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Abstract. The class of periodic-finite-type shifts (PFT’s) is a class of sofic shifts that strictly
includes the class of shifts of finite type (SFT’s), and the zeta function function of a PFT is a
generating function for the number of periodic sequences in the shift. In this paper, we derive a
useful formula for the zeta function of a PFT. This formula allows the zeta function of a PFT to be
computed more efficiently than the specialization of a formula known for a generic sofic shift.

1. Introduction. A sofic shift is a set of bi-infinite sequences which can be
represented by some labeled directed graph, and is core to the study of constrained
coding. Classic examples of sofic shifts are the shifts of finite type (SFT’s), which
arise commonly in the context of coding for data storage.

A new class of sofic shifts, called periodic-finite-type shifts (PFT’s), was intro-
duced by Moision and Siegel [9], who were interested in studying the properties of
distance-enhancing codes, in which the appearance of certain words is forbidden in a
periodic manner. The class of PFT’s strictly includes the class of SFT’s, and some
other interesting classes of shifts, such as constrained systems with unconstrained
positions [11], and shifts arising from the time-varying maximum transition run con-
straint [10].

The difference between the definitions of SFT’s and PFT’s is small, but significant.
An SFT is defined by forbidding the appearance of finitely many words at any position
of a bi-infinite sequence. A PFT is also defined by forbidding the appearance of finitely
many words within a bi-infinite sequence, except that these words are only forbidden
to appear at positions indexed by certain pre-defined periodic integer sequences; see
Section 2 for a formal definition. Thus, there is a notion of period inherent in the
definition of a PFT that causes it to differ from an SFT.

The properties of SFT’s are quite well understood (see, for example, [6]), but the
same cannot be said for PFT’s. The study of PFT’s has, up to this point, primarily
focused on finding efficient algorithms for constructing their presentations [1],[2],[5].
The work presented in this paper may be viewed as part of an ongoing effort (see also
[7]) to extend some of what is known about SFT’s to the larger class of PFT’s.

This paper focuses on zeta functions. The zeta function of a sofic shift is a
generating function for the number of periodic sequences in the shift. It is thus a
conjugacy invariant for sofic shifts. It is known that the zeta function of a sofic shift
is always a rational function [8]. The zeta function of a sofic shift can be explicitly
computed from a labeled directed graph presenting the shift; see [6, Theorem 6.4.8].
This formula requires the computation of the characteristic polynomials of certain
matrices derived from a graph presenting the shift, and the number of such matrices
is equal to the number of vertices of the graph.

It is well known that the zeta function can be computed in a much simpler way
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when the sofic shift is in fact an SFT. In this case, the zeta function is obtainable
from the characteristic polynomial of only one matrix — the adjacency matrix of a
graph derivable from a forbidden-word description of the SFT; see [6, Theorem 6.4.6].
In this paper, we prove an analogous result (Theorem 4.1) for a PFT. We show that
the zeta function of a PFT can be computed from certain matrices derivable from
a description of the PFT in terms of periodically-forbidden words. Moreover, the
number of these matrices depends only on the period of the PFT. For example, the
number of matrices needed is two when the PFT has period equal to 2.

The rest of this paper is organized as follows. We provide some of the necessary
background on PFT’s in Section 2. In Section 3, we introduce certain graphs Gz

derived from binary words z, which are subsequently used in Section 4 to state and
prove our formula for the zeta function of a PFT. Finally, in Section 5, we compare our
formula for the zeta function of a PFT with the known formula for the zeta function
of a general sofic shift.

2. Basic Background. We begin with the basic background, based on material
from [2] and [6]. Let Σ be an alphabet, a finite set of symbols. We always assume
that |Σ| ≥ 2 since |Σ| = 1 gives us the trivial case. A word is a finite-length sequence
over Σ, and the length of a word w is denoted by |w|. For a bi-infinite sequence
x = . . . x−1x0x1 . . . over Σ, we call a word w (with length |w| = n) a subword (or
factor) of x, denoted by w ≺ x, if w = xixi+1 . . . xi+n−1 for some integer i. We will
write w ≺i x when we want to emphasize the fact that w is a subword of x starting
at the index i.

For a bi-infinite sequence x = . . . x−1x0x1 . . ., and an integer r ≥ 1, we define
σr(x) = . . . x∗

−1x
∗
0x

∗
1 . . ., the r-shifted sequence of x, to be the bi-infinite sequence

satisfying x∗
i = xi+r for every integer i. The sequence x is said to be periodic if

x = σr(x) for some r ≥ 1; In this case, r is called a period of x, and x can be written
as x = (x0x1 . . . xr−1)

∞.

Each graph G we focus on in this paper is a labeled directed graph, i.e., a directed
graph with a label assigned to each edge. We denote by VG the vertex set of G. We
will refer to vertices of graphs as states. The adjacency matrix AG of such a graph is
a |VG | × |VG | matrix whose rows and columns are indexed (in the same order) by the
elements of V(G). For u, v ∈ V(G), the (u, v)-th entry of AG is the number of directed
edges from u to v in G.

