Lecture 17: Continuous Functions

1 Continuous Functions

Let (X, \mathfrak{T}_X) and (Y, \mathfrak{T}_Y) be topological spaces.

Definition 1.1 (Continuous Function). A function $f : X \to Y$ is said to be **continuous** if the inverse image of every open subset of Y is open in X. In other words, if $V \in \mathcal{T}_Y$, then its inverse image $f^{-1}(V) \in \mathcal{T}_X$.

Proposition 1.2. A function $f : X \to Y$ is continuous iff for each $x \in X$ and each neighborhood N of f(x) in Y, the set $f^{-1}(N)$ is a neighborhood of x in X.

Proof. Let x be an arbitrary element of X and N an arbitrary neighborhood of f(x) in Y. Then, $f^{-1}(N)$ and contains x and by definition, is open in X. Hence, for each $x \in X$ and each neighborhood N of f(x) in Y, the set $f^{-1}(N)$ is a neighborhood of x in X. Conversely, let for each $x \in X$ and each neighborhood N of f(x) in Y, the set $f^{-1}(N)$ is a neighborhood of x in X. Let V be an arbitrary open subset of Y.

- i) If $V \cap f(X) = \emptyset$, where f(X) is the range of f, then $f^{-1}(V) = \emptyset$ and hence is open in X.
- ii) If $V \cap f(X) \neq \emptyset$, then V is a neighborhood of each of its points (let f(x) be one such point for some $x \in X$). By assumption, $f^{-1}(V) (\subseteq X)$ must be a neighborhood of each of its points (including the said x) in X and hence, $f^{-1}(V)$ is open in X.

Note 1. Continuity of a function depends not only on f but also on its domain and co-domain topologies X and Y.

Example 1.3. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces and $f : X \to Y$ be a function.

- i) If f is a constant map, i.e., f(x) = y for all $x \in X$ and some $y \in Y$, then f is continuous for all topologies on X and Y because for any open subset V of $Y, f^{-1}(V) = \emptyset$ (if $y \notin V$) or X (if $y \in V$), both of which are always open in any topology on X.
- ii) If $\mathfrak{T}_X = \mathcal{P}(X)$, i.e., (X, \mathfrak{T}_X) is the discrete topology, then f is continuous for any topology on Y because for any open subset V of Y, $f^{-1}(V)$ is in $\mathcal{P}(X)$ and hence is open in X.
- iii) If $\mathfrak{T}_Y = \{\emptyset, Y\}$, <u>i.e.</u>, (Y, \mathfrak{T}_Y) is the trivial topology, then f is continuous for any topology on \overline{X} because $f^{-1}(\emptyset) = \emptyset$ and $f^{-1}(Y) = X$, both of which are always open in any topology on X.
- iv) The identity mapping from (X, \mathfrak{T}_X) to (X, \mathfrak{T}_X) is continuous because for any $U \in \mathfrak{T}_X$ (co-domain topology), $f^{-1}(U) = U \in \mathfrak{T}_X$ (domain topology).

Example 1.4.

Let (X, \mathfrak{T}_X) and (Y, \mathfrak{T}_Y) be topological spaces defined as follows:

$$X = \{R, G, B\} \qquad \mathfrak{T}_X = \{\emptyset, \{R\}, \{B\}, \{R, G\}, \{R, B\}, X\}$$
$$Y = \{1, 2, 3\} \qquad \mathfrak{T}_Y = \{\emptyset, \{1\}, \{1, 2\}, Y\}$$

Let f and g be bijective mapping defined as f(R) = 1, f(G) = 2 and f(B) = 3. Then, f is continuous since

$$f^{-1}(\emptyset) = \emptyset, \ f^{-1}(\{1\}) = \{R\}, \ f^{-1}(\{1,2\}) = \{R,G\}, \ f^{-1}(Y) = X$$

all of which are open in X. However, its inverse map g, with g(1) = R, g(2) = G and g(3) = B, is not continuous since

$$g^{-1}(\{B\}) = \{3\} \notin \mathfrak{T}_Y \text{ and } g^{-1}(\{R,B\}) = \{1,3\} \notin \mathfrak{T}_Y.$$

Example 1.5. The unit step function $u : \mathbb{R} \to \{0, 1\}$ is given by

$$u(x) = \begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{if } x \ge 0. \end{cases}$$

