THE ZETA FUNCTION OF A PERIODIC-FINITE-TYPE SHIFT*

AKIKO MANADAT AND NAVIN KASHYAP!

Abstract. The class of periodic-finite-type shifts (PFT’s) is a class of sofic shifts that strictly
includes the class of shifts of finite type (SFT’s), and the zeta function function of a PFT is a
generating function for the number of periodic sequences in the shift. In this paper, we derive a
useful formula for the zeta function of a PFT. This formula allows the zeta function of a PFT to be
computed more efficiently than the specialization of a formula known for a generic sofic shift.

1. Introduction. A sofic shift is a set of bi-infinite sequences which can be
represented by some labeled directed graph, and is core to the study of constrained
coding. Classic examples of sofic shifts are the shifts of finite type (SFT’s), which
arise commonly in the context of coding for data storage.

A new class of sofic shifts, called periodic-finite-type shifts (PFT’s), was intro-
duced by Moision and Siegel [9], who were interested in studying the properties of
distance-enhancing codes, in which the appearance of certain words is forbidden in a
periodic manner. The class of PFT’s strictly includes the class of SFT’s, and some
other interesting classes of shifts, such as constrained systems with unconstrained
positions [11], and shifts arising from the time-varying maximum transition run con-
straint [10].

The difference between the definitions of SF'T’s and PFT’s is small, but significant.
An SFT is defined by forbidding the appearance of finitely many words at any position
of a bi-infinite sequence. A PFT is also defined by forbidding the appearance of finitely
many words within a bi-infinite sequence, except that these words are only forbidden
to appear at positions indexed by certain pre-defined periodic integer sequences; see
Section 2 for a formal definition. Thus, there is a notion of period inherent in the
definition of a PFT that causes it to differ from an SFT.

The properties of SF'T’s are quite well understood (see, for example, [6]), but the
same cannot be said for PFT’s. The study of PFT’s has, up to this point, primarily
focused on finding efficient algorithms for constructing their presentations [1],[2],[5].
The work presented in this paper may be viewed as part of an ongoing effort (see also
[7]) to extend some of what is known about SFT’s to the larger class of PFT’s.

This paper focuses on zeta functions. The zeta function of a sofic shift is a
generating function for the number of periodic sequences in the shift. It is thus a
conjugacy invariant for sofic shifts. It is known that the zeta function of a sofic shift
is always a rational function [8]. The zeta function of a sofic shift can be explicitly
computed from a labeled directed graph presenting the shift; see [6, Theorem 6.4.8].
This formula requires the computation of the characteristic polynomials of certain
matrices derived from a graph presenting the shift, and the number of such matrices
is equal to the number of vertices of the graph.

It is well known that the zeta function can be computed in a much simpler way
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when the sofic shift is in fact an SFT. In this case, the zeta function is obtainable
from the characteristic polynomial of only one matrix — the adjacency matrix of a
graph derivable from a forbidden-word description of the SFT; see [6, Theorem 6.4.6].
In this paper, we prove an analogous result (Theorem 4.1) for a PFT. We show that
the zeta function of a PFT can be computed from certain matrices derivable from
a description of the PFT in terms of periodically-forbidden words. Moreover, the
number of these matrices depends only on the period of the PFT. For example, the
number of matrices needed is two when the PFT has period equal to 2.

The rest of this paper is organized as follows. We provide some of the necessary
background on PFT’s in Section 2. In Section 3, we introduce certain graphs G,
derived from binary words z, which are subsequently used in Section 4 to state and
prove our formula for the zeta function of a PFT. Finally, in Section 5, we compare our
formula for the zeta function of a PFT with the known formula for the zeta function
of a general sofic shift.

2. Basic Background. We begin with the basic background, based on material
from [2] and [6]. Let ¥ be an alphabet, a finite set of symbols. We always assume
that |X] > 2 since |X| = 1 gives us the trivial case. A word is a finite-length sequence
over ¥, and the length of a word w is denoted by |w|. For a bi-infinite sequence
X = ...Z_1ZoZ1 ... over X, we call a word w (with length |w| = n) a subword (or
factor) of x, denoted by w < x, if w = x;x;41...Ti4n—1 for some integer i. We will
write w <; x when we want to emphasize the fact that w is a subword of x starting
at the index 1.

