Lecture 8: Equivalence Relations

1 Equivalence Relations

Next interesting relation we will study is equivalence relation.

Definition 1.1 (Equivalence Relation). Let A be a set and let ~ be a relation
on A. The relation ~ is an equivalence relation if it is reflexive, symmetric, and
transitive.

Example 1.2. Following are some of the examples of equivalence relations.

1. Let P be set of all people. Then, we can define an equivalence relation
~={(z,y) € P x P:x and y have same age}.

2. We can define an equivalence relation ~ on real numbers as {(z,y) € RxR:
=y}

3. Let A be a non-empty set. We can define an equivalence relation ~ on power
set of A as {(5,7) € P(A) x P(A):S =T}.

Definition 1.3. Let A be a non-empty set and ~ be an equivalence relation on
A.

1. The relation classes of A with respect to ~ are called equivalence classes,
and denoted ~ [z] for all z € A.

2. The quotient set of A and ~ is the set {~ [z] : © € A} of all equivalence
classes of A with respect to ~, and is denoted by A/ ~.

Example 1.4. Let P be the set of all people, and let ~ be the relation on P
defined by = ~ y if and only if = and y are the same age (in years). If person
x is 19 years old, then the equivalence class of x is the set of all 19-year olds.
Each element of the quotient set P/ ~ is itself a set, where there is one such
set consisting of all 1-year-olds, another consisting of all 2-year olds, and so on.
Although there are billions of people in P, there are fewer than 125 elements in
P/ ~, because no currently living person has reached the age of 125.
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Theorem 1.5. Let A be a non-empty set, and let ~ be an equivalence relation on

A.
i) Let v,y € A. If x ~y, then [x] = [y]. If x =y, then [z] N [y] = 0.

i) U [x] = A.
€A
Proof. Let A be a non-empty set, and let ~ be an equivalence relation on A.
i) Let z € [z]. Then z ~ z by assumption and = ~ y by hypothesis. By

transitivity of ~, we have z ~ y, and hence the z € [y]. Therefore, we
conclude [z] C [y]. Similarly, we can show [y] C [z].

We prove the second part by contradiction. Let x ~ y, and z € [z] N [y].
Then, z ~ x and z ~ y. By transitivity and symmetry of ~, we get z ~ y.
Therefore, we have a contradiction.

ii) By definition, [z] C A for all z € A. Hence, |J,.4[z] € A. Now, let ¢ € A.

Then, g ~ ¢ by reflexivity. Therefore, ¢ € [¢] C |J [x]. Hence, A C J [z].
€A €A

[]

Corollary 1.6. Let A be a non-empty set, let ~ be an equivalence relation on A.
Let x,y € A. Then [z] = [y] iff x ~ y.

Since equivalence relations are disjoint for unrelated elements, quotient sets
separates a set into disjoint union of equivalence classes.

Definition 1.7 (Partition). Let A be a non-empty set. A partition of A is a
family D of non-empty subsets of A such that

1. if P,Q €D and P+#Q, then PNQ =0, and
2 U P=A

PeD

Example 1.8. We look at some examples of partitions.

1. Let D = {E, O}, where E and O are set of even and odd integers respectively.
Then, D is a partition of integers Z.

2. Collection of sets C = {[n,n+ 1) : n € Z} is a partition of R.

3. Collection of sets G = {(n — 1,n + 1)} is not a partition of R because it is
not pairwise disjoint. We have two sets (-1,1) and (0,2) in C, that are not
disjoint. In fact, (—1,1) N (0,2) = (0, 1).
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From Theorem [I.5] and definition of partitions, we have the following corollary.

Corollary 1.9. Let A be a non-empty set, and let ~ be an equivalence relation on
A. Then A/ ~ is a partition of A.

Definition 1.10. Let A be a non-empty set. Let £(A) denote the set of all
equivalence relations on A. Let 74 denote the set of all partitions of A.

Example 1.11. Let A = {1,2,3}. Then T4 = {D;, Ds, D3, Dy, D5}, where

Dy = {{1},{2}, {3}},
Dy ={{1,2},{3}},
Dy = {{1,3},{2}},
Dy = {{2,3},{1}},
Ds = {{1,2,3}}.

Further, we see that £(A) = { Ry, Rs, R3, Ry, Rs}, where these equivalence relations
are defined by the sets

Ry =A{(1,1),(2,2),(3,3)},
Ry ={(1,1),(2,2),(3,3),(1,2),(2, 1)},
Ry ={(1,1),(2,2),(3,3),(1,3), (3, D},
Ry ={(1,1),(2,2),(3,3),(2,3),(3,2)},
Rs ={(1,1),(2,2),(3,3),(1,2),(2,1),(1,3),(3,1),(2,3),(3,2)}
It is easy to see that each of the relations {R;,i = 1,...,5} listed above is an

equivalence relation on A.