Let \mathbb{R} be equipped with the standard topology, <u>i.e.</u>, all open intervals are open, and the set $\{0, 1\}$ be equipped with the discrete topology. Then, $u^{-1}(0) = (-\infty, 0)$ is open in the standard topology on \mathbb{R} , but $u^{-1}(1) = [0, \infty)$ is not. Hence, the unit step function is discontinuous. **Example 1.6.** Let \mathbb{R} and \mathbb{R}_l denote the set of real numbers equipped with the standard and lower limit topology respectively, and $f : \mathbb{R} \to \mathbb{R}_l$ and $g : \mathbb{R}_l \to \mathbb{R}$ be identity functions, i.e., f(x) = g(x) = x, for every real number x. Then, f is not continuous because the inverse image of the open set [a, b) in \mathbb{R}_l is [a, b) which is not open in the standard topology. But g is continuous because the inverse image of open interval (a, b) in the standard topology on \mathbb{R} is open in \mathbb{R}_l $(g^{-1}((a, b)) = (a, b) = \bigcup_{n \in \mathbb{N}} [a + 1/n, b)$ and countable union of open sets is open).

Example 1.7. A function $f : \mathbb{R} \to \mathbb{R}$ is said to be continuous at $x_0 \in \mathbb{R}$ if

 $\forall \epsilon > 0, \exists \delta > 0 \text{ such that } |x - x_0| < \delta \rightarrow |f(x) - f(x_0)| < \epsilon,$

where both the domain and co-domain topologies are the standard topology on \mathbb{R} . The equivalence of this definition of continuity to the open-set definition of continuity at x_0 is shown below.

Let f be continuous at x_0 by the open set definition, <u>i.e.</u>, inverse image of every open set containing x_0 is open. Given any $\epsilon > 0$, the interval $V = (f(x_0) - \epsilon, f(x_0) + \epsilon)$ is open in the co-domain topology and hence, $f^{-1}(V)$ is open in the domain topology. Since $f^{-1}(V)$ contains x_0 , it contains a basis (a, b) about x_0 (since for every open set S and every $s \in S$, there exists a basis B_s such that $s \in B_s \subseteq S$). Let δ be minimum of $x_0 - a$ and $b - x_0$. Then if $|x - x_0| < \delta$, x must be in (a, b) and $f^{-1}(V)$ (since $(a, b) \subseteq f^{-1}(V)$). Hence $f(x) \in V$ and $|f(x) - f(x_0)| < \epsilon$ as required.

Now, let f be $\epsilon - \delta$ -continuous at $x \in \mathbb{R}$ and V be an open set in the co-domain topology containing f(x). Since V is open and $f(x) \in V$, there exists some $\epsilon > 0$, such that $(f(x) - \epsilon, f(x) + \epsilon) \subseteq V$. By continuity at x, there exists some $\delta > 0$ such that $(x - \delta, x + \delta) \subseteq f^{-1}(V)$. Since $(x - \delta, x + \delta)$ is open in the domain topology and the choices of ϵ and V were arbitrary, inverse image of every open set containing x is open as required by the open set definition of continuity at x. Note that if an open set V in co-domain topology does not intersect the range of f, then $f^{-1}(V) = \emptyset$, which is open in the domain topology.

Following are some properties of continuity.

1. For two topologies \mathfrak{T}_X and \mathfrak{T}'_X on X, the identity map 1_X from (X, \mathfrak{T}_X) to (X, \mathfrak{T}'_X) is continuous iff \mathfrak{T}_X is finer than \mathfrak{T}'_X .

Proof. Let $f = 1_X$. Since the map is identity, $f^{-1}(S) = S$ for any subset S of X. Let the identity map be continuous. Then, for any V in \mathcal{T}'_X , $f^{-1}(V)$ is in \mathcal{T}_X . Since $f^{-1}(V) = V$, this means that V is also in \mathcal{T}_X . Thus, $\mathcal{T}'_X \subseteq \mathcal{T}_X$, i.e., (X, \mathcal{T}_X) is finer than (X, \mathcal{T}'_X) . Conversely, let \mathcal{T}_X is finer than \mathcal{T}'_X . Then, any set S in \mathcal{T}'_X is also in \mathcal{T}_X . For any V in \mathcal{T}'_X , $f^{-1}(V)$ is in \mathcal{T}_X because $f^{-1}(V) = V$ and V is in \mathcal{T}_X . Thus, the identity map is continuous.

2. A continuous map remains continuous if the domain topology becomes finer or the co-domain topology becomes coarser.

Proof. Let (X, \mathcal{T}_1) , (X, \mathcal{T}_2) , (Y, \mathcal{S}_1) and (Y, \mathcal{S}_2) be topologies with \mathcal{T}_1 and \mathcal{S}_1 finer than \mathcal{T}_2 and \mathcal{S}_2 respectively. Let f be a continuous map from (X, \mathcal{T}_2) to (Y, \mathcal{S}_1) .

