Lecture 14: The Order Topology

1 The Order Topology

If X is a simply ordered set, there is a standard topology for X, defined using the order relation. It is called "Order Topology".

Definition: Suppose X is a set having order relation <. Given a<b ϵ X, there are four subsets of X called intervals determined by a and b. They are as follows :

$$(a,b) = \{x \mid a < x < b\}$$

$$(a,b] = \{x \mid a < x \le b\}$$

$$[a,b) = \{x \mid a \le x < b\}$$

$$[a,b] = \{x \mid a \le x \le b\}$$

Definition: Let X be a simple order relation. Assume that X has more than one element. Let \mathcal{B} be the collection of all sets of the following types:

1.All open intervals (a,b) in X.

2.All intervals of the form $[a_0,b)$, where a_0 is the smallest element (if any) of X. **3**.All intervals of the form $(a,b_0]$, where b_0 is the largest element (if any) of X.

The collection \mathcal{B} is a basis for a topology on X, which is called the order topology.

Remark: If X has no smallest then there are no sets of type **2** and if X has no largest element then there are no sets of type **3**.

Verification that \mathcal{B} satisfies the requirements for being a basis: Let $x \in X$. If $x=a_0$ then $x \in [a_0,b)$. If $x=b_0$, then $x \in (a,b_0]$. These 2 cases are easy to verify. But let us consider the scenario where $x \neq a_0$ and $x \neq b_0$.

From definition, $(a, b) = \{z \mid a < z < b\}$. As the order relation ; is defined on the set X, there will some element a ϵ X and some element b ϵ such that a;x;b.In that case a ϵ (a,b). Hence we have verified that \mathcal{B} satisfies the first criteria for being a basis over the order topology on X.

Now we need to check for the 2nd which \mathcal{B} B needs to satisfy for being a basis over the order topology on X. Let us take $B_1 = [a_0, b), B_2 = (a, b_0], B_3 = (a_1, b_1)$ and $B_4 = (a_2, b_2)$, where a_0 is the smallest element in X and b_0 is the largest element in X. The sets B_1, B_2, B_3, B_4 all belong to \mathcal{B} . If $x \epsilon B_1 \cap B_2$, then $x \epsilon(a, b)$. The set (a,b) is thus a subset of $B_1 \cap B_2$. Hence, $x \epsilon(a, b) \subset B_1 \cap B_2 \epsilon \mathcal{B}$. Thus if X has both largest and smallest element, then \mathcal{B} satisfies the criteria for being a basis.

We shall now inspect the case that X has no largest element. If $x \epsilon B_1 \cap B_3$. Depending on the value of b, a_1 and b_1 , we will be able to a set of the form (p,q), such that $x \epsilon(p,q) \subset B_1 \cap B_3 \epsilon \mathcal{B}$. Thus if X has no largest element but a smallest element, then \mathcal{B} satisfies the criteria for being a basis.

Let us consider the case that X has no smallest element. If $x \in B_2 \cap B_3$.

Depending on the value of a, a_1 and b_1 , we will be able to a set of the form (r,s), such that $x \epsilon(r, s) \subset B_2 \cap B_3 \epsilon \mathcal{B}$. Thus if X has no largest element but a smallest element, then \mathcal{B} satisfies the criteria for being a basis.

Finally, we will consider the case when X has no largest or smallest element. So the basis of the order topology will consist of sets of the form (m,n). If x

 $\epsilon B_3 \cap B_4$. Depending on the value of a_1, b_1, a_2 and b_2 , we will be able to a set of the form (e,d), such that $\mathbf{x} \ \epsilon(e, d) \subset B_3 \cap B_4 \epsilon \mathcal{B}$. Thus if X has no largest and smallest element, then \mathcal{B} satisfies the criteria for being a basis.

Thus we have considered all possible scenarios which should be checked for \mathcal{B} for being a basis for the order topology on X. Since \mathcal{B} has satisfied all of them, it is a basis for order topology on X.

Example 1: The standard topology on \mathbb{R} is just the order topology derived from the usual order on \mathbb{R} .

