Lecture 17: Continuous Functions

1 Continuous Functions

Let $\left(X, \mathcal{T}_{X}\right)$ and $\left(Y, \mathcal{T}_{Y}\right)$ be topological spaces.
Definition 1.1 (Continuous Function). A function $f: X \rightarrow Y$ is said to be continuous if the inverse image of every open subset of Y is open in X. In other words, if $V \in \mathcal{T}_{Y}$, then its inverse image $f^{-1}(V) \in \mathcal{T}_{X}$.

Proposition 1.2. A function $f: X \rightarrow Y$ is continuous iff for each $x \in X$ and each neighborhood N of $f(x)$ in Y, the set $f^{-1}(N)$ is a neighborhood of x in X.

Proof. Let x be an arbitrary element of X and N an arbitrary neighborhood of $f(x)$ in Y. Then, $f^{-1}(N)$ and contains x and by definition, is open in X. Hence, for each $x \in X$ and each neighborhood N of $f(x)$ in Y, the set $f^{-1}(N)$ is a neighborhood of x in X. Conversely, let for each $x \in X$ and each neighborhood N of $f(x)$ in Y, the set $f^{-1}(N)$ is a neighborhood of x in X. Let V be an arbitrary open subset of Y.
i) If $V \cap f(X)=\emptyset$, where $f(X)$ is the range of f, then $f^{-1}(V)=\emptyset$ and hence is open in X.
ii) If $V \cap f(X) \neq \emptyset$, then V is a neighborhood of each of its points (let $f(x)$ be one such point for some $x \in X)$. By assumption, $f^{-1}(V)(\subseteq X)$ must be a neighborhood of each of its points (including the said x) in X and hence, $f^{-1}(V)$ is open in X.

Note 1. Continuity of a function depends not only on f but also on its domain and co-domain topologies X and Y.

Example 1.3. Let $\left(X, \mathcal{T}_{X}\right)$ and $\left(Y, \mathcal{T}_{Y}\right)$ be topological spaces and $f: X \rightarrow Y$ be a function.
i) If f is a constant map, i.e., $f(x)=y$ for all $x \in X$ and some $y \in Y$, then f is continuous for all topologies on X and Y because for any open subset V of $Y, f^{-1}(V)=\emptyset$ (if $y \notin V$) or X (if $y \in V$), both of which are always open in any topology on X.
ii) If $\mathcal{T}_{X}=\mathcal{P}(X)$, i.e., $\left(X, \mathcal{T}_{X}\right)$ is the discrete topology, then f is continuous for any topology on Y because for any open subset V of $Y, f^{-1}(V)$ is in $\mathcal{P}(X)$ and hence is open in X.
iii) If $\mathfrak{T}_{Y}=\{\emptyset, Y\}$, i.e., $\left(Y, \mathfrak{T}_{Y}\right)$ is the trivial topology, then f is continuous for any topology on X because $f^{-1}(\emptyset)=\emptyset$ and $f^{-1}(Y)=X$, both of which are always open in any topology on X.
iv) The identity mapping from $\left(X, \mathfrak{T}_{X}\right)$ to $\left(X, \mathcal{T}_{X}\right)$ is continuous because for any $U \in \mathcal{T}_{X}$ (co-domain topology), $f^{-1}(U)=U \in \mathcal{T}_{X}$ (domain topology).

Example 1.4.

Let $\left(X, \mathcal{T}_{X}\right)$ and $\left(Y, \mathcal{T}_{Y}\right)$ be topological spaces defined as follows:

$$
\begin{aligned}
X=\{R, G, B\} & \mathcal{T}_{X}=\{\emptyset,\{R\},\{B\},\{R, G\},\{R, B\}, X\} \\
Y=\{1,2,3\} & \mathcal{T}_{Y}=\{\emptyset,\{1\},\{1,2\}, Y\}
\end{aligned}
$$

