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Data Synchronization with Timing:

The Variable-Rate Case

Navin Kashyap and David L. Neuhoff

Abstract

This paper extends the theory of data synchronization with timing for fixed-rate codes, previously

developed by the authors, to the variable-rate case. Given asource code, a class of sync-timing codes

called variable-rate cascaded (VRC) codes is considered that “wrap around” the source code in such a

way as to enable the decoder to not only resynchronize rapidly when the encoded bits are corrupted

by insertion, deletion or substitution errors, but also produce estimates of the time indices of the data

symbols encoded by the source code. The estimates of the timeindices are modulo-T reductions of

the actual time indices, for some integerT called the timing span of the code. These sync-timing

codes are analyzed on the basis of the maximum timing span achievable for a given coding rateR and

permissible resynchronization delayD. It is shown that the timing span of VRC codes is upper bounded

by 2D(1−R)+o(D), and that this upper bound is achievable asymptotically inD. This exponential rate of

growth of timing span with delay is the same as that found previously for certain fixed-rate sync-timing

codes,e.g. (fixed-rate) cascaded codes.
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I. I NTRODUCTION

An important aspect of communications that has not receivedmuch serious attention in the information

theory literature pertains to the encoding and decoding of the time indices of the transmitted data. The

transmission of time indices of the data, along with actual data values themselves, is necessary in most

situations where conventional data synchronization (cf. [1],[2],[3]) is needed. A typical such situation

is when a sequence of data symbols must be encoded into bits and transmitted across a channel that

can make arbitrary insertion, deletion and substitution errors. A particularly pertinent scenario is when

decoding commences in the middle of the transmitted stream,as happens, for example, when a television

set is switched on. From the standpoint of the receiver, this may be viewed as the deletion of an arbitrary

prefix of the encoded bitstream. It should be noted that while insertion and deletion errors can cause

synchronization problems regardless of whether the encoding of the data is fixed-length or variable-length,

substitution errors can cause loss of synchronization onlywith variable-length encoding of the data. Thus,

variable-length source codes are particularly susceptible to synchronization errors.

A typical data synchronization scheme consists of a mechanism that enables the decoder to re-establish

synchronization, usually by locating the start of a valid codeword in the encoded sequence, when there

is a loss of synchronization caused by channel errors. Re-establishment of synchronization means that

in the absence of further errors, some suffix of the sequence ofdata symbols produced by the decoder

agrees with some suffix of the original (unencoded) sequence of data symbols. There is a long history

of such synchronization schemes, primarily for variable-length codes, in the literature [4]–[11].

However, in order for the recovery of synchronization to be useful in practice, it is equally important

for the decoder to have a means of establishing the positionsof the decoded symbols relative to the

original data sequence. In other words, synchronization schemes must not only enable the decoder to

resynchronize rapidly upon cessation of channel errors, but also must allow the decoder to produce

estimates of the time indices of the decoded data symbols. Synchronization, when achieved along with

timing recovery, is known asstrong synchronization[12],[13] or synchronization with timing[14],[15].

A good motivation for synchronization with timing can be given in the context of multimedia com-

munications. In multimedia broadcasts, we may have multiple, related data streams being transmitted

simultaneously, for example, audio and video streams in videoconferencing. If one of the streams gets

affected by synchronization errors, and there is no mechanism for timing recovery, then conventional

synchronization within each stream alone will not prevent amismatch between the streams. This can result

in the undesirable situation of sound not corresponding to video. Indeed, the importance of synchronization
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with timing has been recognized since the early days of image/video coding standards. For example, there

is a provision made within the JPEG/MPEG standards for the introduction of synchronizing markers,e.g.,

end-of-line and end-of-frame markers, at regular intervals in the encoded sequence as a means of encoding

the time indices of the data. Other examples illustrating the need for synchronization with timing can be

found in [14] and [16].

Coding schemes that encode and decode data time indices, as well as data values, will henceforth be

referred to assynchronization with timing codes, or sync-timing codesfor short. There has been some

recent interest in the design and performance analysis of sync-timing codes. A clear identification of

the need for sync-timing in the context of synchronization of variable-rate source codes seems to have

first appeared in the literature in [12]. This notion was further developed in [13], and an analysis of the

relative merits of various sync-timing codes, assuming a probabilistic channel model, can be found in

[16]. A theoretical framework for the performance analysisof sync-timing codes that are fixed-rate, in

the sense that there are integersi and j such thatj bits emerge from the encoder for everyi bits that

enter, was developed in [14] and [15]. The performance of several families of such codes were analyzed

within this framework.

