
Lecture 16: The subspace topology, Closed sets

1 Closed Sets and Limit Points

Definition 1.1. A subset A of a topological space X is said to be closed if the
set X − A is open.

Theorem 1.2. Let Y be a subspace of X . Then a set A is closed in Y if and
only if it equals the intersection of a closed set of X with Y .

Proof. Assume that A = C ∩ Y , where C is closed in X . Then X − C is open
in X , so that (X − C) ∩ Y is open in Y , by definition of the subspace topology.
But (X − C) ∩ Y = Y − A. Hence Y − A is open in Y , so that A is closed in Y
. Conversely, assume that A is closed in Y .Then Y −A is open in Y , so that by
definition it equals the intersection of an open set U of X with Y . The set X −U
is closed in X , and A = Y ∩ (X−U), so that A equals the intersection of a closed
set of X with Y , as desired. .

Theorem 1.3. Let Y be a subspace of X . If A is closed in Y and Y is closed in
X , then A is closed in X .

Definition 1.4. Given a subset A of a topological space X , the interior of A
is defined as the union of all open sets contained in A, and the closure of A is
defined as the intersection of all closed sets containing A.

IntA = ∪{U ⊆ A|U ∈ T }

Closure Ā = ∩{F ⊆ A|X −F ∈ T }

If A is open, A = IntA; while if A is closed, A = Ā; furthermore

IntA ⊆ A ⊆ Ā

Theorem 1.5. Let Y be a subspace of X ; let A be a subset of Y ; let Ā denote
the closure of A in X . Then the closure of A in Y equals Ā ∩ Y .
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Proof. Let B denote the closure of A in Y . The set Ā is closed in X , so Ā ∩ Y
is closed in Y by Theorem 1.2. Since A ∩ Y contains A, and since by definition
B equals the intersection of all closed subsets of Y containing A, we must have
B ⊂ Ā∩Y . On the other hand, we know that B is closed in Y . Hence by Theorem
1.2, B = C∩Y for some set C closed in X . Then C is a closed set of X containing
A; because Ā is the intersection of all such closed sets, we conclude that Ā ⊂ C.
Then (Ā ∩ Y ) ⊂ (C ∩ Y ) = B.

Definition 1.6. A neighborhood of a point x ∈ X is an open set U containing
x

Theorem 1.7. Let A be a subset of the topological space X .

1. Then x ∈ Ā if and only if every open set U containing x intersects A .

2. Supposing the topology of X is given by a basis, then x ∈ Ā if and only if
every basis element B containing x intersects A .

Proof. Consider the statement in 1. It is a statement of the form P ↔ Q. Let
us transform each implication to its contrapositive, thereby obtaining the logically
equivalent statement (notP )↔ (notQ). Written out, it is the following:

x /∈ Ā←→ there exists an open set U containing x that does not intersect A

the set U = X − Ā is an In this form, our theorem is easy to prove. If x is not
in A, open set containing x that does not intersect A, as desired. Conversely, if
there exists an open set U containing x which does not intersect A, then X − U
is a closed set containing A. By definition of the closure A, x cannot be in A.
Statement 2 follows readily. If every open set containing x intersects A, so does
every basis element B containing x, because B is an open set. Conversely, if every
basis element containing x intersects A, so does every open set U containing x,
because U contains a basis element that contains x.

Example 1.8. 1. Let X be the real line R. If A = (0, 1], then Ā = [0, 1], for
every neighborhood of 0 intersects A, while every point outside [0, 1] has a
neighborhood disjoint from A

2. If B = {1 n|n ∈ Z+}, then B̄ = {0} ∪B.

3. if C = {0} ∪ (1, 2), then C̄ = {0} ∪ [1, 2].

