
Lecture 14: The Order Topology

1 The Order Topology

If X is a simply ordered set, there is a standard topology for X, defined using the
order relation. It is called ”Order Topology”.

Definition: Suppose X is a set having order relation <. Given a<b ε X, there
are four subsets of X called intervals determined by a and b. They are as follows :

(a, b) = {x | a < x < b}
(a, b] = {x | a < x ≤ b}
[a, b) = {x | a ≤ x < b}
[a, b] = {x | a ≤ x ≤ b}

Definition: Let X be a simple order relation.Assume that X has more than one
element.Let B be the collection of all sets of the following types:

1.All open intervals (a,b) in X.
2.All intervals of the form [a0,b), where a0 is the smallest element (if any) of X.
3.All intervals of the form (a,b0], where b0 is the largest element (if any) of X.

The collection B is a basis for a topology on X, which is called the order topology.

Remark: If X has no smallest then there are no sets of type 2 and if X has no
largest element then there are no sets of type 3.

Verification that B satisfies the requirements for being a basis: Let x ε
X. If x=a0 then x ε[a0,b).If x=b0, then x ε (a,b0].These 2 cases are easy to verify.
But let us consider the scenario where x 6= a0 and x 6= b0.

From definition, (a, b) = {z | a < z < b}. As the order relation ¡ is defined on the
set X, there will some element a ε X and some element b ε such that a¡x¡b.In that
case a ε (a,b). Hence we have verified that B satisfies the first criteria for being a
basis over the order topology on X.
Now we need to check for the 2nd which B B needs to satisfy for being a basis
over the order topology on X. Let us take B1 = [a0, b),B2 = (a, b0], B3 = (a1, b1)
and B4 = (a2, b2), where a0 is the smallest element in X and b0 is the largest
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element in X. The sets B1, B2, B3.B4 all belong to B. If x εB1 ∩B2, then x
ε(a, b). The set (a,b) is thus a subset of B1 ∩B2. Hence, x ε(a, b) ⊂ B1 ∩B2εB.
Thus if X has both largest and smallest element, then B satisfies the criteria for
being a basis.

We shall now inspect the case that X has no largest element.If x εB1 ∩B3.
Depending on the value of b,a1 and b1, we will be able to a set of the form (p,q),
such that x ε(p, q) ⊂ B1 ∩B3εB. Thus if X has no largest element but a smallest
element, then B satisfies the criteria for being a basis.

Let us consider the case that X has no smallest element. If x εB2 ∩B3.
Depending on the value of a,a1 and b1, we will be able to a set of the form (r,s),
such that x ε(r, s) ⊂ B2 ∩B3εB. Thus if X has no largest element but a smallest
element, then B satisfies the criteria for being a basis.

Finally, we will consider the case when X has no largest or smallest element. So
the basis of the order topology will consist of sets of the form (m,n). If x
εB3 ∩B4. Depending on the value of a1,b1,a2 and b2, we will be able to a set of
the form (e,d), such that x ε(e, d) ⊂ B3 ∩B4εB. Thus if X has no largest and
smallest element, then B satisfies the criteria for being a basis.

Thus we have considered all possible scenarios which should be checked for B for
being a basis for the order topology on X. Since B has satisfied all of them, it is a
basis for order topology on X.

Example 1: The standard topology on R is just the order topology derived from
the usual order on R.

Example 2: Consider the set R× R in the dictionary order; we shall denote the
general element of R× R by x×y, to avoid difficulty with notation. The set
R× R has neither a largest nor a smallest element, so the order topology on
R× R has as basis the collection of all open intervals of the form (a×b, ×d) for
a<c,and when a equals c,b<d.
Example 3: The positive integers Z+ form an ordered set with a smallest
element. The order topology on Z+, is the discrete topology,as the singletons are
open sets. If n>1,then the singleton {n}=(n-1,n+1) is a basis element;and if
n=1,the one-point set {1}=[1,2) is a basis element.
Example 4: The set X={1, 2} × Z+ in the dictionary order is another example
of an ordered set with a smallest element. Denoting 1×n by an and 2×n by bn,
we can represent X by {a1, a2....., b1, b2......} The order topology on X is not the
discrete topology. Most one-point sets are open, but there is an exception .The
one-point set {b1}. Any open set containing b1 must contain a basis element
about b1 (by definition),but any basis element containing b1 contains points of
the ai sequence.

