Lecture 8: Equivalence Relations

1 Equivalence Relations

Next interesting relation we will study is equivalence relation.
Definition 1.1 (Equivalence Relation). Let A be a set and let \sim be a relation on A. The relation \sim is an equivalence relation if it is reflexive, symmetric, and transitive.

Example 1.2. Following are some of the examples of equivalence relations.

1. Let P be set of all people. Then, we can define an equivalence relation $\sim=\{(x, y) \in P \times P: x$ and y have same age $\}$.
2. We can define an equivalence relation \sim on real numbers as $\{(x, y) \in \mathbb{R} \times \mathbb{R}$: $x=y\}$.
3. Let A be a non-empty set. We can define an equivalence relation \sim on power set of A as $\{(S, T) \in \mathcal{P}(A) \times \mathcal{P}(A): S=T\}$.

Definition 1.3. Let A be a non-empty set and \sim be an equivalence relation on A.

1. The relation classes of A with respect to \sim are called equivalence classes, and denoted $\sim[x]$ for all $x \in A$.
2. The quotient set of A and \sim is the set $\{\sim[x]: x \in A\}$ of all equivalence classes of A with respect to \sim, and is denoted by A / \sim.

Example 1.4. Let P be the set of all people, and let \sim be the relation on P defined by $x \sim y$ if and only if x and y are the same age (in years). If person x is 19 years old, then the equivalence class of x is the set of all 19-year olds. Each element of the quotient set P / \sim is itself a set, where there is one such set consisting of all 1-year-olds, another consisting of all 2-year olds, and so on. Although there are billions of people in P, there are fewer than 125 elements in P / \sim, because no currently living person has reached the age of 125 .

Theorem 1.5. Let A be a non-empty set, and let \sim be an equivalence relation on A.
i) Let $x, y \in A$. If $x \sim y$, then $[x]=[y]$. If $x \nsim y$, then $[x] \cap[y]=\emptyset$.
ii) $\bigcup_{x \in A}[x]=A$.

Proof. Let A be a non-empty set, and let \sim be an equivalence relation on A .
i) Let $z \in[x]$. Then $z \sim x$ by assumption and $x \sim y$ by hypothesis. By transitivity of \sim, we have $z \sim y$, and hence the $z \in[y]$. Therefore, we conclude $[x] \subseteq[y]$. Similarly, we can show $[y] \subseteq[x]$.
We prove the second part by contradiction. Let $x \nsim y$, and $z \in[x] \cap[y]$. Then, $z \sim x$ and $z \sim y$. By transitivity and symmetry of \sim, we get $x \sim y$. Therefore, we have a contradiction.
ii) By definition, $[x] \subseteq A$ for all $x \in A$. Hence, $\bigcup_{x \in A}[x] \subseteq A$. Now, let $q \in A$. Then, $q \sim q$ by reflexivity. Therefore, $q \in[q] \subseteq \bigcup_{x \in A}[x]$. Hence, $A \subseteq \bigcup_{x \in A}[x]$.

Corollary 1.6. Let A be a non-empty set, let \sim be an equivalence relation on A. Let $x, y \in A$. Then $[x]=[y]$ iff $x \sim y$.

Since equivalence relations are disjoint for unrelated elements, quotient sets separates a set into disjoint union of equivalence classes.

Definition 1.7 (Partition). Let A be a non-empty set. A partition of A is a family \mathcal{D} of non-empty subsets of A such that

1. if $P, Q \in \mathcal{D}$ and $P \neq Q$, then $P \cap Q=\emptyset$, and
2. $\bigcup_{P \in \mathcal{D}} P=A$.

Example 1.8. We look at some examples of partitions.

1. Let $\mathcal{D}=\{E, O\}$, where E and O are set of even and odd integers respectively. Then, \mathcal{D} is a partition of integers \mathbb{Z}.
2. Collection of sets $\mathcal{C}=\{[n, n+1): n \in \mathbb{Z}\}$ is a partition of \mathbb{R}.
3. Collection of sets $\mathcal{G}=\{(n-1, n+1)\}$ is not a partition of \mathbb{R} because it is not pairwise disjoint. We have two sets $(-1,1)$ and $(0,2)$ in \mathcal{C}, that are not disjoint. In fact, $(-1,1) \cap(0,2)=(0,1)$.

From Theorem 1.5, and definition of partitions, we have the following corollary.
Corollary 1.9. Let A be a non-empty set, and let \sim be an equivalence relation on A. Then A / \sim is a partition of A.

Definition 1.10. Let A be a non-empty set. Let $\mathcal{E}(A)$ denote the set of all equivalence relations on A. Let \mathcal{T}_{A} denote the set of all partitions of A.

