Lecture 14: The Order Topology

1 The Order Topology

If X is a simply ordered set, there is a standard topology for X , defined using the order relation. It is called "Order Topology".

Definition: Suppose X is a set having order relation $<$. Given $\mathrm{a}<\mathrm{b} \epsilon \mathrm{X}$, there are four subsets of X called intervals determined by a and b . They are as follows :

$$
\begin{aligned}
& (a, b)=\{x \mid a<x<b\} \\
& (a, b]=\{x \mid a<x \leq b\} \\
& {[a, b)=\{x \mid a \leq x<b\}} \\
& {[a, b]=\{x \mid a \leq x \leq b\}}
\end{aligned}
$$

Definition: Let X be a simple order relation.Assume that X has more than one element.Let \mathcal{B} be the collection of all sets of the following types:

1. All open intervals (a, b) in X .
2.All intervals of the form $\left[a_{0}, \mathrm{~b}\right.$), where a_{0} is the smallest element (if any) of X.
3.All intervals of the form (a, b_{0}], where b_{0} is the largest element (if any) of X.

The collection \mathcal{B} is a basis for a topology on X , which is called the order topology.
Remark: If X has no smallest then there are no sets of type $\mathbf{2}$ and if X has no largest element then there are no sets of type $\mathbf{3}$.
Verification that \mathcal{B} satisfies the requirements for being a basis: Let $\mathrm{x} \epsilon$ X . If $\mathrm{x}=a_{0}$ then $\mathrm{x} \epsilon\left[a_{0}, \mathrm{~b}\right)$.If $\mathrm{x}=b_{0}$, then $\mathrm{x} \epsilon\left(\mathrm{a}, b_{0}\right]$. These 2 cases are easy to verify. But let us consider the scenario where $\mathrm{x} \neq a_{0}$ and $\mathrm{x} \neq b_{0}$.
From definition, $(a, b)=\{z \mid a<z<b\}$. As the order relation $;$ is defined on the set X , there will some element a $\epsilon \mathrm{X}$ and some element $\mathrm{b} \epsilon$ such that ajxjb.In that case a $\epsilon(\mathrm{a}, \mathrm{b})$. Hence we have verified that \mathcal{B} satisfies the first criteria for being a basis over the order topology on X .
Now we need to check for the 2 nd which \mathcal{B} B needs to satisfy for being a basis over the order topology on X. Let us take $B_{1}=\left[a_{0}, b\right), B_{2}=\left(a, b_{0}\right], B_{3}=\left(a_{1}, b_{1}\right)$ and $B_{4}=\left(a_{2}, b_{2}\right)$, where a_{0} is the smallest element in X and b_{0} is the largest
element in X. The sets B_{1}, B_{2}, B_{3}. B_{4} all belong to \mathcal{B}. If $\mathrm{x} \epsilon B_{1} \cap B_{2}$, then x $\epsilon(a, b)$. The set (a,b) is thus a subset of $B_{1} \cap B_{2}$. Hence, $\mathrm{x} \epsilon(a, b) \subset B_{1} \cap B_{2} \epsilon \mathcal{B}$. Thus if X has both largest and smallest element, then \mathcal{B} satisfies the criteria for being a basis.
We shall now inspect the case that X has no largest element.If $\mathrm{x} \epsilon B_{1} \cap B_{3}$. Depending on the value of b, a_{1} and b_{1}, we will be able to a set of the form (p, q), such that $\mathrm{x} \epsilon(p, q) \subset B_{1} \cap B_{3} \epsilon \mathcal{B}$. Thus if X has no largest element but a smallest element, then \mathcal{B} satisfies the criteria for being a basis.
