
The “Art of Trellis Decoding” is NP-Hard⋆

Navin Kashyap

Dept. Mathematics and Statistics,
Queen’s University, Kingston, ON, K7L 3N6, Canada.

Email: nkashyap@mast.queensu.ca

Abstract. Given a linear code C, the fundamental problem of trellis
decoding is to find a coordinate permutation of C that yields a code
C
′ whose minimal trellis has the least state-complexity among all codes

obtainable by permuting the coordinates of C. By reducing from the
problem of computing the pathwidth of a graph, we show that the prob-
lem of finding such a coordinate permutation is NP-hard, thus settling
a long-standing conjecture.

1 Introduction

Maximum-likelihood (ML) decoding of a linear code can be implemented us-
ing the Viterbi algorithm on a trellis representation of the code. The run-time
complexity of such an implementation depends on the complexity (size) of the
trellis representation, and so it is desirable to find, for a given code C, a low-
complexity trellis representing C. The theory of trellis representations of a linear
code is well understood, and we refer the reader to the review by Vardy [11]
for an excellent survey of this theory. A fundamental result of this theory is
that a linear code has a unique minimal trellis that simultaneously minimizes
several important measures of trellis complexity, including the number of states,
the number of edges, and the so-called state-complexity of the trellis. There are
several efficient algorithms known for determining the minimal trellis for a given
linear code (again, see [11] and the references therein).

It is a somewhat surprising fact that permuting the coordinates of a code can
result in a drastic change in the complexity of the minimal trellis. To be precise,
if C′ is a code obtained by permuting the coordinates of C, then the minimal
trellises of C and C′ may have very different sizes. However, the simple action
of coordinate permutation does not affect the performance of the code from an
error-correction viewpoint. Therefore, given a code C, one may as well use the
code C′ obtained by permuting the coordinates of C, such that the minimal trellis
of C′ has the least complexity among the minimal trellises of codes obtained
from C via coordinate permutations. The problem of determining the coordinate
permutation of C that minimizes the complexity of the resulting minimal trellis
has been termed the “art of trellis decoding” by Massey [8].

⋆ This work was supported in part by a research grant from the Natural Sciences and
Engineering Research Council (NSERC) of Canada.

2

It now matters which measure of trellis complexity is to be minimized, as
the coordinate permutation of C that yields a minimal trellis with, say, the
least state-complexity need not be the same as the coordinate permutation that
yields a minimal trellis with the smallest number of states. The prior literature
has most often focused on the problem of finding the coordinate permutation
of a given code that minimizes the state-complexity of the resulting minimal
trellis, and it has repeatedly been conjectured that this problem is NP-hard [5],
[6], [11, Section 5]. To put it another way, the following decision problem was
conjectured to be NP-complete:

Problem: Trellis State-Complexity

Let Fq be a fixed finite field.

Instance: An m×n generator matrix for a linear code C over Fq, and an integer
w > 0.

Question: Is there a coordinate permutation of C that yields a code C′ whose
minimal trellis has state-complexity at most w?

This decision problem was called “Maximum Partition Rank Permutation” in
[5], and “Maximum Width” in [6]. Forney [4] has referred to the resolution of the
aforementioned conjecture as the “only significant open problem” in the context
of trellis representations.

In this paper, we settle the conjecture in the affirmative. We show that,
for any fixed finite field Fq, given an arbitrary code C over Fq, the problem
of finding the coordinate permutation of C that yields a minimal trellis with
the least possible state-complexity is indeed NP-hard. Thus, Trellis State-

Complexity is NP-complete. Our proof is by reduction from the problem of
computing the pathwidth of a graph, which is known to be NP-hard [1],[2].

The rest of the paper is organized as follows. In Section 2, we lay down
the definitions and notation necessary for our development. In Section 3, we
sketch out a proof of the fact that for any fixed finite field Fq, Trellis State-

Complexity is NP-complete. We have had to omit some of the details of the
proof due to space limitations; the complete proof can be found in our full paper
[7]. We make some concluding remarks in Section 4.