Definition:If X is an ordered set and a is an element of X,there are four subsets

2



of X that are called the rays determined by a. They are the following:

(−∞, a) = {x | x < a}
(a,+∞) = {x | x > a}
(−∞, a] = {x | x ≤ a}
[a,+∞) = {x | x ≥ a}

The sets of type (−∞, a) and (a,+∞) are called open rays. Similarly, the sets of
type (−∞, a] and [a,+∞) are called closed rays.
We now need to verify that the open rays belong to the order topology on X. We
shall first consider the open ray (a,+∞).
If X contains a largest element b0 then (a,+∞) is of the form (a, b0],which is a
basis element for the order topology on X. Thus in this case (a,+∞) is open. If
X has no largest element, then (a,+∞)=

⋂
x>a(a, x). To prove this statement, let

z ε(a,+∞). From definition, z> a. Hence if we consider the set
⋂

x>a(a, x), z will
belong at least one of the subsets of the form (a,x). Thus z ε

⋂
x>a(a, x). Hence

(−∞, a) ⊂
⋂

x>a(a, x).
Now let p ε

⋂
x>a(a, x). So p will belong to at least one of the open intervals of

the form (a, x). If p belongs to some open interval of the form (a, x), then from
definition a < p < x. From definition of the open rays, p ε(a,+∞). Thus
bigcapx>a(a, x) ⊂ (−∞, a)). Also, we have proven that (−∞, a) ⊂

⋂
x>a(a, x). So

(−∞, a) =
⋂

x>a(a, x).
We shall now consider the open ray (−∞, a).If X contains a smallest element a0
then (−∞, a)) is of the form [a0, a),which is a basis element for the order topology
on X.Thus in this case (−∞, a) is open.If X has no smallest element, then
(−∞, a)=

⋂
x<a(x, a).To prove this statement, let w ε(−∞, a).From definition,

w< a. Hence if we consider the set
⋂

x<a(x, a), w will belong at least one of the
subsets of the form (x,a). Thus w ε

⋂
x<a(x, a). Hence (−∞, a) ⊂

⋂
x<a(x, a).

Now let q ε
⋂

x<a(x, a). So q will belong to at least one of the open intervals of
the form (x, a). If p belongs to some open interval of the form (x, a), then from
definition x < q < a. From definition of the open rays, q ε(−∞, a). Thus⋂

x<a(x, a) ⊂ (−∞, a)). Also, we have proven that (−∞, a) ⊂
⋂

x<a(x, a). So
(−∞, a) =

⋂
x<a(x, a).

Hence both the open rays belong to the order topology on X.

Remark: The open rays form a sub-basis for the order topology on X.

Proof:The open rays (−∞, a) and (a,+∞) are open sets in the order topology
defined on X. Hence the topology generated by (−∞, a) and (a,+∞) are
contained in the order topology on X. If TR be the topology generated by the
open intervals and if T be the order topology on X, then we write TR ⊂ T.

If we consider the intersection of the open rays of the form (−∞, b) and (a,+∞),
then it is the open interval of the form (a,b).The set (a,b) is a basis element of
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the order topology on X. If X has a smallest element a0, then (−∞, b)) is of the
form [a0, b). Then the intersection of [a0, b) with (a,+∞), will yield an interval of
the form (a,b), which is a basis element for the order topology on X.

Similarly,if X has a largest element b0, then (a,∞) is of the form (a, b0]. Then
the intersection of (a, b0] with (−∞, b), will yield an interval of the form (a,b),
which is a basis element for the order topology on X. For both the largest
element and the smallest element cases, we have assumed that the intersection
between the sets is non-empty. If it is empty, then the basis elements of the form
(a, b0] or [a0, b) which both again are subsets of the order topology on X.
Thus, finite intersection of the open rays yield the basis elements for the order
topology on X. Also, X= (−∞, a) ∩ (a,+∞). Hence the open rays satisfy the
criteria for being a sub-basis for the order topology on X.

