Submitted to the IEEE RANSACTIONS ONINFORMATION THEORY 1

Data Synchronization with Timing:

The Variable-Rate Case

Navin Kashyap and David L. Neuhoff

Abstract

This paper extends the theory of data synchronization vifiting for fixed-rate codes, previously
developed by the authors, to the variable-rate case. Giveouece code, a class of sync-timing codes
called variable-rate cascaded (VRC) codes is considerd“tirap around” the source code in such a
way as to enable the decoder to not only resynchronize raputiien the encoded bits are corrupted
by insertion, deletion or substitution errors, but alsoduee estimates of the time indices of the data
symbols encoded by the source code. The estimates of theitighees are modul@” reductions of
the actual time indices, for some integér called the timing span of the code. These sync-timing
codes are analyzed on the basis of the maximum timing spaevatite for a given coding rat& and
permissible resynchronization deldy. It is shown that the timing span of VRC codes is upper bounded
by 2P(1-R)+o(D) "gnd that this upper bound is achievable asymptoticallpirThis exponential rate of
growth of timing span with delay is the same as that found iptesty for certain fixed-rate sync-timing

codes,e.qg. (fixed-rate) cascaded codes.

Index Terms

cascaded codes, resynchronization delay, sync-timinges;otiming span, variable-rate cascaded

(VRC) codes

Manuscript originally submitted September 2001, revised April 2004utemitted June 2007. This work was supported in part
by NSF Grants NCR-9415754 and CCR-9815006, and was carriediolg the first author was at the University of Michigan.
Portions of this work were published in the proceedings of the IEEE latemal Symposium on Information Theory, Sorrento,
Italy, June 2000.

Navin Kashyap is with the Department of Mathematics and Statistics at Gueéaiversity, Kingston, ON K7L 3N6, Canada.
(email: nkashyap@mast.queensu.ca).

David L. Neuhoff is with the Department of Electrical Engineering and @oter Science at the University of Michigan,
Ann Arbor, Ml 48109, USA. (email: neuhoff@eecs.umich.edu).

Submitted to the IEEE RANSACTIONS ONINFORMATION THEORY 2

I. INTRODUCTION

An important aspect of communications that has not recaivedh serious attention in the information
theory literature pertains to the encoding and decodindheftime indices of the transmitted data. The
transmission of time indices of the data, along with actwthd/alues themselves, is necessary in most
situations where conventional data synchronizatioh [],[2],[3]) is needed. A typical such situation
is when a sequence of data symbols must be encoded into lit¢raamsmitted across a channel that
can make arbitrary insertion, deletion and substitutiolorsr A particularly pertinent scenario is when
decoding commences in the middle of the transmitted strearhappens, for example, when a television
set is switched on. From the standpoint of the receiver, tlig e viewed as the deletion of an arbitrary
prefix of the encoded bitstream. It should be noted that wimertion and deletion errors can cause
synchronization problems regardless of whether the engoafi the data is fixed-length or variable-length,
substitution errors can cause loss of synchronization wiitly variable-length encoding of the data. Thus,
variable-length source codes are particularly susceptiblsynchronization errors.

A typical data synchronization scheme consists of a meshatfiat enables the decoder to re-establish
synchronization, usually by locating the start of a validiesord in the encoded sequence, when there
is a loss of synchronization caused by channel errors. Rdsleshment of synchronization means that
in the absence of further errors, some suffix of the sequenaaiaf symbols produced by the decoder
agrees with some suffix of the original (unencoded) sequehckata symbols. There is a long history
of such synchronization schemes, primarily for variatdegth codes, in the literature [4]-[11].

However, in order for the recovery of synchronization to Iseful in practice, it is equally important
for the decoder to have a means of establishing the positibrike decoded symbols relative to the
original data sequence. In other words, synchronizatidreises must not only enable the decoder to
resynchronize rapidly upon cessation of channel error$,atgap must allow the decoder to produce
estimates of the time indices of the decoded data symbolsch®ymization, when achieved along with
timing recovery, is known astrong synchronizatiofil2],[13] or synchronization with timing14],[15].