2 Preliminaries

A trellis T for a length-n linear code C over a finite field Fq is an edge-labelled
directed acyclic graph with certain properties. The vertex set, V , of T can be
partitioned into n + 1 disjoint subsets V0, V1, . . . , Vn, such that each (directed)
edge of T starts at Vi and ends at Vi+1 for some i ∈ {0, 1, . . . , n− 1}. The set Vi

is called the set of states at time index i. The set V0 consists of a unique initial
state v0, and the set Vn consists of a unique terminal state vn. It is further
required that each state v ∈ V lie on some (directed) path from v0 to vn. Note
that each path from v0 to vn is of length exactly n. The edges of T are given

3

labels from Fq in such a way that the set of all label sequences associated with
paths from v0 to vn is precisely the code C.

It turns out that if T is the minimal trellis for a linear code C, then the
cardinalities of the sets Vi are all powers of q. It is thus convenient to define the
state-complexity profile of T to be the (n + 1)-tuple s = (s0, s1, . . . , sn), where
si = logq(|Vi|). The state-complexity of T is then defined as smax = maxi si.
When T is the minimal trellis of C, there is an explicit expression known for the
si’s. We will find it convenient to give this expression in terms of the connectivity
function of C, as defined below.

The set [n]
def
= {1, 2, . . . , n} is taken to be the coordinate set of the length-

n code C. Given a subset J ⊂ [n], we let C|J denote the restriction of C to
the coordinates with labels in J . In other words, C|J is the code obtained by
puncturing the coordinates in Jc = [n] − J . The connectivity function of the
code C is the function λC : 2[n] → Z defined by

λC(J) = dim(C|J) + dim(C|Jc) − dim(C), (1)

for each J ⊂ [n]. It is obvious that for any J ⊂ [n], we have λC(J) ≥ 0 and
λC(J) = λC(Jc). Observe also that λC(∅) = λC([n]) = 0. Furthermore, some
elementary linear algebra suffices to verify that λC(J) = λC⊥(J) for any J ⊂ [n].

The state-complexity profile of the minimal trellis of C can now be expressed
as s(C) = (s0(C), s1(C), . . . , sn(C)), where s0(C) = sn(C) = 0, and for 1 ≤ i ≤
n − 1,

si(C) = λC({1, 2, . . . , i}). (2)

Thus, the state-complexity of the minimal trellis of C is given by smax(C) =
maxi∈[n] si(C). Note that since λC(J) = λC⊥(J) for any J ⊂ [n], we have s(C) =

s(C⊥), and hence, smax(C) = smax(C
⊥).

As mentioned in Section 1, different coordinate permutations of the same
code may result in codes with minimal trellises of very different complexities
[11, Example 5.1]. Therefore, letting [C] denote the set of all codes that can be
obtained from a code C by means of coordinate permutations, it is of interest to
define the trellis-width of the family [C] as follows:

tw[C] = min
C′∈[C]

smax(C
′) = min

C′∈[C]
max
i∈[n]

si(C
′). (3)

The main aim of this paper is to show that, given a code C, the problem of
computing the trellis-width of [C] is NP-hard. We accomplish this by reduction
from the known NP-hard problem of computing the pathwidth of a graph.

3 NP-Hardness of Trellis-Width

The notion of graph pathwidth was introduced by Robertson and Seymour in
[10]. Let G be a graph with vertex set V . An ordered collection V = (V1, . . . , Vt),
t ≥ 1, of subsets of V is called a path-decomposition of G, if

4

G G’

Fig. 1. Construction of G′ from G.

(i)
⋃t

i=1 Vi = V ;
(ii) for each pair of adjacent vertices u, v ∈ V , we have {u, v} ⊂ Vi for some

i ∈ [t]; and
(iii) for 1 ≤ i < j < k ≤ t, Vi ∩ Vk ⊂ Vj .

