
Lecture 4: Set Operations

1 Set Operations

New sets can be constructed from existing sets by combining one or multiple of
them using set operations. This is somewhat analogous to the the construction of
natural and rational numbers. The two most basic set operations that we will now
describe correspond to the familiar logical operations “or” and “and”.

Definition 1.1 (Union). Let A and B be sets. The union of sets A and B,
denoted A ∪B, is the set defined by

A ∪B = {x|x ∈ A or x ∈ B}.

Definition 1.2 (Intersection). Let A and B be sets. The intersection of sets
A and B, denoted A ∩B, is the set defined by

A ∪B = {x|x ∈ A and x ∈ B}.

Do the familiar properties of addition and multiplication of numbers (such
as commutativity and associativity) also hold for union and intersection of sets?
The following theorem shows that such properties do hold, although they are not
exactly the same as for addition and multiplication.

Theorem 1.3. Let A, B and C be sets.

i) A ∩B ⊆ A and A ∩B ⊆ B. If X is a set such that X ⊆ A and X ⊆ B, then
X ⊆ A ∩B.

ii) A ⊆ A ∪ B and B ⊆ A ∪ B. If Y is a set such that A ⊆ Y and B ⊆ Y , then
A ∪B ⊆ Y .

iii) (Commutative Laws) A ∪B = B ∪ A and A ∩B = B ∩ A.

iv) (Associative Laws) (A∪B)∪C = A∪ (B∪C) and (A∪B)∪C = A∩ (B∩C).
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v) (Distributive Laws) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) and A ∪ (B ∩ C) =
(A ∪B) ∩ (A ∪ C)

vi) (Identity Laws) A ∪ φ = φ and A ∩ φ = φ.

vii) (Idempotent Laws) A ∪ A = A and A ∩ A = A.

viii) (Absorption Laws) A ∪ (A ∩B) = A and A ∩ (A ∪B) = A.

ix) If A ⊆ B, then A ∪ C ⊆ B ∪ C and A ∩ C ⊆ B ∩ C.

It is interesting to note that both union and intersection distribute over each
other, which is quite different from addition and multiplication of numbers, where
multiplication distributes over addition, but not vice versa.

Definition 1.4 (Disjoint sets). Let A and B be sets. The sets A and B are
disjoint if A ∩B = φ.

Example 1.5. Let E be the set of even integers, let O be the set of odd integers
and let P be the set of prime numbers. Then E and O are disjoint, whereas E and
P are not disjoint (because E ∩P = {2}). Another interesting example of disjoint
sets which we will often encounter is the partition of a set.

Definition 1.6 (Set difference). Let A and B be sets. The set difference of
A and B is denoted by A \B and is defined by

A\B = {x | x ∈ A and x /∈ B}. (1)

The set difference A \B can also be written as A ∩BC .

Example 1.7. Let A = {a, b, c} and B = {b}, then A \B = {a, c}.

The following theorem gives some standard properties of set difference.

Theorem 1.8. Let A, B and C be sets.

i) A \B ⊆ A.

ii) (A \B) ∩B = φ.

iii) A \B = φ iff A ⊆ B.

iv) B \ (B \ A) = A iff A ⊆ B.

v) If A ⊆ B, then A \ C ⊆ B \ C.

vi) If A ⊆ B, then (C \ A) ⊇ (C \B).
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vii) (De Morgan’s Laws) C \ (A ∪ B) = (C \ A) ∩ (C \ B) and C \ (A ∩ B) =
(C \ A) ∪ (C \B).

Proof. i) Follows from definition of set difference.

ii) We can rewrite left hand side as (A∩BC)∩B which is equal to A∩ (BC ∩B)
using associativity property of ∩. Since B and BC are disjoint sets, A∩ (BC ∩
B) = A ∩ φ = φ.

iii) Let us assume that A ⊆ B. Let x be an element of A\B, which implies
x ∈ A and x /∈ B. Since A ⊆ B, x ∈ B as well, which contradicts the
previous statement. Hence, there exists no x such that x ∈ A\B, implying
that A\B = φ. For the converse, let us assume that A\B = φ and let x ∈ A,
then, we need to show that x also belongs to the set B. Let us suppose that
x /∈ B, then x ∈ BC . Then, it follows that x ∈ A B, which is a contradicts
the initial assumption that A\B is an empty set. Hence, x ∈ B. Since choice
of x was arbitrary, we conclude that A ⊆ B.

iv) Let us assume that A ⊆ B. Let x be an element of B\(B\A), implying
that x ∈ B and x /∈ (B\A) or equivalently x ∈ (B\A)C which translates to
x ∈ (BC ∩A) by using De Morgan’s law. Since x /∈ BC , x must belong to the
set A. Thus, we have shown that B\(B\A) ⊆ A. To show that A ⊆ B\(B\A),
let y be an element of set A and consequently y is also an element of set B,
since it is given that A ⊆ B. Since y is an element of both A and B, it does
not belong to the set B\A. Thus, from definition of set difference, y is an
element of B\(B\A).

