
Lecture 10: Recursion

1 Recursion

Consider a sequence {1, 2, 4, 8, 16, . . .}. This sequence is described in two ways.
First way is, let an denote the nth term of the sequence, then an = 2n−1, ∀n ∈ N.
Second way is, let a1 = 1, and an+1 = 2an, ∀n ∈ N. Such a description is called a
“recursive” description of the sequence.

Given a sequence for which we already have an explicit formula for each an in
terms of n, it can be useful to find a recursive formula, but there is no question that
the sequence exists. What about a sequence for which we have only a recursive
description, but no explicit formula?

Example 1.1. Suppose that we have the recursive description c1 = 4, and cn+1 =
3 + 2cn for all n ∈ N. Is there a sequence {c1, c2, c3, . . .} satisfying such a descrip-
tion? That is, does this description actually define a sequence?

Remark 1. Intuitively, it seems that there exists such a sequence, because we can
proceed “inductively”, producing one element at a time. We know that c1 = 4. We
can then compute c2 = 3+2c1 = 3+2×4 = 11, and c3 = 3+2c2 = 3+2×11 = 25,
and so on.

There are a number of variations of the process of definition by recursion, the
most basic of which is as follows. Suppose we are given a number b ∈ X, and a
function h : X → X. We then want to define a sequence {a1, a2, . . .} ⊆ X such
that a1 = b and that an+1 = h(an), for all n ∈ N. We can now state the theorem
that guarantees the validity of definition by recursion.

Theorem 1.2 (Definition by Recursion). Let A be a set, b ∈ A, and k : A→ A
be a function. Then there is a unique function f : N→ A such that f(1) = b, and
that f(n+ 1) = k(f(n)) for all n ∈ N.

Remark 2. Informally, definition by recursion says that if A is a set, b ∈ A, and
k : A → A is a function, then there is a unique sequence {an : n ∈ N} ⊆ A such
that a1 = b, and that an+1 = k(an) for all n ∈ N.
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Example 1.3. In previous example we were looking for existence of sequence
{cn : n ∈ N} such that c1 = 4, and cn+1 = 3 + 2cn for all n ∈ N. Let b = 4,
and function h : R → R defined by h(x) = 3 + 2x for all x ∈ R. By definition
by recursion, we have a unique function f : N → R such that f(1) = 4 and
f(n + 1) = 3 + 2 · f(n) for all n ∈ N. If we let cn = f(n) for all n ∈ N, then the
sequence {cn : n ∈ N} satisfies the recursive conditions.

Remark 3. We make some observations about definition by recursion.

1. Definition by recursion gives us existence of a unique sequence with the
desired properties, it does not give us an explicit formula for this sequence.

2. Usual techniques to find explicit formulas are generating functions, which
unfortunately are out of scope of these lectures.

3. In case of Example 1.3, we can guess the formula cn = 7 ∗ 2n−1 for all n ∈ N,
and use PMI to show this formula holds.

4. Let A be a non-empty set, and let f : A→ A be a function. For any n ∈ N,
we would like to define a function denoted fn, by the formula

fn = f ◦ . . . ◦ f︸ ︷︷ ︸
n times

Definition 1.4. Fix a function f ∈ F(A,A). Then, we can define a function
k : F → F by k(g) = f ◦ g for all g ∈ F(A,A). By definition by recursion applied
to the set F(A,A), the element f ∈ F(A,A), and the function k : F(A,A) →
F(A,A), there exists a unique function φ : N→ F(A,A) such that φ(1) = f and
k ◦ φ = f ◦ φ = φ ◦ s. We define fn as φ(n) for all n ∈ N, and refer to it as the
n-fold iteration of f .

Remark 4. We make the following observations about this n-fold iteration of f .

1. Notice that f 1 = φ(1) = f , and as we expect for all n ∈ N, we have

fn+1 = φ(n+ 1) = (φ ◦ s)(n) = (f ◦ φ)(n) = f ◦ fn.

2. It’s easier to understand this definition by the commutative diagram in Fig-
ure 1.

We have a variant of definition by recursion theorem by defining an+1 =
k(n, an).
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Figure 1: Commutative diagram for recursive function k : F → F , where F is
shorthand for space of functions F(A,A).

Theorem 1.5. Let A be a set, b ∈ A, and t : A × N → A be a function. Then
there is a unique function g : N→ A such that g(1) = b, and g(n+ 1) = t(g(n), n)
for all n ∈ N.