The width of such a path-decomposition V is defined to be wG(V) = maxi∈[t] |Vi|−
1. The pathwidth of G, denoted by pw(G), is the minimum among the widths of
all its path-decompositions. A path-decomposition V such that wG(V) = pw(G)
is called an optimal path-decomposition of G.

Let Fq be an arbitrary finite field. Given a graph G with vertex set V , our
aim is to produce, in time polynomial in |V |, a matrix A that generates a code C
over Fq such that pw(G) can be directly computed from tw[C]. The NP-hardness
of computing graph pathwidth then implies the NP-hardness of computing the
trellis-width of [C] for an arbitrary code C over Fq. We now describe our con-
struction of the matrix A.

Let G′ be a graph defined on the same vertex set, V , as G, having the following
properties (see Figure 1):

(P1) G′ is loopless;
(P2) a pair of distinct vertices is adjacent in G′ iff it is adjacent in G; and
(P3) in G′, there are exactly two edges between each pair of adjacent vertices.

It is evident from the definition that (V1, . . . , Vt) is a path-decomposition of G
iff it is a path-decomposition of G′. Therefore, pw(G′) = pw(G).

Define G to be the graph obtained by adding an extra vertex, henceforth
denoted by x, to G′, along with a pair of parallel edges from x to each v ∈ V (see
Figure 2). We will denote by V and E the vertex and edge sets, respectively, of G.
Clearly, G is constructible directly from G in O(|V |2) time. But more importantly,
the desired matrix A can be readily obtained from the graph G. Indeed, letting
D(G) be any directed graph obtained by arbitrarily assigning orientations to
the edges of G, we simply take A to be the vertex-edge incidence matrix of
D(G). This is the |V | × |E| matrix whose rows and columns are indexed by the
vertices and directed edges, respectively, of D(G), and whose (i, j)th entry, ai,j ,
is determined as follows:

ai,j =





1 if vertex i is the tail of non-loop edge j

−1 if vertex i is the head of non-loop edge j

0 otherwise.

5

G

x

G’

Fig. 2. Construction of G from G
′.

Denote by C the linear code over Fq generated by the matrix A. The trellis-
width of [C] relates very simply to the pathwidth of the original graph G, as
made precise by the following proposition.

Proposition 1. tw[C] = pw(G) + 1.

Before proving the above proposition, we observe that it yields the de-
sired NP-hardness result. Indeed, it is easily checked that the matrix A can
be constructed directly from G in O(|V |3) time. Now, suppose that there were a
polynomial-time algorithm for computing the trellis-width of [C] for an arbitrary
code C over Fq, the code C being specified by some generator matrix. Then, given
any graph G, we can construct the matrix A, and then compute the trellis-width
of [C], all in polynomial time. Therefore, by Proposition 1, we have a polynomial-
time algorithm to compute the pathwidth of G. However, the graph pathwidth
problem is NP-hard [1],[2]. So, if there exists a polynomial-time algorithm for it,
then we must have P = NP . This implies our main result.

Theorem 2. Let Fq be a fixed finite field. The problem of computing the trellis-
width of an arbitrary linear code over Fq, specified by any of its generator ma-
trices, is NP-hard.

Corollary 3. For any fixed finite field Fq, the decision problem Trellis State-

Complexity is NP-complete.

The remainder of this section is devoted to the proof of Proposition 1. Since
pw(G′) = pw(G), for the purpose of our proof, we may assume that G′ = G. Thus,
from now until the end of this section, we take G to be a loopless graph satisfying
property (P3) above. Note that G also satisfies (P3). For each pair of adjacent
vertices u, v in G or G, we denote by luv and ruv the two edges between u and v.
Recall that V and E denote the sets of vertices and edges, respectively, of G, and

that V and E denote the corresponding sets of G. We thus have V = V
·
∪ {x},

and E = E
·
∪

(⋃
v∈V {lxv, rxv}

)
.