Let f and g be bijective mapping defined as $f(R)=1, f(G)=2$ and $f(B)=3$. Then, f is continuous since

$$
f^{-1}(\emptyset)=\emptyset, f^{-1}(\{1\})=\{R\}, f^{-1}(\{1,2\})=\{R, G\}, f^{-1}(Y)=X
$$

all of which are open in X. However, its inverse map g, with $g(1)=R, g(2)=G$ and $g(3)=B$, is not continuous since

$$
g^{-1}(\{B\})=\{3\} \notin \mathcal{T}_{Y} \text { and } g^{-1}(\{R, B\})=\{1,3\} \notin \mathcal{T}_{Y}
$$

Example 1.5. The unit step function $u: \mathbb{R} \rightarrow\{0,1\}$ is given by

$$
u(x)= \begin{cases}0 & \text { if } x<0 \\ 1 & \text { if } x \geqslant 0\end{cases}
$$

Let \mathbb{R} be equipped with the standard topology, i.e., all open intervals are open, and the set $\{0,1\}$ be equipped with the discrete topology. Then, $u^{-1}(0)=(-\infty, 0)$ is open in the standard topology on \mathbb{R}, but $u^{-1}(1)=[0, \infty)$ is not. Hence, the unit step function is discontinuous.

Example 1.6. Let \mathbb{R} and \mathbb{R}_{l} denote the set of real numbers equipped with the standard and lower limit topology respectively, and $f: \mathbb{R} \rightarrow \mathbb{R}_{l}$ and $g: \mathbb{R}_{l} \rightarrow \mathbb{R}$ be identity functions, i.e., $f(x)=g(x)=x$, for every real number x. Then, f is not continuous because the inverse image of the open set $[a, b)$ in \mathbb{R}_{l} is $[a, b)$ which is not open in the standard topology. But g is continuous because the inverse image of open interval (a, b) in the standard topology on \mathbb{R} is open in \mathbb{R}_{l} $\left(g^{-1}((a, b))=(a, b)=\cup_{n \in \mathbb{N}}\left[a+{ }^{1} / n, b\right)\right.$ and countable union of open sets is open).

Example 1.7. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is said to be continuous at $x_{0} \in \mathbb{R}$ if

$$
\forall \epsilon>0, \exists \delta>0 \text { such that }\left|x-x_{0}\right|<\delta \rightarrow\left|f(x)-f\left(x_{0}\right)\right|<\epsilon,
$$

where both the domain and co-domain topologies are the standard topology on \mathbb{R}. The equivalence of this definition of continuity to the open-set definition of continuity at x_{0} is shown below.

Let f be continuous at x_{0} by the open set definition, i.e., inverse image of every open set containing x_{0} is open. Given any $\epsilon>0$, the interval $V=\left(f\left(x_{0}\right)-\right.$ $\epsilon, f\left(x_{0}\right)+\epsilon$) is open in the co-domain topology and hence, $f^{-1}(V)$ is open in the domain topology. Since $f^{-1}(V)$ contains x_{0}, it contains a basis (a, b) about x_{0} (since for every open set S and every $s \in S$, there exists a basis B_{s} such that $\left.s \in B_{s} \subseteq S\right)$. Let δ be minimum of $x_{0}-a$ and $b-x_{0}$. Then if $\left|x-x_{0}\right|<\delta$, x must be in (a, b) and $f^{-1}(V)$ (since $(a, b) \subseteq f^{-1}(V)$). Hence $f(x) \in V$ and $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$ as required.

Now, let f be $\epsilon-\delta$-continuous at $x \in \mathbb{R}$ and V be an open set in the co-domain topology containing $f(x)$. Since V is open and $f(x) \in V$, there exists some $\epsilon>0$, such that $(f(x)-\epsilon, f(x)+\epsilon) \subseteq V$. By continuity at x, there exists some $\delta>0$ such that $(x-\delta, x+\delta) \subseteq f^{-1}(V)$. Since $(x-\delta, x+\delta)$ is open in the domain topology and the choices of ϵ and V were arbitrary, inverse image of every open set containing x is open as required by the open set definition of continuity at x. Note that if an open set V in co-domain topology does not intersect the range of f, then $f^{-1}(V)=\emptyset$, which is open in the domain topology.

Following are some properties of continuity.

