
Lecture 17: Continuous Functions

1 Continuous Functions

Let (X,TX) and (Y,TY ) be topological spaces.

Definition 1.1 (Continuous Function). A function f : X → Y is said to be
continuous if the inverse image of every open subset of Y is open in X. In other
words, if V ∈ TY , then its inverse image f−1(V ) ∈ TX .

Proposition 1.2. A function f : X → Y is continuous iff for each x ∈ X and
each neighborhood N of f(x) in Y , the set f−1(N) is a neighborhood of x in X.

Proof. Let x be an arbitrary element of X and N an arbitrary neighborhood of
f(x) in Y . Then, f−1(N) and contains x and by definition, is open in X. Hence,
for each x ∈ X and each neighborhood N of f(x) in Y , the set f−1(N) is a
neighborhood of x in X. Conversely, let for each x ∈ X and each neighborhood N
of f(x) in Y , the set f−1(N) is a neighborhood of x in X. Let V be an arbitrary
open subset of Y .

i) If V ∩ f(X) = ∅, where f(X) is the range of f , then f−1(V ) = ∅ and hence is
open in X.

ii) If V ∩ f(X) 6= ∅, then V is a neighborhood of each of its points (let f(x)
be one such point for some x ∈ X). By assumption, f−1(V ) (⊆ X) must be
a neighborhood of each of its points (including the said x) in X and hence,
f−1(V ) is open in X.

Note 1. Continuity of a function depends not only on f but also on its domain
and co-domain topologies X and Y .

Example 1.3. Let (X,TX) and (Y,TY ) be topological spaces and f : X → Y be
a function.
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i) If f is a constant map, i.e., f(x) = y for all x ∈ X and some y ∈ Y , then f
is continuous for all topologies on X and Y because for any open subset V of
Y , f−1(V ) = ∅ (if y /∈ V ) or X (if y ∈ V ), both of which are always open in
any topology on X.

ii) If TX = P(X), i.e., (X,TX) is the discrete topology, then f is continuous for
any topology on Y because for any open subset V of Y , f−1(V ) is in P(X)
and hence is open in X.

iii) If TY = {∅, Y }, i.e., (Y,TY ) is the trivial topology, then f is continuous for
any topology on X because f−1(∅) = ∅ and f−1(Y ) = X, both of which are
always open in any topology on X.

iv) The identity mapping from (X,TX) to (X,TX) is continuous because for any
U ∈ TX (co-domain topology), f−1(U) = U ∈ TX (domain topology).

Example 1.4.

Let (X,TX) and (Y,TY ) be topological spaces defined as follows:

X = {R,G,B} TX = {∅, {R}, {B}, {R,G}, {R,B}, X}

Y = {1, 2, 3} TY = {∅, {1}, {1, 2}, Y }

Let f and g be bijective mapping defined as f(R) = 1, f(G) = 2 and f(B) = 3.
Then, f is continuous since

f−1(∅) = ∅, f−1({1}) = {R}, f−1({1, 2}) = {R,G}, f−1(Y ) = X

all of which are open in X. However, its inverse map g, with g(1) = R, g(2) = G
and g(3) = B, is not continuous since

g−1({B}) = {3} /∈ TY and g−1({R,B}) = {1, 3} /∈ TY .

Example 1.5. The unit step function u : R→ {0, 1} is given by

u(x) =

{
0 if x < 0

1 if x > 0. 0

1

x

f(x)

Let R be equipped with the standard topology, i.e., all open intervals are open,
and the set {0, 1} be equipped with the discrete topology. Then, u−1(0) = (−∞, 0)
is open in the standard topology on R, but u−1(1) = [0,∞) is not. Hence, the unit
step function is discontinuous.
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Example 1.6. Let R and Rl denote the set of real numbers equipped with the
standard and lower limit topology respectively, and f : R → Rl and g : Rl → R
be identity functions, i.e., f(x) = g(x) = x, for every real number x. Then, f
is not continuous because the inverse image of the open set [a, b) in Rl is [a, b)
which is not open in the standard topology. But g is continuous because the
inverse image of open interval (a, b) in the standard topology on R is open in Rl

(g−1((a, b)) = (a, b) = ∪n∈N[a+1/n, b) and countable union of open sets is open).

Example 1.7. A function f : R→ R is said to be continuous at x0 ∈ R if

∀ ε > 0, ∃ δ > 0 such that |x− x0| < δ → |f(x)− f(x0)| < ε,

where both the domain and co-domain topologies are the standard topology on
R. The equivalence of this definition of continuity to the open-set definition of
continuity at x0 is shown below.

