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Abstract

In this paper, we study stopping sets in LDPC codes arising from 2-designs, of which codes

derived from projective and euclidean geometries are a subset. The size of the smallest stopping set

in LDPC codes helps in analyzing the performance of such codes under iterative decoding, just as

minimum distance helps in analyzing their performance under maximum likelihood decoding. We

derive upper and lower bounds on the size of the smallest stopping sets in such codes, and provide

examples of codes that actually achieve these bounds.

1 Introduction

Recently, a number of constructions of low-density parity check (LDPC) codes based on finite geometries
and combinatorial designs have appeared in the literature, starting with the work of Kou et al [1]. These
constructions are interesting and useful because they are based on a structured, geometric approach,
and yield codes with relatively good minimum distance properties. Furthermore, these codes can be
encoded with low complexity and perform very well with iterative decoding. However, there is no real
understanding of why these structured LDPC codes perform as well as they do with iterative decoding.

A first step in the process of analyzing the performance of such codes is to study their performance
over the binary erasure channel (BEC). As has been shown by Di et al [2], the performance of LDPC
codes over the BEC is determined by certain combinatorial objects called stopping sets. A stopping
set S in an LDPC code is a subset of the variable nodes of the associated Tanner graph such that all
neighbors of S are connected to S at least twice. The size of the smallest stopping set in an LDPC code
plays a role in understanding the performance of the code with iterative decoding over the BEC akin to
the role played by the minimum distance of the code in understanding the performance of the code with
maximum likelihood decoding over a binary symmetric channel.

In this paper, we study stopping sets in LDPC codes arising from 2-designs, of which the finite-
geometry codes of Kou et al are a subset. In particular, we derive upper and lower bounds on the size
of the smallest stopping sets, and provide examples of codes that actually achieve these bounds.

Since the study of stopping sets is essentially combinatorial in nature, our approach involves design
theory only, and we have chosen to write this paper from a design theory viewpoint. Thus, instead
of studying stopping sets in codes derived from designs, we define and analyze an equivalent notion
of stopping sets in the underlying design. We have tried to make this exposition as self-contained as
possible, assuming only the definition and standard notation of t-(v, k, λ) designs (cf. [3], Chap. 19).

The structure of the paper is as follows. In Section 2, we introduce the definitions and notation used
in the later sections. Section 3 develops a lower bound for the size of the smallest stopping set in a
2-design. In Section 4, we provide examples of 2-designs that have stopping sets whose size achieves the
lower bound. Finally, in Section 5, we present a general construction of stopping sets in 2-designs, which
yields an upper bound to the size of the smallest stopping set.

2 Definitions and Notation

Definition 1 (2-Design) A 2-(v, k, λ) design is an incidence structure (P,B, I) of a set of points P,
a set of blocks B, and an incidence relation I ⊂ P × B, with the following properties:
(i) |P| = v,

1Originally written in September 2003; fiddled with several times thereafter. This work was supported by a research
grant from Applied Micro Circuits Corporation, San Diego, CA. Parts of this work were presented at the 2003 IEEE
International Symposium on Information Theory (ISIT’03), Yokohama, Japan.
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(ii) |B| = k for each B ∈ B, and
(iii) for any set T ⊂ P with |T | = 2, there are exactly λ blocks incident with all points in T , i.e.,
|{B ∈ B : (p,B) ∈ I ∀ p ∈ T}| = λ.

The number of blocks in a design is conventionally denoted by b, and the number of blocks incident
with an arbitrary point is denoted by r (r is called the replication number).

We shall only be dealing with simple 2-designs, i.e., those without repeated blocks, so we can consider
blocks to be subsets of P. As a result, we shall often say that the point p is ‘contained in’ block B,
instead of ‘incident with’ block B. Also, given a set of blocks Σ ⊂ B in a design, we shall sometimes be
a little loose in our language by writing “a point in Σ” when we mean a point contained in some block
in Σ (i.e., a point in

⋃

B∈ΣB), if this does not create any ambiguity.
For 2-designs, the following relations hold for the parameters v, k, λ, b, r:

bk = vr (1)

λ(v − 1) = r(k − 1) (2)

The incidence matrix of a design is a v× b (0, 1)-matrix N , the rows of which represent the points of
the design and the columns represent the blocks of the design. The (i, j)-th entry in N is a one if and
only if the ith point is contained in the jth block. Given a design D, we may associate a linear code C
(over F2) with it, whose parity check matrix is the incidence matrix, N , of D. To be precise, the code
C ⊂ F2

b associated with D is the nullspace, over F2, of N .
In this paper, we are concerned with special structures called stopping sets that exist within designs.

Definition 2 (Stopping Set) A set Σ = {B1, B2, . . . , Bs} of blocks in a design D is defined to be a
stopping set if for each point p ∈

⋃s

i=1Bi, the set Σp = {Bi ∈ Σ : p ∈ Bi} has cardinality at least 2.

Note that this definition allows the empty set ∅ to be a stopping set, but we shall only be concerned
with non-empty stopping sets. We shall denote by smin or smin(D) the smallest size of a (non-empty)
stopping set in D. Stopping sets of size smin will be called minimal stopping sets.

Clearly, the stopping sets in a design D correspond precisely to the stopping sets in the associated
code C. Furthermore, since (the support of) any codeword of weight w in C is a stopping set of size w in
C, and hence in D, it follows that dmin(C) ≥ smin(D), where dmin(C) denotes the minimum distance of C.

3 Lower Bound for smin

Note that the above definition of a stopping set remains valid for any incidence structure consisting of
points and blocks. The following theorem provides a lower bound on the size of stopping sets in a fairly
general kind of incidence structure.

Theorem 1 Let S be an incidence structure of points and blocks such that each block contains exactly
k points, and each pair of distinct blocks intersects in at most γ points. If Σ is a stopping set in S, then
|Σ| ≥ k

γ
+ 1.