Proof. We apply Theorem 1.2 to set B = A × N, element (b, 1) ∈ B, function
t̃ : B → B, to get a unique function g̃ : N → B such that g̃(1) = (b, 1) and
g̃ ◦ s = t̃ ◦ g̃. Let π1 : B → A and π2 : B → N be coordinate-wise projections of
elements in B to A and N respectively, such that π1(a, n) = a and π2(a, n) = n for
all (a, n) ∈ B. Let t̃ = (t, s ◦ π2) for all elements in B, then we have g̃(1) = (b, 1),
and

g̃ ◦ s = t̃ ◦ g̃ = (t ◦ g̃, s ◦ π2 ◦ g̃).

We let g = π1 ◦ g̃. Then, we observe that g(1) = b, and

g ◦ s = π1 ◦ g̃ ◦ s = π1 ◦ t̃ ◦ g̃ = t ◦ g̃ = t ◦ (g, π2 ◦ g̃).

It suffices to show that (π2 ◦ g̃)(n) = n holds for all n ∈ N. We can show this
by induction on n ∈ N. It is clear that (π2 ◦ g̃)(1) = 1. Assuming that inductive
hypothesis holds for n, and observing that (π2 ◦ g̃ ◦ s) = (s ◦ π2 ◦ g̃), we see that it
is indeed true.

Example 1.6. We have few interesting examples of such recursions.

1. We define the following recursion a1 = 1, and an+1 = (n + 1)an for all
n ∈ N. This recursion looks curiously like familiar sequence of factorials.
We formally show existence of such a sequence by defining a function t :
R × N → R as t(x,m) = (m + 1)x for all (x,m) ∈ R × N. Applying
Theorem 1.5 for A = R, b = 1, and function t, we see that there is a unique
sequence φ ∈ N,R satisfying these conditions. Notice that φ(1) = 1, and
φ(n+ 1) = t(φ(n), n) = (n+ 1)φ(n). We denote φ(n) by n!.
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2. Let f : N→ R be a real-valued sequence, and q : R× N→ R be a function
defined as q(x, n) = x + f(n + 1). Then, the recursive definition a1 = f(1)
and an+1 = q(an, n) leads to a unique sequence h : N→ R using Theorem 1.5
for A = R, b = f(1), and function q, satisfying recursive conditions.

3. We would like to further generalize recursive equations when an+1 = f(an, an−1).

Theorem 1.7. Let A be a set, let a, b ∈ A and let p : A × A → A be a function.
Then there is a unique function f : N → A such that f(1) = a, f(2) = b, and
f(n+ 2) = p(f(n), f(n+ 1)) for all n ∈ N.

Proof. We apply Theorem 1.2 to set B = A × A, element (a, b) ∈ B, function
p̃ : B → B, to get a unique function f̃ : N → B such that f̃(1) = (a, b) and
f̃ ◦ s = p̃ ◦ f̃ . Let π1 and π2 be coordinate-wise projections of elements in B to A,
such that π1(x, y) = x and π2(x, y) = y for all (x, y) ∈ B. Let p̃ = (π2, p) for all
elements in B, then we have f̃(1) = (a, b), and

f̃ ◦ s = p̃ ◦ f̃ = (π2 ◦ f̃ , p ◦ f̃).

Let f = π1 ◦ f̃ . Then, we observe that f(1) = a, and

f ◦ s = π1 ◦ f̃ ◦ s = π1 ◦ p̃ ◦ f̃ = π2 ◦ f̃ ,
f ◦ s ◦ s = π2 ◦ f̃ ◦ s = p ◦ f̃ = p ◦ (f, π2 ◦ f̃) = p ◦ (f, f ◦ s).

Definition 1.8. Let p : R×R→ R be a function defined by p(x, y) = x+y for all
(x, y) ∈ R × R. Then, the Fibonacci sequence is the unique sequence denoted
{Fn : n ∈ N} defined by F1 = 1, F2 = 2 and Fn+2 = p(Fn, Fn+1).

Remark 5. Notice the existence of this unique sequence follows from Theorem 1.7
applied to the case when A = R, a = 1, b = 1, and function p : R × R → R is
p(x, y) = x+ y.

The following proposition gives a few examples of formulas involving the sums
and products of Fibonacci numbers.

Proposition 1.9. Let n ∈ N. Then the following are true for Fibonacci sequence
{Fn : n ∈ N}.

1. F1 + F2 + ...+ Fn = Fn+2 − 1.

2. F 2
1 + F 2

2 + ...+ F 2
n = FnFn+1.

3. If n ≥ 2, then (Fn)2 − Fn+1Fn−1 = (−1)n+1.
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Proof. We will show using induction, and the fact that Fn + Fn+1 = Fn+2.

1. We use induction on n. We see that F1 = 1 = 1 + 1− 1 = F1 +F2− 1, hence
the hypothesis holds for n = 1. Assuming inductive hypothesis for n, we see
that

n+1∑
i=1

Fi =
n∑

i=1

Fi + Fn+1 = Fn+1 + Fn+2 − 1 = Fn+3 − 1.

