Lecture 24: Properties of Measures

1 Properties of Measures

We will assume (X, F) to be the measurable space throughout this lecture, unless
specified otherwise.

Definition 1.1. Let (X, F) be a measurable space. A measure p: F — [0, 00] is
called

1. a probability measure, if u(X) =1,
2. a finite measure, if u(X) < oo,

3. a o-finite measure, if there exists a sequence {4,, € F : n € N} such that
UnenA, = X and pu(A,) < oo for all n € N,

4. a semi-finite measure, if for each £ € F with u(E) = oo, there exists
F e Fwith F C FE and pu(F) < oo,

5. diffuse or atom-free, if pu({z}) = 0, whenever x € X and {z} € F.
Lemma 1.2. If u is a finite measure, then p(E) is finite for all E € F.

Proof. Let E € F, then X \ E € F. Further, set X can be expressed as disjoint
union of F U (X \ E). Then, by finite additivity of measures, we have u(X) =
w(E) + p(X \ E). Hence, by non-negativity of measures, we have u(E) < co. [

Definition 1.3. Let (X, F, 1) be a measure space. If E = UjenE; where p(E;) <
oo for all j € N, then the set E is called of o-finite measure.

Lemma 1.4. A probability measure is finite. A finite measure is o-finite.

Proposition 1.5. Every o-finite measure is semi-finite.



Proof. Let (X, F, u) be a measure space, with p o-finite. Since finite measures are
trivial, we consider non-finite measures. Then, there exists a countable sequence
of finite sets {A,, : n € N} that cover X. We consider F € F such that u(E) = oo,
and we have F = U,enE N A,,. Since, u(FE) =00, set M ={n e N: ENA, # 0}
is non-empty. Let m € M, then £ N A,, C FE and is finite from monotonicity of
measures and finiteness of A,, for each n € N. O

Remark 1. In practice, most measures are o-finite. Non o-finite measures have
pathological properties.

Definition 1.6 (Uniform measure). Consider a finite set X with F = P(X).

We define a set function p : F — [0,1] by u(A) = %. Then, set function p is a

probability measure called the uniform measure on X.

Definition 1.7 (Dirac measure). For z € X, we define the set function J, on
F by

1, z€A,

Set function J, is called the point mass at x, or an atom on z, or the Dirac
function.

Lemma 1.8. Dirac function 6, at z is probability measure on (X, F). It is atom

free only if {z} ¢ F.
Definition 1.9 (Counting measure). We define a set function p on F by

Al, A finite,
p(A) = {‘ |

oo, A infinite.

Set function p is called the counting measure.

Lemma 1.10. Counting measure is finite iff X is finite set. It is never atom-free.
It is probability measure iff | X| = 1.

Example 1.11. Counting measure p on (N,P(N)) is o-finite, but not finite.
Clearly, u(X) = oo and p(A,) = 1 for pair-wise disjoint A, = {n : n € N},
where U,enA4, = N.

Example 1.12. Counting measure on X = [0,1] and F = B is semi-finite but
not o-finite.



Definition 1.13. Let X be a non-empty set, £ C X be an infinite subset, and a
function f: X — [0, o0], then

D f@)=_sup Y f(a).
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Proposition 1.14. Suppose that X is a finite/countable set. Then, each measure
poon F = P(X) is of the form pu(A) = > . p(x) for some function p : F —
[0, o0].

Proof. We will show it for the case when p(X) < oco. For each z € X, since P(X)
is theo-algebra on X, all subsets of X are measurable. In particular, {z} and
X \ {z} are measurable. Therefore, we have u({z}) = u(X) — (X \ {z}) from
finite additivity of measures. We define p(x) = pu({z}) for all x € X. Clearly,
then p(z) > 0 from monotonicity of measures. Let A C X. Then, A is countable

since X is countable. From the o-additivity of countable pair-wise disjoint sets
{z : © € A} that cover A, it follows that

u(A) = p(Jfeh) =D ul{a}) = p(@).
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]

Proposition 1.15. Let (X,P(X)) be a measurable space for non-empty set X.
Then, any non-negative function f : X — [0,00] determines a measure j :
P(X) = [0,00] by u(A) = c4 f(x) for all A C X. This measure i is

1. semi-finite iff f(x) < oo for all z € X,

2. o-finite iff u is semi-finite and {x € X : f(x) > 0} is countable,

3. counting measure if f(x) =1 for all x € X,

4. dirac measure if for some xo € X, we have f(x) = 6, ({x}) for all x € X,

5. uniform measure if X finite and f(x) = 1/|X| for all x € X.