For a bi-infinite sequence x = ...x_1xg9x1 ..., and an integer r > 1, we define
o"(x) = ...x*x{a] ..., the r-shifted sequence of x, to be the bi-infinite sequence
satisfying =} = x;4, for every integer ¢. The sequence x is said to be periodic if
x = 0" (x) for some r > 1; In this case, r is called a period of x, and x can be written
as X = (o1 ... Tpo1).

Each graph G we focus on in this paper is a labeled directed graph, i.e., a directed
graph with a label assigned to each edge. We denote by Vg the vertex set of G. We
will refer to vertices of graphs as states. The adjacency matriz Ag of such a graph is
a |Vg| X |Vg| matrix whose rows and columns are indexed (in the same order) by the
elements of V(G). For u,v € V(G), the (u,v)-th entry of Ag is the number of directed
edges from u to v in G.

Given a labeled directed graph G, where edge labels come from X, let S(G) be the
set of bi-infinite sequences which are generated by reading off labels along bi-infinite
paths in G. A sofic shift S is a set of bi-infinite sequences such that S = S(G) for
some labeled directed graph G. In this case, we say that S is presented by G, or that
G is a presentation of S. A classic example of a sofic shift is a shift of finite type
(SFT) Y = Y5/, where F' is a finite set of forbidden words (a forbidden set). The
SFT Y = Yz is defined to be the set of all bi-infinite sequences X = ...z_1x9x71 ...
over ¥ such that x contains no word f’ € F’ as a subword.

A periodic-finite-type shift (PFT) is characterized by an ordered list of finite sets
F = (FO,FO  FT-D) and a period T. More precisely, the PFT XiFry is
defined as the set of all bi-infinite sequences x over ¥ such that for some integer
r € {0,1,...,T — 1}, the r-shifted sequence o"(x) of x satisfies f <; 0" (x) =
f & Fl modT) for every integer i. It is easy to see that a PFT X¢F 1y with period
T = 1 is simply the SFT Yz with 7' = F(©). Thus, the class of SFT’s is (strictly)
included in the class of PFT’s.



Any PFT X has a representation of the form Xz} such that FU) = ¢ for
1 < j < T-1, and every word in F(©) has the same length. An arbitrary representation
X (£} can be converted to one in the above form as follows. For a given PFT

X=Xz, if f e FO for some 1 < j < T—1, then list out all words of length j+|f]

which end with 1, add them to FO  and delete f from FU). Continue this process
until FO = ... = 7'~ = ). Next, find the longest word in the resulting 7(®), and
let ¢ denote its length. Define F(©) = {f € %! : f starts with some word in F(®}.
It is easy to check that X = Xz ) with F = (FO . 0,...,0), and every word in
F© has the same length ¢. Throughout this paper, for a given PFT X = X(F 1}

we always assume that F is in standard form, i.e., F = (]—'g)), 0,...,0), and }"E(O) is a
subset of ¢ for some £ > 1.

Moision and Siegel proved that every PFT is a sofic shift, that is, each PFT has
a presentation, by giving an algorithm to construct a presentation of a PFT [2], [9].
We call their algorithm the MS algorithm, and we refer to the presentation of a PFT
X resulting from the algorithm as the MS presentation of X, denoted by G&*. The
MS algorithm, given a PFT X = X ) with F in standard form as input, runs as
described below.

Algorithm 1 : The MS Algorithm
1: define T sets of words V(@ Yy PT=1) a9
VO =50\ 7O and YO = @ = ... = pT-1) = 3¢,
2: for each integer 0 < j < T — 1, and for each pair of words u = ujus . ..u, € V9
and v = vy ... v € PUTL mod T)
if us...up =v1...v,_1 then
draw an edge labeled vy from u to v.
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5: else
6 draw no edge from u to v.

7: return the resulting directed graph and name it g;;“)

We note here that Béal, Crochemore and Fici have given an algorithm, different from
the MS algorithm, which also generates a presentation of a PFT [1].
The MS presentation of a PFT is an example of a word-based graph (WBG),
which we define to be any labeled directed graph G with the following properties:
(W1) Every state in G is a word w € X for some ¢ > 1.
(W2) The vertex set consists of T' disjoint phases YO y@ T for some
T > 1, and each phase has at most one state corresponding to w € X¢. We
denote by w® the state in V() corresponding to w.
(W3) There is an edge labeled a € ¥ from u® = ugug ... up € VO to plitl mod T) —
V10y ... vg € P+ mod D) i and only if uy ... ug = v1...v—1 and vy = a.
Observe that WBG’s are always deterministic, that is, distinct outgoing edges from
the same state are labeled distinctly.