A good motivation for synchronization with timing can be givin the context of multimedia com-
munications. In multimedia broadcasts, we may have meltiptlated data streams being transmitted
simultaneously, for example, audio and video streams irodgdnferencing. If one of the streams gets
affected by synchronization errors, and there is no mesharfor timing recovery, then conventional
synchronization within each stream alone will not preventismatch between the streams. This can result

in the undesirable situation of sound not correspondindgdea: Indeed, the importance of synchronization

Submitted to the IEEE RANSACTIONS ONINFORMATION THEORY 3

with timing has been recognized since the early days of ividgo coding standards. For example, there
is a provision made within the JPEG/MPEG standards for thedhoiction of synchronizing markers,g,
end-of-line and end-of-frame markers, at regular interialthe encoded sequence as a means of encoding
the time indices of the data. Other examples illustratireyrieed for synchronization with timing can be
found in [14] and [16].

Coding schemes that encode and decode data time indicegllaaswdata values, will henceforth be
referred to assynchronization with timing codesr sync-timing codegor short. There has been some
recent interest in the design and performance analysis mé-8gning codes. A clear identification of
the need for sync-timing in the context of synchronizatidrvariable-rate source codes seems to have
first appeared in the literature in [12]. This notion was furtdeveloped in [13], and an analysis of the
relative merits of various sync-timing codes, assuming @babilistic channel model, can be found in
[16]. A theoretical framework for the performance analysfssync-timing codes that are fixed-rate, in
the sense that there are integérand j such thatj bits emerge from the encoder for evenpits that
enter, was developed in [14] and [15]. The performance ofreg¢¥amilies of such codes were analyzed
within this framework.

In this paper, we use a family of variable-rate sync-timingles, which we calNariable-rate cascaded
(VRC) codesto extend the theory developed in [14] to the variable-tse. A VRC code is designed
to “wrap around” a source code, as described in Section Il. Téeoder for a VRC code produces
time index estimates of the decoded data symbols. In thenabsef channel errors, these time index
estimates are simply modulB-reductions of the actual time indices, whéreis some (typically, large)
integer. Coding schemes similar to these codes have payitnieen considered; indeed, what we call
a VRC code is essentially the coding scheme referred to aset8ehA” in [16] used in conjunction
with bitstuffing. What is new in this paper is the framework andavhich the theoretical limits to the
performance of such coding schemes can be analyzed. Ouevirark and analysis differ fundamentally
from the analysis of the probability of loss of strong syrafiration for the schemes in [16].

The performance of a VRC code is measured in terms of its coditeg resynchronization delay and
timing span. Coding rate and timing span are straightfodwardefine, so we do that first. Coding rate
is taken to be the ratio of the average number of source-cbiedentering the encoder for the VRC
code to the average number of bits it produces as output ponse. The timing span of a VRC code
measures the ability of the code to produce estimates ofirtie ihdices of the decoded data symbols.
This is nicely captured by the integdf modulo which the time index estimates are produced by the

decoder for the VRC code, and so we define this intédgéo be the timing span of the code.

Submitted to the IEEE RANSACTIONS ONINFORMATION THEORY 4

Resynchronization delay is defined in the context of a scendniere the decoder loses synchronization
due to channel errors, but the channel subsequently reraamsfree for a sufficiently long period of time.
In such a scenario, if the decoder re-establishes syncation upon receiving, on an averadgebits, then
D is taken to be the resynchronization delay of the code. lukhbe pointed out that re-establishment of
synchronization now means that the decoder produces a rsegjo¢(data-symbaltime-index-estimate
pairs such that the data-symbol sequence produced agrdesamie suffixs of the original data-symbol
sequence, and the corresponding time index estimates areothect moduldF' reductions of the time
indiced of the entries irs. In practice, for a VRC code, the average number of bits ni:éalee-establish
synchronization is roughly equal to the average length od@eword. Therefore, for practical purposes,
we can simply set the resynchronization delay of a VRC codbetequal to the average length of a
codeword.

Henceforth, all uses of the words “rate” and “delay” of a VR@de will refer to coding rate and
resynchronization delay as defined above. Note that our defigitof rate and delay both take into
account the variable-rate nature of the VRC code. Expligiregsions, in terms of VRC code parameters,
for the three performance measure of rate, delay and timpam svill be given in Section Il. We also
point out that all three performance measures for a VRC cade been defined in a manner compatible
with the corresponding definitions given in [14] for the ca$dixed-rate sync-timing codes. This allows
us to make direct performance comparisons between VRC candixed-rate sync-timing codes.