1. For two topologies \mathcal{T}_{X} and \mathcal{T}_{X}^{\prime} on X, the identity map 1_{X} from $\left(X, \mathcal{T}_{X}\right)$ to $\left(X, \mathcal{T}_{X}^{\prime}\right)$ is continuous iff \mathcal{T}_{X} is finer than \mathcal{T}_{X}^{\prime}.

Proof. Let $f=1_{X}$. Since the map is identity, $f^{-1}(S)=S$ for any subset S of X. Let the identity map be continuous. Then, for any V in $\mathcal{T}_{X}^{\prime}, f^{-1}(V)$ is in \mathfrak{T}_{X}. Since $f^{-1}(V)=V$, this means that V is also in \mathcal{T}_{X}. Thus, $\mathfrak{T}_{X}^{\prime} \subseteq \mathcal{T}_{X}$, i.e., $\left(X, \mathcal{T}_{X}\right)$ is finer than $\left(X, \mathcal{T}_{X}^{\prime}\right)$. Conversely, let \mathcal{T}_{X} is finer than $\mathfrak{T}_{X}^{\prime}$. Then, any set S in \mathcal{T}_{X}^{\prime} is also in \mathcal{T}_{X}. For any V in $\mathcal{T}_{X}^{\prime}, f^{-1}(V)$ is in \mathcal{T}_{X} because $f^{-1}(V)=V$ and V is in \mathcal{T}_{X}. Thus, the identity map is continuous.
2. A continuous map remains continuous if the domain topology becomes finer or the co-domain topology becomes coarser.

Proof. Let $\left(X, \mathcal{T}_{1}\right),\left(X, \mathcal{T}_{2}\right),\left(Y, \mathcal{S}_{1}\right)$ and $\left(Y, \mathcal{S}_{2}\right)$ be topologies with \mathcal{T}_{1} and \mathcal{S}_{1} finer than \mathcal{T}_{2} and \mathcal{S}_{2} respectively. Let f be a continuous map from $\left(X, \mathcal{T}_{2}\right)$ to $\left(Y, \mathcal{S}_{1}\right)$.
i) Let V be in \mathcal{S}_{1}. Then, $f^{-1}(V)$ is in \mathcal{T}_{2}, since f is continuous, and in \mathcal{T}_{1}, since it is finer than \mathcal{T}_{2}. Thus, f is also a continuous map from $\left(X, \mathcal{T}_{1}\right)$ to $\left(Y, \mathcal{S}_{1}\right)$.
ii) Let V be in \mathcal{S}_{2}. Since, \mathcal{S}_{1} is finer than \mathcal{S}_{2}, it contains V. Also \mathcal{T}_{2} contains $f^{-1}(V)$ since f is a continuous. Thus, f is also a continuous map from $\left(X, \mathcal{T}_{2}\right)$ to $\left(Y, \mathcal{S}_{2}\right)$.

Note 2. i) From Property 1, it can be inferred that, continuity of a bijective function $f: X \rightarrow Y$ does not guarantees continuity of its inverse (cf. Examples 1.4 and 1.6 .
ii) In Example 1.6, had f been the identity map from \mathbb{R} to itself then it would have been continuous but replacing the co-domain topology with a finer topology $\left(\mathbb{R}_{l}\right)$ renders it discontinuous.
To test the continuity of a map from a topological space on X to that on Y, checking whether inverse image of each open set in Y is open in X is not necessary.

Theorem 1.8. Let $\left(X, \mathcal{T}_{X}\right)$ and $\left(Y, \mathcal{T}_{Y}\right)$ be topological spaces and $f: X \rightarrow Y$ be a function. Then, the following statements are equivalent:

1. f is continuous.
2. Inverse image of every basis element of \mathfrak{T}_{Y} is open.
3. Inverse image of every subbasis element of \mathfrak{T}_{Y} is open.

Thus, to test the continuity of a function it suffices to check openness of inverse images of elements of only a subset of \mathcal{T}_{Y}, viz., its subbasis.