2 The Product Topology

Definition: Let X and Y be topological spaces. The product topology on X×Y
is the topology having as basis the collection B of all sets of the form U×V
where U is an open set in X and V is an open set in Y.

We need to check whether B is a basis over X×Y.Let (x,y)ε X×Y.The collection
B contains elements of the form U ×V, where U and V are open sets in X and Y
respectively. So U ε X and V ε Y.The element (x,y) belongs to the product
topology on X×Y. So there must be some U ε X and V ε Y such that X ε X and
y ε V. Thus (x,y) ε U×V ⊂ X×Y. Now U×V ε B.So the elements of the set B

satisfy the first criteria for being a basis of the product topology on X×Y.

Let us take B1εB and B2εB such that B1=U×V and B2=T×W.The sets U and
T are open in X and the sets V and W are open in Y.So we can write
B1 ∩B2=(U×V)∩(T×W).Now B1 ∩B2 can be also written as (U∩T)×(V∩W).If
(a,b) ε B1 ∩B2, then (a,b) ε (U∩T)×(V∩W).Since the sets U and T are open in
X and the sets V and W are open in Y,so (U∩ T) and (V∩ W) are open in X
and Y respectively. Let U0=(U∩ T) and V0=(V∩ W). Thus we have (a,b)ε (U0 ∩
V0)⊂ (U∩ T)×(V∩ W).Also (U0 ∩ V0) εB. Thus the elements of B satisfy the
two necessary conditions for being a basis of the product topology on X×Y.
Hence the elements of B form a basis.

Theorem 15.1: If B be the basis for a topology on X and C be the basis for a
topology on Y, then,

D = {B × C | BεB and CεC}

is the basis for the topology on X×Y.
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Proof:Let us consider the element W×T which belongs to the product topology
on X×Y. By definition of product topology, there exists an element U×V in
X×Y such that (x,y)ε U×V ⊂ X×Y. The set U×V is then an basis element for
the product topology on X×Y and U×V εB.So,(x,y)ε U×V, xεU and yεV. The
sets B and C are bases for X and Y respectively.Hence we can find B ε B and Cε
B such that xε B⊂U and yε C⊂V. So we can write (x,y)ε B×C ⊂ W×T. If
D = {B × C | BεB and CεC}, then from Lemma 13.2, D meets the criteria for
being a basis for the product topology on X×Y.

Example: Let us consider the order topology on R. The product of this
topology with itself is called the standard topology on R× R. Now we can write
R× R as R2.By definition, the collection of all sets of the form U×V, where U of
the form (p,q) and V of the form (r,s),form the basis for the product topology on
R2. By theorem 15.1, the basis for the product topology on R2 can also be
represented by,

D = {B × C | BεR and CεR}.

In the above both B and C are basis elements of R and is of the form (a,b).

Definition: Let π1:X×Y→X be defined by the,

π1(x,y)=x.

Also,let π2:X×Y→Y be defined by the equation.

π1(x,y)=y.

The maps π1 and π2 are called the projections of X×Y onto its first and second
factors respectively. The word ”onto” is used here because the mapping is
subjective.
Let X and Y be topological spaces.Let us consider the product topology on
X×Y. Assume, U⊂X and V⊂Y. Then we have the following,

(a)π1(u,y)=u and π−1
1 (u)=(u,y).

(b)π2(x,v)=v and π−1
2 (v)=(x,v).

Theorem 15.2: The collection,

S={π−1
1 (U)| UεX} ∪ {π−1

2 (V)| vεY},

is a sub-basis for product topology on X×Y.
Proof: Let TS be the topology generated by S and let T be the product topology
on X×Y. Each and every element of S belongs to T. So the arbitrary unions of
finite intersections of the elements of S also belong to T. Hence TS ⊂ T.
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On the other hand, all the sets of the form U×V, where U and V are open in X
and Y respectively, form the basis for the product topology on X×Y. Since S is
the sub-basis for the product topology, the union of the elements of S generates
the entire set X×Y. Also, if we consider the finite intersection of the elements of
S, π−1

1 (U) ∩π−1
2 (V),then it will be equal to U×V. Thus U×V εTS. Hence T ⊂ TS.

So we have T=TS.From this, we can infer that the topology generated by S is
same as the product topology on X×Y.
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