Example 1.11. Let $A=\{1,2,3\}$. Then $\mathcal{T}_{A}=\left\{\mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{D}_{3}, \mathcal{D}_{4}, \mathcal{D}_{5}\right\}$, where

$$
\begin{aligned}
& \mathcal{D}_{1}=\{\{1\},\{2\},\{3\}\}, \\
& \mathcal{D}_{2}=\{\{1,2\},\{3\}\}, \\
& \mathcal{D}_{3}=\{\{1,3\},\{2\}\}, \\
& \mathcal{D}_{4}=\{\{2,3\},\{1\}\}, \\
& \mathcal{D}_{5}=\{\{1,2,3\}\} .
\end{aligned}
$$

Further, we see that $\mathcal{E}(A)=\left\{R_{1}, R_{2}, R_{3}, R_{4}, R_{5}\right\}$, where these equivalence relations are defined by the sets

$$
\begin{aligned}
& R_{1}=\{(1,1),(2,2),(3,3)\} \\
& R_{2}=\{(1,1),(2,2),(3,3),(1,2),(2,1)\} \\
& R_{3}=\{(1,1),(2,2),(3,3),(1,3),(3,1)\} \\
& R_{4}=\{(1,1),(2,2),(3,3),(2,3),(3,2)\} \\
& R_{5}=\{(1,1),(2,2),(3,3),(1,2),(2,1),(1,3),(3,1),(2,3),(3,2)\} .
\end{aligned}
$$

It is easy to see that each of the relations $\left\{R_{i}, i=1, \ldots, 5\right\}$ listed above is an equivalence relation on A.

It is interesting to note that number of equivalence relations on a set, and number of partitions are same for the above example. It turns out that this is not mere coincidence.

Definition 1.12. Let A be a non-empty set. Let $\Phi: \mathcal{E}(A) \rightarrow \mathcal{T}_{A}$ be defined as follows. If \sim is an equivalence relation on A, let $\Phi(\sim)$ be the family of sets A / \sim. Let $\Psi: \mathcal{T}_{A} \rightarrow \mathcal{E}(A)$ be defined as follows. If \mathcal{D} is a partition of A, let $\Psi(\mathcal{D})$ be the relation on A defined by $x \Psi(\mathcal{D}) y$ iff there is some $P \in \mathcal{D}$ such that $x, y \in P$ for all $x, y \in A$.

Lemma 1.13. Let A be a non-empty set. The functions Φ and Ψ in the above definition are well defined.

Proof. To prove the lemma, we need to show the following two things.

1. For any equivalence relation \sim on A, the family of sets $\Phi(\sim)$ is a partition of A.
2. For any partition \mathcal{D} of A, the relation $\Psi(\mathcal{D})$ is an equivalence relation on A. First part follows from the definition of Φ and Corollary 1.9. We will show the second part. Any partition $\mathcal{D}=\left\{P_{i}: i \in\{1, \ldots, n\}\right\}$ for some n. From definition of partition, it implies $A=\bigsqcup_{i=1}^{n} P_{i}$ and $P_{i} \cap P_{j}=\phi$ for all $i \neq j$. Therefore,

$$
\Psi(\mathcal{D})=\left\{(x, y): \text { there is some } i \in\{1, \ldots, n\} \in \mathcal{D} \text { such that } x, y \in P_{i}\right\} .
$$

We will show that $\Psi(\mathcal{D})$ is an equivalence relation on A.
Symmetry: Let $x \Psi(\mathcal{D}) y$. Then we can find $P \in \mathcal{D}$ such that $x, y \in P$. Hence, $y \Psi(\mathcal{D}) x$.

Reflexivity: Let $x \in A$. Then $x \in P$ for some $P \in \mathcal{D}$. Hence, $x \Psi(\mathcal{D}) x$.
Transitivity: Let $x \Psi(\mathcal{D}) y$ and $y \Psi(\mathcal{D}) z$. Then, $x, y \in P$ for some $P \in \mathcal{D}$ and $y, z \in Q$ for some $Q \in \mathcal{D}$. Since, $y \in P \cap Q$ and P and Q are disjoint for $P \neq Q$, it follows that $P=Q$. This implies $x, y, z \in P$. Hence, $x \Psi(\mathcal{D}) z$.

Example 1.14. We look at some examples of equivalence classes and related functions Φ, and partitions and related function Ψ.