Given a WBG G and a finite-length path o : Vy — V4 — -+ — V,, in G, let Ig(«)
and Tg (o) denote the initial state (V5) and terminal state (V,,) of o in G, respectively.
In the case when Ig(a) = Tg(a) =V, we call @ a cycle at V. Furthermore, we denote
by Lg(«) the sequence which is generated by reading off labels along «v. We also simply
say x is generated by « (in G) if z = Lg(«). The length of a path (or cycle) « is equal
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to the number of edges in «, and is denoted by |a].

The following remark encapsulates some simple observations that follow easily
from the definition of a WBG.

REMARK 2.1. In a WBG G with T phases, and states belonging to %¢,

(1) if a path a : Vo — Vi — -+ — V,, originates at Vo € V) then for 0 <r <n,
we have V. € V) if and only if r =k — i (mod T);

(2) a path « of length |o| > £ terminates at a state corresponding to the word
u € X¢ if and only if the length-£ suffiz of Lg(a) is u;

(3) there is no cycle of length n if n Z0 (mod T).

3. The Word-Based Graphs G,. The statement and proof of our main result,
namely, an expression for the zeta function of a PFT Xz 7y, makes extensive use of
the adjacency matrices of certain WBG’s determined by F and T'. We introduce these
WBG's in this section, and record an important property of their adjacency matrices.

We need a few definitions first. For a word z over some alphabet, let z# denote the
primitive root of z, i.e., 2! is the shortest word such that z = (2f)" for some integer
n > 1. In particular, for a binary word z (over the alphabet {0,1}), we will find it
convenient to define L. to be the length of zf, W, to be the number of 1’s in 2, and
N, =|z|/L,. Thus, z = (zﬁ)Nz.

Now, let X = Xz 1) be a PFT with period T" and F in standard form. Set
Zr = {0,1}T\ {0T}. For 2z = 20z1...20-1 € Zr, let or(z) denote the cyclically
shifted sequence z125...27-129. We say that z,2’ € Zr are conjugate (or cyclically
equivalent) if 2/ = o7.(z) for some integer g. Conjugacy is an equivalence relation
on Zp, which partitions Zp into conjugacy classes. We then construct a set Qp by
picking from each conjugacy class of Zr one representative sequence z = 2921 ... 27-1
such that zg = 1.

For each z = z9z1 ... 201 € Qp, let us denote by G, the word-based graph with
L. phases V(O V) p==1 defined (for i = 0,1,...,L, — 1) by

Vi) ¢ when z; = 0.
DI Fg{o) when z; = 1.

(ms)

For example, Gor-1 is the MS presentation G5 of X'. Furthermore, let us denote by
H. the subgraph of (G.)*: (the L.-th power graph of G.) induced by V(©) = x¢ \.7-')((0).
More precisely, the vertex set of M, is V(¥ in G,, and there is an edge from u(?) to
v in H, if and only if there is a path of length L. from u(®) to v in G,. We denote
by A, and B, the adjacency matrices of G, and H,, respectively.

The following lemma states an important relationship between the traces of the
matrices A, and B, defined above.

LEMMA 3.1. For the adjacency matrices A, and B, defined above, (a) tr(AZ) =0
ifn#0 (mod L), and (b) tr(AL=") = L, x tr(B™) for any integer m > 1.

Proof. (a) follows directly from Remark 2.1(3). For (b), first observe that for any
integer m > 1, tr(AL=m) = Zf:zgl tr(B},) ), where By, is the adjacency matrix of
the subgraph of (G. )% induced by V(*). However, we also have tr(Bo)) = tr(B)) =
- = tr(Bjz, 1)), since every cycle of length L.m in G, can be viewed as a cycle
at a state in V() for any 0 < i < L, — 1. Therefore, tr(AL=™) = L, x tr(Blo)) =
L. x tr(B™). -



4. The Zeta Function of a PFT. The zeta function of a sofic shift S is a
generating function for the number of periodic sequences in S. More precisely, for a
given sofic shift S, the zeta function (s(t) of S is defined to be

Cs(t) = exp (Z |P”7§S)t"> 7 (1)

n=1

where P, (S) is the set of periodic sequences in S of period n. In fact, there exists
a formula for computing the zeta function of a sofic shift, which shows that the zeta
function of a sofic shift is always rational [8],[6, Theorem 6.4.8]. In the particular case
when S is an SFT ) = Yz with forbidden set 7/ C %, the zeta function is simply
the reciprocal of a polynomial [3]. More precisely (see [6, Theorem 6.4.6]),

1
(t) = ma (2)

where Ag<ms) is the adjacency matrix of the MS presentation of ), by taking ) =
N

Xg(Fn,13- In this section, we prove the following theorem, which is the main result of
our paper.