Proof : Let Σ be a stopping set containing s blocks in S, and let n be the total number of points in
⋃

B∈Σ. We shall count, in two different ways, pairs (p,B) with B ∈ Σ and p ∈ B. There are n points in
⋃

B∈Σ, and each point is in at least two blocks B ∈ Σ by definition of a stopping set. Hence, the total
number of such pairs (p,B) is at least 2n.

On the other hand, there are s blocks in Σ and each block contains k points. So, there are ks such
pairs (p,B), and hence ks ≥ 2n.

Now, by the inclusion-exclusion principle,

n ≥ ks−
∑

B,B′∈Σ, B 6=B′

|B ∩B′|

≥ ks−

(

s

2

)

γ
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the second inequality arising from the fact that any two blocks of S meet in at most γ points.
Therefore, we have ks ≥ 2

(

ks−
(

s
2

)

γ
)

, from which we obtain s ≥ k
γ

+ 1.

The following corollary restricts the result of the above theorem to stopping sets in 2-(v, k, 1) designs.

Corollary 2 Let Σ be a stopping set in a 2-(v, k, 1) design D. Then, |Σ| ≥ k + 1 with equality only if
each point in Σ is incident with exactly 2 blocks in Σ.

Proof : In a 2-(v, k, 1) design, any two blocks meet in at most one point, so the bound of the above
theorem applies with γ = 1. To obtain the necessary condition for equality, we note that in the proof of
the theorem, the inequality ks ≥ 2n holds with equality only if each point in Σ is contained in exactly 2
blocks in Σ.

Thus, for a 2-(v, k, 1) design, smin ≥ k + 1. We shall show later that there do exist families of 2-
(v, k, 1) designs for which smin = k + 1. However, before doing so, we provide a useful characterization
of precisely when a set of k + 1 blocks can form a stopping set in a 2-(v, k, 1) design.

Lemma 3 Let Σ be a set of k + 1 blocks in a 2-(v, k, 1) design. Then, the following statements are
equivalent:
(a) Σ is a stopping set.
(b) Each point in Σ belongs to exactly two blocks in Σ.
(c) The blocks in Σ altogether contain exactly

(

k+1
2

)

points.

Proof : It is clear that the statements (a) and (b) are equivalent since (a) ⇒ (b) is the necessary
condition for equality in Corollary 2, and (b) ⇒ (a) follows from the definition of a stopping set. We
shall now show that (b) and (c) are equivalent as well.

(b) ⇒ (c): Suppose that each point in Σ belongs to exactly 2 blocks in Σ. If we list out all the points
contained in the blocks of Σ, then each point is listed exactly twice. Since there are k + 1 blocks in Σ
and k points in each block, there are precisely (k + 1)k/2 points in Σ.

(c) ⇒ (b): Suppose that the total number of points contained in the blocks of Σ is
(

k+1
2

)

. Let

Σ = {B1, B2, . . . , Bk+1}. By the inclusion-exclusion principle, the number of points in
⋃k+1

i=1 Bi is at
least (k + 1)k −

∑

i<j |Bi ∩Bj |. Hence, we have

(

k + 1

2

)

≥ (k + 1)k −
∑

i<j

|Bi ∩Bj |

≥ (k + 1)k −

(

k + 1

2

)

=

(

k + 1

2

)

the second inequality above following from the fact that any two blocks in a 2-(v, k, 1) design intersect in
at most one point. Thus, all the above inequalities are in fact equalities. Now, the first inequality can be
an equality only if all triple intersections Bi ∩ Bj ∩ Bk of distinct blocks Bi, Bj , Bk ∈ Σ are empty. So,
any point in Σ is contained in at most two blocks in Σ. The second inequality above can be an equality
only if |Bi ∩Bj | = 1 for all pairs of distinct blocks Bi, Bj ∈ Σ. So, any two distinct blocks in Σ meet in
exactly one point.

Thus, we can define a mapping ψ that uniquely assigns a point in Σ to each pair of distinct blocks
Bi, Bj ∈ Σ, via ψ(Bi, Bj) = Bi ∩Bj . This mapping is injective as no point can belong to more than two

blocks, and is also surjective because the number of pairs of distinct blocks in Σ is
(

k+1
2

)

, which is the
same as the number of points in Σ. Hence, each point in Σ belongs to precisely two blocks in Σ.

In design theory, a set of l blocks containing a total of p points is referred to as a (p, l) configuration.
So, the above lemma shows that in a 2-(v, k, 1) design, stopping sets of size k + 1 are precisely the
(
(

k+1
2

)

, k + 1) configurations. Thus, we have the following corollary to Theorem 1.

Corollary 4 For a 2-(v, k, 1) design D, smin(D) = k + 1 if and only if D contains a (
(

k+1
2

)

, k +
1) configuration. Moreover, if smin(D) = k + 1, then the minimal stopping sets are precisely all the
(
(

k+1
2

)

, k + 1) configurations.

3



In a Steiner triple system, STS(v) (i.e., a 2-(v, 3, 1) design), a (6, 4) configuration is known as a
Pasch configuration (cf. [4], Chap. 13). So, for an STS(v), smin = 4 if and only if it contains a Pasch
configuration. Since a (

(

k+1
2

)

, k+ 1) configuration in a 2-(v, k, 1) design generalizes the notion of a Pasch
configuration, we shall give it the name generalized Pasch configuration (GPC).

As noted in Section 2, if C is the linear code associated with a design D, then any codeword of
weight w in C gives rise to a stopping set of size w in D, and hence dmin(C) ≥ smin(D). In particular, if
dmin(C) = k + 1, then Corollary 2 shows that smin(D) = k + 1 as well.