Given a labeled directed graph G, where edge labels come from Σ, let S(G) be the
set of bi-infinite sequences which are generated by reading off labels along bi-infinite
paths in G. A sofic shift S is a set of bi-infinite sequences such that S = S(G) for
some labeled directed graph G. In this case, we say that S is presented by G, or that
G is a presentation of S. A classic example of a sofic shift is a shift of finite type
(SFT ) Y = YF ′ , where F ′ is a finite set of forbidden words (a forbidden set). The
SFT Y = YF ′ is defined to be the set of all bi-infinite sequences x = . . . x−1x0x1 . . .
over Σ such that x contains no word f ′ ∈ F ′ as a subword.

A periodic-finite-type shift (PFT ) is characterized by an ordered list of finite sets
F = (F (0),F (1), . . . ,F (T−1)) and a period T . More precisely, the PFT X{F,T} is
defined as the set of all bi-infinite sequences x over Σ such that for some integer
r ∈ {0, 1, . . . , T − 1}, the r-shifted sequence σr(x) of x satisfies f ≺i σr(x) =⇒
f 6∈ F (i mod T ) for every integer i. It is easy to see that a PFT X{F,T} with period

T = 1 is simply the SFT YF ′ with F ′ = F (0). Thus, the class of SFT’s is (strictly)
included in the class of PFT’s.
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Any PFT X has a representation of the form X{F,T} such that F (j) = ∅ for

1 ≤ j ≤ T−1, and every word in F (0) has the same length. An arbitrary representation
X{ bF,T} can be converted to one in the above form as follows. For a given PFT

X = X{ bF,T}, if f̂ ∈ F̂ (j) for some 1 ≤ j ≤ T −1, then list out all words of length j+|f̂ |

which end with f̂ , add them to F̂ (0), and delete f̂ from F̂ (j). Continue this process
until F̂ (1) = · · · = F̂ (T−1) = ∅. Next, find the longest word in the resulting F̂ (0), and
let ℓ denote its length. Define F (0) = {f ∈ Σℓ : f starts with some word in F̂ (0)}.
It is easy to check that X = X{F,T} with F = (F (0), ∅, . . . , ∅), and every word in

F (0) has the same length ℓ. Throughout this paper, for a given PFT X = X{F,T},

we always assume that F is in standard form, i.e., F = (F
(0)
X , ∅, . . . , ∅), and F

(0)
X is a

subset of Σℓ for some ℓ ≥ 1.

Moision and Siegel proved that every PFT is a sofic shift, that is, each PFT has
a presentation, by giving an algorithm to construct a presentation of a PFT [2], [9].
We call their algorithm the MS algorithm, and we refer to the presentation of a PFT
X resulting from the algorithm as the MS presentation of X , denoted by G(ms)

X . The
MS algorithm, given a PFT X = X{F,T} with F in standard form as input, runs as
described below.

Algorithm 1 : The MS Algorithm

1: define T sets of words V(0),V(1), . . . ,V(T−1) as

V(0) = Σℓ \ F
(0)
X and V(1) = V(2) = · · · = V(T−1) = Σℓ.

2: for each integer 0 ≤ j ≤ T − 1, and for each pair of words u = u1u2 . . . uℓ ∈ V(j)

and v = v1v2 . . . vℓ ∈ V(j+1 mod T )

3: if u2 . . . uℓ = v1 . . . vℓ−1 then

4: draw an edge labeled vℓ from u to v.
5: else

6: draw no edge from u to v.
7: return the resulting directed graph and name it G(ms)

X .

We note here that Béal, Crochemore and Fici have given an algorithm, different from
the MS algorithm, which also generates a presentation of a PFT [1].

The MS presentation of a PFT is an example of a word-based graph (WBG),
which we define to be any labeled directed graph G with the following properties:

(W1) Every state in G is a word w ∈ Σℓ for some ℓ ≥ 1.
(W2) The vertex set consists of T disjoint phases V(0),V(1), . . . ,V(T−1) for some

T ≥ 1, and each phase has at most one state corresponding to w ∈ Σℓ. We
denote by w(i) the state in V(i) corresponding to w.

(W3) There is an edge labeled a ∈ Σ from u(i) = u1u2 . . . uℓ ∈ V(i) to v(i+1 mod T ) =
v1v2 . . . vℓ ∈ V(i+1 mod T ) if and only if u2 . . . uℓ = v1 . . . vℓ−1 and vℓ = a.

Observe that WBG’s are always deterministic, that is, distinct outgoing edges from
the same state are labeled distinctly.

Given a WBG G and a finite-length path α : V0 → V1 → · · · → Vn in G, let IG(α)
and TG(α) denote the initial state (V0) and terminal state (Vn) of α in G, respectively.
In the case when IG(α) = TG(α) = V , we call α a cycle at V . Furthermore, we denote
by LG(α) the sequence which is generated by reading off labels along α. We also simply
say x is generated by α (in G) if x = LG(α). The length of a path (or cycle) α is equal
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to the number of edges in α, and is denoted by |α|.

The following remark encapsulates some simple observations that follow easily
from the definition of a WBG.

Remark 2.1. In a WBG G with T phases, and states belonging to Σℓ,

(1) if a path α : V0 → V1 → · · · → Vn originates at V0 ∈ V(i), then for 0 ≤ r ≤ n,
we have Vr ∈ V(k) if and only if r ≡ k − i (mod T );

(2) a path α of length |α| ≥ ℓ terminates at a state corresponding to the word
u ∈ Σℓ if and only if the length-ℓ suffix of LG(α) is u;

(3) there is no cycle of length n if n 6≡ 0 (mod T ).