6

We will make much use of a basic fact, stated next, about the |V |×|E| matrix
A whose construction was described above. For any J ⊂ E, if A|J denotes the
matrix obtained by restricting A to the columns indexed by the edges in J , then

rank(A|J) = dim(C|J) = r(J), (4)

where rank and dim above are computed over the field Fq, and r(J) denotes the
number of edges in any spanning forest of the subgraph of G induced by J . To
be precise, letting G[J] denote the subgraph of G induced by J , we have r(J) =
|V (G[J])| − ω(G[J]), where ω(G[J]) is the number of connected components of
G[J]. Equation (4) can be inferred from [9, Proposition 5.1.2].

We shall identify the set E with the coordinate set of the code C generated
by A. Given an ordering π = (e1, e2, . . . , en) of the elements of E, we will denote
by Cπ the code obtained by putting the coordinates of C in the order specified
by π. For any J ⊂ E, and any ordering, π, of E, we have by virtue of (4),

λCπ
(J) = λC(J) = r(J) + r(E − J) − r(E)

= r(J) + r(E − J) − |V |, (5)

the last equality above following from the fact that ω(G) = 1 since G is connected
(each v ∈ V is adjacent to x), so that r(E) = |V | − 1 = |V |.

We are now in a position to begin the proof of Proposition 1. We will first
prove that tw[C] ≤ pw(G) + 1. Let V = (V1, . . . , Vt) be a path-decomposition of
G. We need the following fact about V: for each j ∈ [t],

⋃

i≤j

Vi ∩
⋃

k≥j

Vk = Vj . (6)

The above equality follows from the fact that a path-decomposition, by defini-
tion, has the property that for 1 ≤ i < j < k ≤ t, Vi ∩ Vk ⊂ Vj .

For j ∈ [t], let Fj be the set of edges of G that have both their end-points

in Vj . By condition (ii) in the definition of path-decomposition,
⋃t

j=1 Fj = E.

Now, let Fj = Fj ∪
(⋃

v∈Vj
{lxv, rxv}

)
, so that

⋃t

j=1 Fj = E.

Definition 4. An ordering (e1, . . . , en) of the edges of G is said to induce an or-
dered partition (E1, . . . , Et) of E if for each j ∈ [t], {enj−1+1, enj−1+2, . . . , enj

} =

Ej, where nj =
∣∣∣
⋃

i≤j Ei

∣∣∣ (and n0 = 0).

Let π = (e1, . . . , en) be any ordering of E that induces the ordered partition
(E1, E2, . . . , Et), where for each j ∈ [t], Ej = Fj −

⋃
i<j Fi. We claim that the

state-complexity of the minimal trellis of Cπ is at most one more than the width
of the path-decomposition V.

Lemma 5. smax(Cπ) ≤ wG(V) + 1.

7

Proof. Observe first that

smax(Cπ) = max
j∈[t]

max
1≤k≤nj−nj−1

λCπ




⋃

i<j

Ei ∪ {enj−1+1, . . . , enj−1+k}




≤ max
j∈[t]

max
E′⊂Ej

λCπ




⋃

i<j

Ei ∪ E′


 . (7)

Let X =
⋃

i<j Ei ∪ E′ for some j ∈ [t] and E′ ⊂ Ej . By (5), λCπ
(X) =

r(X) + r(E − X) − |V |. If v is a vertex of G incident with an edge in X, then

v ∈
⋃

i≤j Vi

·
∪ {x}. So, the subgraph of G induced by X has its vertices contained

in
⋃

i≤j Vi

·
∪ {x}. Therefore, r(X) ≤

∣∣∣
⋃

i≤j Vi

·
∪ {x}

∣∣∣ − 1 =
∣∣∣
⋃

i≤j Vi

∣∣∣.
Next, consider E − X = (

⋃
k>j Ek) ∪ (Ej − E′). Reasoning as above, the

subgraph of G induced by E − X has its vertices contained in
⋃

k≥j Vk

·
∪ {x}.