In this paper, we use a family of variable-rate sync-timing codes, which we callvariable-rate cascaded

(VRC) codes, to extend the theory developed in [14] to the variable-ratecase. A VRC code is designed

to “wrap around” a source code, as described in Section II. The decoder for a VRC code produces

time index estimates of the decoded data symbols. In the absence of channel errors, these time index

estimates are simply modulo-T reductions of the actual time indices, whereT is some (typically, large)

integer. Coding schemes similar to these codes have previously been considered; indeed, what we call

a VRC code is essentially the coding scheme referred to as “Scheme A” in [16] used in conjunction

with bitstuffing. What is new in this paper is the framework under which the theoretical limits to the

performance of such coding schemes can be analyzed. Our framework and analysis differ fundamentally

from the analysis of the probability of loss of strong synchronization for the schemes in [16].

The performance of a VRC code is measured in terms of its codingrate, resynchronization delay and

timing span. Coding rate and timing span are straightforward to define, so we do that first. Coding rate

is taken to be the ratio of the average number of source-codedbits entering the encoder for the VRC

code to the average number of bits it produces as output in response. The timing span of a VRC code

measures the ability of the code to produce estimates of the time indices of the decoded data symbols.

This is nicely captured by the integerT modulo which the time index estimates are produced by the

decoder for the VRC code, and so we define this integerT to be the timing span of the code.
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Resynchronization delay is defined in the context of a scenario where the decoder loses synchronization

due to channel errors, but the channel subsequently remainserror-free for a sufficiently long period of time.

In such a scenario, if the decoder re-establishes synchronization upon receiving, on an average,D bits, then

D is taken to be the resynchronization delay of the code. It should be pointed out that re-establishment of

synchronization now means that the decoder produces a sequence of (data-symbol, time-index-estimate)

pairs such that the data-symbol sequence produced agrees with some suffixs of the original data-symbol

sequence, and the corresponding time index estimates are the correct modulo-T reductions of the time

indices1 of the entries ins. In practice, for a VRC code, the average number of bits needed to re-establish

synchronization is roughly equal to the average length of a codeword. Therefore, for practical purposes,

we can simply set the resynchronization delay of a VRC code tobe equal to the average length of a

codeword.

Henceforth, all uses of the words “rate” and “delay” of a VRC code will refer to coding rate and

resynchronization delay as defined above. Note that our definitions of rate and delay both take into

account the variable-rate nature of the VRC code. Explicit expressions, in terms of VRC code parameters,

for the three performance measure of rate, delay and timing span will be given in Section II. We also

point out that all three performance measures for a VRC code have been defined in a manner compatible

with the corresponding definitions given in [14] for the case of fixed-rate sync-timing codes. This allows

us to make direct performance comparisons between VRC codesand fixed-rate sync-timing codes.

Under suitable assumptions on the source code, we can derive, as we shall see in Section III, upper

and lower bounds on the maximum timing span,TVRC(r, d), achievable by a VRC code with rateR ≥ r

and delayD ≤ d. These bounds imply that, forr ∈ (0, 1) and sufficiently larged, TVRC(r, d) ∼

2d(1−r). This shows that the timing span of variable-rate sync-timing codes can grow exponentially with

resynchronization delay, just as in the fixed-rate case, and the rate of exponential growth is the same as

that for fixed-rate codes.

We conclude the Introduction by emphasizing a point also made in [14]. In defining resynchronization

delay above, we assumed a context in which the channel remains error-free for a sufficiently long period

of time. A synchronization code (with or without a timing-recovery mechanism) by itself cannot provide

satisfactory performance in situations where the channel makes errors as frequently as, say, once every

D bits, D being the delay of the code. In such a situation, it is preferable to first use an error-correcting

1Time indices here mean the positions of entries in the sequences relative to the beginning of the original data-symbol

sequence, andnot relative to the beginning ofs.
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Fig. 1. Block diagram for a variable-rate cascaded code, and a part of the encoded sequence of bits.

code to create a channel that makes infrequent errors, over which a synchronization code can provide

good performance. Simulation results exist in the literature [17] that demonstrate this point well.