Proof. (1) $\boldsymbol{\rightarrow}$ (2) Let f be continuous. Since every basis element of \mathcal{T}_{Y} is open, its inverse image will be open.
$(2) \rightarrow\left(\mathbf{1)}\right.$ Let \mathcal{B}_{Y} be a basis for \mathcal{T}_{Y} and let the inverse image of every basis element $B \in \mathcal{B}_{Y}$ be open in X, i.e., $f^{-1}(B) \in \mathcal{T}_{X}$. Note that any open set V in Y can be written as a union of the basis elements, i.e., $V=\cup_{j \in J} B_{j}$, $f^{-1}(V)=\cup_{j \in J} f^{-1}\left(B_{j}\right)$, for some $\left\{B_{1}, \ldots, B_{|J|}\right\} \subseteq \mathcal{B}_{Y}$. Since union of opens sets is open, $f^{-1}(V)$ is open.
$(2) \rightarrow$ (3) Since every subbasis element is in the basis it generates, inverse image of every subbasis element of Y is open in X.
(3) \rightarrow (2) Let \mathcal{S}_{Y} be subbasis of Y which generates the basis \mathcal{B}_{Y}. Let the inverse image of every subbasis element $S \in \mathcal{S}_{Y}$ be open in X, i.e., $f^{-1}(S) \in \mathcal{T}_{X}$. Since any basis element can be written as a finite intersection of subbasis elements, i.e., $B=\cap_{i=1}^{n} S_{i}, f^{-1}(B)=\cap_{i=1}^{n} f^{-1}\left(S_{i}\right)$. Since finite intersection of open sets is open, $f^{-1}(B)$ is open in X.

Theorem 1.9. Let f be a map from a topological space on X to a topological space on Y. Then, the following statements are equivalent:

1. f is continuous.
2. Inverse image of every closed set of Y is closed in X.
3. For each $x \in X$ and every neighborhood V of $f(x)$, there is a neighborhood U of x such that $f(U) \subseteq V$.
4. For every subset A of $X, f(\bar{A}) \subseteq \overline{f(A)}$.
5. For every subset B of $Y, \overline{f^{-1}(B)} \subseteq f^{-1}(\bar{B})$.

Proof. (1) \rightarrow (2) Let a subset C of Y be closed. Then, its complement $Y \backslash C$ is open and the inverse image of the complement $f^{-1}(Y \backslash C)=f^{-1}(Y) \backslash f^{-1}(C)=$ $X \backslash f^{-1}(C)$ is open in X. Hence, $f^{-1}(C)$ is closed in X.
(2) \rightarrow (1) Let V be open in Y. Then, its complement $Y \backslash V$ is closed and the inverse image of the complement $f^{-1}(Y \backslash V)=f^{-1}(Y) \backslash f^{-1}(V)=X \backslash f^{-1}(V)$ is closed in X. Hence, $f^{-1}(V)$ is open in X.
$(1) \rightarrow(3)$ Since $f^{-1}(V)$ is an open neighborhood of x, choose $U=f^{-1}(V)$.
(3) \rightarrow (4) Let $A \subseteq X$ and $x \in \bar{A}$. Let V be a neighborhood $f(x)$ and U be a neighborhood of x such that $f(U) \subseteq V$. Since $x \in \bar{A}, U \cap A \neq \emptyset$ and hence $\emptyset \neq f(U \cap A) \subseteq f(U) \cap f(A) \subseteq V \cap f(A)$ (cf. Lecture 5, Theorem 2.3(vii)). Since the choice of V neighborhood of $f(x)$ was arbitrary, every neighborhood of $f(x)$ intersects $f(A)$. Hence, $f(x) \in \overline{f(A)}$ and $f(\bar{A}) \subseteq \overline{f(A)}$.
(4) $\rightarrow \underline{(5) \text { Let } A}=f^{-1}(B)$. Then, by (4), $f(\bar{A}) \subseteq \overline{f(A)}=\overline{f\left(f^{-1}(B)\right)}=\bar{B}$. Hence, $\overline{f^{-1}(B)} \subseteq f^{-1}(\bar{B})$.
(5) \rightarrow (2) Let $B \subseteq Y$ be closed; then, $\bar{B}=B$ since a set is closed iff it is equal to its closure. Then, by $(5), \overline{f^{-1}(B)} \subseteq f^{-1}(B)$ and since $f^{-1}(B) \subseteq \overline{f^{-1}(B)}$ is always true, $f^{-1}(B)=f^{-1}(B)$. Hence, $f^{-1}(B)$ is closed (being equal to its closure).