Hence, r(E − X) ≤
∣∣∣
⋃

k≥j Vk

∣∣∣.
Therefore, we have

λCπ
(X) ≤

∣∣∣∣∣∣

⋃

i≤j

Vi

∣∣∣∣∣∣
+

∣∣∣∣∣∣

⋃

k≥j

Vk

∣∣∣∣∣∣
− |V | =

∣∣∣∣∣∣

⋃

i≤j

Vi ∩
⋃

k≥j

Vk

∣∣∣∣∣∣
= |Vj |,

the last equality arising from (6). Hence, carrying on from (7),

smax(Cπ) ≤ max
j∈[t]

|Vj | = wG(V) + 1,

as desired.

The fact that tw[C] ≤ pw(G) + 1 easily follows from the above lemma. In-
deed, we may choose V to be an optimal path-decomposition of G. Then, by
Lemma 5, there exists an ordering π of E such that smax(Cπ) ≤ pw(G) + 1.
Hence, pw(M) ≤ smax(Cπ) ≤ pw(G) + 1.

We prove the reverse inequality in two steps, first showing that pw(G) =
pw(G) + 1, and then showing that tw[C] ≥ pw(G).

Lemma 6. pw(G) = pw(G) + 1.

Proof. Clearly, if V = (V1, . . . , Vt) is a path-decomposition of G, then V =
(V1 ∪ {x}, . . . , Vt ∪ {x}) is a path-decomposition of G. Hence, choosing V to be
an optimal path-decomposition of G, we have that pw(G) ≤ wG(V) = wG(V)+1 =
pw(G) + 1.

For the inequality in the other direction, we will show that there exists an
optimal path-decomposition, Ṽ = (Ṽ1, . . . , Ṽs), of G such that x ∈ Ṽi for all

8

i ∈ [s]. We then have V = (Ṽ1 − {x}, . . . , Ṽs − {x}) being a path-decomposition

of G, and hence, pw(G) ≤ wG(V) = wG(Ṽ) − 1 = pw(G) − 1.

Let V = (V 1, . . . , V t) be an optimal path-decomposition of G, and let i0 =
min{i : x ∈ V i} and i1 = max{i : x ∈ V i}. Since V i ∩ V k ⊂ V j for i < j < k,
we must have x ∈ V i for each i ∈ [i0, i1].

We claim that (V i0 , V i0+1, . . . , V i1) is a path-decomposition of G. We only

have to show that
⋃i1

i=i0
V i = V , and that for each pair of adjacent vertices

u, v ∈ V , {u, v} ⊂ V i for some i ∈ [i0, i1]. To see why the first assertion is
true, consider any v ∈ V , v 6= x. Since x is adjacent to v, and V is a path-
decomposition of G, {x, v} ⊂ V i for some i ∈ [t]. However, x ∈ V i iff i ∈ [i0, i1],
and so, {x, v} ⊂ V i for some i ∈ [i0, i1]. In particular, v ∈ V i for some i ∈ [i0, i1].

For the second assertion, suppose that u, v is a pair of vertices adjacent in G.
Obviously, {u, v} ⊂ V j for some j ∈ [t]. Suppose that j /∈ [i0, i1]. We consider

the case when j > i1; the case when j < i0 is similar. As
⋃i1

i=i0
V i = V , there

exist i2, i3 ∈ [i0, i1] such that u ∈ V i2 and v ∈ V i3 . Without loss of generality
(WLOG), i2 ≤ i3. If i2 = i3, then there exists i ∈ [i0, i1] such that {u, v} ⊂ V i.
If i2 < i3, we have u ∈ V i2 ∩ V j and i2 < i3 < j. Hence, u ∈ V i3 as well, and so
once again, we have an i ∈ [i0, i1] such that {u, v} ∈ V i.