II. VARIABLE -RATE CASCADED CODES

Consider a lossless, binary source code, parametrized by anintegerk ≥ 1 and a real numberRs > 0,

for a data source with a discrete (countable) alphabet and anassociated probability mass function. The

source code is assumed to be a blocklength-k-to-variable-length prefix code with rateRs, i.e., the expected

number of bits, per data symbol, produced by the source encoder is Rs. We shall further assume, for the

time being, that each block ofk data symbols is encoded independently of any other block. Aswe shall

see, this assumption may be relaxed somewhat.

The encoder for avariable-rate cascaded (VRC) code, which we shall refer to as thesync-timing

encoder, is designed to follow the source encoder (see Figure 1). Thus,data symbols from the source are

first encoded (compressed) by the source encoder, and the output of the source encoder is then further

encoded by the sync-timing encoder. The encoded bitstream isthen transmitted across the channel, which

can make arbitrary insertion, deletion or substitution errors. At the channel output, the received bitstream

first passes through thesync-timing decoder, and subsequently through the source decoder.

A VRC code is characterized by positive integersp, m1, m2 andL, and whenever necessary, we shall

refer to a VRC code with these parameters as a(p, m1, m2, L) VRC code. The sync-timing encoder

operates on blocks ofL source codewords at a time (or equivalently, on blocks ofkL data symbols).

In response to a block ofL source codewords, the sync-timing encoder produces aVRC codewordthat

is composed of one ofp distinct markers, followed by the block ofL source codewords after it has
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undergonebitstuffing, followed by a zero (see Figure 1). The marker consists of aflag of m1 > 1

consecutive ones (denoted by1m1), followed by a zero, followed by ablock index codeword, followed by

another zero. The block index codewords form a codebook ofp distinct binary sequences of lengthm2,

none of which contains the flag1m1 . These codewords are used to encode the modulo-p block indices,

i.e., the VRC codeword produced in response to thejth block ofL source codewords contains the block

index codeword that encodes the integeri = j − 1 modp. The integerp is referred to as theperiod of

the code. Bitstuffing prevents the spurious appearance of a flagin each block ofL source codewords

by “stuffing” a zero immediately after each occurrence of1m1−1 in the codeword. The structure of this

code is similar to that of the cascaded code described in [14], and is also similar to the coding schemes

described in [16].

The sync-timing decoder locates the flags in the stream of received bits, and for each flag found, it

reverses (if possible) the encoding procedure on the sequence up to the next flag. Thus, every successful

reversal of the encoding yields the integeri encoded by the block index codeword, and a “destuffed”

sequence of bits that is passed to the source decoder. If the destuffed sequence is a valid sequence of

L source codewords, then the source decoder determines, and produces as output, thekL data symbols

encoded by this block of codewords. The output of the source decoder is fed back into the sync-timing

decoder. The sync-timing decoder checks to see if there are exactly kL data symbols in the sequence

produced by the source decoder, in which case it assigns to the data-symbol sequence the sequence of

time indices(ikL + 1, ikL + 2, . . . , (i + 1)kL). The output of the sync-timing decoder then consists of

the sequence ofkL data symbols and the time indices assigned to them.

Note that since0 ≤ i ≤ p− 1, the time indices produced by the sync-timing decoder are modulo-pkL

reductions of the actual time indices of the data symbols. Therefore, by the definition given in Section I,

the timing span of the VRC code is given by

T = pkL (1)

We next derive expressions for the rate and delay of a VRC codein terms of the parameters of the

source code and the VRC code. We will find it useful to first derivean expression for delay. From our

description of decoding above, it should be clear that in a scenario where the channel remains error-free

for a sufficiently long period of time after initial loss of decoder synchronization, the decoder will re-

establish synchronization once it locates a flag in the error-free received bitstream. Therefore, the number

of received bits that the decoder may erroneously decode or discard is (at worst) equal to the length of

a VRC codeword. Therefore, in keeping with the definition of delay given in Section I, it makes sense
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to set the resynchronization delay,D, of a VRC code to be equal to the average length,N , of a VRC

codeword. We thus have

D = N = m1 + m2 + 3 + kLRs + S (2)

whereS is the expected number of stuffed bits in a VRC codeword.