- i) Let V be in S_1 . Then, $f^{-1}(V)$ is in \mathfrak{T}_2 , since f is continuous, and in \mathfrak{T}_1 , since it is finer than \mathfrak{T}_2 . Thus, f is also a continuous map from (X, \mathfrak{T}_1) to (Y, S_1) .
- ii) Let V be in S_2 . Since, S_1 is finer than S_2 , it contains V. Also \mathfrak{T}_2 contains $f^{-1}(V)$ since f is a continuous. Thus, f is also a continuous map from (X, \mathfrak{T}_2) to (Y, \mathfrak{S}_2) .

- Note 2. i) From Property 1, it can be inferred that, continuity of a bijective function $f: X \to Y$ does not guarantees continuity of its inverse (cf. Examples 1.4 and 1.6).
- ii) In Example 1.6, had f been the identity map from \mathbb{R} to itself then it would have been continuous but replacing the co-domain topology with a finer topology (\mathbb{R}_l) renders it discontinuous.

To test the continuity of a map from a topological space on X to that on Y, checking whether inverse image of each open set in Y is open in X is not necessary.

Theorem 1.8. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces and $f : X \to Y$ be a function. Then, the following statements are equivalent:

- 1. f is continuous.
- 2. Inverse image of every basis element of \mathcal{T}_Y is open.
- 3. Inverse image of every subbasis element of T_Y is open.

Thus, to test the continuity of a function it suffices to check openness of inverse images of elements of only a subset of T_Y , viz., its subbasis.

Proof. (1) \rightarrow (2) Let f be continuous. Since every basis element of \mathcal{T}_Y is open, its inverse image will be open.

- (2) \rightarrow (1) Let \mathcal{B}_Y be a basis for \mathcal{T}_Y and let the inverse image of every basis element $B \in \mathcal{B}_Y$ be open in X, <u>i.e.</u>, $f^{-1}(B) \in \mathcal{T}_X$. Note that any open set V in Y can be written as a union of the basis elements, <u>i.e.</u>, $V = \bigcup_{j \in J} B_j$, $f^{-1}(V) = \bigcup_{j \in J} f^{-1}(B_j)$, for some $\{B_1, \ldots, B_{|J|}\} \subseteq \mathcal{B}_Y$. Since union of opens sets is open, $f^{-1}(V)$ is open.
- (2) \rightarrow (3) Since every subbasis element is in the basis it generates, inverse image of every subbasis element of Y is open in X.
- (3) \rightarrow (2) Let S_Y be subbasis of Y which generates the basis \mathcal{B}_Y . Let the inverse image of every subbasis element $S \in \mathcal{S}_Y$ be open in X, <u>i.e.</u>, $f^{-1}(S) \in \mathcal{T}_X$. Since any basis element can be written as a finite intersection of subbasis elements, <u>i.e.</u>, $B = \bigcap_{i=1}^n S_i$, $f^{-1}(B) = \bigcap_{i=1}^n f^{-1}(S_i)$. Since finite intersection of open sets is open, $f^{-1}(B)$ is open in X.

Theorem 1.9. Let f be a map from a topological space on X to a topological space on Y. Then, the following statements are equivalent:

- 1. f is continuous.
- 2. Inverse image of every closed set of Y is closed in X.
- 3. For each $x \in X$ and every neighborhood V of f(x), there is a neighborhood U of x such that $f(U) \subseteq V$.
- 4. For every subset A of X, $f(\overline{A}) \subseteq \overline{f(A)}$.
- 5. For every subset B of Y, $\overline{f^{-1}(B)} \subseteq f^{-1}(\overline{B})$.
- *Proof.* (1) \rightarrow (2) Let a subset *C* of *Y* be closed. Then, its complement *Y**C* is open and the inverse image of the complement $f^{-1}(Y \setminus C) = f^{-1}(Y) \setminus f^{-1}(C) = X \setminus f^{-1}(C)$ is open in *X*. Hence, $f^{-1}(C)$ is closed in *X*.
- (2) \rightarrow (1) Let V be open in Y. Then, its complement $Y \setminus V$ is closed and the inverse image of the complement $f^{-1}(Y \setminus V) = f^{-1}(Y) \setminus f^{-1}(V) = X \setminus f^{-1}(V)$ is closed in X. Hence, $f^{-1}(V)$ is open in X.
- (1) \rightarrow (3) Since $f^{-1}(V)$ is an open neighborhood of x, choose $U = f^{-1}(V)$.
- (3) \rightarrow (4) Let $A \subseteq X$ and $x \in \overline{A}$. Let V be a neighborhood f(x) and U be a neighborhood of x such that $f(U) \subseteq V$. Since $x \in \overline{A}$, $U \cap A \neq \emptyset$ and hence $\emptyset \neq f(U \cap A) \subseteq f(U) \cap f(A) \subseteq V \cap f(A)$ (cf. Lecture 5, Theorem 2.3(vii)). Since the choice of V neighborhood of f(x) was arbitrary, every neighborhood of f(x) intersects f(A). Hence, $f(x) \in \overline{f(A)}$ and $f(\overline{A}) \subseteq \overline{f(A)}$.