THEOREM 4.1. For a PFT X = Xz 1\ with period T and F in standard form,
the zeta function Cx(t) of X is given by

Cae(t) = [ ldet(I — A0 x I1 det(I — 125=B,2).

ZGQT z € QT H
N, is even , W, is odd

Theorem 4.1 clearly shows that the zeta function of a PFT is rational, and the
number of graphs (or adjacency matrices) needed to compute the zeta function of a
PFT depends only on its period T. Furthermore, the case when N, is even and W,
is odd can happen only when period T is even. Therefore, when T is odd, we can
compute the zeta function using only the adjacency matrices A,:

Cr(t) = T [det(r — 1A =D"" (3)

z€Qp

Note that when T = 1, then Qpr = {1} and A; = Ag(ms>. Hence, (3) reduces to
X
Cx(t) = [det(I — z€Ag<ms))]_17 showing that (2) is a special case of Theorem 4.1.
X
The remainder of this section is devoted to a proof of Theorem 4.1. The main idea
of the proof is to express the number, | P, (X)|, of period-n sequences in X’ in terms of

the traces of the nth powers of the matrices A,. This takes some development, which
we kick off with two easy lemmas.

LEMMA 4.2. Let G be a WBG, and consider two states u' = uqus .. ug and
v = vivy .. vy (for some i and j) in G. For any pair of cycles C and C, with
IC| = |C|, at u® and v, respectively, if Lg(C) = Lg(C), then both u and v are
copies of the same word in L.

Proof. Let m be an integer such that m|C| > ¢. Since (Lg(C))™ = (Lg(C))™
and |(Lg(C))™| = m|C| > ¢, both Tg(C™) and Tg(C™) are the length-¢ suf-
fix of (Lg(C))™ by Remark 2.1(2). Observe that Tg(C™) = Tg(C) = u® and
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Tg(C™) = Tg(C) = v, -

LEMMA 4.3. Let g;g“) be the MS presentation of a PFT X = Xz 1y with period
T. Whenn =0 (mod T), a periodic sequence x = (xox1 ...Tn—1) is in P, (X) iff

TOXLL .. Tp_1 = Eg(ms)(C’) for some cycle C' of length n in Q;IS),
X

Proof. If xpx1...Tpn_1 = £g<m5> (C) for some cycle C of length n in 9?5)7 then
X
clearly x = (zox1 ... 1) is in Py (X) since x = (Lo (C))>
X

Conversely, suppose that x = (zoz1 ... 2,-1)% is in P,(X). Let m be an integer

such that mn > ¢. For a bi-infinite path o in G§' that generates x, a finite-length
subpath 3 of a generating (zox; ...x,_1)™ terminates at w(® for some 0 <i < T —1,
where w is the length-¢ suffix of (zox1 ...2,_1)™, by Remark 2.1(2). From w(, there
must be a path v : w® SV 5. 5V, generating xoxy ... T,_1. Observe that the
terminal state V,, of path ~ is the terminal state of path 3+ as well, which implies
(again by Remark 2.1(2)) V,, = T gmo (By) = w9 for some 0 < j < T — 1. However,
since n = 0 (mod T') by assumption, ¢ = j holds from Remark 2.1(1). This shows
that v is a cycle at w(®) generating zoz1 ... ZTn_1. ]

Lemma 4.3 is not true when n # 0 (mod T') since, by (3) in Remark 2.1, there
is no cycle of length n in g;;“). However, the following proposition shows that we

can generate x € P,(X) using a cycle C' in the MS presentation gﬁ;‘j of Xy, where

Xq = X{F, ay is the PFT with period d = ged(n,T) and Fy = (.7:)((0),(2]7 o).

PROPOSITION 4.4. Let X = Xz 1y be a PFT with period T' and F in standard
form (ie., FO = ]-'g(o) cxland FO = ... = FT-D =@ ). If ged(n,T) = d, then
X € Py (X) if and only if x € P,(Xa), where Xq = X5, qy is the PFT with period d
and Fy = (F,0,...,0).