Finally, the coding rate,R, is the ratio of the average number of bits entering the sync-timing encoder

to the average number of output bits. Thus,

R =
kLRs

N
= 1 −

m1 + m2 + 3 + S

N
(3)

Clearly, a good VRC code must have rate close to 1, small delayand large timing span. The parameters

p, m1, m2 and L of the VRC code are typically chosen so as to maximizeT = pkL, given a desired

coding rate and resynchronization delay. For a given targetrate ofr ∈ (0, 1) and resynchronization delay

of d, a good choice of parameters is as follows:

p =

⌊

Rs

dr
2d(1−r)−γ(r,k,Rs)−ǫ

⌋

,

m1 = ⌈log2 log2 p⌉ + α(r),

m2 = ⌈log2 p⌉ + 1, and

L =

⌈

dr

kRs

⌉

,

whereγ(r, k, Rs) = 21−α(r) r
1−r

+α(r)− log2
r

1−r
+kRs +log2 Rs +6, andα(r) = max(0,

⌊

log2
2r

1−r

⌋

).

For values ofr close to 1,α(r) ≈ log2
2r

1−r
, and consequently,γ(r, k, Rs) ≈ kRs + log2 Rs + 7. Thus,

for values ofr close to 1, the expressions forp andm1 above are well approximated by

p =

⌊

1

dr
2d(1−r)−kRs−7

⌋

, and

m1 = ⌈log2 log2 p⌉ + log2

2r

1 − r
.

As we shall see in Section III, forr ∈ (0, 1) and d sufficiently large, a VRC code with the choice of

parameters given above has timing span provably close to themaximum theoretically achievable by codes

with rate at leastr and delay at mostd.

We briefly remark upon the reasons for choosing the all-ones sequence,1m1 , as the flag. Firstly, it

has been shown [18],[19] that the bitstuffing procedure for the all-ones flag is the most efficient in the

following sense. Given a length-n IID random sequence of equiprobable bits, letIn(A) be the expected

number of “stuffed” bits inserted to prevent the sequenceA = a1a2 . . . am from occurring within the

random sequence (the complement ofam is inserted whenevera1a2 . . . am−1 is observed). Then, among
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all sequencesA of fixed lengthm, the all-ones sequence1m minimizes the asymptotic average redundancy,

limn→∞ In(A)/n. Secondly, there is a simple and efficient algorithm [20] for generating the set of all

length-m2 sequences (for the block index codebook) that do not containm1 consecutive ones.

It is also worth pointing out the reasons for the assumptionsmade on the source code at the beginning

of this section. The source code was taken to be a prefix code so asto enable the sync-timing encoder

to parse the source-coded bitstream into codewords, which would allow it to form blocks ofL source

codewords for further encoding. We had also assumed that each block of k data symbols was encoded

independently of any other block. The reason for this is best illustrated as follows. Suppose that the

encoding of the(L + 1)th block of k data symbols depends on some of the firstkL data symbols. Note

that the VRC codeword that contains the firstL source codewords is different from that which contains

the (L+1)th source codeword. Now, suppose that the VRC encoded bitstream was corrupted by channel

errors in such a way that the sync-timing decoder was unable to recover the first VRC codeword, but

regained synchronization in time to decode the second VRC codeword perfectly. In such a situation,

there is no way for the source decoder to recover the(L + 1)th block of k data symbols, or indeed any

subsequentk-blocks that depend on any of the firstL+1 k-blocks. Thus, dependencies in the encodings

of different datak-blocks by the source encoder may lead to decoding delays, inthe event of channel

errors, that cannot be attributed to loss of synchronization alone. The worst case is when the encoding

of each block ofk data symbols depends on the previousk-block. In this case, even a single channel

error can cause a catastrophic loss of data which cannot be prevented by synchronization codes alone.

Such delays in recovering data symbols can be avoided by requiring the source encoder to encode

each block ofk data symbols independently of any other block. In fact, one can even allow dependencies

in the encoding of datak-blocks, provided this dependency does not cross VRC codeword boundaries,

i.e., in order to decode the source codewords contained in some VRC codeword, one does not need to

decode the source codewords contained in other VRC codewords. This would require the parameterL

of the VRC code to be known to the source encoder.