Under suitable assumptions on the source code, we can daswee shall see in Section I, upper
and lower bounds on the maximum timing spdhrc(r, d), achievable by a VRC code with rafe > r
and delayD < d. These bounds imply that, for € (0,1) and sufficiently larged, Tyrc(r,d) ~
24(1=1) This shows that the timing span of variable-rate sync-timindes can grow exponentially with
resynchronization delay, just as in the fixed-rate case, haddate of exponential growth is the same as
that for fixed-rate codes.

We conclude the Introduction by emphasizing a point alsoariad14]. In defining resynchronization
delay above, we assumed a context in which the channel reredior-free for a sufficiently long period
of time. A synchronization code (with or without a timingemery mechanism) by itself cannot provide
satisfactory performance in situations where the chanretes errors as frequently as, say, once every

D bits, D being the delay of the code. In such a situation, it is préferso first use an error-correcting

Time indices here mean the positions of entries in the sequeretative to the beginning of the original data-symbol

sequence, andot relative to the beginning of.

Submitted to the IEEE RANSACTIONS ONINFORMATION THEORY 5

d timi timi time index estimates
ata source sync-timin, sync-timin
—» L Y ¢ {channel}' Y e

sequence encoder encoder decoder

+ * data

source
decoder

f block L source code f block L source code
ag index codewords g index codewords |
0 0 0

vy

| 111..1 0\ ¢codeword plus stuffing Ol 11..1 0\ codeword plus stuffing
|<—> R a— ——— -
mj my mp mp
R/—/ R/_/
marker marker

Fig. 1. Block diagram for a variable-rate cascaded code, and a ptre @ncoded sequence of bits.

code to create a channel that makes infrequent errors, okihwa synchronization code can provide

good performance. Simulation results exist in the litemfidr7] that demonstrate this point well.

Il. VARIABLE-RATE CASCADED CODES

Consider a lossless, binary source code, parametrized liytegrerk > 1 and a real numbeR, > 0,
for a data source with a discrete (countable) alphabet analsaaciated probability mass function. The
source code is assumed to be a blocklerigth-variable-length prefix code with rafe,, i.e., the expected
number of bits, per data symbol, produced by the source emded?;. We shall further assume, for the
time being, that each block &f data symbols is encoded independently of any other blockvé&shall
see, this assumption may be relaxed somewhat.

The encoder for avariable-rate cascaded (VRC) cqdehich we shall refer to as theync-timing
encoder is designed to follow the source encoder (see Figure 1). Tdata, symbols from the source are
first encoded (compressed) by the source encoder, and thataitthe source encoder is then further
encoded by the sync-timing encoder. The encoded bitstre@meiistransmitted across the channel, which
can make arbitrary insertion, deletion or substitutioroesr At the channel output, the received bitstream
first passes through th&ync-timing decoderand subsequently through the source decoder.

A VRC code is characterized by positive integersn;, mo and L, and whenever necessary, we shall
refer to a VRC code with these parameters a§ani, ms, L) VRC code. The sync-timing encoder
operates on blocks of. source codewords at a time (or equivalently, on blockg: bfdata symbols).
In response to a block af source codewords, the sync-timing encoder producéf@ codewordhat

is composed of one g distinct markers followed by the block ofL source codewords after it has

Submitted to the IEEE RANSACTIONS ONINFORMATION THEORY 6

undergonebitstuffing followed by a zero (see Figure 1). The marker consists dliag of m; > 1
consecutive ones (denoted b¥+), followed by a zero, followed by block index codewotdollowed by
another zero. The block index codewords form a codebogk diktinct binary sequences of length,
none of which contains the flag™:. These codewords are used to encode the modlllmck indices,
i.e, the VRC codeword produced in response to ftieblock of L source codewords contains the block
index codeword that encodes the integet ; — 1 modp. The integerp is referred to as th@eriod of
the code. Bitstuffing prevents the spurious appearance of arflagch block ofL source codewords
by “stuffing” a zero immediately after each occurrencel®f —! in the codeword. The structure of this
code is similar to that of the cascaded code described in H is also similar to the coding schemes
described in [16].