The converse may not be true, that is, stopping sets of D may not always arise from codewords in
C. However, the converse does hold for stopping sets of size k+ 1 in 2-(v, k, 1) designs. Indeed, let N be
the incidence matrix of a 2-(v, k, 1) design D. If Σ is a stopping set of size k+ 1 in D, then let x ∈ F

b
2 be

such that the support of x corresponds exactly to the columns of N that represent the blocks in Σ. It
follows from the equivalence of (a) and (b) in Lemma 3 that Nx

T = 0 (mod 2), which shows that x ∈ C.
Hence, if smin(D) = k + 1, then we must also have dmin(C) = k + 1, since the x constructed above is a
codeword of weight k + 1. We have thus proved the following result.

Lemma 5 Let C be the code whose parity check matrix is the v×b incidence matrix of a 2-(v, k, 1) design
D. Then, the number of codewords of weight k + 1 in C is equal to the number of stopping sets of size
k + 1 in D. Hence, dmin(C) = k + 1 if and only if smin(D) = k + 1.

4 Designs Achieving Lower Bound

Two important families of 2-(v, k, 1) designs are projective planes and affine planes. These provide
examples of designs where the minimal stopping set size is k+ 1, and also examples of designs which do
not contain any stopping set of size k + 1.

Definition 3 (Projective and Affine Planes) A projective plane of order q is a 2-(q2 + q+ 1, q+
1, 1) design, while an affine (or euclidean) plane of order q is a 2-(q2, q, 1) design.

In the language commonly used in the context of projective and affine planes (cf. [3], Chap. 19 or [5],
Appendix B), blocks of the design are referred to as lines. From equations (1) and (2), we find that in a
projective plane of order q, there are q2 + q+ 1 points and q2 + q+ 1 lines, each line contains q+ 1 points
and each point lies on q + 1 lines. It is a fact that any two distinct lines in a projective plane intersect
at a unique point. Thus, if N is the (square) incidence matrix of a projective plane, Π, of order q, then
NT is also the incidence matrix of a “dual” projective plane, ΠT , of order q. The points and lines of Π
have their roles reversed in ΠT .

In an affine plane of order q, there are q2 points and q(q + 1) lines. Each line contains q points and
each point lies on q + 1 lines. The q(q + 1) lines in the affine plane fall into q + 1 “parallel classes”,
each containing q lines. The lines in a parallel class are mutually disjoint (hence the name). It is worth
observing that if we delete a line and all the points on it from a projective plane of order q, we obtain an
affine plane of order q. In fact, the converse also holds: given an affine plane, A, of order q, there exists
a projective plane, Π, of order q such that A can be obtained from Π by deleting a suitable line and all
the points on it. Such a projective plane Π can be constructed as follows: first, enlarge the affine plane
A by adding q+ 1 points to it, in one-to-one correspondence with the q+ 1 parallel classes, and defining
each new point to be incident with all the q lines in the corresponding parallel class. Then, add a new
line l∞ that is defined to be incident with all the new points. The resulting structure is a projective
plane of order q, and by deleting the line l∞ along with all the points on it, we obtain the original affine
plane A. Thus, an affine plane of order q exists if and only if a projective plane of order q exists.

The most important construction of a projective plane is that of the desarguesian plane PG(2, q) for q
a prime power. This is obtained by considering the vector space F

3
q over the finite field Fq, and taking P

to be the set of all 1-dimensional subspaces and B to be the set of all 2-dimensional subspaces of F
3
q. If a

1-dimensional subspace is contained in a 2-dimensional subspace, then we say that the two are incident.
All the affine planes obtained by deleting a line from PG(2, q) are isomorphic. This affine plane is

called the desarguesian affine plane AG(2, q). Another contruction of AG(2, q) is obtained by considering
the vector space F

2
q over Fq, and taking P to be the set of points of F

2
q and B to be the set of lines

(1-dimensional affine subspaces) in F
2
q .
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A generalized Pasch configuration (GPC) in a projective plane, Π, of order q is the dual of a config-
uration called a hyperoval in the dual plane ΠT .

Definition 4 (Hyperoval) A hyperoval in a projective plane of order q is a set, O, of q + 2 points
with the property that any line that meets O meets it in exactly two points.

From the above definition and the equivalence of statements (b) and (c) in Corollary 2, we see that
GPC’s in Π are in one-to-one correspondence with hyperovals in ΠT . The following well-known fact
about hyperovals, whose proof we include for completeness, shows that a projective plane of odd order
q cannot contain a GPC, or equivalently, a stopping set of size q + 2. Thus, for such a projective plane,
smin ≥ q + 3.

Lemma 6 If a projective plane of order q contains a hyperoval, or equivalently, a GPC, then q must be
even.

Proof : Let O be a hyperoval in a projective plane of order q, and let p′ be a point not in O. Let
L be the set of lines through p′ that meet O. We shall count, in two different ways, the total number
of pairs (p, L) such that L ∈ L and p ∈ O is incident with L. For any p ∈ O, there exists exactly
one line L that contains both p and p′. Hence, there are exactly q + 2 such pairs (p, L). On the other
hand, since each L ∈ L meets O, it must meet it in exactly two points by the definition of a hyperoval.
Hence, the number of such (p, L) pairs is 2|L|. So, we must have q+2 = 2|L|, which shows that q is even.

An easy consequence of the above lemma is that an affine plane, A, of odd order q cannot contain a
GPC (i.e., a stopping set of size q + 1) as well, so that smin(A) ≥ q + 2.

Corollary 7 If an affine plane of order q contains a GPC, then q must be even.

Proof : Suppose that A is an affine plane of order q that contains a GPC, Σ. So, Σ is a set of q + 1
lines that contain a total of

(

q+1
2

)

points. Recall that we can construct a projective plane, Π, of order
q from A by adjoining q + 1 new points to A, along with a new line l∞ containing all the new points.
Defining Σ′ = Σ ∪ l∞, we see that Σ′ is a set of q + 2 lines containing a total of

(

q+1
2

)

+ q + 1 =
(

q+2
2

)

points. So, Σ′ is a GPC in Π, and hence q must be even.

