Lecture 10: Recursion

1 Recursion

Consider a sequence $\{1, 2, 4, 8, 16, \ldots\}$. This sequence is described in two ways. First way is, let a_n denote the n^{th} term of the sequence, then $a_n = 2^{n-1}$, $\forall n \in \mathbb{N}$. Second way is, let $a_1 = 1$, and $a_{n+1} = 2a_n$, $\forall n \in \mathbb{N}$. Such a description is called a "recursive" description of the sequence.

Given a sequence for which we already have an explicit formula for each a_n in terms of n, it can be useful to find a recursive formula, but there is no question that the sequence exists. What about a sequence for which we have only a recursive description, but no explicit formula?

Example 1.1. Suppose that we have the recursive description $c_1 = 4$, and $c_{n+1} = 3 + 2c_n$ for all $n \in \mathbb{N}$. Is there a sequence $\{c_1, c_2, c_3, \ldots\}$ satisfying such a description? That is, does this description actually define a sequence?

Remark 1. Intuitively, it seems that there exists such a sequence, because we can proceed "inductively", producing one element at a time. We know that $c_1 = 4$. We can then compute $c_2 = 3 + 2c_1 = 3 + 2 \times 4 = 11$, and $c_3 = 3 + 2c_2 = 3 + 2 \times 11 = 25$, and so on.

There are a number of variations of the process of definition by recursion, the most basic of which is as follows. Suppose we are given a number $b \in X$, and a function $h: X \to X$. We then want to define a sequence $\{a_1, a_2, \ldots\} \subseteq X$ such that $a_1 = b$ and that $a_{n+1} = h(a_n)$, for all $n \in \mathbb{N}$. We can now state the theorem that guarantees the validity of definition by recursion.

Theorem 1.2 (Definition by Recursion). Let A be a set, $b \in A$, and $k : A \to A$ be a function. Then there is a unique function $f : \mathbb{N} \to A$ such that f(1) = b, and that f(n + 1) = k(f(n)) for all $n \in \mathbb{N}$.

Remark 2. Informally, definition by recursion says that if A is a set, $b \in A$, and $k: A \to A$ is a function, then there is a unique sequence $\{a_n : n \in \mathbb{N}\} \subseteq A$ such that $a_1 = b$, and that $a_{n+1} = k(a_n)$ for all $n \in \mathbb{N}$.

Example 1.3. In previous example we were looking for existence of sequence $\{c_n : n \in \mathbb{N}\}$ such that $c_1 = 4$, and $c_{n+1} = 3 + 2c_n$ for all $n \in \mathbb{N}$. Let b = 4, and function $h : \mathbb{R} \to \mathbb{R}$ defined by h(x) = 3 + 2x for all $x \in \mathbb{R}$. By definition by recursion, we have a unique function $f : \mathbb{N} \to \mathbb{R}$ such that f(1) = 4 and $f(n+1) = 3 + 2 \cdot f(n)$ for all $n \in \mathbb{N}$. If we let $c_n = f(n)$ for all $n \in \mathbb{N}$, then the sequence $\{c_n : n \in \mathbb{N}\}$ satisfies the recursive conditions.

Remark 3. We make some observations about definition by recursion.

- 1. Definition by recursion gives us existence of a unique sequence with the desired properties, it does not give us an explicit formula for this sequence.
- 2. Usual techniques to find explicit formulas are generating functions, which unfortunately are out of scope of these lectures.
- 3. In case of Example 1.3, we can guess the formula $c_n = 7 * 2^{n-1}$ for all $n \in \mathbb{N}$, and use PMI to show this formula holds.
- 4. Let A be a non-empty set, and let $f : A \to A$ be a function. For any $n \in \mathbb{N}$, we would like to define a function denoted f^n , by the formula

$$f^n = \underbrace{f \circ \ldots \circ f}_{n \text{ times}}$$

Definition 1.4. Fix a function $f \in \mathcal{F}(A, A)$. Then, we can define a function $k : \mathcal{F} \to \mathcal{F}$ by $k(g) = f \circ g$ for all $g \in \mathcal{F}(A, A)$. By definition by recursion applied to the set $\mathcal{F}(A, A)$, the element $f \in \mathcal{F}(A, A)$, and the function $k : \mathcal{F}(A, A) \to \mathcal{F}(A, A)$, there exists a unique function $\phi : \mathbb{N} \to \mathcal{F}(A, A)$ such that $\phi(1) = f$ and $k \circ \phi = f \circ \phi = \phi \circ s$. We define f^n as $\phi(n)$ for all $n \in \mathbb{N}$, and refer to it as the *n*-fold iteration of f.