The sync-timing decoder locates the flags in the stream ofweddits, and for each flag found, it
reverses (if possible) the encoding procedure on the seguem to the next flag. Thus, every successful
reversal of the encoding yields the integeencoded by the block index codeword, and a “destuffed”
sequence of bits that is passed to the source decoder. Ifeteffibd sequence is a valid sequence of
L source codewords, then the source decoder determines,raddcps as output, thel, data symbols
encoded by this block of codewords. The output of the sourcedkr is fed back into the sync-timing
decoder. The sync-timing decoder checks to see if there aetlgx: L data symbols in the sequence
produced by the source decoder, in which case it assignsetaldta-symbol sequence the sequence of
time indices(ikL + 1,ikL +2,..., (i + 1)kL). The output of the sync-timing decoder then consists of
the sequence ofL data symbols and the time indices assigned to them.

Note that sincé) < ¢ < p — 1, the time indices produced by the sync-timing decoder arduiogpk L
reductions of the actual time indices of the data symbolsréfbee, by the definition given in Section I,

the timing span of the VRC code is given by
T = pkL (1)

We next derive expressions for the rate and delay of a VRC @oderms of the parameters of the
source code and the VRC code. We will find it useful to first dedweexpression for delay. From our
description of decoding above, it should be clear that inemato where the channel remains error-free
for a sufficiently long period of time after initial loss of deaer synchronization, the decoder will re-
establish synchronization once it locates a flag in the drem+eceived bitstream. Therefore, the number
of received bits that the decoder may erroneously decodeasoaud is (at worst) equal to the length of

a VRC codeword. Therefore, in keeping with the definition ofaglegiven in Section |, it makes sense

Submitted to the IEEE RANSACTIONS ONINFORMATION THEORY 7

to set the resynchronization dela), of a VRC code to be equal to the average lengih,of a VRC
codeword. We thus have
D=N=mj+mo+3+kLRs+S (2)

where S is the expected number of stuffed bits in a VRC codeword.
Finally, the coding rateR, is the ratio of the average number of bits entering the gimiorg encoder
to the average number of output bits. Thus,

_ kLR, | mutme+3+4S
N N

Clearly, a good VRC code must have rate close to 1, small daldylarge timing span. The parameters

R

3)

p, m1, mo and L of the VRC code are typically chosen so as to maxinize- pkL, given a desired
coding rate and resynchronization delay. For a given tasgetofr € (0, 1) and resynchronization delay

of d, a good choice of parameters is as follows:

{Rs 2d(1—r)—fy(r,k,RS)—eJ

% 9
my = [logylogy pl 4 a(r),
mg = [logyp] +1, and

dr
L =

i

where~(r, k, Ry) = 2'0) 5 1 a(r) ~ log, 15 + kR, + logy Ry +6, anda(r) = max(0, |log, £).
For values ofr close to 1,a(r) ~ log, 2=, and consequentlyy(r, k, R,) ~ kR, + logy Rs + 7. Thus,

for values ofr close to 1, the expressions fprand m; above are well approximated by

p = \‘dl 2d(1—r)—sz3—7J ’ and
r

my = [logylogy p| +log, 12_74 :
As we shall see in Section I, for € (0,1) and d sufficiently large, a VRC code with the choice of
parameters given above has timing span provably close tméxmum theoretically achievable by codes
with rate at least and delay at most.

We briefly remark upon the reasons for choosing the all-onegsesge, 1™, as the flag. Firstly, it
has been shown [18],[19] that the bitstuffing procedure fer ali-ones flag is the most efficient in the
following sense. Given a length-1ID random sequence of equiprobable bits, IgtA) be the expected
number of “stuffed” bits inserted to prevent the sequedce- aias...a,, from occurring within the

random sequence (the complementgf is inserted whenevetias . .. a,,_1 is observed). Then, among

Submitted to the IEEE RANSACTIONS ONINFORMATION THEORY 8

all sequencesd of fixed lengthm, the all-ones sequendé& minimizes the asymptotic average redundancy,
lim,,_,, I,,(A)/n. Secondly, there is a simple and efficient algorithm [20] fonegrating the set of all
lengthims sequences (for the block index codebook) that do not contairtonsecutive ones.