Example 2: Consider the set $\mathbb{R} \times \mathbb{R}$ in the dictionary order; we shall denote the general element of $\mathbb{R} \times \mathbb{R}$ by $x \times y$, to avoid difficulty with notation. The set $\mathbb{R} \times \mathbb{R}$ has neither a largest nor a smallest element, so the order topology on $\mathbb{R} \times \mathbb{R}$ has as basis the collection of all open intervals of the form $(a \times b, \times d)$ for a < c, and when a equals c, b < d.

Example 3: The positive integers \mathbb{Z}_+ form an ordered set with a smallest element. The order topology on \mathbb{Z}_+ , is the discrete topology, as the singletons are open sets. If n>1, then the singleton $\{n\}=(n-1,n+1)$ is a basis element; and if n=1, the one-point set $\{1\}=[1,2)$ is a basis element.

Example 4: The set $X = \{1, 2\} \times \mathbb{Z}_+$ in the dictionary order is another example of an ordered set with a smallest element. Denoting $1 \times n$ by a_n and $2 \times n$ by b_n , we can represent X by $\{a_1, a_2, \ldots, b_1, b_2, \ldots\}$ The order topology on X is not the discrete topology. Most one-point sets are open, but there is an exception .The one-point set $\{b_1\}$. Any open set containing b_1 must contain a basis element about b_1 (by definition), but any basis element containing b_1 contains points of the a_i sequence.

Definition: If X is an ordered set and a is an element of X, there are four subsets

of X that are called the rays determined by a. They are the following:

$$(-\infty, a) = \{x \mid x < a\} (a, +\infty) = \{x \mid x > a\} (-\infty, a] = \{x \mid x \le a\} [a, +\infty) = \{x \mid x \ge a\}$$

The sets of type $(-\infty, a)$ and $(a, +\infty)$ are called open rays. Similarly, the sets of type $(-\infty, a]$ and $[a, +\infty)$ are called closed rays.

We now need to verify that the open rays belong to the order topology on X. We shall first consider the open ray $(a, +\infty)$.

If X contains a largest element b_0 then $(a, +\infty)$ is of the form $(a, b_0]$, which is a basis element for the order topology on X. Thus in this case $(a, +\infty)$ is open. If X has no largest element, then $(a, +\infty) = \bigcap_{x>a}(a, x)$. To prove this statement, let $z \ \epsilon(a, +\infty)$. From definition, z > a. Hence if we consider the set $\bigcap_{x>a}(a, x)$, z will belong at least one of the subsets of the form (a,x). Thus $z \ \epsilon \bigcap_{x>a}(a,x)$. Hence $(-\infty, a) \subset \bigcap_{x>a}(a, x)$.

Now let p $\epsilon \bigcap_{x>a}(a,x)$. So p will belong to at least one of the open intervals of the form (a,x). If p belongs to some open interval of the form (a,x), then from definition $a . From definition of the open rays, p <math>\epsilon(a, +\infty)$. Thus $bigcap_{x>a}(a,x) \subset (-\infty,a)$. Also, we have proven that $(-\infty,a) \subset \bigcap_{x>a}(a,x)$. So $(-\infty,a) = \bigcap_{x>a}(a,x)$.

We shall now consider the open ray $(-\infty, a)$. If X contains a smallest element a_0 then $(-\infty, a)$) is of the form $[a_0, a)$, which is a basis element for the order topology on X. Thus in this case $(-\infty, a)$ is open. If X has no smallest element, then $(-\infty, a) = \bigcap_{x < a} (x, a)$. To prove this statement, let w $\epsilon(-\infty, a)$. From definition, w< a. Hence if we consider the set $\bigcap_{x < a} (x, a)$, w will belong at least one of the subsets of the form (x, a). Thus w $\epsilon \bigcap_{x < a} (x, a)$. Hence $(-\infty, a) \subset \bigcap_{x < a} (x, a)$. Now let q $\epsilon \bigcap_{x < a} (x, a)$. So q will belong to at least one of the open intervals of the form (x, a). If p belongs to some open interval of the form (x, a), then from definition x < q < a. From definition of the open rays, q $\epsilon(-\infty, a)$. Thus $\bigcap_{x < a} (x, a) \subset (-\infty, a)$. Also, we have proven that $(-\infty, a) \subset \bigcap_{x < a} (x, a)$. So $(-\infty, a) = \bigcap_{x < a} (x, a)$.