2 Homeomorphism

Definition 2.1 (Homeomorphism). Let $\left(X, \mathcal{T}_{X}\right)$ and $\left(Y, \mathcal{T}_{Y}\right)$ be topological spaces and $f: X \rightarrow Y$ be a bijection. If both f and its inverse $f^{-1}: Y \rightarrow X$ are continuous, then f is called a homeomorphism.

The two spaces are said to be homeomorphic and each is a homeomorph of the other. If a map is a homeomorphism, then so is its inverse. Composition of any two homeomorphisms is again a homeomorphism.

The requirement the f^{-1} be continuous means that for any U open in X, its inverse image under f^{-1} be open in Y. But since the inverse image of U under f^{-1} is same as the image of U under f (cf. Lecture 5, Remark 2(vi)), another way to define a homeomorphism is to say that it is a bijective map $f: X \rightarrow Y$ such that $f(U)$ is open iff U is open. Thus, a homeomorphism is a bijection between \mathfrak{T}_{X} and \mathcal{T}_{Y}. Consequently, any property of X expressed in terms of \mathcal{T}_{X} (or the open sets), yields, via f, the corresponding property for Y. Such a property is called a topological property of X.

Let $f: X \rightarrow Y$ be an injective continuous map and $Z=f(X) \subset Y$ be its range, considered as a subspace of Y. Then, the map obtained by restricting Y to $Z, f^{\prime}: X \rightarrow Z$ is a bijection. If f^{\prime} happens to be a homeomorphism, then we say that $f: X \rightarrow Y$ is a topological imbedding, or simply an imbedding, of X in Y.

Example 2.2. Let \mathbb{R} be equipped with the trivial, standard or discrete topology. For every pair of real numbers m and c, the function $f_{m, c}: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f_{m, c}(x)=m x+c, \forall x \in \mathbb{R}$ is a homeomorphism.

Example 2.3. i) The identity map from a topological space to itself is a homeomorphism (Example 1.3 (iv)).
ii) The map f in Examples 1.4 and the map g in 1.6 are both continuous and bijective but not homeomorphic because their inverse maps are not continuous.

Example 2.4. i) Two discrete spaces are homeomorphic iff there is a bijection between them, i.e., iff they have the same cardinality. This is true because every function on a discrete space is continuous, no matter the co-domain topology (Example 1.3(ii)).
ii) Two trivial topologies are homeomorphic iff there is a bijection between them. This holds because every function to a trivial topology is continuous regardless of the domain topology (Example 1.3(iii)).

Proposition 2.5. Let $\left(X, \mathcal{T}_{X}\right)$ and $\left(Y, \mathcal{T}_{Y}\right)$ be topological spaces and $f: X \rightarrow Y$ be a function. Then, the following statements are equivalent:
i) f is a homeomorphism.
ii) U is open in X iff $f(U)$ is open in Y.
iii) C is closed in X iff $f(C)$ is closed in Y.
iv) V is open in Y iff $f^{-1}(V)$ is open in X.
v) D is closed in Y iff $f^{-1}(D)$ is closed in X.

3 Constructing Continuous Functions

Some rules for constructing continuous functions are given below.
Theorem 3.1. Let X, Y and Z be topological spaces.

1. (Constant function) If $f: X \rightarrow Y$ defined as $f(x)=y$ for all $x \in X$ and some $y \in Y$, then f is continuous.
2. (Inclusion) If A is a subspace of X, then the inclusion function $j: A \rightarrow X$ is continuous. $(j(a)=a, \forall a \in A)$
3. (Composites) If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are continuous, then so is their composition $g \circ f: X \rightarrow Z$.
4. (Restricting the domain) If $f: X \rightarrow Y$ is continuous and A is a subspace of X, then the restriction of f to $A, f \mid A: A \rightarrow Y$ is also continuous.
5. (Restricting or expanding the range) Let $f: X \rightarrow Y$ be continuous.
a) If Z is subspace of Y containing the range $f(X)$, then the function g : $X \rightarrow Z$ obtained by restricting the co-domain topology is continuous.
b) If Z is space containing Y as a subspace, then the function $h: X \rightarrow Z$ obtained by expanding the co-domain topology is continuous.
6. (Local formulation of continuity)The map $f: X \rightarrow Y$ is continuous if X cna be written as the union of open sets U_{α} such that $f \mid U_{\alpha}$ is continuous for each α.