4. If Z+ is the set of positive integers, then Z̄+ = Z+
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Definition 1.9. If A is a subset of the topological space X and if x is a point of
X , we say that x is a limit point (or cluster point, or point of accumulation) of
A if every neighborhood of x intersects A in some point other than x itself. x is a
limit point of A if it belongs to the closure of A− {x}

Example 1.10. 1. Consider the real line R. If A = (0, 1], then the point 0 is a
limit point of A and so is the point 0.5 . In fact, every point of the interval
[0, 1] is a limit point of A, but no other point of R is a limit point of A.

2. If B = {1/n|n ∈ Z+}, then 0 is the only limit point of B. Every other
point x of R has a neighborhood that either does not intersect B at all, or
it intersects B only in the point x itself. If C = {0} ∪ (1, 2), then the limit
points of C are the points of the interval [1, 2].

3. If R+ is the set of positive reals, then every point of {0}∪R+ is a limit point
of R+.

Theorem 1.11. Let A be a subset of the topological space X ; let A′ be the set of
all limit points of A . Then

Ā = A ∪ A′

Proof. If x is in A′ , every neighborhood of x intersects A (in a point different
from x). Therefore, by Theorem 1.7, x belongs to Ā. A′ ⊂ Ā. Since by definition
A ⊂ Ā it follows that A ∪ A′ ⊂ Ā. To demonstrate the reverse inclusion, we let x
be a point of Ā and show that x ∈ A ∪ A′ . If x happens to lie in A, it is trivial
that x ∈ A ∪ A′ ; suppose that x does not lie in A. since x ∈ Ā. we know that
every neighborhood U of x intersects A; because x /∈ A, the set U must intersect
A in a point different from x. Then x ∈ A′ ,so that x ∈ A ∪ A′ , as desired.

2 Housdorff Spaces

Definition 2.1. Let (X, T ) be topological space. A sequence {xn : n ∈ N} ⊆ X
converges to x0 ∈ X if for all U neighborhood of x0 ∃ N such that xn ∈ U for all
n ≥ N

Definition 2.2. A topological space X is called a Hausdorff space if for each
pair x1 , x2 of distinct points of X , there exist neighborhoods U1 and U2 of x1

and x2 , respectively that are disjoint.

Theorem 2.3. Every finite point set in a Hausdorff space X is closed.
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Proof. It suffices to show that every one-point set {x0} is closed. If x is a point
of X different from x0 , then x and x0 have disjoint neighborhoods U and V ,
respectively. Since U does not intersect {x0}, the point x cannot belong to the
closure of the set {x0}. As a result, the closure of the set {x0} is {x0} itself, so
that it is closed.

Example 2.4. the real line R in the finite complement topology is not a Hausdorff
space, but it is a space in which finite point sets are closed. The condition that
finite point sets be closed has been given a name of its own: it is called the T1

axiom.

Theorem 2.5. Let X be a space satisfying the T1 axiom; let A be a subset of
X. Then the point x is a limit point of A if and only if every neighborhood of x
contains infinitely many points of A .

Proof. If every neighborhood of x intersects A in infinitely many points, it certainly
intersects A in some point other than x itself, so that x is a limit point of A.
Conversely, suppose that x is limit point of A, and suppose some neighborhood
U of x intersects A in only finitely many points. Then U also intersects A − {x}
in finitely many points; let {x1, ..., xm} be the points of U ∩ (A − {x}). The set
X−{x1, ..., xm} is an open set of X , since the finite point set {x1, ..., xm} is closed;
then

U ∩ (X − {x1, ..., xm})

is a neighborhood of x that intersects the set A− {x} not at all. This contradicts
the assumption that x is a limit point of A.

Theorem 2.6. If X is a Hausdorff space, then a sequence of points of X converges
to at most one point of X .

Proof. Suppose that xn is a sequence of points of X that converges to x. If y = x,
let U and V be disjoint neighborhoods of x and y, respectively. Since U contains
xn for all but finitely many values of n, the set V cannot. Therefore, xn cannot
converge to y.

Definition 2.7. If the sequence xn of points of the Hausdorff space X converges
to the point x of X , we often write xn → x, and we say that x is the limit of the
sequence xn.
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