
Lecture 20: Compactness

Parimal Parag

1 Compact spaces

Definition 1.1. A collection A of subsets of a space X is said to cover X, or to
be a covering of X, if the union of the elements of A is equal to X. It is called
an open covering of X if its elements are open subsets of X.

Definition 1.2. A space X is said to be compact if every open covering A of X
contains a finite sub-collection that also covers X.

Example 1.3. The real line R is not compact, for the covering of R by open
intervals A = {(n, n+ 2)|n ∈ Z} contains no finite sub-collection that covers R.

Example 1.4. The following subspace of R is compact:X = {0} ∪ {1/n|n ∈ Z+}
Given an open covering A of X, there is an element U of A containing 0. The set
U contains all but finitely many of the points 1/n; choose, for each point of X not
in U , an element of A containing it. The collection consisting of these elements of
A, along with the element U , is a finite sub-collection of A that covers X.

Example 1.5. Any space X containing only finitely many points is necessarily
compact, because in this case every open covering of X is finite.

Example 1.6. The interval (0, 1] is not compact; the open coveringA = {(1/n, 1]|n ∈
Z+} contains no finite sub-collection covering (0, 1]. The interval (0, 1) is also not
compact by the same argument applies. On the other hand, the interval [0, 1] is
compact.

We shall prove some general theorems that show us how to construct new
compact spaces out of existing ones.

Lemma 1.7. Let Y be a subspace of X. Then Y is compact if and only if every
covering of Y by sets open in X contains a finite sub-collection covering Y .

Proof. Suppose that Y is compact and A = {Aα}α∈J is a covering of Y by sets
open in X. Then the collection {Aα∩Y |α ∈ J} is a covering of Y by sets open in Y ;
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hence a finite sub-collection {Aα1 ∩ Y, ..., Aαn ∩ Y } covers Y . Then {Aα1 , ..., Aαn}
is a sub-collection of A that covers Y .

Conversely, suppose the given condition holds; we wish to prove Y is compact.
Let A′ = {A′α} be a covering of Y by sets open in Y . For each α, choose a set Aα
open in X such that A′α = Aα ∩ Y . The collection A = {Aα} is a covering of Y
by sets open in X. By hypothesis, some finite sub-collection {Aα1 , ..., Aαn} covers
Y . Then {A′α1

, ..., A′αn
} is a sub-collection of A′ that covers Y .

Theorem 1.8. Every closed subspace of a compact space is compact.

Proof. Let Y be a closed subspace of the compact space X. Given a covering A of
Y by sets open in X, let us form an open covering B of X by adjoining to A the
single open set X − Y , that is, B = A∪ {X − Y }. Some finite sub-collection of B
covers X. If this sub-collection contains the set X − Y , discard X − Y ; otherwise,
leave the sub-collection alone. The resulting collection is a finite sub-collection of
A that covers Y .

Theorem 1.9. Every compact subspace of a Hausdorff space is closed.

Proof. Let Y be a compact subspace of the Hausdorff space X. We shall prove
that X − Y is open, so that Y is closed.
Let x0 be a point of X − Y . We show there is a neighborhood of x0 that is
disjoint from Y . For each point y of Y , let us choose disjoint neighborhoods and
of the points x0 and y, respectively (using the Hausdorff condition). The collection
{Vy|y ∈ Y } is a covering of Y by sets open in X; therefore, finitely many of them
Vy1 , ..., Vyn cover Y . The open set V = Vy1 ∪ ...∪ Vyn contains Y , and it is disjoint
from the open set U = Uy1 ∩ ... ∩ Uyn formed by taking the intersection of the
corresponding neighborhoods of x0. For if z is a point of V , then z ∈ Vyi for some
i, hence z /∈ Uy, and so z /∈ U . Then U is a neighborhood of x0 disjoint from Y ,
as desired.

Lemma 1.10. If Y is a compact subspace of the Hausdorff space X and x0 is
not in Y , then there exist disjoint open sets U and V of X containing x0 and Y ,
respectively.

Example 1.11. Once we prove that the interval [a, b] in R is compact, it follows
from Theorem 1.8 that any closed subspace of [a, b] is compact. On the other
hand, it follows from Theorem 1.9 that the intervals (a, b] and (a, b) in R cannot
be compact because they are not closed in the Hausdorff space R.

Example 1.12. Consider the finite complement topology on the real line. The
only proper subsets of R that are closed in this topology are the finite sets. But
every subset of R is compact in this topology, as can be checked.
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Theorem 1.13. The image of a compact space under a continuous map is compact.

Proof. Let f : X → Y be continuous; let X be compact. Let A be a covering of
the set f(X) by sets open in Y . The collection {f−1|A ∈ A} is a collection of
sets covering X; these sets are open in X because f is continuous. Hence finitely
many of them, say f−1(A1), ..., f

−1(An), cover X. Then, the sets A1, ..., An cover
f(X).

Theorem 1.14. Let I : X → Y be a bijective continuous function. If X is compact
and Y is Hausdorff, then f is a homeomorphism.

Proof. We shall prove that images of closed sets of X under f are closed in Y ; this
will prove continuity of the map f−1. If A is closed in X, then A is compact, by
Theorem 1.8. Therefore, by the theorem just proved, f(A) is compact. Since Y is
Hausdorff, f(A) is closed in Y , by Theorem 1.9.

Theorem 1.15. The product of finitely many compact spaces is compact.

Lemma 1.16 (The tube lemma). Consider the product space X × Y , where Y
is compact. If N is an open set of X × Y containing the slice x0 × Y of X × Y ,
then N contains some tube W × Y about x0× Y , where W is a neighborhood of in
X.

Proof. Let us cover x0×Y by basis elements U ×V lying in N . The space x0×Y
is compact being homeomorphic to Y , we can find finite sub-cover for x0 × Y as
U1 × V1, ..., Un × Vn. We can assume Ui × Vi intersects x0 × Y , W := ∩n(i=1)Ui is

neighborhood of x0. The chosen {Ui × Vi} cover W × Y and lie in N .

Theorem 1.17. The product of finitely many compact spaces is compact.

Proof. Let X and Y be compact spaces. Let A be an open covering of X × Y .
Given x0 ∈ X, x0×Y is compact and may be covered by finitely many elements of
A, say, A1, ..., Am. Their union N = ∪ni=1Ai is an open set containing x0 × Y . We
can find a tube W×Y about x0×Y where W is open in X. Then, W×Y is covered
by finitely many elements A1, ..., Am. For each x ∈ X find neighborhood of x such
that tube Wx×Y is covered by finitely many elements of A. Now {Wx : x ∈ X} is
an open covering of X, hence, there exists finite sub-cover {W1, ...,Wk} that covers
X. Union of the tubes W1 × Y, ...,Wk × Y covers X × Y . Similar argument can
be used to complete the proof by induction.
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