Let us consider the case that X has no smallest element. If $\mathrm{x} \epsilon B_{2} \cap B_{3}$.
Depending on the value of a, a_{1} and b_{1}, we will be able to a set of the form (r, s), such that $\mathrm{x} \epsilon(r, s) \subset B_{2} \cap B_{3} \epsilon \mathcal{B}$. Thus if X has no largest element but a smallest element, then \mathcal{B} satisfies the criteria for being a basis.
Finally, we will consider the case when X has no largest or smallest element. So the basis of the order topology will consist of sets of the form (m, n). If x $\epsilon B_{3} \cap B_{4}$. Depending on the value of a_{1}, b_{1}, a_{2} and b_{2}, we will be able to a set of the form (e,d), such that $\mathrm{x} \epsilon(e, d) \subset B_{3} \cap B_{4} \epsilon \mathcal{B}$. Thus if X has no largest and smallest element, then \mathcal{B} satisfies the criteria for being a basis.
Thus we have considered all possible scenarios which should be checked for \mathcal{B} for being a basis for the order topology on X. Since \mathcal{B} has satisfied all of them, it is a basis for order topology on X.
Example 1: The standard topology on \mathbb{R} is just the order topology derived from the usual order on \mathbb{R}.
Example 2: Consider the set $\mathbb{R} \times \mathbb{R}$ in the dictionary order; we shall denote the general element of $\mathbb{R} \times \mathbb{R}$ by $\mathrm{x} \times \mathrm{y}$, to avoid difficulty with notation. The set $\mathbb{R} \times \mathbb{R}$ has neither a largest nor a smallest element, so the order topology on $\mathbb{R} \times \mathbb{R}$ has as basis the collection of all open intervals of the form $(a \times b, \times d)$ for $\mathrm{a}<\mathrm{c}$, and when a equals $\mathrm{c}, \mathrm{b}<\mathrm{d}$.
Example 3: The positive integers \mathbb{Z}_{+}form an ordered set with a smallest element. The order topology on \mathbb{Z}_{+}, is the discrete topology, as the singletons are open sets. If $\mathrm{n}>1$, then the singleton $\{n\}=(\mathrm{n}-1, \mathrm{n}+1)$ is a basis element; and if $\mathrm{n}=1$, the one-point set $\{1\}=[1,2)$ is a basis element.
Example 4: The set $\mathrm{X}=\{1,2\} \times \mathbb{Z}_{+}$in the dictionary order is another example of an ordered set with a smallest element. Denoting $1 \times \mathrm{n}$ by a_{n} and $2 \times \mathrm{n}$ by b_{n}, we can represent X by $\left\{a_{1}, a_{2} \ldots ., b_{1}, b_{2} \ldots ..\right\}$ The order topology on X is not the discrete topology. Most one-point sets are open, but there is an exception.The one-point set $\left\{b_{1}\right\}$. Any open set containing b_{1} must contain a basis element about b_{1} (by definition), but any basis element containing b_{1} contains points of the a_{i} sequence.
Definition:If X is an ordered set and a is an element of X ,there are four subsets
of X that are called the rays determined by a. They are the following:

$$
\begin{aligned}
(-\infty, a) & =\{x \mid x<a\} \\
(a,+\infty) & =\{x \mid x>a\} \\
(-\infty, a] & =\{x \mid x \leq a\} \\
{[a,+\infty) } & =\{x \mid x \geq a\}
\end{aligned}
$$

The sets of type $(-\infty, a)$ and $(a,+\infty)$ are called open rays. Similarly, the sets of type $(-\infty, a]$ and $[a,+\infty)$ are called closed rays.
We now need to verify that the open rays belong to the order topology on X. We shall first consider the open ray $(a,+\infty)$.
If X contains a largest element b_{0} then $(a,+\infty)$ is of the form $\left(a, b_{0}\right]$, which is a basis element for the order topology on X. Thus in this case $(a,+\infty)$ is open. If X has no largest element, then $(a,+\infty)=\bigcap_{x>a}(a, x)$. To prove this statement, let $\mathrm{z} \epsilon(a,+\infty)$. From definition, $\mathrm{z}>a$. Hence if we consider the set $\bigcap_{x>a}(a, x)$, z will belong at least one of the subsets of the form (a, x). Thus $\mathrm{z} \epsilon \bigcap_{x>a}(a, x)$. Hence $(-\infty, a) \subset \bigcap_{x>a}(a, x)$.
Now let $\mathrm{p} \epsilon \bigcap_{x>a}(a, x)$. So p will belong to at least one of the open intervals of the form (a, x). If p belongs to some open interval of the form (a, x), then from definition $a<p<x$. From definition of the open rays, $\mathrm{p} \epsilon(a,+\infty)$. Thus $\left.\operatorname{bigcap}_{x>a}(a, x) \subset(-\infty, a)\right)$. Also, we have proven that $(-\infty, a) \subset \bigcap_{x>a}(a, x)$. So $(-\infty, a)=\bigcap_{x>a}(a, x)$.
We shall now consider the open ray $(-\infty, a)$.If X contains a smallest element a_{0} then $(-\infty, a))$ is of the form $\left[a_{0}, a\right)$, which is a basis element for the order topology on X .Thus in this case $(-\infty, a)$ is open.If X has no smallest element, then $(-\infty, a)=\bigcap_{x<a}(x, a)$.To prove this statement, let $\mathrm{w} \epsilon(-\infty, a)$. From definition, $\mathrm{w}<a$. Hence if we consider the set $\bigcap_{x<a}(x, a), \mathrm{w}$ will belong at least one of the subsets of the form (x, a). Thus $\mathrm{w} \epsilon \bigcap_{x<a}(x, a)$. Hence $(-\infty, a) \subset \bigcap_{x<a}(x, a)$. Now let $\mathrm{q} \epsilon \bigcap_{x<a}(x, a)$. So q will belong to at least one of the open intervals of the form (x, a). If \mathbf{p} belongs to some open interval of the form (x, a), then from definition $x<q<a$. From definition of the open rays, $\mathrm{q} \epsilon(-\infty, a)$. Thus $\left.\bigcap_{x<a}(x, a) \subset(-\infty, a)\right)$. Also, we have proven that $(-\infty, a) \subset \bigcap_{x<a}(x, a)$. So $(-\infty, a)=\bigcap_{x<a}(x, a)$.
Hence both the open rays belong to the order topology on X.
Remark: The open rays form a sub-basis for the order topology on X.
Proof:The open rays $(-\infty, a)$ and $(a,+\infty)$ are open sets in the order topology defined on X. Hence the topology generated by $(-\infty, a)$ and $(a,+\infty)$ are contained in the order topology on X. If \mathcal{T}_{R} be the topology generated by the open intervals and if \mathcal{T} be the order topology on X , then we write $\mathcal{T}_{R} \subset \mathcal{T}$. If we consider the intersection of the open rays of the form $(-\infty, b)$ and $(a,+\infty)$, then it is the open interval of the form (a, b).The set (a, b) is a basis element of
the order topology on X . If X has a smallest element a_{0}, then $\left.(-\infty, b)\right)$ is of the form $\left[a_{0}, b\right)$. Then the intersection of $\left[a_{0}, b\right)$ with $(a,+\infty)$, will yield an interval of the form (a, b), which is a basis element for the order topology on X.
Similarly, if X has a largest element b_{0}, then (a, ∞) is of the form $\left(a, b_{0}\right]$. Then the intersection of $\left(a, b_{0}\right]$ with $(-\infty, b)$, will yield an interval of the form (a, b), which is a basis element for the order topology on X. For both the largest element and the smallest element cases, we have assumed that the intersection between the sets is non-empty. If it is empty, then the basis elements of the form $\left(a, b_{0}\right]$ or $\left[a_{0}, b\right)$ which both again are subsets of the order topology on X. Thus, finite intersection of the open rays yield the basis elements for the order topology on X . Also, $\mathrm{X}=(-\infty, a) \cap(a,+\infty)$. Hence the open rays satisfy the criteria for being a sub-basis for the order topology on X .