3. The Word-Based Graphs Gz. The statement and proof of our main result,
namely, an expression for the zeta function of a PFT X{F,T}, makes extensive use of
the adjacency matrices of certain WBG’s determined by F and T . We introduce these
WBG’s in this section, and record an important property of their adjacency matrices.

We need a few definitions first. For a word z over some alphabet, let z♯ denote the
primitive root of z, i.e., z♯ is the shortest word such that z = (z♯)

n
for some integer

n ≥ 1. In particular, for a binary word z (over the alphabet {0, 1}), we will find it
convenient to define Lz to be the length of z♯, Wz to be the number of 1’s in z♯, and

Nz = |z|/Lz. Thus, z = (z♯)
Nz

.

Now, let X = X{F,T} be a PFT with period T and F in standard form. Set
ZT = {0, 1}T \ {0T }. For z = z0z1 . . . zT−1 ∈ ZT , let σT (z) denote the cyclically
shifted sequence z1z2 . . . zT−1z0. We say that z, z′ ∈ ZT are conjugate (or cyclically
equivalent) if z′ = σq

T (z) for some integer q. Conjugacy is an equivalence relation
on ZT , which partitions ZT into conjugacy classes. We then construct a set ΩT by
picking from each conjugacy class of ZT one representative sequence z = z0z1 . . . zT−1

such that z0 = 1.

For each z = z0z1 . . . zT−1 ∈ ΩT , let us denote by Gz the word-based graph with
Lz phases V(0),V(1), . . . ,V(Lz−1) defined (for i = 0, 1, . . . , Lz − 1) by

V(i) =

{
Σℓ when zi = 0.

Σℓ \ F
(0)
X when zi = 1.

For example, G10T−1 is the MS presentation G(ms)

X of X . Furthermore, let us denote by

Hz the subgraph of (Gz)
Lz (the Lz-th power graph of Gz) induced by V(0) = Σℓ \F

(0)
X .

More precisely, the vertex set of Hz is V(0) in Gz, and there is an edge from u(0) to
v(0) in Hz if and only if there is a path of length Lz from u(0) to v(0) in Gz. We denote
by Az and Bz the adjacency matrices of Gz and Hz, respectively.

The following lemma states an important relationship between the traces of the
matrices Az and Bz defined above.

Lemma 3.1. For the adjacency matrices Az and Bz defined above, (a) tr(An
z ) = 0

if n 6≡ 0 (mod Lz), and (b) tr(ALzm
z ) = Lz × tr(Bm

z ) for any integer m ≥ 1.

Proof. (a) follows directly from Remark 2.1(3). For (b), first observe that for any

integer m ≥ 1, tr(ALzm
z ) =

∑Lz−1
i=0 tr(Bm

V(i)), where BV(i) is the adjacency matrix of

the subgraph of (Gz)
Lz induced by V(i). However, we also have tr(Bm

V(0)) = tr(Bm
V(1)) =

· · · = tr(Bm
V(Lz−1)), since every cycle of length Lzm in Gz can be viewed as a cycle

at a state in V(i) for any 0 ≤ i ≤ Lz − 1. Therefore, tr(ALzm
z ) = Lz × tr(Bm

V(0)) =
Lz × tr(Bm

z ).
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4. The Zeta Function of a PFT. The zeta function of a sofic shift S is a
generating function for the number of periodic sequences in S. More precisely, for a
given sofic shift S, the zeta function ζS(t) of S is defined to be

ζS(t) = exp

(
∞∑

n=1

|Pn(S)|

n
tn

)
, (1)

where Pn(S) is the set of periodic sequences in S of period n. In fact, there exists
a formula for computing the zeta function of a sofic shift, which shows that the zeta
function of a sofic shift is always rational [8],[6, Theorem 6.4.8]. In the particular case
when S is an SFT Y = YF ′ with forbidden set F ′ ⊂ Σℓ, the zeta function is simply
the reciprocal of a polynomial [3]. More precisely (see [6, Theorem 6.4.6]),

ζY(t) =
1

det(I − tA
G

(ms)
Y

)
, (2)

where A
G

(ms)
Y

is the adjacency matrix of the MS presentation of Y, by taking Y =

X{(F ′),1}. In this section, we prove the following theorem, which is the main result of
our paper.

Theorem 4.1. For a PFT X = X{F,T} with period T and F in standard form,
the zeta function ζX (t) of X is given by

ζX (t) =
∏

z∈ΩT

[det(I − tAz)]
(−1)Wz

×
∏

z ∈ ΩT :
Nz is even , Wz is odd

det(I − t2LzBz
2).

Theorem 4.1 clearly shows that the zeta function of a PFT is rational, and the
number of graphs (or adjacency matrices) needed to compute the zeta function of a
PFT depends only on its period T . Furthermore, the case when Nz is even and Wz

is odd can happen only when period T is even. Therefore, when T is odd, we can
compute the zeta function using only the adjacency matrices Az:

ζX (t) =
∏

z∈ΩT

[det(I − tAz)]
(−1)Wz

. (3)

Note that when T = 1, then ΩT = {1} and A1 = A
G

(ms)
X

. Hence, (3) reduces to

ζX (t) = [det(I − tA
G

(ms)
X

)]
−1

, showing that (2) is a special case of Theorem 4.1.