Proof. Clearly, x € P,(X;) implies x € P,(X) by definition. For the converse,
suppose that x ¢ P, (X;z). Then, for any 0 <r < d—1, we have f, <; o (x) for some
fr € .7:5\?) and integer 7, = 0 (mod d), that is, f, <;, x for 4, = ietr=7 (mod d).
Since ged(n,T) = d by assumption, there exists an integer m > 1 such that mn = d
(mod T'). As x is a periodic bi-infinite sequence of period n, for any 0 < r < d — 1,

x contains f, at indices i, + smn, s = 0,1,...,T/d — 1. This implies that for each
" €{0,1,...,T — 1}, we have f» </ 0" (x) for some f, € .7:560) and integer j,» =0
(mod T). Therefore, x ¢ X, and in particular, x ¢ P,(X). =

Thus, for the PFT’s X and X defined in Proposition 4.4, when ged(n,T') = d,
as n = 0 (mod d), we have from Lemma 4.3 that x € P,(X) = P,(X,) if and only
if x = (Lgme (C))> for some cycle C' in the MS presentation gfg:j) of X;. That is,

Xa

for any n, every periodic sequence x € P, (X)) can be generated by a cycle in the MS
presentation of some PFT.

For a WBG G, let C,, (w®)g be the set of periodic sequences x = (2oz1 ... Tp_1)>
which can be generated by a cycle C' of length n at w® in G. In other words,
X = (2021 ... Tp_1)>® € Cp(w®)g iff there exists a cycle C at w® satisfying Lg(C) =
ToT1...Tn_1. By convention, Cn(w(i))g = 0 if w® is not a state in G. Putting to-
gether Lemma 4.2, Lemma 4.3 and Proposition 4.4, we have the following corollary.

COROLLARY 4.5. Let X = Xz 7y be a PFT with period T and F in standard
form. Given an integer n > 1, suppose ged(n,T) = d, and consider the PFT Xq =
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X(F, ay with period d and Fq = (.7:)((0), 0,...,0). Then, we have that

UC w( g/’(\:r{;é/

i=0

|Pu(X)] = [Pa(Xa)| = >

weXt

(4)

Proof. The first equality is obvious from Proposition 4.4. Also, as Xy has period
d and n =0 (mod d), it follows from Lemma 4.3 that

d—1
U Ucn(w(i))gggf) .

west i=0

Furthermore, C,,(w ))g(m> N Cp (w7 )g

the second equality. L]

o) = = if w # @ by Lemma 4.2, which shows

For (4), we have from the inclusion-exclusion principle that

Z (_1)\(1\71 ﬂcn(w(j))gg;> , (5)

J#0,JC|d) jes

(ms)
g Xa

where [d] = {0,1,...,d — 1}. Therefore, our goal is to count ‘HJEJ (w(j))g(ms)
Xq

for each non-empty set J C [d]. To do this, we first show that the intersection
NjcsCn (w(j))g(m> can be replaced a single set C,,(w(?))g. determined in some WBG

G.. Note that the following lemma is stated for an arbitrary PFT with period T, so
that it applies in particular to the PFT’s X; defined above, upon setting "= d. The
pieces of notation (27 and L, used in the lemma were defined in Section 3.

LEMMA 4.6. Let X = Xz 1y be a PFT with period T and F in standard form.
For each z = z9z1 ... z7—1 € Qp and each integer 0 < q < L, — 1, define

J(z,q) ={(g—1) mod T :0<i<T—-1, z =1} (6)

The mapping (z,q) — J(z,q) is a bijection between pairs (z,q) as above and non-
empty sets J C [T|. Furthermore, setting J = J(z,q), we have

Cp(w (q) ﬂc w(] g(m)’ (7)

JjeJ

for any integer n =0 (mod T), and any word w € .

Proof. 1t is easy to verify that the mapping (z, ¢) — J(z,q) is a bijection as stated
above, so we focus on proving (7) For clarity, we use the notation V() and V( (for
some 4) to denote the phase V(@ in g(“‘“’ and the phase V@ in G, respectlvely

Consider x = (zoz1...2p-1)® € Cn(w(q)) g.. Then there exists a cycle C': Vj =
w® — Vi - .. =V, = w® of length n at w@ € Véz) such that Lg_ (C) =
ZoZ1 ... Tn—1. Recall from Remark 2.1(1) that V. € ng,), where 0 < ¢ < L, — 1, if
and only if r = ¢ — ¢ (mod L.). Since V(i/ ¢ \.7-'(0) iff z; =1 for some 0 < i’ <
L, — 1, we have that V,. cannot be a word in fX iff r =4 —¢q (mod L,) for some
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0 <4 < L,—1 satisfying z; = 1. Furthermore, as z;y = zp4 . = -+ = 2 4(N.—1)L,
for each 0 < ¢ < L, — 1, we infer that V,. cannot be a word in Ffé)) if and only if
r=1i—¢q (mod T) for some 0 < ¢ < T — 1 satisfying z; = 1.