2 The Product Topology

Definition: Let X and Y be topological spaces. The product topology on $\mathrm{X} \times \mathrm{Y}$ is the topology having as basis the collection \mathcal{B} of all sets of the form $U \times V$ where U is an open set in X and V is an open set in Y .
We need to check whether \mathcal{B} is a basis over $\mathrm{X} \times \mathrm{Y}$. Let (x, y) $\epsilon \mathrm{X} \times \mathrm{Y}$. The collection \mathcal{B} contains elements of the form $\mathrm{U} \times \mathrm{V}$, where U and V are open sets in X and Y respectively. So $\mathrm{U} \epsilon \mathrm{X}$ and $\mathrm{V} \epsilon \mathrm{Y}$.The element (x, y) belongs to the product topology on $X \times Y$. So there must be some $U \epsilon X$ and $V \epsilon Y$ such that $X \in X$ and $y \epsilon V$. Thus $(x, y) \epsilon U \times V \subset X \times Y$. Now $U \times V \epsilon \mathcal{B}$. So the elements of the set \mathcal{B} satisfy the first criteria for being a basis of the product topology on $\mathrm{X} \times \mathrm{Y}$.
Let us take $B_{1} \epsilon \mathcal{B}$ and $B_{2} \epsilon \mathcal{B}$ such that $B_{1}=\mathrm{U} \times \mathrm{V}$ and $B_{2}=\mathrm{T} \times \mathrm{W}$. The sets U and T are open in X and the sets V and W are open in Y.So we can write
$B_{1} \cap B_{2}=(\mathrm{U} \times \mathrm{V}) \cap(\mathrm{T} \times \mathrm{W})$. Now $B_{1} \cap B_{2}$ can be also written as $(\mathrm{U} \cap \mathrm{T}) \times(\mathrm{V} \cap \mathrm{W})$.If $(\mathrm{a}, \mathrm{b}) \in B_{1} \cap B_{2}$, then $(\mathrm{a}, \mathrm{b}) \epsilon(\mathrm{U} \cap \mathrm{T}) \times(\mathrm{V} \cap \mathrm{W})$. Since the sets U and T are open in X and the sets V and W are open in Y ,so $(\mathrm{U} \cap \mathrm{T})$ and $(\mathrm{V} \cap \mathrm{W})$ are open in X and Y respectively. Let $U_{0}=(\mathrm{U} \cap \mathrm{T})$ and $V_{0}=(\mathrm{V} \cap \mathrm{W})$. Thus we have $(\mathrm{a}, \mathrm{b}) \epsilon\left(U_{0} \cap\right.$ $\left.V_{0}\right) \subset(\mathrm{U} \cap \mathrm{T}) \times(\mathrm{V} \cap \mathrm{W})$.Also $\left(U_{0} \cap V_{0}\right) \epsilon \mathcal{B}$. Thus the elements of \mathcal{B} satisfy the two necessary conditions for being a basis of the product topology on $\mathrm{X} \times \mathrm{Y}$. Hence the elements of \mathcal{B} form a basis.

Theorem 15.1: If \mathcal{B} be the basis for a topology on X and \mathcal{C} be the basis for a topology on Y, then,

$$
\mathcal{D}=\{B \times C \mid B \epsilon \mathcal{B} \text { and } C \epsilon \mathcal{C}\}
$$

is the basis for the topology on $\mathrm{X} \times \mathrm{Y}$.

Proof:Let us consider the element $\mathrm{W} \times \mathrm{T}$ which belongs to the product topology on $\mathrm{X} \times \mathrm{Y}$. By definition of product topology, there exists an element $\mathrm{U} \times \mathrm{V}$ in $\mathrm{X} \times \mathrm{Y}$ such that $(\mathrm{x}, \mathrm{y}) \epsilon \mathrm{U} \times \mathrm{V} \subset \mathrm{X} \times \mathrm{Y}$. The set $\mathrm{U} \times \mathrm{V}$ is then an basis element for the product topology on $\mathrm{X} \times \mathrm{Y}$ and $\mathrm{U} \times \mathrm{V} \epsilon \mathcal{B} . \operatorname{So},(\mathrm{x}, \mathrm{y}) \epsilon \mathrm{U} \times \mathrm{V}, \mathrm{x} \epsilon \mathrm{U}$ and $\mathrm{y} \epsilon \mathrm{V}$. The sets \mathcal{B} and \mathcal{C} are bases for X and Y respectively.Hence we can find $B \in \mathcal{B}$ and $C \epsilon$ \mathcal{B} such that $\mathrm{x} \epsilon \mathrm{B} \subset \mathrm{U}$ and $\mathrm{y} \epsilon \mathrm{C} \subset \mathrm{V}$. So we can write $(\mathrm{x}, \mathrm{y}) \epsilon \mathrm{B} \times \mathrm{C} \subset \mathrm{W} \times \mathrm{T}$. If $\mathcal{D}=\{B \times C \mid B \epsilon \mathcal{B}$ and $C \epsilon \mathcal{C}\}$, then from Lemma 13.2, \mathcal{D} meets the criteria for being a basis for the product topology on $\mathrm{X} \times \mathrm{Y}$.
Example: Let us consider the order topology on \mathbb{R}. The product of this topology with itself is called the standard topology on $\mathbb{R} \times \mathbb{R}$. Now we can write $\mathbb{R} \times \mathbb{R}$ as \mathbb{R}^{2}. By definition, the collection of all sets of the form $U \times V$, where U of the form (p, q) and V of the form (r, s),form the basis for the product topology on \mathbb{R}^{2}. By theorem 15.1 , the basis for the product topology on \mathbb{R}^{2} can also be represented by,