The remainder of this section is devoted to a proof of Theorem 4.1. The main idea
of the proof is to express the number, |Pn(X )|, of period-n sequences in X in terms of
the traces of the nth powers of the matrices Az. This takes some development, which
we kick off with two easy lemmas.

Lemma 4.2. Let G be a WBG, and consider two states u(i) = u1u2 . . . uℓ and
v(j) = v1v2 . . . vℓ (for some i and j) in G. For any pair of cycles C and C̃, with

|C| = |C̃|, at u(i) and v(j), respectively, if LG(C) = LG(C̃), then both u and v are
copies of the same word in Σℓ.

Proof. Let m be an integer such that m|C| ≥ ℓ. Since (LG(C))m = (LG(C̃))m

and |(LG(C))m| = m|C| ≥ ℓ, both TG(Cm) and TG(C̃m) are the length-ℓ suf-
fix of (LG(C))m by Remark 2.1(2). Observe that TG(Cm) = TG(C) = u(i) and
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TG(C̃m) = TG(C̃) = v(j).

Lemma 4.3. Let G(ms)

X be the MS presentation of a PFT X = X{F,T} with period
T . When n ≡ 0 (mod T ), a periodic sequence x = (x0x1 . . . xn−1)

∞ is in Pn(X ) iff
x0x1 . . . xn−1 = L

G
(ms)
X

(C) for some cycle C of length n in G(ms)

X .

Proof. If x0x1 . . . xn−1 = L
G

(ms)
X

(C) for some cycle C of length n in G(ms)

X , then

clearly x = (x0x1 . . . xn−1)
∞ is in Pn(X ) since x = (L

G
(ms)
X

(C))∞.

Conversely, suppose that x = (x0x1 . . . xn−1)
∞ is in Pn(X ). Let m be an integer

such that mn ≥ ℓ. For a bi-infinite path α in G(ms)

X that generates x, a finite-length
subpath β of α generating (x0x1 . . . xn−1)

m terminates at w(i) for some 0 ≤ i ≤ T −1,
where w is the length-ℓ suffix of (x0x1 . . . xn−1)

m, by Remark 2.1(2). From w(i), there
must be a path γ : w(i) → V1 → · · · → Vn generating x0x1 . . . xn−1. Observe that the
terminal state Vn of path γ is the terminal state of path βγ as well, which implies
(again by Remark 2.1(2)) Vn = T

G
(ms)
X

(βγ) = w(j) for some 0 ≤ j ≤ T − 1. However,

since n ≡ 0 (mod T ) by assumption, i = j holds from Remark 2.1(1). This shows
that γ is a cycle at w(i) generating x0x1 . . . xn−1.

Lemma 4.3 is not true when n 6≡ 0 (mod T ) since, by (3) in Remark 2.1, there
is no cycle of length n in G(ms)

X . However, the following proposition shows that we
can generate x ∈ Pn(X ) using a cycle C in the MS presentation G(ms)

Xd
of Xd, where

Xd = X{Fd,d} is the PFT with period d = gcd(n, T ) and Fd = (F
(0)
X , ∅, . . . , ∅).

Proposition 4.4. Let X = X{F,T} be a PFT with period T and F in standard

form ( i.e., F (0) = F
(0)
X ⊂ Σℓ and F (1) = · · · = F (T−1) = ∅ ). If gcd(n, T ) = d, then

x ∈ Pn(X ) if and only if x ∈ Pn(Xd), where Xd = X{Fd,d} is the PFT with period d

and Fd = (F
(0)
X , ∅, . . . , ∅).

Proof. Clearly, x ∈ Pn(Xd) implies x ∈ Pn(X ) by definition. For the converse,
suppose that x 6∈ Pn(Xd). Then, for any 0 ≤ r ≤ d−1, we have fr ≺îr

σr(x) for some

fr ∈ F
(0)
X and integer îr ≡ 0 (mod d), that is, fr ≺ir

x for ir = îr + r ≡ r (mod d).
Since gcd(n, T ) = d by assumption, there exists an integer m ≥ 1 such that mn ≡ d
(mod T ). As x is a periodic bi-infinite sequence of period n, for any 0 ≤ r ≤ d − 1,
x contains fr at indices ir + smn, s = 0, 1, . . . , T/d − 1. This implies that for each

r′ ∈ {0, 1, . . . , T − 1}, we have fr′ ≺j′
r

σr′

(x) for some fr′ ∈ F
(0)
X and integer jr′ ≡ 0

(mod T ). Therefore, x /∈ X , and in particular, x /∈ Pn(X ).

Thus, for the PFT’s X and Xd defined in Proposition 4.4, when gcd(n, T ) = d,
as n ≡ 0 (mod d), we have from Lemma 4.3 that x ∈ Pn(X ) = Pn(Xd) if and only
if x = (L

G
(ms)
Xd

(C))∞ for some cycle C in the MS presentation G(ms)

Xd
of Xd. That is,

for any n, every periodic sequence x ∈ Pn(X ) can be generated by a cycle in the MS
presentation of some PFT.