Among projective and affine planes of even order, we restrict our attention to the desarguesian planes
PG(2, 2s) and AG(2, 2s) for some integer s > 0. It is easily seen that any PG(2, q) is isomorphic to
its dual PG(2, q)T , via the isomorphism induced by associating subspaces V of F

3
q with their duals

V ⊥ = {x ∈ F
3
q : x · y = 0 ∀ y ∈ V }. As a result, the GPC’s in PG(2, q) are in one-to-one correspondence

with the hyperovals in PG(2, q). Furthermore, a GPC in PG(2, q) (if it exists) induces a GPC in AG(2, q),
as shown below.

Lemma 8 If a GPC exists in PG(2, q), then one exists in AG(2, q) as well.

Proof : Let Σ be a GPC in PG(2, q). Recall that AG(2, q) can be obtained by deleting any line in
PG(2, q) along with all the points on that line. In particular, deleting some l ∈ Σ yields AG(2, q) and
Σ′ = Σ \ {l} is a GPC in AG(2, q).

Thus, in order to show the existence of GPC’s in PG(2, q) and AG(2, q), it suffices to show that
hyperovals exist in PG(2, q). Indeed, several constructions of hyperovals are known [6] in PG(2, q), with
q = 2s. The simplest of these is the hyperoval consisting of the q + 2 points 〈(0, 0, 1)〉, 〈(0, 1, 0)〉 and
〈

(1, x, x2)
〉

, x ∈ Fq, where 〈(a, b, c)〉 denotes the one-dimensional subspace of F
3
q spanned by (a, b, c).

Thus, we have the following theorem.

Theorem 9 When q = 2s, the projective plane PG(2, q) and the affine plane AG(2, q) both contain
GPC’s. Consequently, smin(PG(2, q)) = q + 2 and smin(AG(2, q)) = q + 1.

Actually, we can also obtain the above theorem from Lemma 5, as it is known (see eg. [1]) that the
minimum distance of the code derived from PG(2, 2s) is 2s + 2, and the minimum distance of the code
derived from AG(2, 2s) is 2s + 1.
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5 Upper Bounds for smin

Explicit constructions of stopping sets in a 2-(v, k, 1) design, D, give us upper bounds for smin(D). We
present a method of constructing stopping sets that yields reasonably good upper bounds.

We introduce some notation first. If P ⊂ P is a set of points in a design D = (P,B, I), we denote by
ΣP the set of blocks incident with at least one point in P , and by ΣP the set, B \ ΣP , of blocks disjoint
from P . The following theorem shows that for a suitable choice of P in a 2-(v, k, 1) design, ΣP is a
stopping set. Recall that r denotes the number of blocks incident with an arbitrary point in a design.

Theorem 10 Let D be a 2-(v, k, 1) design, and let P be a set containing at most r − 2 points of the
design. Then, ΣP is a stopping set.

Proof : Let P be a set of m ≤ r− 2 points in D. We shall show that any point in ΣP can be incident
with at most m blocks in ΣP . Since each point in D is incident with r blocks, this shows that each point
in ΣP must be incident with at least r −m ≥ 2 blocks in ΣP , so that ΣP is a stopping set.

Suppose, to the contrary, that some point, p, in ΣP is incident with m + 1 blocks in ΣP . Let
B1, B2, . . . , Bm+1 be these blocks. Being in ΣP , each Bi, 1 ≤ i ≤ m + 1, contains a point in P . Since
P has m points and there are m + 1 blocks Bi, by the pigeon-hole principle, there exists a p′ ∈ P such
that p′ is contained in two of the blocks Bi, 1 ≤ i ≤ m + 1. Hence, there are two blocks in ΣP that
contain both the points p and p′, contradicting the fact that in a 2-(v, k, 1) design, each pair of points
is incident with exactly one block. Therefore, each point in ΣP can be incident with at most m blocks
in ΣP , thus proving the theorem.

Remark : The above theorem also holds for more general kinds of incidence structures. For the result
of the theorem to be valid, it is enough for the incidence structure to be such that each point belongs to
at least r blocks and each pair of points belongs to at most one block.

To make good use of Theorem 10 to derive upper bounds on smin, the set of points P need to be
chosen in such a way as to make ΣP large. For example, the following bound is useful in some situations.

Corollary 11 In a 2-(v, k, 1) design, smin ≤ b− (r − 1) min(k, r − 2) − 1.

Proof : Let m = min(k, r − 2). Pick any block B from the design, and let P be any m-subset of B.
Since ΣP is a stopping set by Theorem 10, it suffices to show that |ΣP | = b−m(r−1)−1, or equivalently,
|ΣP | = m(r − 1) + 1. Note that each of the m points in P belongs to r − 1 blocks other than B, and
all these blocks are distinct since no two blocks can contain the same pair of points. Thus, P meets
m(r − 1) blocks distinct from B. Thus, ΣP consists of B and m(r − 1) blocks distinct from B, and the
result follows.

For a projective plane, Π, of order q, the above corollary shows that smin(Π) ≤ 2q, and for an affine
plane, A, of order q, we have smin(A) ≤ 2q−1. Comparing these bounds with the lower bounds obtained
in the previous section for planes of odd order, we see that the upper bounds differ from the lower bounds
roughly by a factor of 2. For q = 3, however, these bounds actually meet, and hence we find that smin = 6
for a projective plane of order 3, and smin = 5 for an affine plane of order 3.

The bound in Corollary 11 is reasonable when r − 2 ≤ k. However, if r − 2 > k, then there is much
room for improvement in the way the set, P , of points was picked in the proof of the bound. For example,
it may be verified that for r > 2k, the following bound is better than that of Corollary 11.

Corollary 12 In a 2-(v, k, 1) design, smin ≤ b− (r + 3)(r − 2)/2.

Proof : Let P be any set of r−2 points. By the inclusion-exclusion principle, |ΣP | ≥ r(r−2)−
(

r−2
2

)

=
(r − 2)(r + 3)/2. The result now follows from Theorem 10.

Stopping Sets in Projective Planes

This section contains a compilation of results on stopping sets in projective planes.
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Theorem 13 If a projective plane of order q contains a stopping set of size q + 3, then 3|q.