Now, for J = {j1,j2,---,7151} = J(2,q), consider x" = (xpz)...2;, 1)> €
ﬂjeJCn(w(j))gg{m). Then, for each j € J and a state w)) € VU there exists a cycle
C@ @ S V9 o v @) of length n at w¥) such that Lo (CW) =

whxh ... 2l _,. For the cycle CU), we have, from Remark 2.1(1), that V9 e VO if
and only if r = —j (mod T'). That is, Vr(j) cannot be a word in }";60) if and only
if r = —j (mod T). Since L;me (CUVY = Eg(m)(C’(j2)) ==L (CUD), we
X X X
have that for each cycle CY), j € J, Vr(j ) cannot be a word in fg)) if and only if
r = —ji (mod T) for some ji € J. Since J = J(z,q) is as defined in (6), we find that
Vi) cannot be a word in .7-"( ) if and onlyifr=i—¢q (mod T) for some 0 < <T—1
satisfying z; = 1.

Hence, we can see (by considering the edge structure of WBG’s) xoxy ... xn—1 =
Lg.(C) for some cycle C' at w(® ¢ Vgi) if and only if for any j € J, there exists a
cycle CU) at wl) e Vg;) such that zoxy...Tp_1 = Eg&mg(c(j)). This clearly shows
that (z,q) and J = J(z, q) satisfy (7) for any integer n = 0 (mod T') and any w € £,
as required. ]

We are now in a position to give the key idea in the proof of our zeta function
result, namely, that we can explicitly determine |P,(X)| for a PET X' = X 1} using
the adjacency matrices of the WBG’s G..

LEMMA 4.7. Let X = Xz 1y be a PFT with period T' and F in standard form.
For an integer n > 1, suppose that gcd(n, T') = d and consider the PFT X3 = Xr, 4y

with period d and Fgq = (f)((()), 0,...,0). Then,

|Pa(X)] = [Pa(Xa)] = Y (=)™ Pl AL).
2€Qq

Proof. We would like to show, from Corollary 4.5 and (5) that
Y 3O et | = 35 0Tt
weXt JC[d JjeJ *a 2€Q4

Pick w € X¢ arbitrarily. Applying Lemma 4.6 to the PFT X,;, we see that the mapping
that takes a pair (z,q), with z € Qg and 0 < ¢ < L, — 1, to

J(z,q) ={(g—i)mod d:0<i<d-—1, z =1} (9)

gives us a one-to-one correspondence between such pairs (z,¢q) and non-empty sets
J C [d], such that

Lz
Z 1)l7I-1 ﬂC w@) g@m) — Z Z NI Eol- I‘Cn(w(‘”)gz )
JCld] jeJ z€Qq q=0
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Now, it is clear from (9) that |J(z,¢)| is equal to the number of 1’s in z, which in turn
is equal to (d/L,)W,. Therefore, the left-hand side of (8) can be expressed as

L.-1

3OS (Wt ]Cn(w@)gz .

weXt ze€Qq q=0

(10)

To simplify the above expression, we make use of the fact that WBG’s are determin-
istic. In particular, G, is deterministic, so that for any state w® in G., |C,(w(®)g.|
is equal to the number of cycles of length n at w(? in G, which is the (w(q), w(Q))—th
entry of A”. Hence,

L.-1

>3 fentg

wext g=0

(AZ).

Thus, the expression in (10) evaluates to the right-hand side of (8), which proves the
lemma. ]

We use the above lemma to derive our expression for the zeta function of a PFT
X = Xz ry. Asis evident from (1), we need to evaluate the sum ) 7, |P”( [Pl X4
We re-write this sum as

Z Z IP”T(LX” ", (11)

d|T n:ged(n,T)=d

Using Lemma 4.7, the sum above can be expressed as

Z Z Z (71)sz/Lfltr (:?) m (12)

d|T 2€04 n:ged(n,T)=d

Observe from the definition of G, that for z € Qp, G, = G; if and only if Z can be
represented as 2 = (z#)¥, for some positive integer k. Therefore, for z € Qp, A,
appears in (12) if and only if d = kL, for some k|N,. Thus, (12) can be expressed as

Z Z Z (_1)kW 1tr(7;4 )tn (13)