Remark 4. We make the following observations about this n-fold iteration of f.

1. Notice that $f^1 = \phi(1) = f$, and as we expect for all $n \in \mathbb{N}$, we have

$$f^{n+1} = \phi(n+1) = (\phi \circ s)(n) = (f \circ \phi)(n) = f \circ f^n.$$

2. It's easier to understand this definition by the commutative diagram in Figure 1.

We have a variant of definition by recursion theorem by defining $a_{n+1} = k(n, a_n)$.

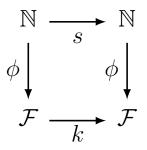


Figure 1: Commutative diagram for recursive function $k : \mathcal{F} \to \mathcal{F}$, where \mathcal{F} is shorthand for space of functions $\mathcal{F}(A, A)$.

Theorem 1.5. Let A be a set, $b \in A$, and $t : A \times \mathbb{N} \to A$ be a function. Then there is a unique function $g : \mathbb{N} \to A$ such that g(1) = b, and g(n+1) = t(g(n), n)for all $n \in \mathbb{N}$.

Proof. We apply Theorem 1.2 to set $B = A \times \mathbb{N}$, element $(b, 1) \in B$, function $\tilde{t} : B \to B$, to get a unique function $\tilde{g} : \mathbb{N} \to B$ such that $\tilde{g}(1) = (b, 1)$ and $\tilde{g} \circ s = \tilde{t} \circ \tilde{g}$. Let $\pi_1 : B \to A$ and $\pi_2 : B \to \mathbb{N}$ be coordinate-wise projections of elements in B to A and \mathbb{N} respectively, such that $\pi_1(a, n) = a$ and $\pi_2(a, n) = n$ for all $(a, n) \in B$. Let $\tilde{t} = (t, s \circ \pi_2)$ for all elements in B, then we have $\tilde{g}(1) = (b, 1)$, and

$$\tilde{g} \circ s = \tilde{t} \circ \tilde{g} = (t \circ \tilde{g}, s \circ \pi_2 \circ \tilde{g}).$$

We let $g = \pi_1 \circ \tilde{g}$. Then, we observe that g(1) = b, and

$$g \circ s = \pi_1 \circ \tilde{g} \circ s = \pi_1 \circ \tilde{t} \circ \tilde{g} = t \circ \tilde{g} = t \circ (g, \pi_2 \circ \tilde{g}).$$

It suffices to show that $(\pi_2 \circ \tilde{g})(n) = n$ holds for all $n \in \mathbb{N}$. We can show this by induction on $n \in \mathbb{N}$. It is clear that $(\pi_2 \circ \tilde{g})(1) = 1$. Assuming that inductive hypothesis holds for n, and observing that $(\pi_2 \circ \tilde{g} \circ s) = (s \circ \pi_2 \circ \tilde{g})$, we see that it is indeed true.

Example 1.6. We have few interesting examples of such recursions.

1. We define the following recursion $a_1 = 1$, and $a_{n+1} = (n+1)a_n$ for all $n \in \mathbb{N}$. This recursion looks curiously like familiar sequence of factorials. We formally show existence of such a sequence by defining a function $t : \mathbb{R} \times \mathbb{N} \to \mathbb{R}$ as t(x,m) = (m+1)x for all $(x,m) \in \mathbb{R} \times \mathbb{N}$. Applying Theorem 1.5 for $A = \mathbb{R}$, b = 1, and function t, we see that there is a unique sequence $\phi \in \mathbb{N}, \mathbb{R}$ satisfying these conditions. Notice that $\phi(1) = 1$, and $\phi(n+1) = t(\phi(n), n) = (n+1)\phi(n)$. We denote $\phi(n)$ by n!.

- 2. Let $f : \mathbb{N} \to \mathbb{R}$ be a real-valued sequence, and $q : \mathbb{R} \times \mathbb{N} \to \mathbb{R}$ be a function defined as q(x, n) = x + f(n + 1). Then, the recursive definition $a_1 = f(1)$ and $a_{n+1} = q(a_n, n)$ leads to a unique sequence $h : \mathbb{N} \to \mathbb{R}$ using Theorem 1.5 for $A = \mathbb{R}$, b = f(1), and function q, satisfying recursive conditions.
- 3. We would like to further generalize recursive equations when $a_{n+1} = f(a_n, a_{n-1})$.

