
Lecture 13: Basis for a Topology

1 Basis for a Topology

Lemma 1.1. Let (X,T) be a topological space. Suppose that C is a collection of
open sets of X such that for each open set U of X and each x in U , there is an
element C ∈ C such that x ∈ C ⊂ U . Then C is the basis for the topology of X.

Proof. In order to show that C is a basis, need to show that C satisfies the two
properties of basis. To show the first property, let x be an element of the open set
X. Now, since X is open, then, by hypothesis there exists an element C of C such
that x ∈ C ⊂ X. Thus C satisfies the first property of basis.

To show the second property of basis, let x ∈ X and C1, C2 be open sets in C
such that x ∈ C1 and x ∈ C2. This implies that C1 ∩ C2 is also an open set in C
and x ∈ C1 ∩ C2. Then, by hypothesis, there exists an open set C3 ∈ C such that
x ∈ C3 ⊂ C1 ∩C2. Thus, C satisfies the second property of basis too and hence, is
indeed a basis for the topology on X.

On many occasions it is much easier to show results about a topological space
by arguing in terms of its basis. For example, to determine whether one topology
is finer than the other, it is easier to compare the two topologies in terms of their
bases.

Lemma 1.2. Let B and B
′

be basis for topologies T and T
′
, respectively, on X.

Then, the following are equivalent:

1. T
′

is finer than T

2. For each x ∈ X and each basis element B ∈ B containing x, there is a basis
element B

′ ∈ B
′

such that x ∈ B
′ ⊂ B.

Proof. (2) =⇒ (1) We need to show that for any open set U ⊂ T, its also holds
that U ∈ T

′
. Let x be an arbitrary element of set U . Since B generates T, there

exists B ∈ B such that x ∈ B ⊂ U . Then, from (2), there exists B
′ ∈ B

′
such

that x ∈ B
′ ⊂ B ⊂ U . Since x is arbitrary, U ∈ T

′
holds.
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(1) =⇒ (2) Let x ∈ X and B be an element of B containing x. Since B

generates T, it holds that B ∈ T. Then, by hypothesis, it also holds that B ∈ T
′
.

Now, since B
′
is a basis for T

′
and B in an open set in T

′
, there exists a set B

′ ∈ B
′

such that x ∈ B
′ ⊂ B and we are done.

A basis B can be seen as a set of ’building blocks/sets’ which can generate any
open set in the topology TB generated by B. By taking arbitrary union or finite
intersection of the basis elements, any open set in TB can be realized. A useful
analogy is to see a topological space as a truckload full of gravel. Think of the
pebbles as the basis elements of the topology; after the pebbles are smashed to
dust, the dust particles are the basis elements of new topology. The new topology
is finer than the old one, and each new dust particle was contained inside a pebble,
as Lemma 1.2 states.

Figure 1

Example 1.3. The collection B of all circular regions in the plane generates the
same topology as the collection B

′
of all the rectangular regions. Figur 1 illustrates

the proof. For each element x of an arbitrary circular region in B, there always
exists a rectangular region in B

′
containing x which fits within the said circular

region and vice versa.

We now define three topologies on real line R, all of which are of interest.

Definition 1.4 (Standard topology). If B is the collection of all open intervals
in the real line,

(a, b) = {x|a < x < b},

the topology generated by B is called the standard topology on the real line.
Whenever, we consider R, we shall suppose it is given this topology unless stated
otherwise.
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Definition 1.5 (Lower limit topology). If B
′

is the collection of all half open
intervals in the real line,

[a, b) = {x|a ≤ x < b},
the topology generated by B

′
is called the lower limit topology on R. When,

R is given the lower limit topology, we denote it by Rl. Thus, in Rl, half open
intervals of the form [a, b) for a, b ∈ R are open sets.

Definition 1.6 (K - topology). Let K denote the set of all numbers of the form
1
n

for n ∈ Z+, and let B
′′

be the collection of all intervals (a, b) along with all sets of

the form (a, b)\K. The topology generated by B
′′

will be called the K − topology
on R. When R is given this topology, we denote it by RK .

[a, b) = {x|a ≤ x < b},

the topology generated by B
′

is called the lower limit topology on R. In other
words, B

′′
= B ∪ {(a, b)\K, ∀a, b ∈ R}, where B is the set of all open intervals in

R. When, R is given the lower limit topology, we denote it by Rl.

Lemma 1.7. The topologies of Rl and RK are strictly finer that the topology on
R, but are not comparable with each other.

Proof. To show that a topology Rl is finer that of R, let x ∈ (a, b), where (a, b) is
an arbitrary element of the basis of R. Then, for sufficiently large n ∈ Z+, we can
always construct the half open interval [a + 1

n
, b) ⊂ (a, b) (an element of the basis

of Rl), such that it contains x. On the other hand, given a basis element [a, b)
for Rl, there exists no open interval in R which contains a but is still lies in [a, b).
Hence, the topology Rl is strictly finer than R.

Definition 1.8 (Subbasis). A sub-basis S for a topology on X is a collection of
subsets of X whose union equals X. The topology generated by the sub-basis
S is defined to be the collection T of all unions of finite intersections of elements
of S.

Let us check if the topology T generated by sub-basis S as described above
satisfies the properties of a valid topology or not. Rather than using the standard
definition of topology, instead we will show first that if B is the collection of all
finite intersections of the elements of S, then B is a basis. Then, the union of
elements of B will indeed be a topology (as union of elements of basis gives the
topology itself).

Given x ∈ X, from definition of sub-basis S, x belongs to an element of S, and
hence x belongs to an element of B. So, the first condition of basis is satisfied.
To check the second condition, let B1 = S1 ∩ · · · ∩ Sm and B2 = S

′
1 . . . S

′
n be two

elements of B. Then, their intersection B1 ∩ B2 = (S1 ∩ · · · ∩ Sm) ∩ (S
′
1 . . . S

′
n) is

also a finite intersection of elements of S, so it belongs to B.
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Example 1.9. Consider the set A = (−1, 1) of real numbers in the usual
order. Assuming the fact that the real numbers have the least upper bound
property, it follows that the set A has the least upper bound property. Any
subset of A having an upper bound in A should also have least upper bound
property.

2 Order Topology

Given a collection of sets, we may want to define an order relation between any
two member sets. An order relation can provide the necessary framework for
introducing the notion of distance in a very abstract sense. A very crude example
is to consider three real number a, b and c such that b is greater than a, and c is
greater than b. In this example, ”greater than” is a type of order relation. It
is easy to see that c is not only greater than a, but also c is farther from a
compared to b. This is a fine example of how an order relation can induce much
richer mathematical entities such as distances, intervals, neighborhoods etc.

If X is a simply ordered set, there is a standard topology for X, defines using
the order relation. It is called the ordertopology.

Suppose that X is a set having a simple order relation <. Given elements a
and b of X such that a < b. there are four subsets of X that are the intervals
determined by a and b. They are:

a) Open interval: (a, b) = {x | a < x < b}

b) Half open interval: [a, b) = {x | a ≤ x < b}

c) Half open interval: (a, b] = {x | a < x ≤ b}

d) Closed interval: [a, b] = {x | a ≤ x ≤ b}
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