Proof. i) See Example 1.3(i).
ii) If U is open in X, then $j^{-1}(U)=U \cap A$ is open in A by definition of subspace topology.
iii) If W is open in Z, then $g^{-1}(W)$ is open in Y since g is continuous. Since f is continuous, $f^{-1}\left(g^{-1}(W)\right)$ is open in X. Thus, $g \circ f$ is continuous (since $\left.f^{-1}\left(g^{-1}(W)\right)=(g \circ f)^{-1}(W)\right)$.
iv) $f \mid A=j \circ f$, both of which are continuous and composition of continuous maps is continuous.
v) (a) Let W be open in Z. Then, $B=Z \cap U$ for some U open in Y. Since $f(Z) \subseteq Z, f^{-1}(B)=f^{-1}(U)$ and is open in X because $f^{-1}(U)$ is open in X. (b) Let $j: Y \rightarrow Z$ be the inclusion map. Then, $h=f \circ j$.
vi) Let V be open in Y. Then,

$$
f^{-1}(V) \cap U_{\alpha}=\left(f \mid U_{\alpha}\right)^{-1}(V)
$$

and is open in U_{α} and hence open in X. But

$$
f^{-1}(V)=\bigcup_{\alpha}\left(f^{-1}(V) \cap U_{\alpha}\right),
$$

so that V is also open in X.

Theorem 3.2 (The Pasting Lemma). Let $X=A \cup B$, where A and B are closed in X. Let $f: A \rightarrow Y$ and $g: B \rightarrow Y$ e continuous maps. If $f(x)=g(x)$ for every $x \in A \cap B$, the f and g combine to give a continuous map $h: X \rightarrow Y$, defined as

$$
h(x)=\left\{\begin{array}{lll}
f(x) & \text { if } & x \in A \\
g(x) & \text { if } & x \in B
\end{array}\right.
$$

Proof. Let C be a closed subset of Y. Then, $h-1(C)=f^{-1}(C) \cup g^{-1}(C)$ and is closed in X since each of $f^{-1}(C)$ and $g^{-1}(C)$ are closed in X.

The pasting lemma hold even if A and B are open in X and is a special case of Theorem 3.1(vi).

Theorem 3.3 (Maps into Products). Let $f: A \rightarrow X \times Y$ be defined as $f(a)=$ $\left(f_{1}(a), f_{2}(a)\right)$. Then f is continuous iff both the co-ordinate functions $f_{1}: A \rightarrow X$ and $f_{2}: A \rightarrow Y$ are continuous.

Proof. The projection maps $\pi_{1}: X \times Y \rightarrow X$ and $\pi_{2}: X \times Y \rightarrow Y$ onto the first and second factor space are continuous since $\pi_{1}^{-1}(U)=U \times Y$ and $\pi_{2}^{-1}(V)=X \times V$ are open if U and V are open in X and Y respectively. Note that $f_{1}=\pi_{1} \circ f$ and $f_{2}=\pi_{2} \circ f$. If f is continuous, then so are f_{1} and f_{2} (composites of continuous functions). Conversely, let f_{1} and f_{2} are continuous. Let $U \times V$ be a basis element of $X \times Y$. A point a is in $f^{-1}(U \times V)$ iff $f(a) \in U \times V$, i.e., iff $f_{1}(a) \in U$ and $f_{2}(a) \in V$. Hence, $f^{-1}(U \times V)=f^{-1}(U) \cap f^{-1}(V)$ and is open in A since both $f^{-1}(U)$ and $f^{-1}(V)$ are open. Thus, since inverse image of every basis element is open, f is continuous (by Theorem 1.8(2))