It is also worth pointing out the reasons for the assumptimage on the source code at the beginning
of this section. The source code was taken to be a prefix code spasble the sync-timing encoder
to parse the source-coded bitstream into codewords, whahidvallow it to form blocks ofL source
codewords for further encoding. We had also assumed thdt lelack of £ data symbols was encoded
independently of any other block. The reason for this is blsstiated as follows. Suppose that the
encoding of thg L + 1)th block of k data symbols depends on some of the fir6tdata symbols. Note
that the VRC codeword that contains the fifssource codewords is different from that which contains
the (L + 1)th source codeword. Now, suppose that the VRC encodeddaitstivas corrupted by channel
errors in such a way that the sync-timing decoder was unabledover the first VRC codeword, but
regained synchronization in time to decode the second VRd&word perfectly. In such a situation,
there is no way for the source decoder to recover(the- 1)th block of k data symbols, or indeed any
subsequenk-blocks that depend on any of the filst-1 k-blocks. Thus, dependencies in the encodings
of different datak-blocks by the source encoder may lead to decoding delaytheirevent of channel
errors, that cannot be attributed to loss of synchronipatimne. The worst case is when the encoding
of each block ofk data symbols depends on the previdublock. In this case, even a single channel
error can cause a catastrophic loss of data which cannotévemtied by synchronization codes alone.

Such delays in recovering data symbols can be avoided byrieguhe source encoder to encode
each block ofc data symbols independently of any other block. In fact, cne@ven allow dependencies
in the encoding of dat&-blocks, provided this dependency does not cross VRC codketvoundaries,
i.e., in order to decode the source codewords contained in son@ &iRleword, one does not need to
decode the source codewords contained in other VRC codewdtds would require the parametér

of the VRC code to be known to the source encoder.

I1l. ANALYSIS

In this section, we shall assume that a source code with paess® and R, has been fixed, and
determine how large a timing spdnis achievable by a VRC code with desired ratand desired delay
d, designed to “wrap around” the fixed source code. Since we a\@agume a source code to be a prefix
code which encodes each block /oidata symbols independently of any other blockkoflata symbols,

we may freely choose the parameternf the VRC code.

Submitted to the IEEE RANSACTIONS ONINFORMATION THEORY 9

Let Tyrc(r, d) denote the maximum timing span achievable by any VRC codeviheps around the
fixed (k, Rs) source code, with rate at leastand delay at mosd. If there is no such VRC code with
rate at least and delay at most, then we defin€li,rc(r, d) to be 0. The following is a simple upper

bound onTyrc(r, d).

Theorem 1:Forr € (0,1) andd > 0,

d
TVrc(r, d) < o 2d(1=7)

Proof: Consider any(p, mi, me, L) VRC code with rateR > r and delayD < d. In order to havep
distinct block index codewords, each of length, we must havens > log, p. It now follows from (2)
and (3) that

D >FKkLRs+logyp=RD +log,p

But this implies thatlog, p < D(1 — R), and hencep < 2P0-F) Therefore, for any VRC code with
D <dandR > r, we have, by way of (1),

DR dR d
T = pkL = < L od(1-r) o & od(1-r)
P PR, "R, ~ R
the last inequality using the fact th& < 1. |

The above bound shows that the maximum timing span of a VRC gomes at most exponentially
with delay. We next derive a lower bound @Ryrc(r, d), which will show that exponential growth of
timing span with delay is in fact achievable by VRC codes. @dlds, we make the following simplifying

assumption on the source code.

11D Assumption: The bits produced at the output of the source encoder forrgaesee of

independent, identically distributed random variableghweros and ones being equiprobable.

This assumption is a reasonable one to make for any good scodm since if the source-coded
(compressed) sequence is not an IID sequence of equipmbdb) then it would be possible to compress
the sequence even further.

The IID assumption on the source code is used to obtain an ugmperd onS, the expected number
of stuffed bits in a VRC codeword. Definin§y to be the expected number of stuffed bits required to

prevent the occurrence daf™, m; > 1, in a length#V 1ID sequence of equiprobable bits, we see that

N N
> Xi] = Y E[X)

Sy=EF

i=mi—1 i=m;—1

Submitted to the IEEE RANSACTIONS ONINFORMATION THEORY 10

where eachX; is a random variable representing the number of bits stufftd/een théth and(i 4 1)th
bits of the IID sequence. Nowf[X;] is the probability that all the bits between tlie— m; + 2)th
and ith bits (both inclusive) of the IID sequence are ones, whil2 (" ~1). Therefore, we have
Sy = (N —my+2)2!=™ < N2!=™ sincem; > 1. Now, S = E[Sy], where the expectation is taken

over the lengthV of the sequence formed ki source codewords prior to bitstuffing. Thus, we see that
S < kLR,2'!™™ (4)

The above bound is used to derive the following result.