- (4) $\rightarrow \underline{(5)}$ Let $A = f^{-1}(B)$. Then, by (4), $f(\overline{A}) \subseteq \overline{f(A)} = \overline{f(f^{-1}(B))} = \overline{B}$. Hence, $\overline{f^{-1}(B)} \subseteq f^{-1}(\overline{B})$.
- (5) \rightarrow (2) Let $B \subseteq Y$ be closed; then, $\overline{B} = B$ since a set is closed iff it is equal to its closure. Then, by (5), $\overline{f^{-1}(B)} \subseteq f^{-1}(B)$ and since $f^{-1}(B) \subseteq \overline{f^{-1}(B)}$ is always true, $\overline{f^{-1}(B)} = f^{-1}(B)$. Hence, $f^{-1}(B)$ is closed (being equal to its closure).

2 Homeomorphism

Definition 2.1 (Homeomorphism). Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces and $f: X \to Y$ be a bijection. If both f and its inverse $f^{-1}: Y \to X$ are continuous, then f is called a **homeomorphism**.

The two spaces are said to be *homeomorphic* and each is a *homeomorph* of the other. If a map is a homeomorphism, then so is its inverse. Composition of any two homeomorphisms is again a homeomorphism.

The requirement the f^{-1} be continuous means that for any U open in X, its inverse image under f^{-1} be open in Y. But since the inverse image of U under f^{-1} is same as the image of U under f (cf. Lecture 5, Remark 2(vi)), another way to define a homeomorphism is to say that it is a bijective map $f: X \to Y$ such that f(U) is open iff U is open. Thus, a homeomorphism is a bijection between \mathcal{T}_X and \mathcal{T}_Y . Consequently, any property of X expressed in terms of \mathcal{T}_X (or the open sets), yields, via f, the corresponding property for Y. Such a property is called a *topological property* of X.

Let $f : X \to Y$ be an injective continuous map and $Z = f(X) \subset Y$ be its range, considered as a subspace of Y. Then, the map obtained by restricting Y to $Z, f' : X \to Z$ is a bijection. If f' happens to be a homeomorphism, then we say that $f : X \to Y$ is a topological imbedding, or simply an imbedding, of X in Y.

Example 2.2. Let \mathbb{R} be equipped with the trivial, standard or discrete topology. For every pair of real numbers m and c, the function $f_{m,c} : \mathbb{R} \to \mathbb{R}$ defined by $f_{m,c}(x) = mx + c, \forall x \in \mathbb{R}$ is a homeomorphism.

- **Example 2.3.** i) The identity map from a topological space to itself is a homeomorphism (Example 1.3(iv)).
- ii) The map f in Examples 1.4 and the map g in 1.6 are both continuous and bijective but not homeomorphic because their inverse maps are not continuous.

- **Example 2.4.** i) Two discrete spaces are homeomorphic iff there is a bijection between them, <u>i.e.</u>, iff they have the same cardinality. This is true because every function on a discrete space is continuous, no matter the co-domain topology (Example 1.3(ii)).
- ii) Two trivial topologies are homeomorphic iff there is a bijection between them. This holds because every function to a trivial topology is continuous regardless of the domain topology (Example 1.3(iii)).

Proposition 2.5. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces and $f : X \to Y$ be a function. Then, the following statements are equivalent:

- i) f is a homeomorphism.
- ii) U is open in X iff f(U) is open in Y.
- iii) C is closed in X iff f(C) is closed in Y.
- iv) V is open in Y iff $f^{-1}(V)$ is open in X.
- v) D is closed in Y iff $f^{-1}(D)$ is closed in X.

3 Constructing Continuous Functions

Some rules for constructing continuous functions are given below.