2. We use induction on n. We see that F 2
1 = 1 = 1.1 = F1F2, hence the

hypothesis holds for n = 1. Assuming inductive hypothesis for n, we see
that

n+1∑
i=1

F 2
i =

n∑
i=1

F 2
i + F 2

n+1 = FnFn+1 + F 2
n+1 = Fn+1Fn+2.

3. We use PMI-V3 with k0 = 2. We see that (F2)
2 − F3F1 = 12 − 2.1 = −1 =

(−1)2+1, so the equation holds for n = 2. Now let n ∈ N. Suppose that
n ≥ 3, and that the equation holds for all values in {2, ..., n}. We compute

(Fn+1)
2 − Fn+2Fn = (Fn+1)

2 − (Fn+1 + Fn)Fn = Fn+1(Fn+1 − Fn)− F 2
n

= −(F 2
n − Fn+1Fn−1) = −(−1)n+1 = (−1)n+2.

where the last line holds by the inductive hypothesis.

Remark 6. Binet’s formula for explicitly writing Fibonacci sequence is

Fn =
1√
5

[
φn − (−φ−1)n

]
, ∀n ∈ N,

where φ = 1+
√
5

2
is the golden ratio.

Definition 1.10. Let A be a set. Let G(A) be the set defined by

G(A) =
⋃
n∈N

F([n], A).

Theorem 1.11. Let A be a non-empty set, an element b ∈ A, and k : G(A)→ A
be a function. Then there is a unique function f : N→ A such that f(1) = b, and
that f(n+ 1) = k(f |[n]) for all n ∈ N.

Proof. As usually is the case, uniqueness is easier to show than existence.
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Uniqueness: Let s, t : N → A be functions. Suppose that s(1) = t(1) = b, and
s(n + 1) = k(s|[n]) and t(n + 1) = k(t|[n]) for all n ∈ N. We will show that
s(n) = t(n) for all n ∈ N by induction on n, using PMI-V2.

By hypothesis, we know that s(1) = t(1) = b. Next, let n ∈ N and suppose
that s(j) = t(j) for all j ∈ [n]. Then s|[n] = t|[n], and therefore s(n + 1) =
k(s|[n]) = k(t|[n]) = t(n + 1). It now follows from PMI-V2 that s(n) = t(n)
for alln ∈ N, which means that s = t.

Existence: There are three steps in the definition of f .

Step 1. We will shown that for each p ∈ N, there is a function hp : [p]→ A
such that hp(1) = b, and that hp(n + 1) = k(hp|[n]) for all n ∈ [p − 1].
The proof is by induction on p. First, let p = 1. Then, [p] = {1}. Let
h1 : [1] → A be defined by h1(1) = b. Observe that [p − 1] = ∅, and
hence h1(n+ 1) = k(h1|[n]) for all n ∈ [p− 1] is necessarily true. Next,
let p ∈ N, and assume that inductive hypothesis is true for p, for a
function hp : [p]→ A. We define a function hp+1 : [p+ 1]→ A as

hp+1(n) =

{
hp(n), n ∈ [p],

k(hp), n = p+ 1.

Then hp+1|[p] = hp. It follows that hp+1(1) = hp(1) = b, and

hp+1(n+ 1) = hp(n+ 1) = k(hp|[n]) = k(hp+1|[n]) = hp(n)∀n ∈ [p− 1],

and that hp+1(p+ 1) = k(hp) = k(hp+1|[p]). Hence hp+1 has the desired
properties. The proof of this step is then complete by PMI.

Step 2. Let p, q ∈ N. Suppose that p < q. We can show that hq(n) = hp(n)
for all n ∈ [p]. By Step 1, we know that hq(1) = hp(1) = b. Next,
suppose that n ∈ [p − 1] and that hq(j) = hp(j) for all j ∈ [n]. Hence
hq|[n] = hp|[n]. Then by Step 1 we see that hq(n + 1) = k(hq|[n]) =
k(hp|[n]) = hp(n+ 1). It now follows that hq(n) = hp(n) for all n ∈ [p].

Step 3. Let f : N → A be defined by f(n) = hn(n) for all n ∈ N. Then
f(1) = h1(1) = b by Step 1. Let p ∈ N. If j ∈ [p], then j < p+ 1, and it
follows from Step 2 that hp+1(j) = hj(j) = f(j). Hence hp+1|[p] = f |[p]}.
Using Step 1 we then see that f(p + 1) = hp+1(p + 1) = k(hp+1|[p]) =
k(f |[p]).

We therefore see that f satisfies the desired properties.
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