Lecture 23: Measures

1 Measures

Definition 1.1. Let (X, \mathcal{F}) be a measurable space. A set mapping $\mu: \mathcal{F} \rightarrow[0, \infty]$ is called a measure if
i. $\mu(\emptyset)=0$,
ii. Countable additivity. $\mu\left(\cup_{n \in \mathbb{N}} A_{n}\right)=\sum_{n \in \mathbb{N}} \mu\left(A_{n}\right)$ for all sequences $\left\{A_{n}\right.$: $n \in \mathbb{N}\}$ of pairwise disjoint sets in \mathcal{F}.

Definition 1.2. Let X be a non-empty set, equipped with a σ-algebra \mathcal{F}, and μ is a measure on \mathcal{F}, then (X, \mathcal{F}, μ) is called a measure space.

Theorem 1.3 (Properties of Measures). Let (X, \mathcal{F}, μ) be a measure space, and $\left\{A_{n}: n \in \mathbb{N}\right\} \subseteq \mathcal{F}$, then the following are true.

1. Finite additivity. If $\left\{A_{i}: i \in[n]\right\}$ a finite collection of pairwise disjoint sets, then $\mu\left(\cup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} \mu\left(A_{i}\right)$.
2. Monotonicity. If $A_{i} \subseteq A_{j}$, then $\mu\left(A_{i}\right)=\mu\left(A_{j}\right)$.
3. Continuity from below. If $\left\{A_{n}: n \in \mathbb{N}\right\}$ is an increasing sequence of sets, i.e. $A_{n} \subseteq A_{n+1}$ for all $n \in \mathbb{N}$, then

$$
\mu\left(\bigcup_{n \in \mathbb{N}} A_{n}\right)=\lim _{n \in \mathbb{N}} \mu\left(A_{n}\right)=\sup _{n \in \mathbb{N}} \mu\left(A_{n}\right) .
$$

4. Continuity from below. If $\left\{A_{n}: n \in \mathbb{N}\right\}$ is a decreasing sequence of sets, i.e. $A_{n+1} \subseteq A_{n}$ for all $n \in \mathbb{N}$ and $\mu\left(A_{1}\right)<\infty$, then

$$
\mu\left(\bigcap_{n \in \mathbb{N}} A_{n}\right)=\lim _{n \in \mathbb{N}} \mu\left(A_{n}\right)=\inf _{n \in \mathbb{N}} \mu\left(A_{n}\right) .
$$

5. Countable sub-additivity. $\mu\left(\bigcup_{n \in \mathbb{N}} A_{n}\right)=\sum_{n \in \mathbb{N}} \mu\left(A_{n}\right)$.

Proof. Let (X, \mathcal{F}, μ) be a measure space, and $\left\{A_{n}: n \in \mathbb{N}\right\} \subseteq \mathcal{F}$.

1. Let $\left\{B_{i}: i \in \mathbb{N}\right\}$ such that $B_{i}=A_{i}$ for $i \in[n]$ and $B_{i}=\emptyset$ for $i \in \mathbb{N} \backslash[n]$. Then, $\left\{B_{i}: i \in \mathbb{N}\right\}$ is a countable collection of pair-wise disjoint sets, where $\cup_{i \in \mathbb{N}} B_{i}=\cup_{i=1}^{n} A_{i}$. Hence, it follows from the definition of measure, that

$$
\mu\left(\bigcup_{i=1}^{n} A_{i}\right)=\mu\left(\bigcup_{i \in \mathbb{N}} B_{i}\right)=\sum_{i \in \mathbb{N}} \mu\left(B_{i}\right)=\sum_{i=1}^{n} \mu\left(A_{i}\right)
$$

2. We can write $A_{j}=A_{i} \cup\left(A_{j} \backslash A_{i}\right)$, a finite union of disjoint sets. Therefore from finite additivity and non-negativity of measure, we have

$$
\mu\left(A_{j}\right)=\mu\left(A_{i}\right)+\mu\left(A_{j} \backslash A_{i}\right) \geq \mu\left(A_{i}\right)
$$

3. If $\left\{A_{n}: n \in \mathbb{N}\right\}$ is an increasing sequence of sets, then $\lim _{n \in \mathbb{N}} A_{n}=\cup_{n \in \mathbb{N}} A_{n}$. We construct a sequence of pair-wise disjoint sets $\left\{B_{n}: n \in \mathbb{N}\right\}$ inductively such that $B_{1}=A_{1}$ and $B_{n}=A_{n} \backslash A_{n-1}$ for $n>1$. It follows that for all $n \in \mathbb{N}$,

$$
\bigcup_{i \leq n} B_{i}=\bigcup_{i \leq n} A_{i}=A_{n}
$$

From σ-additivity of measures, it follows that

$$
\begin{aligned}
\mu\left(\bigcup_{n \in \mathbb{N}} A_{n}\right) & =\mu\left(\bigcup_{n \in \mathbb{N}} B_{n}\right)=\sum_{n \in \mathbb{N}} \mu\left(B_{n}\right)=\lim _{n \in \mathbb{N}} \sum_{i=1}^{n} \mu\left(B_{i}\right) \\
& =\lim _{n \in \mathbb{N}} \mu\left(\bigcup_{i=1}^{n} B_{i}\right)=\lim _{n \in \mathbb{N}} \mu\left(A_{n}\right)
\end{aligned}
$$