III. A NALYSIS

In this section, we shall assume that a source code with parametersk and Rs has been fixed, and

determine how large a timing spanT is achievable by a VRC code with desired rater and desired delay

d, designed to “wrap around” the fixed source code. Since we always assume a source code to be a prefix

code which encodes each block ofk data symbols independently of any other block ofk data symbols,

we may freely choose the parameterL of the VRC code.
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Let TVRC(r, d) denote the maximum timing span achievable by any VRC code that wraps around the

fixed (k, Rs) source code, with rate at leastr and delay at mostd. If there is no such VRC code with

rate at leastr and delay at mostd, then we defineTVRC(r, d) to be 0. The following is a simple upper

bound onTVRC(r, d).

Theorem 1:For r ∈ (0, 1) andd > 0,

TVRC(r, d) ≤
d

Rs
2d(1−r)

Proof: Consider any(p, m1, m2, L) VRC code with rateR ≥ r and delayD ≤ d. In order to havep

distinct block index codewords, each of lengthm2, we must havem2 ≥ log2 p. It now follows from (2)

and (3) that

D ≥ kLRs + log2 p = RD + log2 p

But this implies thatlog2 p ≤ D(1 − R), and hence,p ≤ 2D(1−R). Therefore, for any VRC code with

D ≤ d andR ≥ r, we have, by way of (1),

T = pkL = p
DR

Rs
≤

dR

Rs
2d(1−r) ≤

d

Rs
2d(1−r)

the last inequality using the fact thatR ≤ 1.

The above bound shows that the maximum timing span of a VRC codegrows at most exponentially

with delay. We next derive a lower bound onTVRC(r, d), which will show that exponential growth of

timing span with delay is in fact achievable by VRC codes. To do this, we make the following simplifying

assumption on the source code.

IID Assumption: The bits produced at the output of the source encoder form a sequence of

independent, identically distributed random variables, with zeros and ones being equiprobable.

This assumption is a reasonable one to make for any good sourcecode, since if the source-coded

(compressed) sequence is not an IID sequence of equiprobable bits, then it would be possible to compress

the sequence even further.

The IID assumption on the source code is used to obtain an upperbound onS, the expected number

of stuffed bits in a VRC codeword. DefiningSN to be the expected number of stuffed bits required to

prevent the occurrence of1m1 , m1 > 1, in a length-N IID sequence of equiprobable bits, we see that

SN = E





N
∑

i=m1−1

Xi



 =
N

∑

i=m1−1

E[Xi]
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where eachXi is a random variable representing the number of bits stuffedbetween theith and(i+1)th

bits of the IID sequence. Now,E[Xi] is the probability that all the bits between the(i − m1 + 2)th

and ith bits (both inclusive) of the IID sequence are ones, which is 2−(m1−1). Therefore, we have

SN = (N −m1 +2) 21−m1 ≤ N 21−m1 , sincem1 > 1. Now, S = E[SN ], where the expectation is taken

over the lengthN of the sequence formed byL source codewords prior to bitstuffing. Thus, we see that

S ≤ kLRs2
1−m1 (4)

The above bound is used to derive the following result.

Theorem 2:Under the IID assumption on the source code with parametersk ≥ 1 and Rs > 0, for

eachr ∈ (1/3, 1),

TVRC(r, d) ≥ 2d(1−r)−γ(k,Rs)+od(1)

whereγ(k, Rs) = kRs + log2 Rs + 8, andod(1) is a correction term that, for anyr, k andRs, vanishes

asd → ∞. More generally, for eachr ∈ (0, 1),

TVRC(r, d) ≥ 2d(1−r)−γ(r,k,Rs)+od(1)

whereγ(r, k, Rs) = 21−α(r) r
1−r

+α(r)− log2
r

1−r
+kRs +log2 Rs +6, with α(r) = max(0,

⌊

log2
2r

1−r

⌋

).

As we shall see, the proof of the theorem provides us with an explicit choice of parameters(p, m1, m2, L)

for VRC codes that achieve this bound. Thus, while the statement of the theorem is primarily of theoretical

interest, its proof has practical significance as it providesus with the means to construct VRC codes whose

performance is almost optimal.