Proof : Let Σ be a stopping set of size q + 3 in a projective plane, Π, of order q, and let L =
{p1, p2, . . . , pq+1} be an arbitrary line (block) in Σ. For each pi ∈ B, there exists a line Li ∈ Σ, Li 6= L
such that pi ∈ Li. These Li’s are all distinct, for if Li = Lj for some i 6= j, then pi, pj would be a pair of
points belonging to the two lines L and Li. Thus, Σ contains the q + 2 distinct lines {L,L1, . . . , Lq+1}.
Since |Σ| = q+ 3, there is one other line, Lq+2, in Σ. Since any two lines in Π must intersect at precisely
one point, Lq+2 intersects L at, say, p1. Thus, p1 belongs to exactly three lines in Σ, namely, L, L1 and
Lq+1, while each of the remaining points pj ∈ L belongs to exactly two lines — L and Lj .

Since L is arbitrary, this shows that each line L in Σ contains exactly one point that belongs to
exactly three lines in Σ, while each of the remaining q points in L belongs to exactly two lines in Σ.

Let P be the set of points in Σ that are incident with three lines in Σ. We shall count, in two different
ways, pairs (p, L) with p ∈ P ∩ L and L ∈ Σ. Since each L ∈ Σ contains precisely one point in P , there
are |Σ| = q + 3 such pairs. On the other hand, each p ∈ P belongs to three L’s in Σ, so that there are
3|P | such (p, L) pairs. We thus have 3|P | = q + 3, which proves the result.

Note that by the above result, PG(2, 2s) cannot contain any stopping set of size 2s + 3. Theorem 13
should be compared with the fact (cf. Lemma 6) that a projective plane of order q contains a stopping
set of size q + 2 only if 2|q. It is tempting to conjecture that stopping sets of size q + n exist only if n|q,
but this is not true since PG(2, 7) contains a stopping set of size 12, as we shall see later.

Theorem 14 A projective plane of odd order q cannot contain a stopping set of size q + 4.

Proof : Suppose that Σ is a stopping set of size q + 4 in a projective plane, Π, of odd order q. Let
L = {p1, p2, . . . , pq+1} be an arbitrary line in Σ, and for 1 ≤ i ≤ q + 1, pick an Li ∈ Σ, Li 6= L, such
that pi ∈ Li. Note that each pi is incident with exactly two of the lines in the set L = {L,L1, . . . , Lq+1}.
The set L accounts for q + 2 of the lines in Σ, leaving two other lines Lq+2 and Lq+3. Now, either Lq+2

and Lq+3 meet L at the same point or they meet L at distinct points. In the former case, L contains
exactly one point that is incident with four lines in Σ (Lq+2, Lq+3 and two lines from L), while each of
the remaining q points in L is incident with only two lines in Σ. If Lq+2 and Lq+3 meet L at distinct
points, then L contains precisely two points incident with exactly three lines in Σ, while each of the
remaining q − 1 points in L is incident with only two lines in Σ.

Thus, each point in Σ is incident with either 2, 3 or 4 lines in Σ. For i = 2, 3, 4, let Pi be the set of
all points in Σ that belong to exactly i lines in Σ. Note that as shown above, any L ∈ Σ satisfies one of
the following: (i) L contains 1 point from P4 and q points from P2; or (ii) L contains 2 points from P3

and q − 1 points from P2.
We shall count, in two different ways, pairs (p, L) with L ∈ Σ and p ∈ L ∩ P3. Since for each p ∈ P3,

there are exactly 3 lines in Σ containing p, the number of such pairs is precisely 3|P3|. On the other
hand, any L ∈ Σ contains at most two points from P3, so that the number of such (p, L) pairs is at most
2|Σ| = 2(q + 4). We thus have 3|P3| ≤ 2(q + 4) from which we obtain

|P3| ≤
2

3
(q + 4) (3)

Now, let Σ be the set of blocks of Π that are not in Σ. Fix an arbitrary L ∈ Σ, and let xi, i = 2, 3, 4,
be the number of points in L that are in Pi. Counting, in two different ways, pairs (p, L) such that L ∈ Σ
and p ∈ L ∩ L, we find that 2x2 + 3x3 + 4x4 = q + 4. Since q is odd, we must have x3 6= 0. In other
words, L contains a point from P3. Since L is an arbitrary line in Σ, we see that P3 meets every line in
Σ.

By definition, each p ∈ P3 is incident with exactly 3 lines in Σ, and hence, each p ∈ P3 is incident
with exactly q+1−3 = q−2 lines in Σ. Thus, P3 can meet at most |P3|(q−2) lines in Σ. Since P3 meets
every line in Σ, it follows that |Σ| ≤ |P3|(q− 2). Hence, applying (3), we find that |Σ| ≤ 2

3 (q+ 4)(q− 2).
But now, we have

q2 + q + 1 = |Σ| + |Σ| ≤ q + 4 +
2

3
(q + 4)(q − 2)

which upon some re-arrangement yields (q − 2)2 + 3 ≤ 0, which is absurd.
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It should be noted that the statements of Theorems 13 and 14 are valid for any projective plane,
not just for the desarguesian planes PG(2, q). These results yield an improved lower bound on smin for
projective planes of odd order. Specifically, Lemma 6, along with Theorems 13 and 14, show that if Π
is a projective plane of odd order q such that q is not divisible by 3, then smin(Π) ≥ q + 5. This is
sufficient to determine smin for PG(2, 5), which happens to be the unique projective plane of order 5. As
5 is odd and not divisible by 3, smin(PG(2, 5)) ≥ 10. But, on the other hand, for a projective plane, Π,
of order q, we saw earlier (Corollary 11) that smin(Π) ≤ 2q. Therefore, smin(PG(2, 5)) ≤ 10, implying
that smin(PG(2, 5)) = 10.