For a WBG G, let Cn(w(i))G be the set of periodic sequences x = (x0x1 . . . xn−1)
∞

which can be generated by a cycle C of length n at w(i) in G. In other words,
x = (x0x1 . . . xn−1)

∞ ∈ Cn(w(i))G iff there exists a cycle C at w(i) satisfying LG(C) =
x0x1 . . . xn−1. By convention, Cn(w(i))G = ∅ if w(i) is not a state in G. Putting to-
gether Lemma 4.2, Lemma 4.3 and Proposition 4.4, we have the following corollary.

Corollary 4.5. Let X = X{F,T} be a PFT with period T and F in standard
form. Given an integer n ≥ 1, suppose gcd(n, T ) = d, and consider the PFT Xd =
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X{Fd,d} with period d and Fd = (F
(0)
X , ∅, . . . , ∅). Then, we have that

|Pn(X )| = |Pn(Xd)| =
∑

w∈Σℓ

∣∣∣∣∣

d−1⋃

i=0

Cn(w(i))
G

(ms)
Xd

∣∣∣∣∣ . (4)

Proof. The first equality is obvious from Proposition 4.4. Also, as Xd has period
d and n ≡ 0 (mod d), it follows from Lemma 4.3 that

|Pn(Xd)| =

∣∣∣∣∣∣

⋃

w∈Σℓ

d−1⋃

i=0

Cn(w(i))
G

(ms)
Xd

∣∣∣∣∣∣
.

Furthermore, Cn(w(i))
G

(ms)
Xd

∩ Cn(ŵ(j))
G

(ms)
Xd

= ∅ if w 6= ŵ by Lemma 4.2, which shows

the second equality.

For (4), we have from the inclusion-exclusion principle that

∣∣∣∣∣

d−1⋃

i=0

Cn(w(i))
G

(ms)
Xd

∣∣∣∣∣ =
∑

J 6=∅,J⊆[d]

(−1)|J|−1

∣∣∣∣∣∣

⋂

j∈J

Cn(w(j))
G

(ms)
Xd

∣∣∣∣∣∣
, (5)

where [d] = {0, 1, . . . , d − 1}. Therefore, our goal is to count
∣∣∣
⋂

j∈J Cn(w(j))
G

(ms)
Xd

∣∣∣
for each non-empty set J ⊆ [d]. To do this, we first show that the intersection⋂

j∈J Cn(w(j))
G

(ms)
Xd

can be replaced a single set Cn(w(q))Gz
determined in some WBG

Gz. Note that the following lemma is stated for an arbitrary PFT with period T , so
that it applies in particular to the PFT’s Xd defined above, upon setting T = d. The
pieces of notation ΩT and Lz used in the lemma were defined in Section 3.

Lemma 4.6. Let X = X{F,T} be a PFT with period T and F in standard form.
For each z = z0z1 . . . zT−1 ∈ ΩT and each integer 0 ≤ q ≤ Lz − 1, define

J(z, q) = {(q − i) mod T : 0 ≤ i ≤ T − 1, zi = 1}. (6)

The mapping (z, q) 7→ J(z, q) is a bijection between pairs (z, q) as above and non-
empty sets J ⊆ [T ]. Furthermore, setting J = J(z, q), we have

Cn(w(q))Gz
=
⋂

j∈J

Cn(w(j))
G

(ms)
X

, (7)

for any integer n ≡ 0 (mod T ), and any word w ∈ Σℓ.

Proof. It is easy to verify that the mapping (z, q) 7→ J(z, q) is a bijection as stated

above, so we focus on proving (7). For clarity, we use the notation V(i)
ms and V

(i)
Gz

(for

some i) to denote the phase V(i) in G(ms)

X and the phase V(i) in Gz, respectively.

Consider x = (x0x1 . . . xn−1)
∞ ∈ Cn(w(q))Gz

. Then there exists a cycle C : V0 =

w(q) → V1 → · · · → Vn = w(q) of length n at w(q) ∈ V
(q)
Gz

such that LGz
(C) =

x0x1 . . . xn−1. Recall from Remark 2.1(1) that Vr ∈ V
(i′)
Gz

, where 0 ≤ i′ ≤ Lz − 1, if

and only if r ≡ i′ − q (mod Lz). Since V
(i′)
Gz

= Σℓ \ F
(0)
X iff zi′ = 1 for some 0 ≤ i′ ≤

Lz − 1, we have that Vr cannot be a word in F
(0)
X iff r ≡ i′ − q (mod Lz) for some

7



0 ≤ i′ ≤ Lz − 1 satisfying zi′ = 1. Furthermore, as zi′ = zi′+Lz
= · · · = zi′+(Nz−1)Lz

for each 0 ≤ i′ ≤ Lz − 1, we infer that Vr cannot be a word in F
(0)
X if and only if

r ≡ i − q (mod T ) for some 0 ≤ i ≤ T − 1 satisfying zi = 1.

