
Lecture 8: Equivalence Relations

1 Equivalence Relations

Next interesting relation we will study is equivalence relation.

Definition 1.1 (Equivalence Relation). Let A be a set and let ∼ be a relation
on A. The relation ∼ is an equivalence relation if it is reflexive, symmetric, and
transitive.

Example 1.2. Following are some of the examples of equivalence relations.

1. Let P be set of all people. Then, we can define an equivalence relation
∼= {(x, y) ∈ P × P : x and y have same age}.

2. We can define an equivalence relation ∼ on real numbers as {(x, y) ∈ R×R :
x = y}.

3. Let A be a non-empty set. We can define an equivalence relation ∼ on power
set of A as {(S, T ) ∈ P(A)× P(A) : S = T}.

Definition 1.3. Let A be a non-empty set and ∼ be an equivalence relation on
A.

1. The relation classes of A with respect to ∼ are called equivalence classes,
and denoted ∼ [x] for all x ∈ A.

2. The quotient set of A and ∼ is the set {∼ [x] : x ∈ A} of all equivalence
classes of A with respect to ∼, and is denoted by A/ ∼.

Example 1.4. Let P be the set of all people, and let ∼ be the relation on P
defined by x ∼ y if and only if x and y are the same age (in years). If person
x is 19 years old, then the equivalence class of x is the set of all 19-year olds.
Each element of the quotient set P/ ∼ is itself a set, where there is one such
set consisting of all 1-year-olds, another consisting of all 2-year olds, and so on.
Although there are billions of people in P , there are fewer than 125 elements in
P/ ∼, because no currently living person has reached the age of 125.
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Theorem 1.5. Let A be a non-empty set, and let ∼ be an equivalence relation on
A.

i) Let x, y ∈ A. If x ∼ y, then [x] = [y]. If x � y, then [x] ∩ [y] = ∅.

ii)
⋃
x∈A

[x] = A.

Proof. Let A be a non-empty set, and let ∼ be an equivalence relation on A.

i) Let z ∈ [x]. Then z ∼ x by assumption and x ∼ y by hypothesis. By
transitivity of ∼, we have z ∼ y, and hence the z ∈ [y]. Therefore, we
conclude [x] ⊆ [y]. Similarly, we can show [y] ⊆ [x].

We prove the second part by contradiction. Let x � y, and z ∈ [x] ∩ [y].
Then, z ∼ x and z ∼ y. By transitivity and symmetry of ∼, we get x ∼ y.
Therefore, we have a contradiction.

ii) By definition, [x] ⊆ A for all x ∈ A. Hence,
⋃

x∈A[x] ⊆ A. Now, let q ∈ A.
Then, q ∼ q by reflexivity. Therefore, q ∈ [q] ⊆

⋃
x∈A

[x]. Hence, A ⊆
⋃
x∈A

[x].

Corollary 1.6. Let A be a non-empty set, let ∼ be an equivalence relation on A.
Let x, y ∈ A. Then [x] = [y] iff x ∼ y.

Since equivalence relations are disjoint for unrelated elements, quotient sets
separates a set into disjoint union of equivalence classes.

Definition 1.7 (Partition). Let A be a non-empty set. A partition of A is a
family D of non-empty subsets of A such that

1. if P,Q ∈ D and P 6= Q, then P ∩Q = ∅, and

2.
⋃

P∈D
P = A.

Example 1.8. We look at some examples of partitions.

1. Let D = {E,O}, where E and O are set of even and odd integers respectively.
Then, D is a partition of integers Z.

2. Collection of sets C = {[n, n+ 1) : n ∈ Z} is a partition of R.

3. Collection of sets G = {(n − 1, n + 1)} is not a partition of R because it is
not pairwise disjoint. We have two sets (-1,1) and (0, 2) in C, that are not
disjoint. In fact, (−1, 1) ∩ (0, 2) = (0, 1).
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From Theorem 1.5, and definition of partitions, we have the following corollary.

Corollary 1.9. Let A be a non-empty set, and let ∼ be an equivalence relation on
A. Then A/ ∼ is a partition of A.

Definition 1.10. Let A be a non-empty set. Let E(A) denote the set of all
equivalence relations on A. Let TA denote the set of all partitions of A.

Example 1.11. Let A = {1, 2, 3}. Then TA = {D1,D2,D3,D4,D5}, where

D1 = {{1}, {2}, {3}},
D2 = {{1, 2}, {3}},
D3 = {{1, 3}, {2}},
D4 = {{2, 3}, {1}},
D5 = {{1, 2, 3}}.

Further, we see that E(A) = {R1, R2, R3, R4, R5}, where these equivalence relations
are defined by the sets

R1 = {(1, 1), (2, 2), (3, 3)},
R2 = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)},
R3 = {(1, 1), (2, 2), (3, 3), (1, 3), (3, 1)},
R4 = {(1, 1), (2, 2), (3, 3), (2, 3), (3, 2)},
R5 = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2)}.

It is easy to see that each of the relations {Ri, i = 1, . . . , 5} listed above is an
equivalence relation on A.

It is interesting to note that number of equivalence relations on a set, and
number of partitions are same for the above example. It turns out that this is not
mere coincidence.