Similarly, for PG(2, 7), we have the lower bound smin(PG(2, 7)) ≥ 12, and in fact, by means of a
computer search, we can show that a stopping set of size 12 does indeed exist in PG(2, 7). Thus, we have
smin(PG(2, 7)) = 12.

It becomes harder to use the techniques used in this section to prove other non-existence results along
the lines of Theorems 13 and 14. However, there is one other useful result that can be squeezed out of
such arguments. Note that a stopping set, Σ, of size s contains one of size s− 1 iff there exists a B ∈ Σ
such that for each point p ∈ B, the set Σp = {Bi ∈ Σ : p ∈ Bi} has cardinality at least 3.

Lemma 15 In a projective plane of order q, a stopping set of size s does not contain stopping sets of
size s− 1, for s ≤ 2q + 2.

Proof : Let Σ be a (non-empty) stopping set of size s ≤ 2q + 2 in a projective plane Π of order q. Let
L = {p1, p2, . . . , pq+1} be an arbitrary line in Σ, and for 1 ≤ i ≤ q + 1, pick an Li ∈ Σ, Li 6= L such
that pi ∈ Li. The Li’s are all distinct, and so the set L = {L,L1, . . . , Lq+1} accounts for q + 2 lines in
Σ. There are s− (q + 2) ≤ q lines in Σ \ L. Thus, the lines in Σ \ L are incident with at most q points
in L, so there exists a point, say, p1 ∈ L, that does not meet any of the lines in Σ \ L. Thus, p1 ∈ L is
incident with exactly one other line in Σ, namely, L1.

Codes from Projective and Affine Planes

The results presented so far show that projective and affine planes of odd order have comparatively
larger smin’s than those of even order. Thus, the linear codes associated with planes of odd order have
better stopping set properties than those associated with planes of even order. Unfortunately, the linear
codes associated with planes of odd order turn out to have poor rates, as we shall show in this section.
On the other hand, it is well known that the codes associated with PG(2, 2s) and AG(2, 2s) have rates
approaching one as s increases.

It should be emphasized that we are only interested in binary codes associated with projective and
affine planes, i.e., the nullspaces over F2 of the incidence matrices of the planes. We could also associate
non-binary codes with these planes by considering the nullspaces over a non-binary field of the incidence
matrices of the planes. Indeed, non-binary codes associated with PG(2, q) and AG(2, q) for odd q may
have good rates (see e.g., [5, Chapter 13, Theorem 13]).

Let Cq be the binary linear code associated with PG(2, q), and let Cq be that associated with AG(2, q).
It is known (again, see e.g., [5, Chapter 13, Theorem 13]) that for q = 2s, Cq is a code of length
q2 + q + 1 = 4s + 2s + 1 and dimension 4s − 3s + 2s, while Cq is a code of length q(q + 1) = 4s + 2s and
dimension 4s − 3s + 2s. Thus, both Cq and Cq have rates approaching one as s increases.

We now provide purely combinatorial derivations of the dimensions of the codes associated with
projective and affine planes of odd order. Thus, the results are not restricted to the desarguesian planes
alone.

Theorem 16 The binary linear code associated with a projective plane of odd order q is the repetition
code of length q2 + q + 1.

Proof : Let Π be a projective plane of odd order q, and let C be the associated binary linear code.
We need to show that C consists of the all-zeros and all-ones codewords alone.

Let N be the incidence matrix of Π. Since each row of N contains q+1 ones, and q+1 is even, the all-
ones word, 1, is in C. Now, suppose that there exists a codeword c ∈ C such that 0 < wH(c) < q2 +q+1,
where wH(c) denotes the Hamming weight of c. We may assume that wH(c) is odd, for otherwise,
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we could consider the codeword 1 ⊕ c instead. So, there exists a set, Σ, of lines in Π such that |Σ| is
odd, 0 < |Σ| < q2 + q + 1, and each point in Π is incident with an even number of lines in Σ. Since
|Σ| < q2 + q+ 1, there exists a line L /∈ Σ. We count, in two different ways, pairs (p, L) such that L ∈ Σ
and p ∈ L ∩ L. Since each L ∈ Σ meets L in a unique point p, there are |Σ| such pairs. On the other
hand, each p ∈ L belongs to an even number of lines in Σ, implying that the number of (p, L) pairs under
consideration is even. Thus, |Σ| must be even, which is a contradiction.

Thus, the binary linear code associated with any projective plane of odd order q has dimension 1,
which shows that the rate of such a code is 1

q2+q+1 . Correspondingly, the rate of a code associated with

an affine plane of odd order q is 1
q+1 , as is clear from the next result.

Theorem 17 The binary linear code associated with an affine plane of odd order q has dimension q.

In what follows, we fix an affine plane, A, of odd order q, and let L1,L2, . . . ,Lq+1 denote the q + 1
parallel classes of A. Furthermore, we denote by C the binary linear code associated with A, and given
a codeword c ∈ C, we let Σc denote the set of lines of A corresponding to the support set of c. Observe
that the all-ones word, 1, is in C, since each row of the incidence matrix of A contains q + 1 ones, and
q + 1 is even. The proof of Theorem 17 relies on the following lemma.

Lemma 18 For each c ∈ C, there exists an I ⊂ {1, 2, . . . , q + 1} such that Σc =
⋃

i∈I Li.

Proof : Fix an arbitrary c ∈ C, and let Σ = Σc. To prove the lemma, it suffices to show that for each
i ∈ {1, 2, . . . , q + 1}, either Li ⊂ Σ or Li ∩ Σ = ∅.