$$
\mathcal{D}=\{B \times C \mid B \in \mathbb{R} \text { and } C \epsilon \mathbb{R}\}
$$

In the above both B and C are basis elements of \mathbb{R} and is of the form (a,b).
Definition: Let $\pi_{1}: \mathrm{X} \times \mathrm{Y} \rightarrow \mathrm{X}$ be defined by the,

$$
\pi_{1}(\mathrm{x}, \mathrm{y})=\mathrm{x}
$$

Also, let $\pi_{2}: \mathrm{X} \times \mathrm{Y} \rightarrow \mathrm{Y}$ be defined by the equation.

$$
\pi_{1}(\mathrm{x}, \mathrm{y})=\mathrm{y} .
$$

The maps π_{1} and π_{2} are called the projections of $\mathrm{X} \times \mathrm{Y}$ onto its first and second factors respectively. The word "onto" is used here because the mapping is subjective.
Let X and Y be topological spaces.Let us consider the product topology on $\mathrm{X} \times \mathrm{Y}$. Assume, $\mathrm{U} \subset \mathrm{X}$ and $\mathrm{V} \subset \mathrm{Y}$. Then we have the following,
(a) $\pi_{1}(\mathrm{u}, \mathrm{y})=\mathrm{u}$ and $\pi_{1}^{-1}(\mathrm{u})=(\mathrm{u}, \mathrm{y})$.
(b) $\pi_{2}(\mathrm{x}, \mathrm{v})=\mathrm{v}$ and $\pi_{2}^{-1}(\mathrm{v})=(\mathrm{x}, \mathrm{v})$.

Theorem 15.2: The collection,

$$
\mathcal{S}=\left\{\pi_{1}^{-1}(\mathrm{U}) \mid \mathrm{U} \epsilon \mathrm{X}\right\} \cup\left\{\pi_{2}^{-1}(\mathrm{~V}) \mid \mathrm{v} \epsilon \mathrm{Y}\right\}
$$

is a sub-basis for product topology on $\mathrm{X} \times \mathrm{Y}$.
Proof: Let \mathcal{T}_{S} be the topology generated by \mathcal{S} and let \mathcal{T} be the product topology on $\mathrm{X} \times \mathrm{Y}$. Each and every element of \mathcal{S} belongs to \mathcal{T}. So the arbitrary unions of finite intersections of the elements of \mathcal{S} also belong to \mathcal{T}. Hence $\mathcal{T}_{S} \subset \mathcal{T}$.

On the other hand, all the sets of the form $U \times V$, where U and V are open in X and Y respectively, form the basis for the product topology on $\mathrm{X} \times \mathrm{Y}$. Since \mathcal{S} is the sub-basis for the product topology, the union of the elements of \mathcal{S} generates the entire set $\mathrm{X} \times \mathrm{Y}$. Also, if we consider the finite intersection of the elements of $\mathcal{S}, \pi_{1}^{-1}(\mathrm{U}) \cap \pi_{2}^{-1}(\mathrm{~V})$, then it will be equal to $\mathrm{U} \times \mathrm{V}$. Thus $\mathrm{U} \times \mathrm{V} \epsilon \mathcal{T}_{S}$. Hence $\mathcal{T} \subset \mathcal{T}_{S}$. So we have $\mathfrak{T}=\mathcal{T}_{S}$.From this, we can infer that the topology generated by \mathcal{S} is same as the product topology on $\mathrm{X} \times \mathrm{Y}$.