2€Qr k|N, n:ged(n,T)=kL

We will use the Mobius inversion formula of elementary number theory to put
the innermost sum above in a different form; see, for example, [4]. This sum is of
the form Zn:gcd(n T)=kL. g(~n) which, by a change of variable, can be put in the form
Zn:gcd(n Fy=1 f(n), where T =T/kL, = N,/k, and f(n) = g(kL,n). Now, for r € N,
define

and



Then,

GO =Y fn)=> >  f)=>_F(r)

neN r|T n: ged(n,T)= z r|T

So, the Md&bius inversion formula gives us

3 fmy:F@5=§:MHG<Z>

n:ged(n,T)=1 r|T
= ur) Y fa) = ur) Y flrm
Tlrf nerN T\'f m=1
where p(-) is the Mobius function. This allows us to write (13) as
Z Z Z Y - b (AZRE=) grkLam
rkL,m ’

z€QT k|N, T‘Nz 1

Using the change of variable s = rk (so that the sum over pairs (k,r) is now a sum
over pairs (s,7)), the above may be rewritten as

r sL, m
S50 S T ulr) (- Z i AL )yt

2€Qr s|N, r|s
= Z;):TSZN: ﬁ( mz::l sL - 7f5Lzm7 (14)

where we have defined 3(z,s) = >_,, p(r)(=1)/MW==1 " For 3(z,s), we have the

following lemma.

LEMMA 4.8. For any z € Qr and s|N,, we have

(—1)W=—1 ifs=1
B(z,8) =4 —1—(=D)"="1  ifs=2
0 otherwise

Proof. The expressions for s = 1 and s = 2 can be readily verified. So, we assume
s > 3 from now on. The key ingredient in the proof is the standard Md&bius function
fact that, for any positive integer k, we have } -, pu(r) = 1ifk =1,and 3, p(r) =0
ifk>1

First consider the case when s > 3 is odd. Then, for any r|s, we see that s/r is
also odd, and hence, (—1)(/"W==1 = (~1)W==1_ We then have

Blz,8) = (D)"Y () =
r|s

as s > 1.
Next, consider the case when s = 2%, with u > 2. In this case, any r that divides

s is of the form 2% for some v’ < u. It follows that for any r|s, pu(r) = 0 unless r = 1
or r = 2. For 7 = 1,2 we see that s/r is even, so that (—1)(/"W==1 = _1. Thus,

B(z,s) = (=1) [n(1) + p(2)] = 0.

10



Finally, consider the case when s = 2%¢ with « > 1 and ¢ > 3 odd. We split the
divisors r of s into three groups: r odd, r = 2 (mod 4), and » = 0 (mod 4). For r’s
in the last group, p(r) = 0 by definition. For odd divisors r of s, we have s/r even
and hence, (—1)(/"W-=1 = _1. Note also that r is an odd divisor of s iff r|t.

For divisors 7 = 2 (mod 4), it is easily checked that s/r = s/2 (mod 2). Hence,
for such divisors, (—1)/MW==1 = (_1)(s/2W==1_We also observe that r = 2 (mod 4)
is a divisor of s iff r = 2r" with 7’|¢.

Putting the above observations together, we find that when s = 2%t with u > 1
and t > 3 odd,

Blz,s) = (=1) D p(r) + (1)W1 N 7 (),

Tt |t

The first sum is 0, since t > 1. To evaluate the second sum, we note that p(2r') =
—u(r') for any odd r’. Hence, >, u(2r') = =32, u(r") = 0. This proves that
B(z,s) =0 in this case as well. ]

We are now in a position to prove our main result, namely, Theorem 4.1.

Proof of Theorem 4.1. We first simplify the expression in (14) using Lemma 4.8.
For 2’s such that N, is odd or W, is even (in this case, by the lemma, ((z,2) =0 as
well), we observe that

Z ﬁ Z S i t S‘ALS T;m tstm _ Wz—l i tr AL thm
s|N, m=1

__pwer g D) L

_( l)W lnzz:l n t 9

as tr(A?) =0ifn £ 0 (mod L,), by Lemma 3.1(a). And for z’s such that N, is even
and W, is odd, we have

OotAsLm Lo
Zﬂ(zs Z sL,m th

S‘Nz m=1

_ (71)W271 Z tr(zlgzm) thm + (72)

z

m=1 m=1

s n e 2m
— (_1)Wz—1 Z tr(‘Az> m— Z tr(Bz ) tZLZm
n
m=1

m

where the last equality comes from Lemma 3.1(b).