Theorem 1.7. Let A be a set, let $a, b \in A$ and let $p : A \times A \to A$ be a function. Then there is a unique function $f : \mathbb{N} \to A$ such that f(1) = a, f(2) = b, and f(n+2) = p(f(n), f(n+1)) for all $n \in \mathbb{N}$.

Proof. We apply Theorem 1.2 to set $B = A \times A$, element $(a, b) \in B$, function $\tilde{p} : B \to B$, to get a unique function $\tilde{f} : \mathbb{N} \to B$ such that $\tilde{f}(1) = (a, b)$ and $\tilde{f} \circ s = \tilde{p} \circ \tilde{f}$. Let π_1 and π_2 be coordinate-wise projections of elements in B to A, such that $\pi_1(x, y) = x$ and $\pi_2(x, y) = y$ for all $(x, y) \in B$. Let $\tilde{p} = (\pi_2, p)$ for all elements in B, then we have $\tilde{f}(1) = (a, b)$, and

$$\tilde{f} \circ s = \tilde{p} \circ \tilde{f} = (\pi_2 \circ \tilde{f}, p \circ \tilde{f}).$$

Let $f = \pi_1 \circ \tilde{f}$. Then, we observe that f(1) = a, and

$$f \circ s = \pi_1 \circ \tilde{f} \circ s = \pi_1 \circ \tilde{p} \circ \tilde{f} = \pi_2 \circ \tilde{f},$$

$$f \circ s \circ s = \pi_2 \circ \tilde{f} \circ s = p \circ \tilde{f} = p \circ (f, \pi_2 \circ \tilde{f}) = p \circ (f, f \circ s).$$

Definition 1.8. Let $p : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a function defined by p(x, y) = x + y for all $(x, y) \in \mathbb{R} \times \mathbb{R}$. Then, the **Fibonacci sequence** is the unique sequence denoted $\{F_n : n \in \mathbb{N}\}$ defined by $F_1 = 1, F_2 = 2$ and $F_{n+2} = p(F_n, F_{n+1})$.

Remark 5. Notice the existence of this unique sequence follows from Theorem 1.7 applied to the case when $A = \mathbb{R}, a = 1, b = 1$, and function $p : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is p(x, y) = x + y.

The following proposition gives a few examples of formulas involving the sums and products of Fibonacci numbers.

Proposition 1.9. Let $n \in \mathbb{N}$. Then the following are true for Fibonacci sequence $\{F_n : n \in \mathbb{N}\}.$

- 1. $F_1 + F_2 + \ldots + F_n = F_{n+2} 1.$
- 2. $F_1^2 + F_2^2 + \ldots + F_n^2 = F_n F_{n+1}$.
- 3. If $n \ge 2$, then $(F_n)^2 F_{n+1}F_{n-1} = (-1)^{n+1}$.

Proof. We will show using induction, and the fact that $F_n + F_{n+1} = F_{n+2}$.

1. We use induction on n. We see that $F_1 = 1 = 1 + 1 - 1 = F_1 + F_2 - 1$, hence the hypothesis holds for n = 1. Assuming inductive hypothesis for n, we see that

$$\sum_{i=1}^{n+1} F_i = \sum_{i=1}^{n} F_i + F_{n+1} = F_{n+1} + F_{n+2} - 1 = F_{n+3} - 1.$$

2. We use induction on n. We see that $F_1^2 = 1 = 1.1 = F_1F_2$, hence the hypothesis holds for n = 1. Assuming inductive hypothesis for n, we see that

$$\sum_{i=1}^{n+1} F_i^2 = \sum_{i=1}^n F_i^2 + F_{n+1}^2 = F_n F_{n+1} + F_{n+1}^2 = F_{n+1} F_{n+2}.$$

3. We use PMI-V3 with $k_0 = 2$. We see that $(F_2)^2 - F_3F_1 = 1^2 - 2.1 = -1 = (-1)^{2+1}$, so the equation holds for n = 2. Now let $n \in \mathbb{N}$. Suppose that $n \geq 3$, and that the equation holds for all values in $\{2, ..., n\}$. We compute

$$(F_{n+1})^2 - F_{n+2}F_n = (F_{n+1})^2 - (F_{n+1} + F_n)F_n = F_{n+1}(F_{n+1} - F_n) - F_n^2$$

= $-(F_n^2 - F_{n+1}F_{n-1}) = -(-1)^{n+1} = (-1)^{n+2}.$

where the last line holds by the inductive hypothesis.