Now, for J = {j1, j2, . . . , j|J|} = J(z, q), consider x′ = (x′
0x

′
1 . . . x′

n−1)
∞ ∈⋂

j∈J Cn(w(j))
G

(ms)
X

. Then, for each j ∈ J and a state w(j) ∈ V(j)
ms , there exists a cycle

C(j) : w(j) → V
(j)
1 → · · · → V

(j)
n−1 → w(j) of length n at w(j) such that L

G
(ms)
X

(C(j)) =

x′
0x

′
1 . . . x′

n−1. For the cycle C(j), we have, from Remark 2.1(1), that V
(j)
r ∈ V(0)

ms if

and only if r ≡ −j (mod T ). That is, V
(j)
r cannot be a word in F

(0)
X if and only

if r ≡ −j (mod T ). Since L
G

(ms)
X

(C(j1)) = L
G

(ms)
X

(C(j2)) = · · · = L
G

(ms)
X

(C(j|J|)), we

have that for each cycle C(j), j ∈ J , V
(j)
r cannot be a word in F

(0)
X if and only if

r ≡ −jk (mod T ) for some jk ∈ J . Since J = J(z, q) is as defined in (6), we find that

V
(j)
r cannot be a word in F

(0)
X if and only if r ≡ i− q (mod T ) for some 0 ≤ i ≤ T −1

satisfying zi = 1.

Hence, we can see (by considering the edge structure of WBG’s) x0x1 . . . xn−1 =

LGz
(C) for some cycle C at w(q) ∈ V

(q)
Gz

if and only if for any j ∈ J , there exists a

cycle C(j) at w(j) ∈ V(j)
ms such that x0x1 . . . xn−1 = L

G
(ms)
X

(C(j)). This clearly shows

that (z, q) and J = J(z, q) satisfy (7) for any integer n ≡ 0 (mod T ) and any w ∈ Σℓ,
as required.

We are now in a position to give the key idea in the proof of our zeta function
result, namely, that we can explicitly determine |Pn(X )| for a PFT X = X{F,T} using
the adjacency matrices of the WBG’s Gz.

Lemma 4.7. Let X = X{F,T} be a PFT with period T and F in standard form.
For an integer n ≥ 1, suppose that gcd(n, T ) = d and consider the PFT Xd = X{Fd,d}

with period d and Fd = (F
(0)
X , ∅, . . . , ∅). Then,

|Pn(X )| = |Pn(Xd)| =
∑

z∈Ωd

(−1)dWz/Lz−1tr(An
z ).

Proof. We would like to show, from Corollary 4.5 and (5) that

∑

w∈Σℓ

∑

J⊆[d]

(−1)|J|−1

∣∣∣∣∣∣

⋂

j∈J

Cn(w(j))
G

(ms)
Xd

∣∣∣∣∣∣
=
∑

z∈Ωd

(−1)dWz/Lz−1tr(An
z ). (8)

Pick w ∈ Σℓ arbitrarily. Applying Lemma 4.6 to the PFT Xd, we see that the mapping
that takes a pair (z, q), with z ∈ Ωd and 0 ≤ q ≤ Lz − 1, to

J(z, q) = {(q − i) mod d : 0 ≤ i ≤ d − 1, zi = 1} (9)

gives us a one-to-one correspondence between such pairs (z, q) and non-empty sets
J ⊆ [d], such that

∑

J⊆[d]

(−1)|J|−1

∣∣∣∣∣∣

⋂

j∈J

Cn(w(j))
G

(ms)
Xd

∣∣∣∣∣∣
=
∑

z∈Ωd

Lz−1∑

q=0

(−1)|J(z,q)|−1
∣∣∣Cn(w(q))Gz

∣∣∣ .
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Now, it is clear from (9) that |J(z, q)| is equal to the number of 1’s in z, which in turn
is equal to (d/Lz)Wz. Therefore, the left-hand side of (8) can be expressed as

∑

w∈Σℓ

∑

z∈Ωd

Lz−1∑

q=0

(−1)(d/Lz)Wz−1
∣∣∣Cn(w(q))Gz

∣∣∣ . (10)

To simplify the above expression, we make use of the fact that WBG’s are determin-
istic. In particular, Gz is deterministic, so that for any state w(q) in Gz, |Cn(w(q))Gz

|
is equal to the number of cycles of length n at w(q) in Gz, which is the (w(q), w(q))-th
entry of An

z . Hence,

∑

w∈Σℓ

Lz−1∑

q=0

∣∣∣Cn(w(q))Gz

∣∣∣ = tr(An
z ).

Thus, the expression in (10) evaluates to the right-hand side of (8), which proves the
lemma.

We use the above lemma to derive our expression for the zeta function of a PFT

X = X{F,T}. As is evident from (1), we need to evaluate the sum
∑∞

n=1
|Pn(X )|

n tn.
We re-write this sum as

∑

d|T

∑

n:gcd(n,T )=d

|Pn(X )|

n
tn. (11)

Using Lemma 4.7, the sum above can be expressed as

∑

d|T

∑

z∈Ωd

∑

n:gcd(n,T )=d

(−1)dWz/Lz−1 tr (An
z )

n
tn. (12)

Observe from the definition of Gz that for z ∈ ΩT , Gz = Gẑ if and only if ẑ can be
represented as ẑ = (z♯)k, for some positive integer k. Therefore, for z ∈ ΩT , Az

appears in (12) if and only if d = kLz for some k|Nz. Thus, (12) can be expressed as

∑

z∈ΩT

∑

k|Nz

∑

n:gcd(n,T )=kLz

(−1)kWz−1 tr (An
z )

n
tn. (13)

We will use the Möbius inversion formula of elementary number theory to put
the innermost sum above in a different form; see, for example, [4]. This sum is of
the form

∑
n:gcd(n,T )=kLz

g(n) which, by a change of variable, can be put in the form
∑

n:gcd(n, eT )=1 f(n), where T̃ = T/kLz = Nz/k, and f(n) = g(kLzn). Now, for r ∈ N,

define

F (r) =
∑

n:gcd(n, eT )=
eT
r

f(n)

and

G(r) =
∑

n:n∈
“

eT
r

”
N

f(n).
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Then,

G(T̃ ) =
∑

n∈N

f(n) =
∑

r|eT

∑

n:gcd(n, eT )=
eT
r

f(n) =
∑

r|eT

F (r).