Theorem 2:Under the 1ID assumption on the source code with paramdters1 and R, > 0, for
eachr € (1/3,1),

Tyre(r, d) > 20177k R)+oa(l)

where~(k, Rs) = kRs + logy Rs + 8, andogy(1) is a correction term that, for any, £ and R, vanishes

asd — oo. More generally, for each € (0,1),

TVRC(Ta d) > 2d(171")7’y(7‘,k‘,R5)+0d(1)

wherey(r, k, Ry) = 21720t a(r) —log, = + kR +logy Rs+6, with a(r) = max(0, {logQ %J)

As we shall see, the proof of the theorem provides us with gli@choice of parameter®, my, ms, L)
for VRC codes that achieve this bound. Thus, while the stat¢ofehe theorem is primarily of theoretical
interest, its proof has practical significance as it provigesvith the means to construct VRC codes whose
performance is almost optimal.

Before proceeding to the proof of the theorem, we recordahewing corollary, which is an immediate

consequence of Theorems 1 and 2.

Corollary 3: Under the 11D assumption on the source code, for ary (0, 1),

lim 10g2 TVRC(T, d)
d—o0 d

=1-r
This result, when compared to the corresponding results fedfrate sync-timing codes ([14], Corol-
laries 9 and 10), shows that the maximum timing span of VRGesdths the same asymptotic form as

that for the families of fixed-rate sync-timing codes considein [14], i.e., both are asymptotically of

Submitted to the IEEE RANSACTIONS ONINFORMATION THEORY 11

the form24(1-7),

Proof of Theorem 2Let r € (0,1) be fixed. We shall first show that given an integér> 0 and
any e > 0, there exists an integeiy(r, k, Rs,€) such that for alld > dy(r, k, Rs, €), there exists a

(p,m1,ma, L) VRC code with

p = \“?Qd(lr)ﬂ/N(r,k,Rs)eJ’
r
mi = [logylogy p] + N,
my = [logyp| +1, and
dr
L = 5
| (5)

that has rat&® > r and delayD < d, whereyy(r, k, Rs) = 21*Nﬁ +N —logy 1= +kRs+logy R +6.
The timing span of this code is given By= pkL = 2¢(1—")—w(rk.R)=etoa(l) with theog(1) correction
factor arising from the elimination of the various ceilingsd floors in the above choice of parameters.

By merging thee into the o4(1) factor, we thus see that for atle (0, 1),
TVRC("“, d) > 2d(1—r)—'yN(r,k,Rs)+04(1)

The next step in the proof involves showing that(r, k, Rs) is minimized, over alintegersN > 0,
by N = a(r) = max(0, LlogQ %J) Finally, we show that when > 1/3, then with N = «a(r), we have
v (r k, Rs) < v(k, Rs), where~(k, Rs) is as in the statement of the theorem.

So, given an intege®V > 0 and ane > 0, let p, m1, me and L be as in (5). To show that there
exists a VRC code with this choice of parameters, we need ¢w ghat there are at least distinct
sequences of lengtim, (for the block index codebook) that do not contdifi*. Defining g(mq, £)
to be the number of binary sequences of lengtlthat do not containn; consecutive ones, we need
to show thatg(mi, mg) > p. It has been shown ([14], Lemma B.2) thatdf < 2™ + m; — 2, then
g(my, £) > 2571 It is easily verified that ifd is sufficiently large, so thap is sufficiently large, then
we havemy < 2™ + m; — 2, and henceg(my, my) > 2M1°8:21 > p,

Next, we have to verify that the rat&, of this (p, mi, m2, L) code is at least, and its delay,D, is

at mostd. Actually, it suffices to show thab < d, because it would then follow that

the last inequality being a consequence of the choicé.of

Submitted to the IEEE RANSACTIONS ONINFORMATION THEORY 12

To verify that D < d, we first note that from (2) and (4), we have
D < my+mg+3+EkLR,(1+2"™)

< logylogyp +logsp + N 4 6 + (dr + kRy)(1 4 2171082108 p= Ny

1-N

= logylogop+logyp+ N +6+ (dr + kERs)(1 +) (6)

logy p

with the second inequality requiring the repeated use &f [x| < x + 1, after replacingn;, me and
L with their respective expressions from (5).