Thus, (V i0 , V i0+1, . . . , V i1) is a path-decomposition of G, with the property
that x ∈ V i for all i ∈ [i0, i1]. It must be an optimal path-decomposition, since
it is a subsequence of the optimal path-decomposition V.

To complete the proof of Proposition 1, it remains to show that tw[C] ≥
pw(G). We introduce some notation at this point. Recall that the two edges
between a pair of adjacent vertices u and v in G (or G) are denoted by luv and
ruv. We define

LG = {luv : u, v are adjacent vertices in G},

RG = {ruv : u, v are adjacent vertices in G},

Lx =
⋃

v∈V {lxv} and Rx =
⋃

v∈V {rxv}, where x is the distinguished vertex in

V −V . For L ⊂ Lx, define the closure of L to be the set cl(L) = L∪{rxu : lxu ∈
L} ∪ {luv, ruv : lxu, lxv ∈ L}. Note that cl(Lx) = E.

Our argument rests on the next lemma, whose somewhat technical proof we
omit here. We refer the reader instead to the proof given in [7].

Lemma 7. There exists an ordering π = (e1, . . . , en) of E with the following
properties:

(a) smax(Cπ) = tw[C].

(b) The ordering π induces an ordered partition of E of the form

(L1, A1, B1, R1, L2, A2, B2, R2, . . . , Lt, At, Bt, Rt),

where for each j ∈ [t], Lj ⊂ Lx, Aj ⊂ LG, Bj ⊂ RG and Rj ⊂ Rx. Moreover,
for each u, v ∈ V , luv ∈ Lj ∪ Aj iff ruv ∈ Bj ∪ Rj.

9

(c) For the ordered partition in (b), we have for each j ∈ [t],

Aj ∪ Bj ⊂ cl(
⋃

i≤j

Li) − cl(
⋃

i<j

Li).

We can now furnish the last remaining piece of the proof of Proposition 1.

Lemma 8. tw[C] ≥ pw(G).

Proof. Let π = (e1, . . . , en) be an ordering of E having the properties guaranteed
by Lemma 7. This ordering induces an ordered partition (L1, A1, B1, R1, . . . , Lt,
At, Bt, Rt) of E, as in Lemma 7(b). For j ∈ [t], define Yj =

⋃
i<j(Li ∪Ai ∪Bi ∪

Ri)∪ (Lj ∪Aj), and Y ′
j = E−Yj =

⋃
i>j(Li ∪Ai ∪Bi ∪Ri)∪ (Bj ∪Rj). Letting

G[Yj] and G[Y ′
j] denote the subgraphs of G induced by Yj and Y ′

j , respectively,

set Vj = V (G[Yj]) ∩ V (G[Y ′
j]). In other words, Vj is the set of vertices common

to both G[Yj] and G[Y ′
j]. It is easily checked that V = (V1, . . . , Vt) is a path-

decomposition of G. Note that

|Vj | = |V (G[Yj])| + |V (G[Y ′
j])| − |V |.

We next observe that G[Yj] and G[Y ′
j] are connected graphs. From Lemma 7(c),

we have that Yj ⊂ cl(
⋃

i≤j Li). Therefore, for any edge luv (or ruv) in Yj −⋃
i≤j Li, both lxu and lxv must be in some Li, i ≤ j. Thus, in G[Yj], each vertex

v 6= x is adjacent to x, which shows that G[Yj] is connected.

Consider any vertex v 6= x in G[Y ′
j], such that rxv /∈ Y ′

j . Then, ruv ∈ Y ′
j for

some u 6= x. So, ruv ∈ Bk for some k ≥ j. By Lemma 7(c), ruv ∈ cl(
⋃

i≤k Li) −
cl(

⋃
i<k Li). This implies that either lxu ∈ Lk or lxv ∈ Lk. Hence, either rxu ∈ Rk

or rxv ∈ Rk. However, rxv cannot be in Rk, since rxv /∈ Y ′
j , and so, rxu ∈ Rk.