The theorem now follows by plugging these expressions into (14), and then using
the fact (see e.g., [6, Theorem 6.4.6]) that for any square matrix A and positive integer
k>1,

exp (i tr(’zkn) t’m> = [det(I — t*AF)] . (15)
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We noted previously that (x(t) has a compact expression, given in (3), when X
has odd period T. This indicates that an easier derivation of the formula may exist in
the case of odd T'. Indeed, we provide below a derivation in this case that also starts
from Lemma 4.7, but avoids the subsequent use of M&bius inversion.

Proof of Theorem 4.1 when T is odd. Recall from Lemma 4.7 that

|Pa(X)] = Y (~1)™/ B (AT

z€Qy

holds when ged(n,T) = d. It is obvious that for any z € g, there exists a (unique)
2 € Qp such that 2# = 2%, The key claim is to show that for any 2 € Qr such that
tr(A%Z) # 0, there exists a (unique) z € Q4 such that z# = 2.

Indeed, suppose that we can show the claim. Then, it follows that W, = W; and
G. = G; for these z € Q) and 2 € Qr, and therefore,

Yo DM (Al = ()™ (4.

2€Qq 2eQr

Since T is odd by assumption, d/L, is always odd for any z € Q4. Therefore,
dW. /L. is even if and only if W, is even, which implies that (—1)W=/L=~1 is equal
to (—1)"==1. Thus, we have

Do (NI (A = Y (-1 e(AL)
2€Qq 2€Qq

= 3 (Ve ta(an),

ZEQT

for any n > 1, and hence,

Z ‘Pn’r(LXNtn — Z (—1)W271 Z tr(fg)tn.
n=1 n=1

z2eQr

The theorem then clearly follows from (15).

Thus, we are done if we can prove the claim. Suppose that tr(A4;)™ # 0 for
2 € Qr. Then, we have that n = 0 (mod L;) by Lemma 3.1(a). Furthermore, L;
divides T by the definition of L:. Therefore, L:|ged(n, T) = d, that is, |2*| divides d.
It implies that there exists a (unique) z € Q4 such that z# = 2%, as desired. u

The argument above is much simpler than the one used to prove Theorem 4.1 in
full generality. Unfortunately, we have not succeeded, up to this point, in extending
this argument to the case when T is even, as case-by-case analysis for (fl)dWZ/ Le—1
is needed when 7" has an even divisor d.

5. Usefulness of Theorem 4.1. We conclude this paper with a comparison
between our formula and the known formula, attributed to Manning and Bowen, for
the zeta function of a sofic shift (see [6, Theorem 6.4.8]). We make the comparison in
terms of the time required to compute the zeta function using each formula.

For a sofic shift S, suppose that we are given a deterministic presentation G of S
with r states. The Manning-Bowen formula requires us to compute the determinants
of r matrices, My, Mo, ..., M,, where each M, is an (:) X (:) matrix. Since computing

12



a determinant of order n requires 2(n?) time, the total time required to compute the
determinants of the matrices M;, i = 1,...,r, is exponential in 7.
For a PFT X = X £ r) in standard form, if we consider its MS presentation as the

given presentation G, the r above (the number of states in G) would be T|%|¢ — | F(©)].
A better choice for G, in terms of the number of states, is one due to Béal, Crochemore
and Fici [1], which has roughly ¢|F(©)| states. So, taking 7 to be £|F()|, we see that
computing the zeta function using the Manning-Bowen formula would require time
that is exponential in both £ and |F(©)].

On the other hand, our formula requires us to compute the determinants of at
most 2| Zr| = 2(27 — 1) matrices, each of order at most T|%| —|F(©)|. A determinant
of order n can be computed in O(n?) time by, say, using Gaussian elimination to bring
the matrix into reduced row-echelon form. Thus, the zeta function computation using
our formula would take time that is exponential in both T" and ¢, but in contrast to the
Manning-Bowen formula, the the computation time here is a decreasing function of
| F©)|. Thus, for a fixed value T, like say T = 2, our formula is clearly computationally
more efficient than the Manning-Bowen formula, when ¢ and |F (0)| are large. Indeed,
for the particular example of T' = 2, it is not difficult to check that the zeta function
expression given in Theorem 4.1 reduces to (observing that A;; = By as Gi1 = Hi1)

det(I + tAll)
det(I - tAlo) ’

so that only two determinants of order at most 2|3| — |F(©)| need be computed.
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