To prove the converse, let z be an element of the set A. Since B\(B\A) = A,
z is also an element of the set B\(B\A). Then, it follows that z ∈ B, which
completes the proof as the choice of z was arbitrary.

v) Let x be any arbitrary element of the set A\C. This implies that x ∈ A and
x /∈ C. From A ⊆ B, x is also an element of set B. Since x belongs to the set
B and does not belong to the set C, it follows that x ∈ B\C.

vi) Let x be any arbitrary element of the set C\B. This implies that x ∈ C and
x /∈ B. We need to show that x /∈ A. Let us suppose otherwise. Then, from
A ⊆ B, we have x ∈ B, which contradicts the x ∈ C\B. Hence, x /∈ A and
therefore x ∈ C\A.

vii) We will show that C\(A ∩ B) = (C\A) ∪ (C\B), the other equation can be
proved similarly, and we omit the details. Let x ∈ C\(A ∪ B). Then x ∈ C
and x /∈ A ∪ B. It follows that x /∈ A and x /∈ B, because x ∈ A or x ∈ B
would imply that x ∈ A ∪ B. Because x ∈ C and x /∈ A, then x ∈ C\A.
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Because x ∈ C and x /∈ B, then x ∈ C\B. Hence x ∈ (C\A) ∩ (C\B).
Therefore C\(A ∪B) ⊆ (C\A) ∩ (C\B).

Now let y ∈ (C\A)∩(C\B). Hence y ∈ C\A and y ∈ C\B. Because y ∈ C\A,
it follows that y ∈ C and y /∈ A. Because y ∈ C\B, it follows that y ∈ C
and y /∈ B. Because y /∈ A and y /∈ B, it follows that y /∈ A ∪ B. Therefore
y ∈ C\(A ∪B). Hence (C\A) ∩ (C\B) ⊆ C\(A ∪B).

We conclude that C\(A ∪B) = (C\A) ∩ (C\B).

There is one more fundamental way of forming new sets out of old by taking
their product. Think of how the plane R2 is coordinatized by ordered pairs of real
numbers. In the following definition we make use of the notion of an ordered pair
of elements, denoted (a, b), where a and b are elements of some given sets. Unlike a
set {a, b}, where the order of the elements does not matter (so that {a, b} = {b, a}),
in an ordered pair the order of the elements does matter. Note that the ordered
pair (a, b) equals the ordered pair (c, d) if and only if a = c and b = d.

Definition 1.9 (Cartesian product). Let A and B be sets. The Cartesian
product of A and B, denoted A × B = {(a, b) | a ∈ A and b ∈ B}, where (a, b)
denotes an ordered pair.

Example 1.10. Following are simple examples of Cartesian products of real num-
ber line.

(i) R2 = R× R.

(ii) Rn = R× R · · · × R.

The following theorem gives some properties of the Cartesian product.

Theorem 1.11. Let A,B,C,D be sets.

i) If A ⊆ B and C ⊆ D, then A× C ⊆ B ×D

ii) (Distributive Laws)

(a) A× (B ∪ C) = (A×B) ∪ (A× C)

(b) (B ∪ C)× A = (B × A) ∪ (C × A)

(c) A× (B ∩ C) = (A×B) ∩ (A× C)

(d) (B ∩ C)× A = (B × A) ∩ (C × A)

iii) A× φ = φ and φ× A = φ.

iv) (A ∩B)× (C ∩D) = (A× C) ∩ (B ×D).
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2 Indexed Families of Sets

Let {Ai} be a set for each i in {1, 2, . . . , n}. We set the following notation for
union and intersection of these sets as,

n⋃
i=1

Ai = A1 ∪ A2 ∪ · · · ∪ An and
n⋂

i=1

Ai = A1 ∩ A2 ∪ · · · ∩ An respectively.

Definition 2.1 (Indexed Family of Sets). Let I be a non-empty set. Suppose
there is a set Ai ⊆ U for each element i ∈ I. Such a collection is called a “family
of sets indexed by I”. The set I is called the indexing set, for this family of sets.

We denote the family of sets by {Ai : i ∈ I}. Union and intersection for this
family of sets are denoted by

⋃
i∈I Ai and

⋂
i∈I Ai respectively, and defined as⋃

i=∈I

Ai = {x | x ∈ Ai for some i ∈ I}, and⋂
i=∈I

Ai = {x | x ∈ Ai for all i ∈ I} respectively.

Theorem 2.2. Let I be a non-empty set, {Ai : i ∈ I} be a family of sets indexed
by I, and B be a set.

i)
⋂
i∈I

Ai ⊆ Ak for all k ∈ I. If B ⊆ Ak for all k ∈ I, then B ⊆
⋂
i∈I

Ai.

ii) Ak ⊆
⋃
i∈I

Ai for all k ∈ I. If Ak ⊆ B for all k ∈ I, then
⋃
i∈I

Ai ⊆ B.

iii) (Distributive laws)

(a) B ∩

(⋃
i∈I

Ai

)
=
⋃
i∈I

(B ∩ Ai)

(b) B ∪

(⋂
i∈I

Ai

)
=
⋂
i∈I

(B ∪ Ai)

iv) (De Morgan’s laws)

(a) B\
(⋃

i∈I Ai

)
=
⋂

i∈I (B\Ai)

(b) B\
(⋂

i∈I Ai

)
=
⋃

i∈I (B\Ai)
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