Before proceeding to the proof of the theorem, we record the following corollary, which is an immediate

consequence of Theorems 1 and 2.

Corollary 3: Under the IID assumption on the source code, for anyr ∈ (0, 1),

lim
d→∞

log2 TVRC(r, d)

d
= 1 − r

This result, when compared to the corresponding results for fixed-rate sync-timing codes ([14], Corol-

laries 9 and 10), shows that the maximum timing span of VRC codes has the same asymptotic form as

that for the families of fixed-rate sync-timing codes considered in [14], i.e., both are asymptotically of
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the form2d(1−r).

Proof of Theorem 2: Let r ∈ (0, 1) be fixed. We shall first show that given an integerN ≥ 0 and

any ǫ > 0, there exists an integerdN (r, k, Rs, ǫ) such that for alld > dN (r, k, Rs, ǫ), there exists a

(p, m1, m2, L) VRC code with

p =

⌊

Rs

dr
2d(1−r)−γN (r,k,Rs)−ǫ

⌋

,

m1 = ⌈log2 log2 p⌉ + N,

m2 = ⌈log2 p⌉ + 1, and

L =

⌈

dr

kRs

⌉

, (5)

that has rateR ≥ r and delayD ≤ d, whereγN (r, k, Rs) = 21−N r
1−r

+N−log2
r

1−r
+kRs+log2 Rs+6.

The timing span of this code is given byT = pkL = 2d(1−r)−γN (r,k,Rs)−ǫ+od(1), with theod(1) correction

factor arising from the elimination of the various ceilingsand floors in the above choice of parameters.

By merging theǫ into theod(1) factor, we thus see that for allr ∈ (0, 1),

TVRC(r, d) ≥ 2d(1−r)−γN (r,k,Rs)+od(1)

The next step in the proof involves showing thatγN (r, k, Rs) is minimized, over allintegersN ≥ 0,

by N = α(r) = max(0,
⌊

log2
2r

1−r

⌋

). Finally, we show that whenr ≥ 1/3, then withN = α(r), we have

γN (r, k, Rs) ≤ γ(k, Rs), whereγ(k, Rs) is as in the statement of the theorem.

So, given an integerN ≥ 0 and anǫ > 0, let p, m1, m2 and L be as in (5). To show that there

exists a VRC code with this choice of parameters, we need to show that there are at leastp distinct

sequences of lengthm2 (for the block index codebook) that do not contain1m1 . Defining g(m1,L)

to be the number of binary sequences of lengthL that do not containm1 consecutive ones, we need

to show thatg(m1, m2) ≥ p. It has been shown ([14], Lemma B.2) that ifL ≤ 2m1 + m1 − 2, then

g(m1,L) ≥ 2L−1. It is easily verified that ifd is sufficiently large, so thatp is sufficiently large, then

we havem2 ≤ 2m1 + m1 − 2, and hence,g(m1, m2) ≥ 2⌈log2
p⌉ ≥ p.

Next, we have to verify that the rate,R, of this (p, m1, m2, L) code is at leastr, and its delay,D, is

at mostd. Actually, it suffices to show thatD ≤ d, because it would then follow that

R =
kLRs

N
=

kLRs

D
≥

kLRs

d
≥ r

the last inequality being a consequence of the choice ofL.
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To verify thatD ≤ d, we first note that from (2) and (4), we have

D ≤ m1 + m2 + 3 + kLRs(1 + 21−m1)

≤ log2 log2 p + log2 p + N + 6 + (dr + kRs)(1 + 21−log
2
log

2
p−N )

= log2 log2 p + log2 p + N + 6 + (dr + kRs)(1 +
21−N

log2 p
) (6)

with the second inequality requiring the repeated use ofx ≤ ⌈x⌉ < x + 1, after replacingm1, m2 and

L with their respective expressions from (5).