Now, some simple algebraic manipulations show that we caarite the expression fop in (5) as
p = |2¢0-")le.d=0| ‘where g = 2"V + N +logy(1 — 1) + kRs + 6 + e. Note that ifz > 2,

thenz/2 < z —1 < |z| < z. Hence, ifd is sufficiently large, we hav@d(l-m)-log.d=8-1 <), <

2d(1-r)-log, d—5 Jsing this, we can continue the chain of inequalities ing$)follows:

1-N
D < logylogyp+logap+ N 46+ (dr + kRs)(1 +)
log, p
< d(l—r)—logyd— B+ logy(d(l —r)—loged—3)+ N +6
21—N
dr+kRs)(1
T+ kR + o o d =5 =1
log, d
= d—i—log;Q((l—r)—Ode—i_ﬁ)—i-N—i-ﬁ—ﬁ
21—N 21—N7,
kRs(1
+ kR +d(1—r)—log2d—ﬂ—1)+1_r_%
21=N
< d+logy(l—7)+kRs+€/2+ T +€e/2+N+6—-p0 (7)

the last inequality being true for all > dy(r, k, Rs, €), wheredy (r, k, Rs, €) is some sufficiently large

integer. This is becaus€& T — 0 and gy 2i"g—5— — 0 asd — .

But, it now follows from (7) and the definition of that whend is sufficiently large, the VRC code

with parametery, m1, mo and L as above has delap < d, and hence as shown previously, has rate
R>r.

We next have to show that the choice of the inteer> 0 minimizing yn (r, k, Rs) iS N = a(r) =
max(0, PogQ %J) Equivalently, we need to show that this choiceNdfminimizes f(N) = 217V ;= +
N over all integersN > 0. It can be verified by differentiation thaf(V) is strictly decreasing for
N <logy(= 1n2) and is strictly increasing folV > log, (2 In2). Hence, the integer that minimizes
f(N) is the smallest intege¥ such thatf(N) < f(N+1). This inequality simplifies tav > log, %—1,
and the smallesiv satisfying this isV = Pog2 %J Note that{logQ %J >0 if and only if r > 1/3,

Submitted to the IEEE RANSACTIONS ONINFORMATION THEORY 13

and we are looking for the smalleabn-negativeinteger that minimizesf(N). So, in the case when
r < 1/3, we note thatf(NN) is strictly increasing forN > 0, and hence the smallest non-negative integer
that minimizesf(N) is 0.

Finally, we need to show that when> 1/3, then with N = «(r), we getyn(r, k, Rs) < kRs +

logy R, + 10. It suffices to show thaf(a(r)) < log, 2= + 1, where f is the function defined earlier.

Note that forr > 1/3, a(r) = Llogg 12—”- Defining § to be the fractional part ofog, 2=, i.e, § =

logy 725 — Pog2 %J we see thaff(a(r)) — log, £~ = 2° — §. Note that0 < § < 1. Now, it is easily

verified that in this region2’ — ¢ is maximized aty = 0, which shows thaR’ — § < 1. We have thus

shown thatf(a(r)) < log, 2= + 1, which completes the proof of the theorem. [|
We would like to make one final remark on the IID assumption mawalehe source in deriving the
above lower bound offyrc(r,d). It should be noted that this assumption is only used in degian
upper bound orf, the expected number of stuffed bits inserted in a VRC codéwib can be seen by
carefully going through the chain of inequalities in (6) g@jithat if the bound in (4) were to be replaced
by S < C2'=™ for some constant’ > 0, then some slight modifications to the above argument would
prove the statement of the theorem for a different choicédnehts. In particular, Corollary 3 would still
be valid. It is also conceivable that other versions of theotem could be proved under still weaker
bounds onS, perhaps by choosing the parametgrsn;, ms and L of the VRC code differently. We
therefore believe that it may be possible to show thaic(r, d) asymptotically grows ag?('~") under

weaker assumptions on the source code.