1. Let \sim be the relation on \mathbb{R}^{2} defined by

$$
(x, y) \sim(z, w) \text { iff } y-x=w-z, \text { for all }(x, y),(z, w) \in \mathbb{R}^{2} .
$$

It can be verified that \sim is an equivalence relation. We want to describe the partition $\Phi(\sim)$ of \mathbb{R}^{2}. Let $(x, y) \in \mathbb{R}^{2}$. Then

$$
\sim[(x, y)]=\left\{(z, w) \in \mathbb{R}^{2} \mid w-z=y-x\right\} .
$$

Let $c=y-x$, then

$$
\sim[(x, y)]=\left\{(z, w) \in \mathbb{R}^{2} \mid w=z+c\right\}
$$

which is just a line in \mathbb{R}^{2} with slope 1 and y-intercept c. Hence, $\Phi(\sim)$ is collection of all lines in \mathbb{R}^{2} with slope 1 .
2. Let $\mathcal{C}=\{[n, n+1): n \in \mathbb{Z}\}$ be a partition of \mathbb{R}. Then, we have corresponding family of equivalence relation classes, defined as

$$
\begin{aligned}
\Psi(\mathcal{C}) & =\{(x, y) \in \mathbb{R} \times \mathbb{R}: x, y \in[n, n+1) \text { for some } n \in \mathbb{Z}\} \\
& =\{(x, y) \in \mathbb{R} \times \mathbb{R}:\lfloor x\rfloor=\lfloor y\rfloor\} .
\end{aligned}
$$

3. For partitions \mathcal{D}_{i} and equivalence relations R_{i} defined in Example 1.11, we have $\Phi\left(R_{i}\right)=\mathcal{D}_{i}$ and $\Psi\left(\mathcal{D}_{i}\right)=R_{i}$ for all $i \in\{1, \ldots, 5\}$.

Theorem 1.15. Let A be a non-empty set. Then the functions Φ and Ψ are inverses of each other, and hence both are bijective.

Proof. We need to show that $\Psi \circ \Phi=1_{\mathcal{E}(A)}$ and $\Phi \circ \Psi=1_{\mathcal{T}_{A}}$. We will do this in following steps.

1. First, we prove that $\Psi \circ \Phi=1_{\mathcal{E}(A)}$. Let $\sim \in \mathcal{E}(A)$ be an equivalence relation on A. Let $\approx=\Psi(\Phi(\sim))$. We will show that $\approx=\sim$, and it will then follow that $\Psi \circ \Phi=1_{\mathcal{E}(A)}$. We show two relations are equal by set equality. Let $\mathcal{D}=\Phi(\sim)$, so that $\approx=\Psi(\mathcal{D})$.
(a) First, we show that $\approx \subseteq \sim$. Let $x, y \in A$ such that $x \approx y$. Then, by the definition of Ψ there is some $P \in \mathcal{D}$ such that $x, y \in P$. By the definition of Ψ, we know that P is an equivalence class of \sim, so that $P=\sim[q]$ for some $q \in A$. Then $q \sim x$ and $q \sim y$, and by the symmetry and transitivity of \sim it follows that $x \sim y$. Hence, $\approx \subseteq \sim$.
(b) Now, we show that $\sim \subseteq \approx$. Let $x \sim y$ in A. Then, $y \in[x]$. By the reflexivity of \sim, we know that $x \in \sim[x]$. From definition of Φ we have $\sim[x] \in \mathcal{D}$. Hence, by the definition of Ψ, it follows that $x \approx y$. Hence, $\sim \subseteq \approx$.
2. Second, we prove that $\Phi \circ \Psi=1_{\mathcal{T}_{A}}$. Let $\mathcal{D} \in \mathcal{T}_{A}$ be a partition of A. Let $\mathcal{F}=\Phi(\Psi(\mathcal{D}))$. We will show that $\mathcal{F}=\mathcal{D}$, and it will then follow that $\Phi \circ \Psi=1_{\mathcal{T}_{A}}$. Let $\sim=\Psi(\mathcal{D})$, so that $\mathcal{F}=\Psi(\sim)$.
(a) Let $B \in \mathcal{F}$. Then by the definition of Φ we know that B is an equivalence class of \sim, so that $B=\sim[z]$ for some $z \in A$. Because \mathcal{D} is a partition of A, then there is a unique $P \in \mathcal{D}$ such that $z \in P$. Let $w \in A$. Then by the definition of Ψ we see that $z \sim w$ if and only if $w \in P$. It follows that $w \in \sim[z]$ if and only if $w \in P$, and hence $P=\sim[z]$. Hence $B=\sim[z]=P \in \mathcal{D}$. Therefore $\mathcal{F} \subseteq \mathcal{D}$.
(b) Let $C \in \mathcal{D}$. Let $y \in C$. As before, it follows from the definition of Ψ that $C=\sim[y]$. Therefore, by the definition of Φ we see that $C \in \Phi(\sim)=\mathcal{F}$. Hence, $\mathcal{D} \subseteq \mathcal{F}$.