So, the Möbius inversion formula gives us

∑

n:gcd(n, eT )=1

f(n) = F (T̃ ) =
∑

r|eT

µ(r)G

(
T̃

r

)

=
∑

r|eT

µ(r)
∑

n∈rN

f(n) =
∑

r|eT

µ(r)

∞∑

m=1

f(rm),

where µ(·) is the Möbius function. This allows us to write (13) as

∑

z∈ΩT

∑

k|Nz

∑

r|Nz

k

µ(r)

∞∑

m=1

(−1)kWz−1 tr
(
ArkLzm

z

)

rkLzm
trkLzm,

Using the change of variable s = rk (so that the sum over pairs (k, r) is now a sum
over pairs (s, r)), the above may be rewritten as

∑

z∈ΩT

∑

s|Nz

∑

r|s

µ(r)(−1)(s/r)Wz−1
∞∑

m=1

tr(AsLzm
z )

sLzm
tsLzm

=
∑

z∈ΩT

∑

s|Nz

β(z, s)
∞∑

m=1

tr(AsLzm
z )

sLzm
tsLzm, (14)

where we have defined β(z, s) =
∑

r|s µ(r)(−1)(s/r)Wz−1. For β(z, s), we have the
following lemma.

Lemma 4.8. For any z ∈ ΩT and s|Nz, we have

β(z, s) =





(−1)Wz−1 if s = 1

−1 − (−1)Wz−1 if s = 2

0 otherwise

Proof. The expressions for s = 1 and s = 2 can be readily verified. So, we assume
s ≥ 3 from now on. The key ingredient in the proof is the standard Möbius function
fact that, for any positive integer k, we have

∑
r|k µ(r) = 1 if k = 1, and

∑
r|k µ(r) = 0

if k > 1.

First consider the case when s ≥ 3 is odd. Then, for any r|s, we see that s/r is
also odd, and hence, (−1)(s/r)Wz−1 = (−1)Wz−1. We then have

β(z, s) = (−1)Wz−1
∑

r|s

µ(r) = 0

as s > 1.

Next, consider the case when s = 2u, with u ≥ 2. In this case, any r that divides
s is of the form 2u′

for some u′ ≤ u. It follows that for any r|s, µ(r) = 0 unless r = 1
or r = 2. For r = 1, 2 we see that s/r is even, so that (−1)(s/r)Wz−1 = −1. Thus,

β(z, s) = (−1) [µ(1) + µ(2)] = 0.
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Finally, consider the case when s = 2ut with u ≥ 1 and t ≥ 3 odd. We split the
divisors r of s into three groups: r odd, r ≡ 2 (mod 4), and r ≡ 0 (mod 4). For r’s
in the last group, µ(r) = 0 by definition. For odd divisors r of s, we have s/r even
and hence, (−1)(s/r)Wz−1 = −1. Note also that r is an odd divisor of s iff r|t.

For divisors r ≡ 2 (mod 4), it is easily checked that s/r ≡ s/2 (mod 2). Hence,
for such divisors, (−1)(s/r)Wz−1 = (−1)(s/2)Wz−1. We also observe that r ≡ 2 (mod 4)
is a divisor of s iff r = 2r′ with r′|t.

Putting the above observations together, we find that when s = 2ut with u ≥ 1
and t ≥ 3 odd,

β(z, s) = (−1)
∑

r|t

µ(r) + (−1)(s/2)Wz−1
∑

r′|t

µ(2r′).

The first sum is 0, since t > 1. To evaluate the second sum, we note that µ(2r′) =
−µ(r′) for any odd r′. Hence,

∑
r′|t µ(2r′) = −

∑
r′|t µ(r′) = 0. This proves that

β(z, s) = 0 in this case as well.

We are now in a position to prove our main result, namely, Theorem 4.1.

Proof of Theorem 4.1. We first simplify the expression in (14) using Lemma 4.8.
For z’s such that Nz is odd or Wz is even (in this case, by the lemma, β(z, 2) = 0 as
well), we observe that

∑

s|Nz

β(z, s)

∞∑

m=1

tr(AsLzm
z )

sLzm
tsLzm = (−1)Wz−1

∞∑

m=1

tr(ALzm
z )

Lzm
tLzm

= (−1)Wz−1
∞∑

n=1

tr(An
z )

n
tn,

as tr(An
z ) = 0 if n 6≡ 0 (mod Lz), by Lemma 3.1(a). And for z’s such that Nz is even

and Wz is odd, we have

∑

s|Nz

β(z, s)
∞∑

m=1

tr(AsLzm
z )

sLzm
tsLzm

= (−1)Wz−1
∞∑

m=1

tr(ALzm
z )

Lzm
tLzm + (−2)

∞∑

m=1

tr(A2Lzm
z )

2Lzm
t2Lzm

= (−1)Wz−1
∞∑

n=1

tr(An
z )

n
tn −

∞∑

m=1

tr(B2m
z )

m
t2Lzm,

where the last equality comes from Lemma 3.1(b).