Thus, (rxu, ruv) forms a path in G[Y ′
j] from x to v. It follows that G[Y ′

j] is
connected.

Therefore, by (5),

λCπ
(Yj) = r(Yj) + r(Y ′

j) − |V |

= (|V (G[Yj])| − 1) + (|V (G[Y ′
j])| − 1) − (|V | − 1) = |Vj | − 1.

Hence, from Lemma 7(a),

tw[C] = smax(Cπ) ≥ max
j∈[t]

λCπ
(Yj) = max

j∈[t]
|Vj | − 1 = wG(V) ≥ pw(G),

which proves the lemma.

The proof of Proposition 1 is now complete.

10

4 Concluding Remarks

The main contribution of this paper was to show that the decision problem
Trellis State-Complexity is NP-complete, thus settling a long-standing con-
jecture. Now, the situation is rather different if we consider a variation of the
problem in which the integer w is not taken to be a part of the input to the
problem. In other words, consider the following problem:

Problem: Weak Trellis State-Complexity

Let Fq be a fixed finite field, and let w be a fixed positive integer.

Instance: An m × n generator matrix for a linear code C over Fq.

Question: Is there a coordinate permutation of C that yields a code C′ whose
minimal trellis has state-complexity at most w?

There is good reason to believe that this problem is solvable in polynomial time.
We again refer the reader to our full paper [7] for evidence in support of this
belief.

Acknowledgment

The author would like to thank Jim Geelen for contributing some of his ideas to
this paper.

References

1. S. Arnborg, D.G. Corneil and A. Proskurowski, “Complexity of finding embeddings
in a k-tree,” SIAM J. Alg. Disc. Meth., vol. 8, pp. 277–284, 1987.

2. H.L. Bodlaender, “A tourist guide through treewidth,” Acta Cybernetica, vol. 11,
pp. 1–23, 1993.

3. G.D. Forney Jr., “Dimension/length profiles and trellis complexity of linear block
codes,” IEEE Trans. Inform. Theory, vol. 40, no. 6, pp. 1741–1752, Nov. 1994.

4. G.D. Forney Jr., “Codes on Graphs: Constraint Complexity of Cycle-Free Realiza-
tions of Linear Codes,” IEEE Trans. Inform. Theory, vol. 49, no. 7, pp. 1597–1610,
July 2003.

5. G.B. Horn and F.R. Kschischang, “On the intractability of permuting a block code
to minimize trellis complexity,” IEEE Trans. Inform. Theory, vol. 42, no. 6, pp.
2042–2048, Nov. 1996.

6. K. Jain, I. Măndoiu and V.V. Vazirani, “The ‘art of trellis decoding’ is computa-
tionally hard — for large fields,” IEEE. Trans. Inform. Theory, vol. 44, no. 3, pp.
1211–1214, May 1998.

7. N. Kashyap, “Matroid pathwidth and code trellis complexity,” to appear in SIAM

J. Discrete Math. ArXiv e-print 0705.1384.
8. J.L. Massey, “Foundation and methods of channel encoding,” in Proc. Int. Conf.

Inform. Theory and Systems, vol. 65, Berlin, Germany: NTG-Fachberichte, 1978.
9. J.G. Oxley, Matroid Theory, Oxford University Press, Oxford, UK, 1992.

10. N. Robertson and P.D. Seymour, “Graph minors. I. Excluding a forest,” J. Combin.

Theory, Ser. B, vol. 35, pp. 39–61, 1983.
11. A. Vardy, “Trellis Structure of Codes,” in Handbook of Coding Theory, R. Brualdi,

C. Huffman and V. Pless, Eds., Amsterdam, The Netherlands: Elsevier, 1998.

