Lecture 20: Compactness

Parimal Parag

1 Compact spaces

Definition 1.1. A collection A of subsets of a space X is said to cover X, or to
be a covering of X, if the union of the elements of A is equal to X. It is called
an open covering of X if its elements are open subsets of X.

Definition 1.2. A space X is said to be compact if every open covering A of X
contains a finite sub-collection that also covers X.

Example 1.3. The real line R is not compact, for the covering of R by open
intervals A = {(n,n + 2)|n € Z} contains no finite sub-collection that covers R.

Example 1.4. The following subspace of R is compact:X = {0} U {1/n|n € Z,}
Given an open covering A of X, there is an element U of A containing 0. The set
U contains all but finitely many of the points 1/n; choose, for each point of X not
in U, an element of A containing it. The collection consisting of these elements of
A, along with the element U, is a finite sub-collection of A that covers X.

Example 1.5. Any space X containing only finitely many points is necessarily
compact, because in this case every open covering of X is finite.

Example 1.6. The interval (0, 1] is not compact; the open covering A = {(1/n, 1||n €
7.} contains no finite sub-collection covering (0, 1]. The interval (0, 1) is also not
compact by the same argument applies. On the other hand, the interval [0, 1] is
compact.

We shall prove some general theorems that show us how to construct new
compact spaces out of existing ones.

Lemma 1.7. Let Y be a subspace of X. Then Y is compact if and only if every
covering of Y by sets open in X contains a finite sub-collection covering Y .

Proof. Suppose that Y is compact and A = {A,}acs is a covering of Y by sets
open in X. Then the collection {A,NY |« € J} is a covering of Y by sets open in Y;



hence a finite sub-collection {A,, NY, ..., A4, NY} covers Y. Then {A,,, ..., Aa, }
is a sub-collection of A that covers Y.

Conversely, suppose the given condition holds; we wish to prove Y is compact.
Let A" = { AL} be a covering of Y by sets open in Y. For each «, choose a set A,
open in X such that A], = A, NY. The collection A = {A,} is a covering of Y
by sets open in X. By hypothesis, some finite sub-collection {A,,, ..., Aa, } covers
Y. Then {4, ,..., A, } is a sub-collection of A" that covers Y. O
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Theorem 1.8. Fvery closed subspace of a compact space is compact.

Proof. Let Y be a closed subspace of the compact space X. Given a covering A of
Y by sets open in X, let us form an open covering B of X by adjoining to A the
single open set X — Y, that is, B=AU{X — Y'}. Some finite sub-collection of B
covers X . If this sub-collection contains the set X — Y, discard X —Y'; otherwise,
leave the sub-collection alone. The resulting collection is a finite sub-collection of
A that covers Y. u

Theorem 1.9. Fvery compact subspace of a Hausdorff space is closed.

Proof. Let Y be a compact subspace of the Hausdorff space X. We shall prove
that X —Y is open, so that Y is closed.

Let g be a point of X — Y. We show there is a neighborhood of xy that is
disjoint from Y. For each point y of Y, let us choose disjoint neighborhoods and
of the points xy and y, respectively (using the Hausdorff condition). The collection
{V,ly € Y} is a covering of Y by sets open in X; therefore, finitely many of them
Vs -y Vy, cover Y. The open set V =V, U...UV,, contains Y, and it is disjoint
from the open set U = U,, N...N U, formed by taking the intersection of the
corresponding neighborhoods of . For if z is a point of V, then z € V,,, for some
i, hence z ¢ U, and so z ¢ U. Then U is a neighborhood of z, disjoint from Y,
as desired. O]

Lemma 1.10. If Y is a compact subspace of the Hausdorff space X and xq is
not in Y, then there exist disjoint open sets U and V of X containing x¢ and Y,
respectively.

Example 1.11. Once we prove that the interval [a, ] in R is compact, it follows
from Theorem that any closed subspace of [a,b] is compact. On the other
hand, it follows from Theorem (1.9 that the intervals (a,b] and (a,b) in R cannot
be compact because they are not closed in the Hausdorff space R.

Example 1.12. Consider the finite complement topology on the real line. The
only proper subsets of R that are closed in this topology are the finite sets. But
every subset of R is compact in this topology, as can be checked.



Theorem 1.13. The image of a compact space under a continuous map is compact.

Proof. Let f: X — Y be continuous; let X be compact. Let A be a covering of
the set f(X) by sets open in Y. The collection {f~!|A € A} is a collection of
sets covering X; these sets are open in X because f is continuous. Hence finitely
many of them, say f~1(A),..., f 1(A,), cover X. Then, the sets Ay, ..., A, cover
f(X). O

Theorem 1.14. Let I : X — Y be a bijective continuous function. If X is compact
and Y 1s Hausdorff, then f is a homeomorphism.

Proof. We shall prove that images of closed sets of X under f are closed in Y’; this
will prove continuity of the map f~!. If A is closed in X, then A is compact, by
Theorem . Therefore, by the theorem just proved, f(A) is compact. Since Y is
Hausdorff, f(A) is closed in Y, by Theorem O

Theorem 1.15. The product of finitely many compact spaces is compact.

Lemma 1.16 (The tube lemma). Consider the product space X XY, where Y
1s compact. If N is an open set of X XY containing the slice xo X Y of X XY,
then N contains some tube W XY about xq XY, where W is a neighborhood of in
X.

Proof. Let us cover xg X Y by basis elements U x V' lying in N. The space xg x Y
is compact being homeomorphic to Y, we can find finite sub-cover for xq x Y as
Uy xVi,...,U, xV,. We can assume U; x V; intersects xo x Y, W := ﬂ@zl)Ui is

neighborhood of zy. The chosen {U; x V;} cover W x Y and lie in N. O
Theorem 1.17. The product of finitely many compact spaces is compact.

Proof. Let X and Y be compact spaces. Let A be an open covering of X x Y.
Given g € X, xo X Y is compact and may be covered by finitely many elements of
A, say, Ay, ..., Ay, Their union N = U}" | A; is an open set containing xg X Y. We
can find a tube W xY about 2o xY where W is open in X. Then, W xY is covered
by finitely many elements Ay, ..., A,,. For each x € X find neighborhood of = such
that tube W, x Y is covered by finitely many elements of A. Now {W, : z € X} is
an open covering of X, hence, there exists finite sub-cover {W;, ..., Wy} that covers
X. Union of the tubes Wy x Y, ..., W, X Y covers X x Y. Similar argument can
be used to complete the proof by induction. O
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