Let f be continuous at x0 by the open set definition, i.e., inverse image of
every open set containing x0 is open. Given any ε > 0, the interval V = (f(x0)−
ε, f(x0) + ε) is open in the co-domain topology and hence, f−1(V ) is open in the
domain topology. Since f−1(V ) contains x0, it contains a basis (a, b) about x0
(since for every open set S and every s ∈ S, there exists a basis Bs such that
s ∈ Bs ⊆ S). Let δ be minimum of x0 − a and b − x0. Then if |x − x0| < δ,
x must be in (a, b) and f−1(V ) (since (a, b) ⊆ f−1(V )). Hence f(x) ∈ V and
|f(x)− f(x0)| < ε as required.

Now, let f be ε−δ−continuous at x ∈ R and V be an open set in the co-domain
topology containing f(x). Since V is open and f(x) ∈ V , there exists some ε > 0,
such that (f(x) − ε, f(x) + ε) ⊆ V . By continuity at x, there exists some δ > 0
such that (x − δ, x + δ) ⊆ f−1(V ). Since (x − δ, x + δ) is open in the domain
topology and the choices of ε and V were arbitrary, inverse image of every open
set containing x is open as required by the open set definition of continuity at x.
Note that if an open set V in co-domain topology does not intersect the range of
f , then f−1(V ) = ∅, which is open in the domain topology.

Following are some properties of continuity.

1. For two topologies TX and T′X on X, the identity map 1X from (X,TX) to
(X,T′X) is continuous iff TX is finer than T′X .

Proof. Let f = 1X . Since the map is identity, f−1(S) = S for any subset S
of X. Let the identity map be continuous. Then, for any V in T′X , f−1(V ) is
in TX . Since f−1(V ) = V , this means that V is also in TX . Thus, T′X ⊆ TX ,
i.e., (X,TX) is finer than (X,T′X). Conversely, let TX is finer than T′X . Then,
any set S in T′X is also in TX . For any V in T′X , f−1(V ) is in TX because
f−1(V ) = V and V is in TX . Thus, the identity map is continuous.
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2. A continuous map remains continuous if the domain topology becomes finer
or the co-domain topology becomes coarser.

Proof. Let (X,T1), (X,T2), (Y,S1) and (Y,S2) be topologies with T1 and S1
finer than T2 and S2 respectively. Let f be a continuous map from (X,T2)
to (Y,S1).

i) Let V be in S1. Then, f−1(V ) is in T2, since f is continuous, and in T1,
since it is finer than T2. Thus, f is also a continuous map from (X,T1)
to (Y,S1).

ii) Let V be in S2. Since, S1 is finer than S2, it contains V . Also T2 contains
f−1(V ) since f is a continuous. Thus, f is also a continuous map from
(X,T2) to (Y,S2).

Note 2. i) From Property 1, it can be inferred that, continuity of a bijective
function f : X → Y does not guarantees continuity of its inverse (cf. Exam-
ples 1.4 and 1.6).

ii) In Example 1.6, had f been the identity map from R to itself then it would
have been continuous but replacing the co-domain topology with a finer topol-
ogy (Rl) renders it discontinuous.

To test the continuity of a map from a topological space on X to that on Y ,
checking whether inverse image of each open set in Y is open in X is not necessary.

Theorem 1.8. Let (X,TX) and (Y,TY ) be topological spaces and f : X → Y be a
function. Then, the following statements are equivalent:

1. f is continuous.

2. Inverse image of every basis element of TY is open.

3. Inverse image of every subbasis element of TY is open.

Thus, to test the continuity of a function it suffices to check openness of inverse
images of elements of only a subset of TY , viz., its subbasis.

Proof. (1)→(2) Let f be continuous. Since every basis element of TY is open, its
inverse image will be open.
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(2)→(1) Let BY be a basis for TY and let the inverse image of every basis element
B ∈ BY be open in X, i.e., f−1(B) ∈ TX . Note that any open set V
in Y can be written as a union of the basis elements, i.e., V = ∪j∈JBj,
f−1(V ) = ∪j∈Jf−1(Bj), for some {B1, . . . , B|J |} ⊆ BY . Since union of opens
sets is open, f−1(V ) is open.

(2)→(3) Since every subbasis element is in the basis it generates, inverse image
of every subbasis element of Y is open in X.