It is interesting to note that number of equivalence relations on a set, and
number of partitions are same for the above example. It turns out that this is not
mere coincidence.

Definition 1.12. Let A be a non-empty set. Let ® : E(A) — T be defined as
follows. If ~ is an equivalence relation on A, let ®(~) be the family of sets A/ ~.
Let U : Ty — E(A) be defined as follows. If D is a partition of A, let ¥(D) be the
relation on A defined by « W(D) y iff there is some P € D such that z,y € P for
all v,y € A.

Lemma 1.13. Let A be a non-empty set. The functions ® and V in the above
definition are well defined.

Proof. To prove the lemma, we need to show the following two things.



1. For any equivalence relation ~ on A, the family of sets ®(~) is a partition

of A.
2. For any partition D of A, the relation ¥(D) is an equivalence relation on A.

First part follows from the definition of ® and Corollary [I.9, We will show the
second part. Any partition D = {P; : i € {1,...,n}} for some n. From definition

of partition, it implies A = | | P, and P, N P; = ¢ for all i # j. Therefore,

=1
V(D) = {(z,y) : thereis some i € {1,...,n} € D such that x,y € P;}.
We will show that W(D) is an equivalence relation on A.

Symmetry: Let 2 ¥(D)y. Then we can find P € D such that z,y € P. Hence,
y¥(D)x.

Reflexivity: Let € A. Then x € P for some P € D. Hence, z V(D) z.

Transitivity: Let V(D) y and y V(D) z. Then, z,y € P for some P € D and
Y,z € @ for some Q € D. Since, y € PN Q and P and @ are disjoint for
P # @, it follows that P = @. This implies z,y, z € P. Hence, 2 V(D) z.

O

Example 1.14. We look at some examples of equivalence classes and related
functions ®, and partitions and related function W.

1. Let ~ be the relation on R? defined by
(z,y) ~ (z,w) iff y — 2 = w — 2, for all (z,y),(z,w) € R

It can be verified that ~ is an equivalence relation. We want to describe the
partition ®(~) of R?. Let (z,y) € R* . Then

~ @y ={(zw) ER*w -z =y —a}.
Let ¢ = y — x, then
~ @ )] ={(z,w) ER*lw =2z +c},

which is just a line in R? with slope 1 and y-intercept c. Hence, ®(~) is
collection of all lines in R? with slope 1.



2. Let C = {[n,n+1) : n € Z} be a partition of R. Then, we have corresponding
family of equivalence relation classes, defined as

U(C)={(r,y) e RxR:x,y € [n,n+1) for some n € Z}
={(z,y) e RxR: 2] = [y]}.

3. For partitions D; and equivalence relations R; defined in Example [1.11], we
have @(RZ) = Dz and ‘I](Dz) = Rl for all 7 € {1, c ,5}

Theorem 1.15. Let A be a non-empty set. Then the functions ® and ¥ are
wnverses of each other, and hence both are bijective.

Proof. We need to show that ¥ o ® = 1g4) and ® o ¥ = 17,. We will do this in
following steps.

1. First, we prove that W o ® = 1¢(4). Let ~ € £(A) be an equivalence relation
on A. Let == U(P(~)). We will show that ~=~, and it will then follow
that W o @ = 1g4). We show two relations are equal by set equality. Let
D = ®&(~), so that ~= ¥(D).

(a) First, we show that ~C~. Let x,y € A such that z ~ y. Then, by
the definition of ¥ there is some P € D such that z,y € P. By the
definition of ¥, we know that P is an equivalence class of ~, so that
P =~ [q] for some g € A. Then ¢ ~ x and ¢ ~ y, and by the symmetry
and transitivity of ~ it follows that x ~ y. Hence, ~ C ~.

(b) Now, we show that ~C=. Let z ~ y in A. Then, y € [z]. By the
reflexivity of ~, we know that €~ [z]|. From definition of ® we have
~ [z] € D. Hence, by the definition of ¥, it follows that = ~ y. Hence,

~ C .

2. Second, we prove that ® o ¥ = 1,,. Let D € T4 be a partition of A. Let
F = ®(¥(D)). We will show that F = D, and it will then follow that
® oW =17,. Let ~= Y(D), so that F = ¥U(~).

(a) Let B € F . Then by the definition of & we know that B is an equiv-
alence class of ~, so that B =~ [z] for some z € A. Because D is a
partition of A, then there is a unique P € D such that z € P. Let
w € A. Then by the definition of ¥ we see that z ~ w if and only
if w e P. Tt follows that w €~ [z] if and only if w € P, and hence
P =~ [z]. Hence B =~ [z] = P € D. Therefore F C D.

(b) Let C' € D. Lety € C. As before, it follows from the definition of ¥ that
C' =~ [y]|. Therefore, by the definition of ® we see that C' € ¢(~) = F.
Hence, D C F.
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