Remark 6. Binet's formula for explicitly writing Fibonacci sequence is

$$F_n = \frac{1}{\sqrt{5}} \left[\phi^n - (-\phi^{-1})^n \right], \ \forall n \in \mathbb{N},$$

where $\phi = \frac{1+\sqrt{5}}{2}$ is the golden ratio.

Definition 1.10. Let A be a set. Let $\mathcal{G}(A)$ be the set defined by

$$\mathcal{G}(A) = \bigcup_{n \in \mathbb{N}} \mathcal{F}([n], A).$$

Theorem 1.11. Let A be a non-empty set, an element $b \in A$, and $k : \mathcal{G}(A) \to A$ be a function. Then there is a unique function $f : \mathbb{N} \to A$ such that f(1) = b, and that $f(n+1) = k(f|_{[n]})$ for all $n \in \mathbb{N}$.

Proof. As usually is the case, uniqueness is easier to show than existence.

Uniqueness: Let $s, t : \mathbb{N} \to A$ be functions. Suppose that s(1) = t(1) = b, and $s(n+1) = k(s|_{[n]})$ and $t(n+1) = k(t|_{[n]})$ for all $n \in \mathbb{N}$. We will show that s(n) = t(n) for all $n \in \mathbb{N}$ by induction on n, using PMI-V2.

By hypothesis, we know that s(1) = t(1) = b. Next, let $n \in N$ and suppose that s(j) = t(j) for all $j \in [n]$. Then $s|_{[n]} = t|_{[n]}$, and therefore $s(n + 1) = k(s|_{[n]}) = k(t|_{[n]}) = t(n + 1)$. It now follows from PMI-V2 that s(n) = t(n)for all $n \in \mathbb{N}$, which means that s = t.

Existence: There are three steps in the definition of f.

Step 1. We will shown that for each $p \in \mathbb{N}$, there is a function $h_p : [p] \to A$ such that $h_p(1) = b$, and that $h_p(n+1) = k(h_p|_{[n]})$ for all $n \in [p-1]$. The proof is by induction on p. First, let p = 1. Then, $[p] = \{1\}$. Let $h_1 : [1] \to A$ be defined by $h_1(1) = b$. Observe that $[p-1] = \emptyset$, and hence $h_1(n+1) = k(h_1|_{[n]})$ for all $n \in [p-1]$ is necessarily true. Next, let $p \in \mathbb{N}$, and assume that inductive hypothesis is true for p, for a function $h_p : [p] \to A$. We define a function $h_{p+1} : [p+1] \to A$ as

$$h_{p+1}(n) = \begin{cases} h_p(n), & n \in [p], \\ k(h_p), & n = p+1 \end{cases}$$

Then $h_{p+1}|_{[p]} = h_p$. It follows that $h_{p+1}(1) = h_p(1) = b$, and

$$h_{p+1}(n+1) = h_p(n+1) = k(h_p|_{[n]}) = k(h_{p+1}|_{[n]}) = h_p(n) \forall n \in [p-1],$$

and that $h_{p+1}(p+1) = k(h_p) = k(h_{p+1}|_{[p]})$. Hence h_{p+1} has the desired properties. The proof of this step is then complete by PMI.

- Step 2. Let $p, q \in \mathbb{N}$. Suppose that p < q. We can show that $h_q(n) = h_p(n)$ for all $n \in [p]$. By Step 1, we know that $h_q(1) = h_p(1) = b$. Next, suppose that $n \in [p-1]$ and that $h_q(j) = h_p(j)$ for all $j \in [n]$. Hence $h_q|[n] = h_p|_{[n]}$. Then by Step 1 we see that $h_q(n+1) = k(h_q|_{[n]}) =$ $k(h_p|_{[n]}) = h_p(n+1)$. It now follows that $h_q(n) = h_p(n)$ for all $n \in [p]$.
- Step 3. Let $f : \mathbb{N} \to A$ be defined by $f(n) = h_n(n)$ for all $n \in \mathbb{N}$. Then $f(1) = h_1(1) = b$ by Step 1. Let $p \in \mathbb{N}$. If $j \in [p]$, then j < p+1, and it follows from Step 2 that $h_{p+1}(j) = h_j(j) = f(j)$. Hence $h_{p+1}|_{[p]} = f|_{[p]}$. Using Step 1 we then see that $f(p+1) = h_{p+1}(p+1) = k(h_{p+1}|_{[p]}) = k(f|_{[p]})$.

We therefore see that f satisfies the desired properties.