
Lecture 12 : Topological Spaces

1 Topological Spaces

Topology generalizes notion of distance and closeness etc.

Definition 1.1. A topology on a set X is a collection T of subsets of X having the
following properties.

1. ∅ and X are in T.

2. The union of the elements of any sub-collection of T is in T.

3. The intersection of elements of any finite sub-collection of T is in T.

A set X for which a topology T has been specified is called a topological space,
denoted (X,T).

Definition 1.2. If X is a topological space with topology T, we say that a subset
U of X is an open set of X if U belongs to the collection T.

Example 1.3. Let X be any set.

1. Let X = {a, b, c}. Different collections of subsets of X are shown in the Fig-
ure 1. First nine of these collections are topologies and last two are not.

2. Power set P(X) is a topology called the discrete topology.

3. Collection T = {∅, X} is a topology called the indiscrete topology or the
trivial topology.

4. We define finite complement topology on X as

Tf = {U ⊆ X : X\U is finite or X\U = X}.

We will show Tf is a topology.
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Figure 1: Different collections of subsets of X = {a, b, c}. Last two subsets are not
topologies.

Membership of ∅ and X. Since X\∅ = X, we have ∅ ∈ Tf . Similarly, X ∈
Tf since X\X = ∅ is finite.

Closure under arbitrary union. Let {Ui : i ∈ I} be an indexed family of
elements in Tf , with their union ∪j∈IUj denoted by U . If Ui = ∅ for all
i ∈ I, then there is nothing to show. Else, there exists i ∈ I such that
X\Ui is finite. Notice that

X\U = X \
⋃
j∈I

Uj =
⋂
j∈I

(X \ Uj) ⊆ (X \ Ui).

Since X \ Ui is finite, so is X\U . It follows that union U ∈ Tf .

Closure under finite intersection. For a finite index set F , consider {Ui :
i ∈ F} non-empty elements of Tf , with their intersection ∩ni=1Ui denoted
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by V . We notice that

X\V = X\
n⋂

i=1

Ui =
n⋃

i=1

(X\Ui).

Since finite union of finite sets is finite, V ∈ Tf .

5. We define co-countable topology on X as

Tc = {U ⊆ X : X\U countable or X\U = X}.

Definition 1.4. Let T,T′ be topologies on a set X. We say that topology T′ is

1. finer than T, if T ⊆ T′,

2. strictly finer than T, if T ⊂ T′,

3. is comparable to T, if either T′ ⊆ T or T ⊆ T′.

We say T is coarser or strictly coarser in above two cases, respectively.

Definition 1.5. If T ⊆ T′, then we say that T′ is larger than T, and T is smaller
than T.

Remark 1. Topologies are not always comparable. In Figure 1, topology in first row
and first column is coarser than all topologies, and topology in third row and third
column is finer than all topologies. Topology in the second row and second column
is not comparable, to other two topologies in the third row.

2 Basis for a Topology

Specifying whole collection of open sets is prohibitive at times. One can specify a
smaller collection of subsets of X and define topology using them.

Definition 2.1. If X is a set, a basis for a topology on X is a collection B of subsets
of X, called basis elements, such that

1. for all x ∈ X, there exists B ∈ B such that x ∈ B,

2. for B1, B2 ∈ B and x ∈ B1∩B2, there exists B3 ∈ B such that x ∈ B3 ⊆ B1∩B2.
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If B satisfies these two conditions, we define the topology T generated by B as
follows. A subset U of X is called open in X, if for each x ∈ U , there exists B ∈ B

such that x ∈ B ⊆ U .

Remark 2. Observe that B ⊆ T.

Lemma 2.2. Collection T generated by basis B is a topology on X.

Proof. Let T be the collection of subsets of X generated by the basis B on X.

Membership of ∅ and X. Let U be an empty set, in this case U vacuously belongs
to T. On the other hand, for all x ∈ X, there exists B such that x ∈ B ⊆ X
by definition of basis B.

Closure under arbitrary unions. Consider an indexed family of sets {Ui ∈ T :
i ∈ I}, and define U = ∪i∈IUi. For each x ∈ U , there exists index i ∈ I such
that x ∈ Ui. Since Ui ⊆ T, for each x ∈ Ui there exists a basis element Bx such
that x ∈ Bx ⊆ Ui ⊆ U . Hence, U ⊆ T by definition.

Closure under finite intersections. It suffices to show that intersection of two
elements of T belongs to T. To this end, consider U1, U2 ∈ T. Let x ∈ U1 ∩U2,
by definition we can choose basis elements B1 and B2 such that x ∈ B1 ⊆ U1

and x ∈ B2 ⊆ U2. Using the second condition in the definition of the basis
we can choose a basis element B3 such that x ∈ B3 ⊆ B1 ∩ B2 ⊆ U1 ∩ U2. It
follows that U1 ∩ U2 belongs to T by definition.

Example 2.3. We consider two different basis B and B′ on set X = R2.

1. Consider basis B of circular regions for a topology on R2.

B = {B(x0, y0, r) ⊆ R2 : (x0, y0, r) ∈ R2 × R+}, where

B(x0, y0, r) = {(x, y) ∈ R2 : (x− x0)
2 + (y − y0)

2 < r2}.

Generated topology T(B) is given by

T(B) = {U ⊆ R2 : ∀x ∈ U,∃(x, y, r) such that x ∈ B(x, y, r) ⊆ U}.
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Figure 2: Consider basis B of circular regions and basis B′ of rectangular regions on
R2. Intersection of two basis elements is another basis element for B′, but not for B.

2. Consider basis B′ of rectangular regions for a topology on R2.

B′ = {B′(x0, y0, r) ⊆ R2 : (x0, y0, r) ∈ R2 × R+}, where

B′(x0, y0, r) = {(x, y) ∈ R2 : max{|x− x0|, |y − y0|} < r}.

Generated topology T(B′) is given by

T(B′) = {U ⊆ R2 : ∀x ∈ U,∃(x, y, r) such that x ∈ B′(x, y, r) ⊆ U}.

We show typical basis elements of B and B′ in Figure 2. Observe that intersection
of two basis elements B1, B2 ∈ B is not a basis element. But, by definition of basis,
there exists an element B3 ⊂ B1 ∩ B2. On the other hand, intersection of two basis
elements B′

1, B
′
2 ∈ B′ is a basis element itself. It can be shown that T(B) = T(B′).

Example 2.4. Let X be any set, then collection of all singletons is basis for discrete
topology on X. We will show collection of all singletons B = {{x} : x ∈ X} is a
basis.

Covering whole set. Clearly X = ∪x∈X = {x}.

Basis inside intersection. Let x 6= y, then {x} ∩ {y} = ∅, so second condition is
vacuously true.
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Lemma 2.5. Let X be a set, and B be a basis for topology T on X. Then T equals
the collection of all unions of elements of B.

Proof. Let B = {Bi : i ∈ I}. Since B ⊆ T and T is a topology, hence for all J ⊆ I,
we have ∪j∈JBj ∈ T. That is, the collection of union of elements in B is in T.
Conversely, let U ∈ T be any open subset of X. For any x ∈ X, we can find Bx ∈ B

such that x ∈ Bx ⊆ U by definition of B. Hence, we have U = ∪x∈UBx. That is, any
element of T is union of basis elements in B.

Remark 3. There is no unique way of representing an open set as union of basis
elements. Thus, topological basis is quite different to linear algebra basis.
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