For i = 1, 2, . . . , q+ 1, let xi = |Li ∩Σ|. Suppose that there exists an i such that 0 < xi < q. We first
claim that we may take |Σ| − xi to be odd, for otherwise, we may replace c with the codeword 1 ⊕ c.
Indeed, setting Σ = Σ1⊕c and xi = |Li∩Σ|, i = 1, 2, . . . , q+1, we see that xi = q−xi. Hence, 0 < xi < q
iff 0 < xi < q. Furthermore, |Σ| − xi = q(q + 1) − |Σ| − (q − xi) = q2 − (|Σ| − xi), showing that |Σ| − xi

is even iff |Σ| − xi is odd.
So, we have an i ∈ {1, 2, . . . , q + 1} such that 0 < xi < q and |Σ| − xi is odd. Since xi < q, there

exists an L ∈ Li \ Σ. As usual, we count pairs (p, L) with L ∈ Σ and p ∈ L ∩ L, in two different ways.
If L ∈ Σ ∩ Li, then L and L do not intersect as they belong to the same parallel class. However, if
L ∈ Σ \ Li, then L and L intersect in exactly one point. Thus, the number of (p, L) pairs being counted
is |Σ \ Li| = |Σ| − xi. On the other hand, each p ∈ L is incident with an even number of lines in Σ,
since Σ supports a codeword. Thus, there must be an even number of (p, L) pairs of interest, which
contradicts the fact that |Σ| − xi is odd.

Thus, for each i ∈ {1, 2, . . . , q + 1}, xi = 0 or q, so that either Li ∩ Σc = ∅ or Li ⊂ Σc, which proves
the lemma.

Proof of Theorem 17: We shall show that there exists a bijection between the sets C and E = {I ⊂
{1, 2, . . . , q + 1} : |I| is even}. It follows that |C| = |E| = 2q, and hence, dim(C) = q.

Consider an arbitrary I ⊂ {1, 2, . . . , q + 1} and set LI =
⋃

i∈I Li. Recall that there are q disjoint
lines in a parallel class Li, each containing q points, and so the lines in Li cover all of A, with each
point in A incident with exactly one line in Li. Thus, each point in A is incident with exactly |I| lines
in LI , one from each Li with i ∈ I. Hence, LI = Σc for some c ∈ C iff |I| is even. This fact, in con-
junction with Lemma 18, establishes the required one-to-one correspondence between the sets C and E .

In summary, binary codes associated with projective and affine planes of odd order q have rates
approaching zero as q increases. So, even though such codes have good stopping set properties, they are
not of much practical use.

Enumerating Stopping Sets

Our investigations so far have focused on the issue of existence or non-existence of stopping sets of certain
sizes in a design. A far more difficult problem is one of actually determining the number of stopping sets
of various sizes in a design or its associated code. In other words, given a design, we would ideally like
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to be able to determine its stopping set weight distribution (analogous to the notion of codeword weight
distribution), as this would enable us to analyze the performance of the associated code more precisely.

Definition 5 (Stopping Set Weight Enumerator (SSWE)) The stopping set weight enumerator
of a design D with b blocks is the polynomial

ED(z) =

b
∑

i=0

ei(D) zi,

where ei(D) is the number of stopping sets of size i in D.

Observe that we always have e0(D) = 1, as the empty set is a stopping set, and ei(D) = 0 for
0 < i < smin(D).

In this section, we illustrate the difficult nature of the problem of analytically determining the SSWE
of a design by attempting the computations for two small projective planes, PG(2, 2) and PG(2, 4). For
PG(2, 2s), some of the coefficients ei(PG(2, 2s)) are easily determined, and we list these in the following
lemma.

Lemma 19 Let ei = ei(PG(2, 2s)). Then,

(i) e0 = 1; ei = 0 for 0 < i < 2s + 2;

(ii) for i = 2s + 2, ei is the number of codewords of weight 2s + 2 in the binary linear code associated
with PG(2, 2s);

(iii) for i = 2s + 3, ei = 0;

(iv) for 4s + 2 ≤ i ≤ 4s + 2s + 1, ei =
(

4s+2s+1
i

)

.

Proof : (i) follows from the fact that smin(PG(2, 2s)) = 2s + 2, (ii) from Lemma 5, and (iii) from
Theorem 13. For (iv), we note that any set, Σ, of i lines, 4s + 2 ≤ i ≤ 4s + 2s + 1, forms a stopping set.
This is because any point in PG(2, 2s) belongs to at most 4s + 2s + 1 − i ≤ 2s − 1 lines not in Σ, and
hence to at least 2s + 1 − (2s − 1) = 2 lines in Σ.

The above lemma is enough to completely determine the SSWE for PG(2, 2):

EPG(2,2)(z) = 1 + 7z4 + 7z6 + z7.

Only the fact that e4(PG(2, 2)) = 7 needs some explanation: the code associated with PG(2, 2) is the
[7,3,4] simplex code in which all seven non-zero codewords have weight 4.

In the case of PG(2, 4), Lemma 19 determines the coefficients ei(PG(2, 4)) for 0 ≤ i ≤ 7 and 18 ≤ i ≤
21. The only nontrivial coefficient among these is e6(PG(2, 4)). The code associated with PG(2, 4) is a
[21,11,6] code, which can be shown to have 168 codewords of weight 6, implying that e6(PG(2, 4)) = 168.
The coefficients e8(PG(2, 4)) and e9(PG(2, 4)) can also be determined analytically, but it requires a lot
more effort to do so, as we show next.

Recall the notation introduced in Section 5: if P is a set of points in a design D, we denote by ΣP

the set of blocks disjoint from P .

Lemma 20 Let Σ be a set of lines in PG(2, 4). The following statements are all equivalent:

(i) Σ is a stopping set of size 8.

(ii) Σ supports a codeword of weight 8 in the associated [21,11,6] code.

