0)g√P,−x(Λ0)

∑
t∈Λ0+x

e

(
− ‖w‖2

4P −
‖t−w

2 ‖
2

P

)
(2π
√
P)d

=
g√2P(w)

Mg√P(Λ0)g√P,−x(Λ0)
∑

t∈Λ0+x

g√P
2 ,

w
2

(t)

=
g√2P(w)
Mg√P(Λ0)

g√P
2 ,

w
2 −x(Λ0)

g√P,−x(Λ0) (100)

Substituting this in (99), and writing this in terms of α and β, we obtain (98). Similarly, bounding both pU
and pV from above and below using (92), proceeding as above, and finally using (94) to bound g√P

2 ,
w
2

(Λ),

we get (97).
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Observe that β(x,w) in (96) is a ratio of two terms, both of which can be bounded using Lemma 29 to

get (
1− ε
1 + ε

)
≤ β(x,w) ≤

(
1 + ε

1− ε

)
. (101)

Let pU+V and p
U+V respectively denote the upper and lower bounds for pU+V in (97), and let pU+V |x

and p
U+V |x respectively denote the upper and lower bounds for pU+V |x in (98). Then, we can say that

|pU+V |x(w)−pU+V (w)| is less than or equal to the maximum of |pU+V |x(w)−p
U+V (w)| and |p

U+V |x(w)−

pU+V (w)|.

Substituting for |pU+V |x(w)− p
U+V (w)|, we get

|pU+V |x(w)− p
U+V (w)| = α(w)

(
1− ε
1 + ε

) ∣∣∣∣∣
(

1 + ε

1− ε

)2
β(x,w)− 1

∣∣∣∣∣ . (102)

However, from (101), we see that

1 <
(

1 + ε

1− ε

)
≤
(

1 + ε

1− ε

)2
β(x,w) ≤

(
1 + ε

1− ε

)3
,

and for ε ≤ 1/2, we have
(

1+ε
1−ε

)3
≤ 1 + 64ε. Therefore,

|pU+V |x(w)− p
U+V (w)| ≤ α(w)

(
1− ε
1 + ε

)
64ε. (103)

Similarly, expressing |p
U+V |x(w)−pU+V (w)| in terms of α and β, and using the fact that ((1− ε)/(1 + ε))3 ≥

1− 8ε for ε < 1/2, we get

|p
U+V |x(w)− pU+V (w)| ≤ α(w)

(
1 + ε

1− ε

)2
8ε. (104)

Rearranging (97), and observing that
∑

w∈Λ pU+V (w) = 1, we have(
1− ε
1 + ε

)2
≤
∑
w∈Λ

α(w) ≤
(

1 + ε

1− ε

)
. (105)

Combining (103) and (104), and summing over w,

V(pU+V , pU+V |x) ≤
∑
w∈Λ

α(w) max
{(

1− ε
1 + ε

)
64ε,

(
1 + ε

1− ε

)2
8ε
}
,

and using (105) to bound
∑

w∈Λ α(w) from above, we get

V(pU+V , pU+V |x) ≤ max
{

64ε,
(

1 + ε

1− ε

)3
8ε
}
≤ max {64ε, 27× 8ε} ,

since ε ≤ 1/2. Therefore,

V(pU+V , pU+V |x) ≤ 216ε,

thereby completing the proof.
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Appendix G: Proof of Lemma 20

The average transmit power per dimension is given by
1
d
E‖U‖2 = 1

d
E‖V‖2 = 1

d

∑
λ∈Λ(d)

‖λ‖2pU (λ)

Using inequalities (92) and (93) from Appendix F, we can bound the average transmit power in terms of

ε(d) := εΛ(d)
0

(
√
P/2) as follows:(

1− ε(d)

1 + ε(d)

)
1
d

∑
λ∈Λ(d)

‖λ‖2
g√P(λ)
g√P(Λ(d))

≤ 1
d
E‖U‖2 ≤

(
1 + ε(d)

1− ε(d)

)
1
d

∑
λ∈Λ(d)

‖λ‖2
g√P(λ)
g√P(Λ(d))

. (106)

Now, Lemma 6 from [20] shows that as d→∞, the term 1
d

∑
λ∈Λ(d) ‖λ‖2

g√P(λ)
g√P(Λ(d)) converges to P, provided

εΛ(d)(
√
P/2) → 0. Therefore, if both ε(d) and εΛ(d)(

√
P/2) tend to 0 as d → ∞, then the average transmit

power per dimension converges to P.