Hence both the open rays belong to the order topology on X.

Remark: The open rays form a sub-basis for the order topology on X.

Proof: The open rays $(-\infty, a)$ and $(a, +\infty)$ are open sets in the order topology defined on X. Hence the topology generated by $(-\infty, a)$ and $(a, +\infty)$ are contained in the order topology on X. If \mathcal{T}_R be the topology generated by the open intervals and if \mathcal{T} be the order topology on X, then we write $\mathcal{T}_R \subset \mathcal{T}$. If we consider the intersection of the open rays of the form $(-\infty, b)$ and $(a, +\infty)$, then it is the open interval of the form (a,b). The set (a,b) is a basis element of the order topology on X. If X has a smallest element a_0 , then $(-\infty, b)$ is of the form $[a_0, b)$. Then the intersection of $[a_0, b)$ with $(a, +\infty)$, will yield an interval of the form (a,b), which is a basis element for the order topology on X.

Similarly, if X has a largest element b_0 , then (a, ∞) is of the form $(a, b_0]$. Then the intersection of $(a, b_0]$ with $(-\infty, b)$, will yield an interval of the form (a, b), which is a basis element for the order topology on X. For both the largest element and the smallest element cases, we have assumed that the intersection between the sets is non-empty. If it is empty, then the basis elements of the form $(a, b_0]$ or $[a_0, b)$ which both again are subsets of the order topology on X. Thus, finite intersection of the open rays yield the basis elements for the order topology on X. Also, $X = (-\infty, a) \cap (a, +\infty)$. Hence the open rays satisfy the criteria for being a sub-basis for the order topology on X.

2 The Product Topology

Definition: Let X and Y be topological spaces. The product topology on $X \times Y$ is the topology having as basis the collection \mathcal{B} of all sets of the form $U \times V$ where U is an open set in X and V is an open set in Y.

We need to check whether \mathcal{B} is a basis over X×Y.Let $(x,y) \in X \times Y$.The collection \mathcal{B} contains elements of the form U ×V, where U and V are open sets in X and Y respectively. So U ϵ X and V ϵ Y.The element (x,y) belongs to the product topology on X×Y. So there must be some U ϵ X and V ϵ Y such that X ϵ X and y ϵ V. Thus $(x,y) \epsilon U \times V \subset X \times Y$. Now U×V ϵ \mathcal{B} .So the elements of the set \mathcal{B} satisfy the first criteria for being a basis of the product topology on X×Y. Let us take $B_1\epsilon\mathcal{B}$ and $B_2\epsilon\mathcal{B}$ such that $B_1=U\times V$ and $B_2=T\times W$.The sets U and T are open in X and the sets V and W are open in Y.So we can write $B_1 \cap B_2 = (U \times V) \cap (T \times W)$.Now $B_1 \cap B_2$ can be also written as $(U \cap T) \times (V \cap W)$.If $(a,b) \epsilon B_1 \cap B_2$, then $(a,b) \epsilon (U \cap T) \times (V \cap W)$.Since the sets U and T are open in X and the sets V and W are open in Y,so $(U \cap T)$ and $(V \cap W)$ are open in X and the sets V and W are open in Y,so $(U \cap T)$ and $(V \cap W)$ are open in X and Y respectively. Let $U_0 = (U \cap T)$ and $V_0 = (V \cap W)$. Thus we have $(a,b)\epsilon (U_0 \cap V_0) \subset (U \cap T) \times (V \cap W)$.Also $(U_0 \cap V_0) \epsilon \mathcal{B}$. Thus the elements of \mathcal{B} satisfy the two necessary conditions for being a basis of the product topology on X \times Y. Hence the elements of \mathcal{B} form a basis.