Definition 1.12. Let A be a non-empty set. Let Φ : E(A) → TA be defined as
follows. If ∼ is an equivalence relation on A, let Φ(∼) be the family of sets A/ ∼.
Let Ψ : TA → E(A) be defined as follows. If D is a partition of A, let Ψ(D) be the
relation on A defined by x Ψ(D) y iff there is some P ∈ D such that x, y ∈ P for
all x, y ∈ A.

Lemma 1.13. Let A be a non-empty set. The functions Φ and Ψ in the above
definition are well defined.

Proof. To prove the lemma, we need to show the following two things.
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1. For any equivalence relation ∼ on A, the family of sets Φ(∼) is a partition
of A.

2. For any partition D of A, the relation Ψ(D) is an equivalence relation on A.

First part follows from the definition of Φ and Corollary 1.9. We will show the
second part. Any partition D = {Pi : i ∈ {1, . . . , n}} for some n. From definition

of partition, it implies A =
n⊔

i=1

Pi and Pi ∩ Pj = φ for all i 6= j. Therefore,

Ψ(D) = {(x, y) : there is some i ∈ {1, . . . , n} ∈ D such that x, y ∈ Pi}.

We will show that Ψ(D) is an equivalence relation on A.

Symmetry: Let xΨ(D) y. Then we can find P ∈ D such that x, y ∈ P . Hence,
yΨ(D)x.

Reflexivity: Let x ∈ A. Then x ∈ P for some P ∈ D. Hence, xΨ(D)x.

Transitivity: Let xΨ(D) y and yΨ(D) z. Then, x, y ∈ P for some P ∈ D and
y, z ∈ Q for some Q ∈ D. Since, y ∈ P ∩ Q and P and Q are disjoint for
P 6= Q, it follows that P = Q. This implies x, y, z ∈ P . Hence, xΨ(D) z.

Example 1.14. We look at some examples of equivalence classes and related
functions Φ, and partitions and related function Ψ.

1. Let ∼ be the relation on R2 defined by

(x, y) ∼ (z, w) iff y − x = w − z, for all (x, y), (z, w) ∈ R2.

It can be verified that ∼ is an equivalence relation. We want to describe the
partition Φ(∼) of R2. Let (x, y) ∈ R2 . Then

∼ [(x, y)] = {(z, w) ∈ R2|w − z = y − x}.

Let c = y − x, then

∼ [(x, y)] = {(z, w) ∈ R2|w = z + c},

which is just a line in R2 with slope 1 and y-intercept c. Hence, Φ(∼) is
collection of all lines in R2 with slope 1.
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2. Let C = {[n, n+1) : n ∈ Z} be a partition of R. Then, we have corresponding
family of equivalence relation classes, defined as

Ψ(C) = {(x, y) ∈ R× R : x, y ∈ [n, n+ 1) for some n ∈ Z}
= {(x, y) ∈ R× R : bxc = byc}.

3. For partitions Di and equivalence relations Ri defined in Example 1.11, we
have Φ(Ri) = Di and Ψ(Di) = Ri for all i ∈ {1, . . . , 5}.

Theorem 1.15. Let A be a non-empty set. Then the functions Φ and Ψ are
inverses of each other, and hence both are bijective.

Proof. We need to show that Ψ ◦ Φ = 1E(A) and Φ ◦ Ψ = 1TA . We will do this in
following steps.

1. First, we prove that Ψ ◦Φ = 1E(A). Let ∼∈ E(A) be an equivalence relation
on A. Let ≈= Ψ(Φ(∼)). We will show that ≈=∼, and it will then follow
that Ψ ◦ Φ = 1E(A). We show two relations are equal by set equality. Let
D = Φ(∼), so that ≈= Ψ(D).

(a) First, we show that ≈⊆∼. Let x, y ∈ A such that x ≈ y. Then, by
the definition of Ψ there is some P ∈ D such that x, y ∈ P . By the
definition of Ψ, we know that P is an equivalence class of ∼, so that
P =∼ [q] for some q ∈ A. Then q ∼ x and q ∼ y, and by the symmetry
and transitivity of ∼ it follows that x ∼ y. Hence, ≈ ⊆ ∼.

(b) Now, we show that ∼⊆≈. Let x ∼ y in A. Then, y ∈ [x]. By the
reflexivity of ∼, we know that x ∈∼ [x]. From definition of Φ we have
∼ [x] ∈ D. Hence, by the definition of Ψ, it follows that x ≈ y. Hence,
∼ ⊆ ≈.

2. Second, we prove that Φ ◦ Ψ = 1TA . Let D ∈ TA be a partition of A. Let
F = Φ(Ψ(D)). We will show that F = D, and it will then follow that
Φ ◦Ψ = 1TA . Let ∼= Ψ(D), so that F = Ψ(∼).

(a) Let B ∈ F . Then by the definition of Φ we know that B is an equiv-
alence class of ∼, so that B =∼ [z] for some z ∈ A. Because D is a
partition of A, then there is a unique P ∈ D such that z ∈ P . Let
w ∈ A. Then by the definition of Ψ we see that z ∼ w if and only
if w ∈ P . It follows that w ∈∼ [z] if and only if w ∈ P , and hence
P =∼ [z]. Hence B =∼ [z] = P ∈ D. Therefore F ⊆ D.

(b) Let C ∈ D. Let y ∈ C. As before, it follows from the definition of Ψ that
C =∼ [y]. Therefore, by the definition of Φ we see that C ∈ Φ(∼) = F .
Hence, D ⊆ F .
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