Appendix H: Proof of Lemma 23

Recall that for t ∈ {1, 2, . . . , N}, Θk,t was defined to be the set {Jk, Jk−1,Wk[2m + k − 1] : 1 ≤ m ≤ t}.

Making repeated use of the chain rule of mutual information (see e.g., [7]), we see that

I(X1, . . . , XN ; Θk,N ) =
N∑
t=1
I(Xt; Θk,N

∣∣X1, . . . , Xt−1)

=
N∑
t=1

[
I(Xt; Jk, Jk−1

∣∣X1, . . . , Xt−1) +
N∑
n=1
I(Xt;Wk[2n+ k − 1]

∣∣X1, . . . , Xt−1,Θk,n−1)
]

=
N∑
t=1

N∑
n=1
I(Xt;Wk[2n+ k − 1]

∣∣X1, . . . , Xt−1,Θk,n−1), (107)

where the last step follows from the fact that I(Xt; Jk, Jk−1
∣∣X1, . . . , Xt−1) = 0 for 1 ≤ t ≤ N , since

the messages and the jamming signals are independent. We first show that conditioned on X1, . . . , Xt−1,

the message Xt depends only on the vector received in the (2t + k − 1)st phase, Wk[2t + k − 1], and is

independent of the rest of the terms in Θk,N . We do this in two steps. First, we make the observation that

when conditioned on the first t−1 messages, Xt does not depend on the variables obtained by the kth relay

in the first 2t + k − 2 phases. We then prove that when conditioned on X1, X2 . . . , Xt−1, the message Xt

is independent of everything received after the (2t + k − 1)st phase. In proving the following propositions,

we make use of the fact that if X,Y, and Z are random variables distributed over a finite group G, with X

being uniformly distributed over G and independent of (Y,Z), then X ⊕ Y is uniformly distributed over G

and independent of Z.

Proposition 31. Let 1 ≤ t ≤ N , and n, l ∈ {1, 2, . . . , t}. Then, the message Xt is conditionally independent

of Θk,n−1 given X1, X2, . . . , Xl−1.

Proof: From (58), for any 1 ≤ m ≤ N , we have Wk[2m+k−1] = Vk−1[2m+k−1] +Vk+1[2m+k−1].

From (57), we know that Vk−1[2m + k − 1] = E
(
(⊕mp=1Xp) ⊕ Jk+m−1

)
, so that Vk−1[2m + k − 1] is a
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function of X1, . . . , Xm and Jk+m−1. Similarly, Vk+1[2m+ k− 1], is a function of X1, . . . , Xm−1 and Jk+m.

Therefore, for n ∈ {1, 2, . . . , N}, Θk,n−1 consists of random variables which are all functions of X1, . . . , Xn−1

and Jk−1, . . . , Jk+n−1, which are all independent of Xt for n ≤ t (even when conditioned on the first l−1 < t

messages). Therefore, for all n, l ≤ t, Θk,n−1 and Xt are conditionally independent given X1, . . . , Xl−1.

The following proposition says that for n > t, Wk[2n+ k− 1] gives no information about the message Xt

even when conditioned on the information obtained in the past.

Proposition 32. Let 1 ≤ t < n ≤ N .The vector Wk[2n+k−1] received by the kth relay in the (2n+k−1)st

phase is independent of X1, . . . , Xt and Θk,n−1.

Proof: From Proposition 31 and the fact that the messages are independent, we have for all t < n, that

Xn is independent of Θk,n−1 and X1, . . . , Xt. Furthermore, since Xn is uniformly distributed over G(d), the

term (⊕np=1Xp ⊕ Jk+n−1), and hence, Vk−1[2n+ k − 1] is independent of Θk,n−1 and X1, . . . , Xt.

A similar observation that Jk+n is independent of Θk,n−1 and X1, . . . , Xt, tells us that ⊕n−1
p=1Xp ⊕ Jk+n,

and hence, Vk+1[2n + k − 1] is also independent of Θk,n−1 and X1, . . . , Xt. Therefore, Wk[2n + k − 1] is

independent of Θk,n−1 and X1, . . . , Xt.