The theorem now follows by plugging these expressions into (14), and then using
the fact (see e.g., [6, Theorem 6.4.6]) that for any square matrix A and positive integer
k ≥ 1,

exp

(
∞∑

n=1

tr(Akn)

n
tkn

)
= [det(I − tkAk)]

−1
. (15)
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We noted previously that ζX (t) has a compact expression, given in (3), when X
has odd period T . This indicates that an easier derivation of the formula may exist in
the case of odd T . Indeed, we provide below a derivation in this case that also starts
from Lemma 4.7, but avoids the subsequent use of Möbius inversion.

Proof of Theorem 4.1 when T is odd . Recall from Lemma 4.7 that

|Pn(X )| =
∑

z∈Ωd

(−1)dWz/Lz−1tr(An
z )

holds when gcd(n, T ) = d. It is obvious that for any z ∈ Ωd, there exists a (unique)
ẑ ∈ ΩT such that z♯ = ẑ♯. The key claim is to show that for any ẑ ∈ ΩT such that
tr(An

ẑ ) 6= 0, there exists a (unique) z ∈ Ωd such that z♯ = ẑ♯.

Indeed, suppose that we can show the claim. Then, it follows that Wz = Wẑ and
Gz = Gẑ for these z ∈ Ωd and ẑ ∈ ΩT , and therefore,

∑

z∈Ωd

(−1)Wz−1tr(An
z ) =

∑

ẑ∈ΩT

(−1)Wẑ−1tr(An
ẑ ).

Since T is odd by assumption, d/Lz is always odd for any z ∈ Ωd. Therefore,
dWz/Lz is even if and only if Wz is even, which implies that (−1)dWz/Lz−1 is equal
to (−1)Wz−1. Thus, we have

∑

z∈Ωd

(−1)dWz/Lz−1tr(An
z ) =

∑

z∈Ωd

(−1)Wz−1tr(An
z )

=
∑

ẑ∈ΩT

(−1)Wẑ−1tr(An
ẑ ),

for any n ≥ 1, and hence,

∞∑

n=1

|Pn(X )|

n
tn =

∑

ẑ∈ΩT

(−1)Wẑ−1
∞∑

n=1

tr(An
ẑ )

n
tn.

The theorem then clearly follows from (15).

Thus, we are done if we can prove the claim. Suppose that tr(Aẑ)
n 6= 0 for

ẑ ∈ ΩT . Then, we have that n ≡ 0 (mod Lẑ) by Lemma 3.1(a). Furthermore, Lẑ

divides T by the definition of Lẑ. Therefore, Lẑ| gcd(n, T ) = d, that is, |ẑ♯| divides d.
It implies that there exists a (unique) z ∈ Ωd such that z♯ = ẑ♯, as desired.

The argument above is much simpler than the one used to prove Theorem 4.1 in
full generality. Unfortunately, we have not succeeded, up to this point, in extending
this argument to the case when T is even, as case-by-case analysis for (−1)dWz/Lz−1

is needed when T has an even divisor d.

5. Usefulness of Theorem 4.1. We conclude this paper with a comparison
between our formula and the known formula, attributed to Manning and Bowen, for
the zeta function of a sofic shift (see [6, Theorem 6.4.8]). We make the comparison in
terms of the time required to compute the zeta function using each formula.

For a sofic shift S, suppose that we are given a deterministic presentation G of S
with r states. The Manning-Bowen formula requires us to compute the determinants
of r matrices, M1,M2, . . . ,Mr, where each Mi is an

(
r
i

)
×
(
r
i

)
matrix. Since computing

12



a determinant of order n requires Ω(n2) time, the total time required to compute the
determinants of the matrices Mi, i = 1, . . . , r, is exponential in r.

For a PFT X = X{F,T} in standard form, if we consider its MS presentation as the

given presentation G, the r above (the number of states in G) would be T |Σ|ℓ −|F (0)|.
A better choice for G, in terms of the number of states, is one due to Béal, Crochemore
and Fici [1], which has roughly ℓ|F (0)| states. So, taking r to be ℓ|F (0)|, we see that
computing the zeta function using the Manning-Bowen formula would require time
that is exponential in both ℓ and |F (0)|.

On the other hand, our formula requires us to compute the determinants of at
most 2|ZT | = 2(2T −1) matrices, each of order at most T |Σ|ℓ −|F (0)|. A determinant
of order n can be computed in O(n3) time by, say, using Gaussian elimination to bring
the matrix into reduced row-echelon form. Thus, the zeta function computation using
our formula would take time that is exponential in both T and ℓ, but in contrast to the
Manning-Bowen formula, the the computation time here is a decreasing function of
|F (0)|. Thus, for a fixed value T , like say T = 2, our formula is clearly computationally
more efficient than the Manning-Bowen formula, when ℓ and |F (0)| are large. Indeed,
for the particular example of T = 2, it is not difficult to check that the zeta function
expression given in Theorem 4.1 reduces to (observing that A11 = B11 as G11 = H11)

det(I + tA11)

det(I − tA10)
,

so that only two determinants of order at most 2|Σ|ℓ − |F (0)| need be computed.
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