Theorem 3.1. Let X, Y and Z be topological spaces.

- 1. (Constant function) If $f : X \to Y$ defined as f(x) = y for all $x \in X$ and some $y \in Y$, then f is continuous.
- 2. (Inclusion) If A is a subspace of X, then the inclusion function $j : A \to X$ is continuous. $(j(a) = a, \forall a \in A)$
- 3. (Composites) If $f : X \to Y$ and $g : Y \to Z$ are continuous, then so is their composition $g \circ f : X \to Z$.
- (Restricting the domain) If f : X → Y is continuous and A is a subspace of X, then the restriction of f to A, f|A : A → Y is also continuous.
- 5. (Restricting or expanding the range) Let $f: X \to Y$ be continuous.
 - a) If Z is subspace of Y containing the range f(X), then the function $g: X \to Z$ obtained by restricting the co-domain topology is continuous.

- b) If Z is space containing Y as a subspace, then the function $h: X \to Z$ obtained by expanding the co-domain topology is continuous.
- 6. (Local formulation of continuity) The map $f : X \to Y$ is continuous if X cna be written as the union of open sets U_{α} such that $f|U_{\alpha}$ is continuous for each α .

Proof. i) See Example 1.3(i).

- ii) If U is open in X, then $j^{-1}(U) = U \cap A$ is open in A by definition of subspace topology.
- iii) If W is open in Z, then $g^{-1}(W)$ is open in Y since g is continuous. Since f is continuous, $f^{-1}(g^{-1}(W))$ is open in X. Thus, $g \circ f$ is continuous (since $f^{-1}(g^{-1}(W)) = (g \circ f)^{-1}(W)$).
- iv) $f|A = j \circ f$, both of which are continuous and composition of continuous maps is continuous.
- v) (a) Let W be open in Z. Then, $B = Z \cap U$ for some U open in Y. Since $f(Z) \subseteq Z, f^{-1}(B) = f^{-1}(U)$ and is open in X because $f^{-1}(U)$ is open in X. (b) Let $j: Y \to Z$ be the inclusion map. Then, $h = f \circ j$.
- vi) Let V be open in Y. Then,

$$f^{-1}(V) \cap U_{\alpha} = (f|U_{\alpha})^{-1}(V)$$

and is open in U_{α} and hence open in X. But

$$f^{-1}(V) = \bigcup_{\alpha} \left(f^{-1}(V) \cap U_{\alpha} \right),$$

so that V is also open in X.

Theorem 3.2 (The Pasting Lemma). Let $X = A \cup B$, where A and B are closed in X. Let $f : A \to Y$ and $g : B \to Y$ e continuous maps. If f(x) = g(x) for every $x \in A \cap B$, the f and g combine to give a continuous map $h : X \to Y$, defined as

$$h(x) = \begin{cases} f(x) & \text{if } x \in A \\ g(x) & \text{if } x \in B. \end{cases}$$

Proof. Let C be a closed subset of Y. Then, $h-1(C) = f^{-1}(C) \cup g^{-1}(C)$ and is closed in X since each of $f^{-1}(C)$ and $g^{-1}(C)$ are closed in X.

The pasting lemma hold even if A and B are open in X and is a special case of Theorem 3.1(vi).

Theorem 3.3 (Maps into Products). Let $f : A \to X \times Y$ be defined as $f(a) = (f_1(a), f_2(a))$. Then f is continuous iff both the co-ordinate functions $f_1 : A \to X$ and $f_2 : A \to Y$ are continuous.

Proof. The projection maps $\pi_1 : X \times Y \to X$ and $\pi_2 : X \times Y \to Y$ onto the first and second factor space are continuous since $\pi_1^{-1}(U) = U \times Y$ and $\pi_2^{-1}(V) = X \times V$ are open if U and V are open in X and Y respectively. Note that $f_1 = \pi_1 \circ f$ and $f_2 = \pi_2 \circ f$. If f is continuous, then so are f_1 and f_2 (composites of continuous functions). Conversely, let f_1 and f_2 are continuous. Let $U \times V$ be a basis element of $X \times Y$. A point a is in $f^{-1}(U \times V)$ iff $f(a) \in U \times V$, i.e., iff $f_1(a) \in U$ and $f_2(a) \in V$. Hence, $f^{-1}(U \times V) = f^{-1}(U) \cap f^{-1}(V)$ and is open in A since both $f^{-1}(U)$ and $f^{-1}(V)$ are open. Thus, since inverse image of every basis element is open, f is continuous (by Theorem 1.8(2))