Theorem 15.1: If \mathcal{B} be the basis for a topology on X and \mathcal{C} be the basis for a topology on Y, then,

$$\mathcal{D} = \{ B \times C \mid B \epsilon \mathcal{B} \text{ and } C \epsilon \mathcal{C} \}$$

is the basis for the topology on $X \times Y$.

Proof:Let us consider the element W×T which belongs to the product topology on X×Y. By definition of product topology, there exists an element U×V in X×Y such that $(x,y)\epsilon U \times V \subset X \times Y$. The set U×V is then an basis element for the product topology on X×Y and U×V $\epsilon \mathcal{B}$.So, $(x,y)\epsilon U \times V$, $x\epsilon U$ and $y\epsilon V$. The sets \mathcal{B} and \mathcal{C} are bases for X and Y respectively.Hence we can find B $\epsilon \mathcal{B}$ and C ϵ \mathcal{B} such that $x\epsilon B \subset U$ and $y\epsilon C \subset V$. So we can write $(x,y)\epsilon B \times C \subset W \times T$. If $\mathcal{D} = \{B \times C \mid B\epsilon \mathcal{B} \text{ and } C\epsilon \mathcal{C}\}$, then from Lemma 13.2, \mathcal{D} meets the criteria for being a basis for the product topology on X×Y.

Example: Let us consider the order topology on \mathbb{R} . The product of this topology with itself is called the standard topology on $\mathbb{R} \times \mathbb{R}$. Now we can write $\mathbb{R} \times \mathbb{R}$ as \mathbb{R}^2 . By definition, the collection of all sets of the form U×V, where U of the form (p,q) and V of the form (r,s), form the basis for the product topology on \mathbb{R}^2 . By theorem 15.1, the basis for the product topology on \mathbb{R}^2 can also be represented by,

$$\mathcal{D} = \{ B \times C \mid B \in \mathbb{R} \text{ and } C \in \mathbb{R} \}.$$

In the above both B and C are basis elements of \mathbb{R} and is of the form (a,b). **Definition**: Let $\pi_1: X \times Y \to X$ be defined by the,

$$\pi_1(\mathbf{x},\mathbf{y}) = \mathbf{x}.$$

Also, let $\pi_2: X \times Y \rightarrow Y$ be defined by the equation.

$$\pi_1(\mathbf{x},\mathbf{y})=\mathbf{y}.$$

The maps π_1 and π_2 are called the projections of X×Y onto its first and second factors respectively. The word "onto" is used here because the mapping is subjective.

Let X and Y be topological spaces.Let us consider the product topology on $X \times Y$. Assume, $U \subset X$ and $V \subset Y$. Then we have the following,

(a)
$$\pi_1(u,y) = u$$
 and $\pi_1^{-1}(u) = (u,y)$.
(b) $\pi_2(x,v) = v$ and $\pi_2^{-1}(v) = (x,v)$.

Theorem 15.2: The collection,

$$\mathcal{S} = \{\pi_1^{-1}(\mathbf{U}) | \mathbf{U} \boldsymbol{\epsilon} \mathbf{X}\} \cup \{\pi_2^{-1}(\mathbf{V}) | \mathbf{v} \boldsymbol{\epsilon} \mathbf{Y}\},\$$

is a sub-basis for product topology on $X \times Y$.

Proof: Let \mathcal{T}_S be the topology generated by S and let \mathcal{T} be the product topology on X×Y. Each and every element of S belongs to \mathcal{T} . So the arbitrary unions of finite intersections of the elements of S also belong to \mathcal{T} . Hence $\mathcal{T}_S \subset \mathcal{T}$.

On the other hand, all the sets of the form U×V, where U and V are open in X and Y respectively, form the basis for the product topology on X×Y. Since S is the sub-basis for the product topology, the union of the elements of S generates the entire set X×Y. Also, if we consider the finite intersection of the elements of $S, \pi_1^{-1}(U) \cap \pi_2^{-1}(V)$, then it will be equal to U×V. Thus U×V ϵT_S . Hence $T \subset T_S$. So we have $T=T_S$. From this, we can infer that the topology generated by S is same as the product topology on X×Y.