(3)→(2) Let SY be subbasis of Y which generates the basis BY . Let the inverse
image of every subbasis element S ∈ SY be open in X, i.e., f−1(S) ∈ TX .
Since any basis element can be written as a finite intersection of subbasis
elements, i.e., B = ∩ni=1Si, f

−1(B) = ∩ni=1f
−1(Si). Since finite intersection

of open sets is open, f−1(B) is open in X.

Theorem 1.9. Let f be a map from a topological space on X to a topological space
on Y . Then, the following statements are equivalent:

1. f is continuous.

2. Inverse image of every closed set of Y is closed in X.

3. For each x ∈ X and every neighborhood V of f(x), there is a neighborhood
U of x such that f(U) ⊆ V .

4. For every subset A of X, f(A) ⊆ f(A).

5. For every subset B of Y , f−1(B) ⊆ f−1(B).

Proof. (1)→(2) Let a subset C of Y be closed. Then, its complement Y \C is open
and the inverse image of the complement f−1(Y \C) = f−1(Y )\f−1(C) =
X\f−1(C) is open in X. Hence, f−1(C) is closed in X.

(2)→(1) Let V be open in Y . Then, its complement Y \V is closed and the
inverse image of the complement f−1(Y \V ) = f−1(Y )\f−1(V ) = X\f−1(V )
is closed in X. Hence, f−1(V ) is open in X.

(1)→(3) Since f−1(V ) is an open neighborhood of x, choose U = f−1(V ).

(3)→(4) Let A ⊆ X and x ∈ A. Let V be a neighborhood f(x) and U be a
neighborhood of x such that f(U) ⊆ V . Since x ∈ A, U ∩ A 6= ∅ and
hence ∅ 6= f(U ∩ A) ⊆ f(U) ∩ f(A) ⊆ V ∩ f(A) (cf. Lecture 5, Theorem
2.3(vii)). Since the choice of V neighborhood of f(x) was arbitrary, every
neighborhood of f(x) intersects f(A). Hence, f(x) ∈ f(A) and f(A) ⊆ f(A).
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(4)→(5) Let A = f−1(B). Then, by (4), f(A) ⊆ f(A) = f(f−1(B)) = B. Hence,
f−1(B) ⊆ f−1(B).

(5)→(2) Let B ⊆ Y be closed; then, B = B since a set is closed iff it is equal to
its closure. Then, by (5), f−1(B) ⊆ f−1(B) and since f−1(B) ⊆ f−1(B) is
always true, f−1(B) = f−1(B). Hence, f−1(B) is closed (being equal to its
closure).

2 Homeomorphism

Definition 2.1 (Homeomorphism). Let (X,TX) and (Y,TY ) be topological
spaces and f : X → Y be a bijection. If both f and its inverse f−1 : Y → X are
continuous, then f is called a homeomorphism.

The two spaces are said to be homeomorphic and each is a homeomorph of the
other. If a map is a homeomorphism, then so is its inverse. Composition of any
two homeomorphisms is again a homeomorphism.

The requirement the f−1 be continuous means that for any U open in X, its
inverse image under f−1 be open in Y . But since the inverse image of U under f−1

is same as the image of U under f (cf. Lecture 5, Remark 2(vi)), another way to
define a homeomorphism is to say that it is a bijective map f : X → Y such that
f(U) is open iff U is open. Thus, a homeomorphism is a bijection between TX
and TY . Consequently, any property of X expressed in terms of TX (or the open
sets), yields, via f , the corresponding property for Y . Such a property is called a
topological property of X.

Let f : X → Y be an injective continuous map and Z = f(X) ⊂ Y be its
range, considered as a subspace of Y . Then, the map obtained by restricting Y to
Z, f ′ : X → Z is a bijection. If f ′ happens to be a homeomorphism, then we say
that f : X → Y is a topological imbedding, or simply an imbedding, of X in Y .

Example 2.2. Let R be equipped with the trivial, standard or discrete topology.
For every pair of real numbers m and c, the function fm,c : R → R defined by
fm,c(x) = mx+ c,∀x ∈ R is a homeomorphism.

Example 2.3. i) The identity map from a topological space to itself is a home-
omorphism (Example 1.3(iv)).

ii) The map f in Examples 1.4 and the map g in1.6 are both continuous and
bijective but not homeomorphic because their inverse maps are not continuous.
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Example 2.4. i) Two discrete spaces are homeomorphic iff there is a bijection
between them, i.e., iff they have the same cardinality. This is true because
every function on a discrete space is continuous, no matter the co-domain
topology (Example 1.3(ii)).

ii) Two trivial topologies are homeomorphic iff there is a bijection between them.
This holds because every function to a trivial topology is continuous regardless
of the domain topology (Example 1.3(iii)).