Now, some simple algebraic manipulations show that we can re-write the expression forp in (5) as

p = ⌊2d(1−r)−log
2
d−β⌋, whereβ = 21−N r

1−r
+ N + log2(1 − r) + kRs + 6 + ǫ. Note that if x ≥ 2,

then x/2 ≤ x − 1 ≤ ⌊x⌋ ≤ x. Hence, if d is sufficiently large, we have2d(1−r)−log
2
d−β−1 ≤ p ≤

2d(1−r)−log
2
d−β. Using this, we can continue the chain of inequalities in (6)as follows:

D ≤ log2 log2 p + log2 p + N + 6 + (dr + kRs)(1 +
21−N

log2 p
)

≤ d(1 − r) − log2 d − β + log2(d(1 − r) − log2 d − β) + N + 6

+ (dr + kRs)(1 +
21−N

d(1 − r) − log2 d − β − 1
)

= d + log2

(

(1 − r) −
log2 d + β

d

)

+ N + 6 − β

+ kRs(1 +
21−N

d(1 − r) − log2 d − β − 1
) +

21−N r

1 − r − log
2
d+β+1
d

≤ d + log2(1 − r) + kRs + ǫ/2 +
21−N r

1 − r
+ ǫ/2 + N + 6 − β (7)

the last inequality being true for alld > dN (r, k, Rs, ǫ), wheredN (r, k, Rs, ǫ) is some sufficiently large

integer. This is becauselog2
d+β+1
d

→ 0 and 21−N

d(1−r)−log
2
d−β−1 → 0 asd → ∞.

But, it now follows from (7) and the definition ofβ that whend is sufficiently large, the VRC code

with parametersp, m1, m2 andL as above has delayD ≤ d, and hence as shown previously, has rate

R ≥ r.

We next have to show that the choice of the integerN ≥ 0 minimizing γN (r, k, Rs) is N = α(r) =

max(0,
⌊

log2
2r

1−r

⌋

). Equivalently, we need to show that this choice ofN minimizesf(N) = 21−N r
1−r

+

N over all integersN ≥ 0. It can be verified by differentiation thatf(N) is strictly decreasing for

N < log2(
2r

1−r
ln 2) and is strictly increasing forN > log2(

2r
1−r

ln 2). Hence, the integer that minimizes

f(N) is the smallest integerN such thatf(N) < f(N+1). This inequality simplifies toN > log2
2r

1−r
−1,

and the smallestN satisfying this isN =
⌊

log2
2r

1−r

⌋

. Note that
⌊

log2
2r

1−r

⌋

≥ 0 if and only if r ≥ 1/3,
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and we are looking for the smallestnon-negativeinteger that minimizesf(N). So, in the case when

r < 1/3, we note thatf(N) is strictly increasing forN ≥ 0, and hence the smallest non-negative integer

that minimizesf(N) is 0.

Finally, we need to show that whenr ≥ 1/3, then with N = α(r), we getγN (r, k, Rs) ≤ kRs +

log2 Rs + 10. It suffices to show thatf(α(r)) ≤ log2
2r

1−r
+ 1, wheref is the function defined earlier.

Note that forr ≥ 1/3, α(r) =
⌊

log2
2r

1−r

⌋

. Defining δ to be the fractional part oflog2
2r

1−r
, i.e., δ =

log2
2r

1−r
−

⌊

log2
2r

1−r

⌋

, we see thatf(α(r)) − log2
2r

1−r
= 2δ − δ. Note that0 ≤ δ < 1. Now, it is easily

verified that in this region,2δ − δ is maximized atδ = 0, which shows that2δ − δ ≤ 1. We have thus

shown thatf(α(r)) ≤ log2
2r

1−r
+ 1, which completes the proof of the theorem.

We would like to make one final remark on the IID assumption madeon the source in deriving the

above lower bound onTVRC(r, d). It should be noted that this assumption is only used in deriving an

upper bound onS, the expected number of stuffed bits inserted in a VRC codeword. It can be seen by

carefully going through the chain of inequalities in (6) and(7) that if the bound in (4) were to be replaced

by S ≤ C 21−m1 for some constantC > 0, then some slight modifications to the above argument would

prove the statement of the theorem for a different choice of theγ’s. In particular, Corollary 3 would still

be valid. It is also conceivable that other versions of the theorem could be proved under still weaker

bounds onS, perhaps by choosing the parametersp, m1, m2 and L of the VRC code differently. We

therefore believe that it may be possible to show thatTVRC(r, d) asymptotically grows as2d(1−r) under

weaker assumptions on the source code.
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