We now evaluate the terms in (107). We can write

I(Xt;Wk[2n+ k − 1]
∣∣X1, . . . , Xt−1,Θk,n−1) = H(Xt

∣∣X1, . . . , Xt−1,Θk,n−1)−H(Xt

∣∣X1, . . . , Xt−1,Θk,n).

From Proposition 31, we have for all t > n, H(Xt

∣∣X1, . . . , Xt−1,Θk,n) = H(Xt

∣∣X1, . . . , Xt−1,Θk,n−1) =

H(Xt). Therefore,

I(Xt;Wk[2n+ k − 1]
∣∣X1, . . . , Xt−1,Θk,n−1) = 0 (108)

for all 1 ≤ n < t ≤ N . Using Proposition 32, for all n > t, H(Wk[2n + k − 1]
∣∣X1, . . . , Xt−1,Θk,n−1) =

H(Wk[2n+ k − 1]
∣∣X1, . . . , Xt,Θk,n−1) = H(Wk[2n+ k − 1]), and hence

I(Xt;Wk[2n+ k − 1]
∣∣X1, . . . , Xt−1,Θk,n−1) = 0 (109)

for all 1 ≤ t < n ≤ N . Therefore, (107) reduces to

I(X1, . . . , XN ; Θk,N ) =
N∑
t=1
I(Xt;Wk[2t+ k − 1]

∣∣X1, . . . , Xt−1,Θk,t−1). (110)

The mutual information I(Xt;Wk[2t+k−1]
∣∣X1, . . . , Xt−1,Θk,t−1) can be written in terms of conditional

entropies as

I(Xt;Wk[2t+ k − 1]
∣∣X1, . . . , Xt−1,Θk,t−1) = H(Wk[2t+ k + 1]

∣∣X1, . . . , Xt−1,Θk,t−1)

−H(Wk[2t+ k + 1]
∣∣X1, . . . , Xt,Θk,t−1). (111)

Let us evaluate each of the terms on the right hand side. Consider the second term,

H(Wk[2t+ k + 1]
∣∣X1, . . . , Xt,Θk,t−1) ≥ H(Wk[2t+ k + 1]

∣∣X1, . . . , Xt,⊕tp=1Xp ⊕ Jk+t−1,Θk,t−1)

= H(Wk[2t+ k + 1]
∣∣⊕tp=1 Xp ⊕ Jk+t−1) (112)
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The first step is true because conditioning reduces entropy. The second step requires more justification. We

have Wk[2t+ k− 1] = Vk−1[2t+ k− 1] + Vk+1[2t+ k− 1], where Vk−1[2t+ k− 1] = E(⊕tp=1Xp ⊕ Jk+t−1),

and Vk+1[2t+k−1] = E(⊕t−1
p=1Xp⊕Jk+t). Given ⊕tp=1Xp⊕Jk+t−1, the term Vk−1[2t+k−1] is independent

of X1, . . . , Xt,Θk,t−1. The jamming signal, Jk+t is independent of Θk,t−1 (since all the terms in Θk,t−1

depend only on the first k + t− 1 jamming signals), all the first t messages, and ⊕tp=1Xp ⊕ Jk+t−1. Hence,

Vk+1[2t + k − 1] is also independent of Θk,t−1, the first t messages and ⊕tp=1Xp ⊕ Jk+t−1, thus justifying

(112).

Define X := ⊕tp=1Xp ⊕ Jk+t−1, and Y := ⊕t−1
p=1Xp ⊕ Jk+t. Recall that E(X) denotes the encoded form of

X, i.e., E(X) is a random variable distributed over Λ(d) according to (40). Then, we have,

H(Wk[2t+ k + 1]
∣∣X1, . . . , Xt,Θk,t−1) ≥ H(E(X) + E(Y )

∣∣X),

From Proposition 32, the first term of (111),H(Wk[2t+k+1]
∣∣X1, . . . , Xt−1,Θk,t−1) = H(Wk[2t+k+1]). This,

in turn, is equal to H (E(X) + E(Y )). Therefore, I(Xt;Wk[2t+k−1]
∣∣X1, . . . , Xt−1,Θk,t−1) is bounded above

by I(X; E(X) + E(Y )), and the random variables X and Y are independent and uniformly distributed over

G(d). From Theorem 19 and Lemma 18, I(X; E(X)+E(Y )) is upper bounded by ε(d) (log2 |G(d)| − log2 ε
(d)).

Substituting this in (110), the lemma follows.
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