Proof. Tt’s easy to verify the null set has measure zero. It’s also trivial to see
o-additivity holds for finite sets X. We will verify o-additive property for general
X. Consider {A,, C X : n € N}, a pair-wise disjoint sequence of subsets of X, and
E C X finite. Let A = UpenA,, then {ENA, C A, : n € N} is a pair-wise disjoint
sequence of finite sets such that EN A = U,enE N A,,. Then, from o-additivity of
measure on finite sets, we have

WENA) =Y uENA,).

neN



Therefore, we can conclude by taking supremums that

WA = sup > fle)= sup p(ENA)= sup pENA)
ECA:F finite 2CE ECA:FE finite ECA:F finite neN
= sup Z wENA,) = Z sup w(ENA,) = Z,u(An).
ECA:F finite neN neN ENA,CA,:FE finite neN

Last step follows from the fact that for every finite E, only finitely many terms
in the summation would be non-zero. Hence we can exchange supremum and
summation.

1. If f(zp) = oo for some xzy € X. Then, any set {x¢} is not semi-finite.
Further, if f(z) < oo for all x € X. Then, for each set A C X, we can find
a finite subset of A, hence u(A) =" _, f(x) is of finite measure.

2. It is clear that o-finiteness implies semi-finiteness.
3. It follows trivially from the definition.
4. For any A C X, we see that pu(A) = d,,(A).

|A]|

5. For any A C X, we see that p(A) = -

]

Example 1.16. Consider an uncountable set X with o-algebra F of countable or
co-countable sets. That is,

F ={E C X : FE countable or X \ E countable }.

Then, the set function p : F — [0, 00| defined by

0, FE countable,
u(E) = {

1, FE co-countable,

1S a measure.

Example 1.17. Consider an infinite set X with o-algebra F = P(X). Then, the
set function u : F — [0, o0] defined by

0, FE finite,
n(E) = {

oo, FE infinite,

is finitely additive, but not a measure.



1.1 Complete Measure

Definition 1.18. Let (X, F, ) be a measure space. A set N € F is said to be
p-null if p(N) = 0.

Lemma 1.19. Any countable union of null sets is null.
Proof. 1t follows from sub-additivity of measures. O

Definition 1.20. For a measure space (X,F,u), if a statement about points
x € X is true except for x in some p-null set, the statement is said to be true
u~almost everywhere.

Remark 2. If u(E) = 0 then u(F) = 0 for all ¥ C E by monotonicity if F' € F.
However, in general, F' ¢ F.

Definition 1.21. Let (X, F, u) be measure space. Measure p is called complete
if its domain includes all subsets of null sets.

Theorem 1.22 (Measure completion). Let (X, F, ) be a measure space. Let
N ={NeF:uN)=0} and

F={EUF:EcF,FCN for some Nc N}

Then, F is a o-algebra, and there is a unique extension i of i to a complete

measure on F.

Proof. First, we will show that F is a o-algebra. Since F and N are closed under
countable unions, so is F. To show F is closed under complements, consider an
element FUF € F, where E € Fand F C N € N. We can assume that ENN = (),
since otherwise we can replace F' and N by F'\ E and N \ E respectively. Then,

FEUF=(FUN)N(X\NUF).
Taking complements and using De Moivre’s Theorem, we get
X\ (FUF)=X\(FUN)U(N\F),

where FEUN € F and N\ F C N and hence X \ (F'U F') belongs to F.

We can define a set function ji : F' — [0, 00] for each EU F € F as before, as
@(EUF) = pu(E). We verify that it is indeed a well-defined function by taking
EyUF, = EyU Fy where E; € F and F; C N; € N. Then, E; C Ey U Ny, and
hence pu(Ey) < p(Es2) + p1(Na) = p(Es) and similarly, u(Es) < p(Er). It is easy to

see that 1 is a complete measure on F, and unique measure that extends p. [

Definition 1.23. Let (X, F, i) be a measure space with F and ji as defined in
measure completion theorem. Then, the unique extension i of measure p is called
the completion of u, and F is called the completion of F with respect to pu.
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