Proposition 2.5. Let (X,TX) and (Y,TY ) be topological spaces and f : X → Y
be a function. Then, the following statements are equivalent:

i) f is a homeomorphism.

ii) U is open in X iff f(U) is open in Y .

iii) C is closed in X iff f(C) is closed in Y .

iv) V is open in Y iff f−1(V ) is open in X.

v) D is closed in Y iff f−1(D) is closed in X.

3 Constructing Continuous Functions

Some rules for constructing continuous functions are given below.

Theorem 3.1. Let X, Y and Z be topological spaces.

1. (Constant function) If f : X → Y defined as f(x) = y for all x ∈ X and
some y ∈ Y , then f is continuous.

2. (Inclusion) If A is a subspace of X, then the inclusion function j : A → X
is continuous. (j(a) = a, ∀ a ∈ A)

3. (Composites) If f : X → Y and g : Y → Z are continuous, then so is their
composition g ◦ f : X → Z.

4. (Restricting the domain) If f : X → Y is continuous and A is a subspace of
X, then the restriction of f to A, f |A : A→ Y is also continuous.

5. (Restricting or expanding the range) Let f : X → Y be continuous.

a) If Z is subspace of Y containing the range f(X), then the function g :
X → Z obtained by restricting the co-domain topology is continuous.
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b) If Z is space containing Y as a subspace, then the function h : X → Z
obtained by expanding the co-domain topology is continuous.

6. (Local formulation of continuity)The map f : X → Y is continuous if X cna
be written as the union of open sets Uα such that f |Uα is continuous for each
α.

Proof. i) See Example 1.3(i).

ii) If U is open in X, then j−1(U) = U ∩A is open in A by definition of subspace
topology.

iii) If W is open in Z, then g−1(W ) is open in Y since g is continuous. Since
f is continuous, f−1(g−1(W )) is open in X. Thus, g ◦ f is continuous (since
f−1(g−1(W )) = (g ◦ f)−1(W )).

iv) f |A = j◦f , both of which are continuous and composition of continuous maps
is continuous.

v) (a) Let W be open in Z. Then, B = Z ∩ U for some U open in Y . Since
f(Z) ⊆ Z, f−1(B) = f−1(U) and is open in X because f−1(U) is open in X.
(b) Let j : Y → Z be the inclusion map. Then, h = f ◦ j.

vi) Let V be open in Y . Then,

f−1(V ) ∩ Uα = (f |Uα)−1(V )

and is open in Uα and hence open in X. But

f−1(V ) =
⋃
α

(
f−1(V ) ∩ Uα

)
,

so that V is also open in X.

Theorem 3.2 (The Pasting Lemma). Let X = A ∪ B, where A and B are
closed in X. Let f : A → Y and g : B → Y e continuous maps. If f(x) = g(x)
for every x ∈ A ∩ B, the f and g combine to give a continuous map h : X → Y ,
defined as

h(x) =

{
f(x) if x ∈ A
g(x) if x ∈ B.

Proof. Let C be a closed subset of Y . Then, h−1(C) = f−1(C) ∪ g−1(C) and is
closed in X since each of f−1(C) and g−1(C) are closed in X.
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The pasting lemma hold even if A and B are open in X and is a special case
of Theorem 3.1(vi).

Theorem 3.3 (Maps into Products). Let f : A→ X ×Y be defined as f(a) =
(f1(a), f2(a)). Then f is continuous iff both the co-ordinate functions f1 : A→ X
and f2 : A→ Y are continuous.

Proof. The projection maps π1 : X × Y → X and π2 : X × Y → Y onto the first
and second factor space are continuous since π−11 (U) = U×Y and π−12 (V ) = X×V
are open if U and V are open in X and Y respectively. Note that f1 = π1 ◦ f and
f2 = π2 ◦ f . If f is continuous, then so are f1 and f2 (composites of continuous
functions). Conversely, let f1 and f2 are continuous. Let U ×V be a basis element
of X × Y . A point a is in f−1(U × V ) iff f(a) ∈ U × V , i.e., iff f1(a) ∈ U and
f2(a) ∈ V . Hence, f−1(U × V ) = f−1(U) ∩ f−1(V ) and is open in A since both
f−1(U) and f−1(V ) are open. Thus, since inverse image of every basis element is
open, f is continuous (by Theorem 1.8(2))
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