4. If $\left\{A_{n}: n \in \mathbb{N}\right\}$ is a decreasing sequence of sets, then we can form increasing sequence of sets $\left\{B_{n}: n \in \mathbb{N}\right\}$ such that $B_{n}=A_{1} \backslash A_{n}$. From DeMorgan's law, we have

$$
\left(\bigcup_{n \in \mathbb{N}} B_{n}\right)=\left(\bigcup_{n \in \mathbb{N}} A_{1} \backslash A_{n}\right)=\left(A_{1} \backslash\left(\bigcap_{n \in \mathbb{N}} A_{n}\right)\right)=A_{1} \backslash\left(\bigcap_{n \in \mathbb{N}} A_{n}\right) .
$$

Applying finite-additivity of measures to sets $A_{1} \backslash\left(\bigcap_{n \in \mathbb{N}} A_{n}\right)$ and $\left(\bigcap_{n \in \mathbb{N}} A_{n}\right)$, we get

$$
\mu\left(\bigcup_{n \in \mathbb{N}} B_{n}\right)=\mu\left(A_{1}\right)-\mu\left(\bigcap_{n \in \mathbb{N}} A_{n}\right)
$$

Now applying continuity from below to this increasing sequence of sets, we get

$$
\mu\left(A_{1}\right)-\mu\left(\bigcap_{n \in \mathbb{N}} A_{n}\right)=\mu\left(\bigcap_{n \in \mathbb{N}} B_{n}\right)=\lim _{n \in \mathbb{N}} \mu\left(B_{n}\right)=\lim _{n \in \mathbb{N}} \mu\left(A_{1}\right)-\mu\left(A_{n}\right) .
$$

Since $\mu\left(A_{1}\right)$ is finite, we can subtract it from both sides of the above equation to get the result.
5. We construct a pair-wise disjoint sequence of sets $\left\{B_{n}: n \in \mathbb{N}\right\}$ inductively from sets $\left\{A_{n}: n \in \mathbb{N}\right\}$, such that $B_{n}=A_{n} \backslash \cup_{i=1}^{n-1} A_{i}$. It follows from the construction that $\cup_{i=1}^{n} B_{i}=\cup_{i=1}^{n} A_{i}$, and from monotonicity that $\mu\left(B_{n}\right) \leq$ $\mu\left(A_{n}\right)$ for all $n \in \mathbb{N}$. Hence, we conclude that

$$
\mu\left(\bigcup_{n \in \mathbb{N}} A_{n}\right)=\mu\left(\bigcup_{n \in \mathbb{N}} B_{n}\right)=\sum_{n \in \mathbb{N}} \mu\left(B_{n}\right) \leq \sum_{n \in \mathbb{N}} \mu\left(A_{n}\right) .
$$

Remark 1. We can replace finiteness of $\mu\left(A_{1}\right)$ by finiteness of $\mu\left(A_{n}\right)$ for some $n \in \mathbb{N}$. We can just take $B_{j}=A_{n} \backslash A_{j}$ for all $j \in \mathbb{N}$.
Remark 2. Finite assumption is necessary in continuity from above. It is possible that $\mu\left(A_{j}\right)=\infty$ for all $j \in \mathbb{N}$ and $\mu\left(\bigcap_{n \in \mathbb{N}} A_{n}\right)<\infty$.

2 Continuity of Measures

Definition 2.1. Let $\left\{A_{n}: n \in \mathbb{N}\right\}$ be a countable collection of subsets of a non-empty set X. We can define increasing sequence of sets $\left\{B_{n}: n \in \mathbb{N}\right\}$ and decreasing sequence of sets $\left\{C_{n}: n \in \mathbb{N}\right\}$, such that

$$
B_{n}=\bigcup_{k \geq n} A_{k} \text { and } C_{n}=\bigcap_{k \geq n} A_{k} .
$$

Then, we can define limit superior and limit inferior of sets $\left\{A_{n}: n \in \mathbb{N}\right\}$ as

$$
\lim _{n \in \mathbb{N}} \sup A_{n}=\bigcap_{n \in \mathbb{N}} B_{n}, \quad \quad \lim _{n \in \mathbb{N}} \inf A_{n}=\bigcup_{n \in \mathbb{N}} C_{n}
$$

When $\lim \sup A_{n}=\lim \inf A_{n}$, we say that $\operatorname{limit} \lim A_{n}$ of the sequences of set exists and

$$
\lim A_{n}=\limsup A_{n}=\liminf A_{n} .
$$

Remark 3. From the definition it is clear that the following hold.