REFERENCES

[1] J.J. stiffler, Theory of Synchronous CommunicatipRsentice-Hall, Englewood Cliffs, NJ, 1971.

[2] R.A. Scholtz, “Frame synchronization techniqud&EE Trans. Communvol. 28, no. 8, pp. 1204—
1212, 1980.

[3] S.W. Golomb, J.R. Davey, I.S. Reed, H.L. van Trees and Jfflegti'Synchronization, JEEE Trans.
Commun. Systemsol. 11, no. 4, pp. 481-491, 1963.

[4] E.N. Gilbert and E.F. Moore, “Variable-length binary eddangs,” Bell Syst. Tech. Jvol. 38, pp.
933-968, 1959.

[5] T.J. Ferguson and J.H. Rabinowitz, “Self-synchronizingfhhan codes,IEEE Trans. Inform. Theory
vol. 30, pp. 687—-693, 1984.

Submitted to the IEEE RANSACTIONS ONINFORMATION THEORY 14

[6] B.L. Montgomery and J. Abrahams, “Synchronization of binaource codes,JEEE Trans. Inform.
Theory vol. 32, no. 6, pp. 849-854, 1986.

[71 R.M. Capocelli, A. de Santis, L. Gargano and U. Vaccaro, “he construction of statistically
synchronizable codeslEEE Trans. Inform. Theogwol. 38, pp. 407-414, 1992.

[8] S-M. Lei, “The construction of efficient variable-length aslwith clear synchronizing codewords
for digital video applications,Proc. SPIE Visual Comm. Image Proc. ;9Boston, pp. 863—-873,
Nov. 1991.

[9] W.M. Lam and A. Reibman, “Self-synchronizing variablexgh codes for image transmissioRjoc.
ICASSP pp. 111-477-111-480, Mar. 1992.

[10] D.W. Redmill and N.G. Kingsbury, “The EREC: an error-re=it technique for coding variable-
length blocks of data,JEEE Trans. Image Processingol. 5, no. 4, pp. 565-574, 1996.

[11] M.R. Titchener, “The synchronization of variable-l¢hgodes,"IEEE Trans. Inform. Theoryol.
43, no. 2, pp. 683-691, 1997.

[12] O.D.J. Thomas, D.H. Smith and A. Ryley, “An adaptive eti@erant and lossless data compressor
for DDS,” J Inf. Recordingvol. 23, pp. 547-557, 1997.

[13] S. Perkins and D.H. Smith, “Synchronization of variablagth codes,Discrete Applied Mathe-
matics vol. 101, pp. 231-245, 2000.

[14] N. Kashyap and D.L. Neuhoff, “Data synchronization wiiming,” IEEE Trans. Inform. Theoty
vol. 47, no. 4, pp. 1444-1460, 2001.

[15] N. Kashyap and D.L. Neuhoff, “Codes for data synchrotiarawith timing,” Proc. Data Compres-
sion ConferenceSnowbird, Utah, pp. 443—-452, 1999.

[16] S. Perkins, D.H. Smith and A. Ryley, “Robust Data CompmesesConsistency Checking in the
Synchronization of Variable Length Code3he Computer Journalol. 47, pp. 309-319, 2004.
[17] M.Y. Cheung and J. Vaisey, “A comparison of scalar quaation strategies for noisy data

transmission,lEEE Trans. Communvol. 43, pp. 738-742, 1995.

[18] A. Kiely, S. Dolinar, M. Klimesh and A. Matache, “Synchiimation Markers for Error Containment
in Compressed Data,TMO Progress Report 42-136ct.—Dec. 1998, pp. 1-40, Feb. 15, 1999.
http://tno.jpl.nasa. gov/tno/ progress.re port/42-136/136H. pdf .

[19] A. Kiely, S. Dolinar, M. Klimesh and A. Matache, “Error C@inment in Compressed Data Using
Sync Markers,”Proc. Int. Symp. Inform. Theory (ISITporrento, Italy, p. 428, June 2000.

[20] W.H. Kautz, “Fibonacci codes for synchronization cohir IEEE Trans. Inform. Theorwol. 11,
pp. 284-292, 1965.