(iii) Σ = ΣP for some set P consisting of 3 points that are collinear.
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Proof : We first prove the implications (ii) ⇒ (i) and (iii) ⇒ (i). The first of these is clear since the
lines corresponding to the support set of any codeword form a stopping set. For the second implication,
we first note that if P is a set of 3 points in PG(2, 4), then ΣP is a stopping set by Theorem 10.
Furthermore, if the 3 points in P are collinear, then applying the inclusion-exclusion principle, we obtain
|ΣP | = 21 − 3 × 5 +

(

3
2

)

− 1 = 8.
(i) ⇒ (ii), (iii): Let Σ be a stopping set of size 8 in PG(2, 4). Let Pi, i ≥ 2, be the set of points in

Σ that are incident with exactly i lines in Σ. As argued in the proof of Theorem 14, each line L ∈ Σ
satisfies one of the following: (a) L contains 3 points from P2 and 2 from T3, or (b) L contains 4 points
from P2 and 1 from P4. Let x be the number of lines in Σ satisfying (a), y be the number of lines in Σ
that satisfy (b). We then have

x+ y = 8 (4)

For i = 2, 3, 4, we count pairs (p, L) with L ∈ Σ and p ∈ L ∩ Pi to obtain the three equations

2|P2| = 3x+ 4y (5)

3|P3| = 2x (6)

4|P4| = y (7)

Now, (7) implies that 4|y, and hence, from (4), we find that 4|x as well. Moreover, from (6), we see
that 3|x, from which we conclude that 12|x. However, since x ≤ 8, we must have x = 0, so that y = 8.

Thus, all 8 lines in Σ have 4 points from P2 and 1 from P4. In other words, each point in Σ is incident
with an even number of lines in Σ, which shows that Σ supports a codeword in the [21,11,6] code, thus
proving (i) ⇒ (ii).

Plugging in x = 0 and y = 8 into (5)–(7), we obtain |P2| = 16, |P3| = 0 and |P4| = 2. Hence, the
total number of points in Σ is |P2|+ |P3|+ |P4| = 18. Therefore, there are 21− 18 = 3 points of PG(2, 4)
that lie outside Σ. Let P be the set consisting of these 3 points. We thus have Σ ⊂ ΣP , and ΣP is a
stopping set by Theorem 10.

Now, if there is no line containing all 3 points in P , then applying the inclusion-exclusion principle,
we see that |ΣP | = 21−3×5+

(

3
2

)

= 9. So, Σ is a proper subset of ΣP , which is impossible by Lemma 15.
Therefore, there must be a line containing all 3 points in P , which proves the implication (i) ⇒ (iii).

It follows from the above lemma that e8(PG(2, 4)) = 210, since the number of ways of choosing three
points from the same line in PG(2, 4) is 21 ·

(

5
3

)

= 210.

Lemma 21 Σ is a stopping set of size 9 in PG(2, 4) if and only if Σ = ΣP for some P consisting of 3
points that are not collinear.

Proof : If P is a set containing 3 points that are not collinear, then |ΣP | = 9 by the inclusion-exclusion
principle, and ΣP is a stopping set by Theorem 10.

For the converse, let Σ be a stopping set of size 9, and let Pi, 2 ≤ i ≤ 5, be the set of points in Σ
that are incident with exactly i lines in Σ. Setting τi = |Pi|, we put down the inequality

5
∑

i=2

τi ≤ 21 (8)

Each line L ∈ Σ satisfies one of the following: (i) L contains 3 points from P3 and 2 points from P2; (ii)
L contains 1 point from P4, 1 point from P3 and 3 points from P2; or (iii) L contains 1 points from P5

and 4 points from P2.
Counting, in two different ways, pairs (p, L) with p ∈  L and L ∈ Σ, we get

5
∑

i=2

iτi = 45 (9)

Counting in two different ways, triples (p, L1, L2) with p ∈ L1 ∩ L2 and L1, L2 ∈ Σ, L1 6= L2, yields

5
∑

i=2

(

i

2

)

τi =

(

9

2

)

= 36 (10)
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It is not hard to see that there are three valid solutions, (τ2, τ3, τ4, τ5), to (8)–(10): (9,9,0,0), (14,4,0,1)
and (15,1,0,3). We further whittle down the solution space as follows.

Let Σ be the set of lines not in Σ, and fix a line L ∈ Σ. Let xi, 2 ≤ i ≤ 5, be the number of points in
L∩Pi. Note that x5 = 0 as any point in P5 belongs to 5 lines in Σ, and hence cannot belong to any line
in Σ. Now, counting in two ways, pairs (p, L) with L ∈ Σ and p ∈ L∩L, we obtain 2x2 + 3x3 + 4x4 = 9.
The LHS of this equation can be odd only if x3 > 0. Hence, each line L ∈ Σ contains at least one point
from P3. But since each point in P3 is incident with 5−3 = 2 lines in Σ, the points in P3 can be incident
with at most 2τ3 lines in Σ. Therefore, as P3 meets every line in Σ, we must have 2τ3 ≥ |Σ| = 21−9 = 12,
from which we obtain τ3 ≥ 6. So, the only possible solution to (8)–(10) is (τ2, τ3, τ4, τ5) = (9, 9, 0, 0).

Thus, Σ contains 9 + 9 = 18 points in all, leaving 3 points outside Σ. Let P be the set of 3 points
outside Σ. Since Σ ⊂ ΣP , we have |ΣP | ≥ 9. On the other hand, from the inclusion-exclusion principle,
we can infer that |ΣP | ≤ 9, with equality only if the 3 points in P are not collinear. Thus, we are forced
to conclude that Σ = ΣP , and the points in P are not collinear.

It follows from Lemmas 20 and 21 that e8(PG(2, 4)) + e9(PG(2, 4)) =
(

21
3

)

, since this is the number

of ways of choosing 3 points out of the 21 in PG(2, 4). Thus, e9(PG(2, 4)) =
(

21
3

)

− 210 = 1120.
We did not consider it worthwhile to analytically determine the remaining coefficients ei(PG(2, 4)),

10 ≤ i ≤ 17. We used a computer search to determine these coefficients, thus completing the SSWE for
PG(2, 4):

EPG(2,4)(z) = 1 + 168z6 + 210z8 + 1120z9 + 4788z10 + 8568z11 + 29330z12 + 52920z13

+ 60840z14 + 41664z15 + 18669z16 + 5880z17 + 1330z18 + 210z19 + 21z20 + z21
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