$$
\begin{aligned}
\lim _{n \in \mathbb{N}} \sup A_{n} & =\left\{x \in X: x \in A_{n} \text { for infinitely many } n\right\} . \\
\lim _{n \in \mathbb{N}} \inf A_{n} & =\left\{x \in X: x \in A_{n} \text { for all but finitely many } n\right\} .
\end{aligned}
$$

Proposition 2.2. Let $\left\{A_{n}: n \in \mathbb{N}\right\}$ be a countable collection of increasing subsets of a non-empty set X. That is, $A_{n} \subseteq A_{n+1}$ for all $n \in \mathbb{N}$. Then,

$$
\liminf A_{n}=\lim \sup A_{n}=\bigcup_{n \in \mathbb{N}} A_{n} .
$$

Proof. Let $B_{n}=\cup_{k \geq n} A_{k}=\cup_{k \in \mathbb{N}} A_{k}$ independent of n. Further, $C_{n}=\cap_{k \geq n} A_{k}=$ A_{n}. Hence, we have

$$
\lim \inf A_{n}=\bigcup_{n \in \mathbb{N}} A_{n}=\bigcap_{n \in \mathbb{N}} B_{n}=\lim \sup A_{n} .
$$

Proposition 2.3. Let $\left\{A_{n}: n \in \mathbb{N}\right\}$ be a countable collection of decreasing subsets of a non-empty set X. That is, $A_{n+1} \subseteq A_{n}$ for all $n \in \mathbb{N}$. Then,

$$
\liminf A_{n}=\lim \sup A_{n}=\bigcap_{n \in \mathbb{N}} A_{n}
$$

Proof. Let $B_{n}=\cup_{k \geq n} A_{k}$, then $B_{n}=A_{n}$ since $\left\{A_{n}: n \in \mathbb{N}\right\}$ is a decreasing sequence of sets. On the other hand, $C_{n}=\cap_{k \geq n} A_{k}=\cap_{k \in \mathbb{N}} A_{k}$, that is independent of n. Hence, we have

$$
\lim \inf A_{n}=\bigcup_{n \in \mathbb{N}} C_{n}=\bigcap_{k \in \mathbb{N}} A_{k}=\lim \sup A_{n} .
$$

Proposition 2.4. Let $\left\{A_{n}: n \in \mathbb{N}\right\}$ be a countable collection of subsets of a non-empty set X. Then,

$$
\liminf A_{n} \subseteq \limsup A_{n}
$$

Proof. Let B_{n} and C_{n} be as in definition. Then, it is easy to see that $\left\{B_{n}: n \in \mathbb{N}\right\}$ and $\left\{C_{n}: n \in \mathbb{N}\right\}$ are decreasing and increasing sequences of sets respectively. Further, we have $C_{n} \subseteq A_{m} \subseteq B_{m}$ for all $m \geq n$. Further, since B_{m} is decreasing sequence of sets, we have for all $n \in \mathbb{N}$,

$$
C_{n} \subseteq \bigcap_{m \geq n} B_{m}=\bigcap_{m \in \mathbb{N}} B_{m}=\lim \sup A_{n}
$$

Result follows from taking countable union of increasing sequence of sets $\left\{C_{n}\right.$: $n \in \mathbb{N}\}$.

Lemma 2.5 (Continuity of measures). Let (X, \mathcal{F}, μ) be a finite measure space, and a sequence $\left\{A_{n} \in \mathcal{F}: n \in \mathbb{N}\right\}$ of measurable sets. Then,

$$
\mu\left(\lim \inf A_{n}\right) \leq \liminf \mu\left(A_{n}\right) \leq \limsup \mu\left(A_{n}\right) \leq \mu\left(\limsup A_{n}\right) .
$$

In particular, when $\lim A_{n}$ exists then

$$
\mu\left(\lim A_{n}\right)=\lim \mu\left(A_{n}\right) .
$$

Proposition 2.6 (Borel-Cantelli Lemma I). Let (X, \mathcal{F}, μ) be a measure space, and a sequence $\left\{A_{n} \in \mathcal{F}: n \in \mathbb{N}\right\}$ such that $\sum_{n \in \mathbb{N}} \mu\left(A_{n}\right)<\infty$. Then,

$$
\mu\left(\lim \sup _{n \in \mathbb{N}} A_{n}\right)=0
$$

Proof. Let $B_{n}=\cup_{k \geq n} A_{k}$. Then, $\left\{B_{n}: n \in \mathbb{N}\right\}$ is a decreasing sequence of sets in \mathcal{F} with $\lim \sup _{n} A_{n}=\cap_{n} B_{n}$. Hence, for each $n \in \mathbb{N}$, we have

$$
\mu\left(\lim \sup _{n \in \mathbb{N}} A_{n}\right) \leq \mu\left(B_{n}\right) .
$$

From sub-additivity of measures, we have $\mu\left(B_{n}\right) \leq \sum_{k \geq n} \mu\left(A_{k}\right)$. Since, series $\sum_{n \in \mathbb{N}} \mu\left(A_{n}\right)$ converges, we have $\sum_{k \geq n} \mu\left(A_{k}\right)$ converging to zero as n grows large.

