
Lecture 24: Properties of Measures

1 Properties of Measures

We will assume (X,F) to be the measurable space throughout this lecture, unless
specified otherwise.

Definition 1.1. Let (X,F) be a measurable space. A measure µ : F → [0,∞] is
called

1. a probability measure, if µ(X) = 1,

2. a finite measure, if µ(X) <∞,

3. a σ-finite measure, if there exists a sequence {An ∈ F : n ∈ N} such that
∪n∈NAn = X and µ(An) <∞ for all n ∈ N,

4. a semi-finite measure, if for each E ∈ F with µ(E) = ∞, there exists
F ∈ F with F ⊆ E and µ(F ) <∞,

5. diffuse or atom-free, if µ({x}) = 0, whenever x ∈ X and {x} ∈ F .

Lemma 1.2. If µ is a finite measure, then µ(E) is finite for all E ∈ F .

Proof. Let E ∈ F , then X \ E ∈ F . Further, set X can be expressed as disjoint
union of E t (X \ E). Then, by finite additivity of measures, we have µ(X) =
µ(E) + µ(X \ E). Hence, by non-negativity of measures, we have µ(E) <∞.

Definition 1.3. Let (X,F , µ) be a measure space. If E = ∪j∈NEj where µ(Ej) <
∞ for all j ∈ N, then the set E is called of σ-finite measure.

Lemma 1.4. A probability measure is finite. A finite measure is σ-finite.

Proposition 1.5. Every σ-finite measure is semi-finite.
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Proof. Let (X,F , µ) be a measure space, with µ σ-finite. Since finite measures are
trivial, we consider non-finite measures. Then, there exists a countable sequence
of finite sets {An : n ∈ N} that cover X. We consider E ∈ F such that µ(E) =∞,
and we have E = ∪n∈NE ∩ An. Since, µ(E) =∞, set M = {n ∈ N : E ∩ An 6= ∅}
is non-empty. Let m ∈ M , then E ∩ Am ⊆ E and is finite from monotonicity of
measures and finiteness of An for each n ∈ N.

Remark 1. In practice, most measures are σ-finite. Non σ-finite measures have
pathological properties.

Definition 1.6 (Uniform measure). Consider a finite set X with F = P(X).

We define a set function µ : F → [0, 1] by µ(A) = |A|
|N | . Then, set function µ is a

probability measure called the uniform measure on X.

Definition 1.7 (Dirac measure). For x ∈ X, we define the set function δx on
F by

δx(A) =

{
1, x ∈ A,
0, x /∈ A.

Set function δx is called the point mass at x, or an atom on x, or the Dirac
function.

Lemma 1.8. Dirac function δx at x is probability measure on (X,F). It is atom
free only if {x} /∈ F .

Definition 1.9 (Counting measure). We define a set function µ on F by

µ(A) =

{
|A|, A finite,

∞, A infinite.

Set function µ is called the counting measure.

Lemma 1.10. Counting measure is finite iff X is finite set. It is never atom-free.
It is probability measure iff |X| = 1.

Example 1.11. Counting measure µ on (N,P(N)) is σ-finite, but not finite.
Clearly, µ(X) = ∞ and µ(An) = 1 for pair-wise disjoint An = {n : n ∈ N},
where ∪n∈NAn = N.

Example 1.12. Counting measure on X = [0, 1] and F = BX is semi-finite but
not σ-finite.
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Definition 1.13. Let X be a non-empty set, E ⊆ X be an infinite subset, and a
function f : X → [0,∞], then∑

x∈E

f(x) = sup
F⊆E:F finite

∑
x∈F

f(x).

Proposition 1.14. Suppose that X is a finite/countable set. Then, each measure
µ on F = P(X) is of the form µ(A) =

∑
x∈A p(x) for some function p : F →

[0,∞].

Proof. We will show it for the case when µ(X) <∞. For each x ∈ X, since P(X)
is theσ-algebra on X, all subsets of X are measurable. In particular, {x} and
X \ {x} are measurable. Therefore, we have µ({x}) = µ(X) − µ(X \ {x}) from
finite additivity of measures. We define p(x) = µ({x}) for all x ∈ X. Clearly,
then p(x) ≥ 0 from monotonicity of measures. Let A ⊆ X. Then, A is countable
since X is countable. From the σ-additivity of countable pair-wise disjoint sets
{x : x ∈ A} that cover A, it follows that

µ(A) = µ(
⋃
x∈A

{x}) =
∑
x∈A

µ({x}) =
∑
x∈A

p(x).

Proposition 1.15. Let (X,P(X)) be a measurable space for non-empty set X.
Then, any non-negative function f : X → [0,∞] determines a measure µ :
P(X)→ [0,∞] by µ(A) =

∑
x∈A f(x) for all A ⊆ X. This measure µ is

1. semi-finite iff f(x) <∞ for all x ∈ X,

2. σ-finite iff µ is semi-finite and {x ∈ X : f(x) > 0} is countable,

3. counting measure if f(x) = 1 for all x ∈ X,

4. dirac measure if for some x0 ∈ X, we have f(x) = δx0({x}) for all x ∈ X,

5. uniform measure if X finite and f(x) = 1/|X| for all x ∈ X.

Proof. It’s easy to verify the null set has measure zero. It’s also trivial to see
σ-additivity holds for finite sets X. We will verify σ-additive property for general
X. Consider {An ⊆ X : n ∈ N}, a pair-wise disjoint sequence of subsets of X, and
E ⊆ X finite. Let A = ∪n∈NAn, then {E∩An ⊆ An : n ∈ N} is a pair-wise disjoint
sequence of finite sets such that E ∩A = ∪n∈NE ∩An. Then, from σ-additivity of
measure on finite sets, we have

µ(E ∩ A) =
∑
n∈N

µ(E ∩ An).
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Therefore, we can conclude by taking supremums that

µ(A) = sup
E⊆A:E finite

∑
x∈E

f(x) = sup
E⊆A:E finite

µ(E ∩ A) = sup
E⊆A:E finite

∑
n∈N

µ(E ∩ An)

= sup
E⊆A:E finite

∑
n∈N

µ(E ∩ An) =
∑
n∈N

sup
E∩An⊆An:E finite

µ(E ∩ An) =
∑
n∈N

µ(An).

Last step follows from the fact that for every finite E, only finitely many terms
in the summation would be non-zero. Hence we can exchange supremum and
summation.

1. If f(x0) = ∞ for some x0 ∈ X. Then, any set {x0} is not semi-finite.
Further, if f(x) < ∞ for all x ∈ X. Then, for each set A ⊆ X, we can find
a finite subset of A, hence µ(A) =

∑
x∈A f(x) is of finite measure.

2. It is clear that σ-finiteness implies semi-finiteness.

3. It follows trivially from the definition.

4. For any A ⊆ X, we see that µ(A) = δx0(A).

5. For any A ⊆ X, we see that µ(A) = |A|
|X| .

Example 1.16. Consider an uncountable set X with σ-algebra F of countable or
co-countable sets. That is,

F = {E ⊆ X : E countable or X \ E countable }.

Then, the set function µ : F → [0,∞] defined by

µ(E) =

{
0, E countable,

1, E co-countable,

is a measure.

Example 1.17. Consider an infinite set X with σ-algebra F = P(X). Then, the
set function µ : F → [0,∞] defined by

µ(E) =

{
0, E finite,

∞, E infinite,

is finitely additive, but not a measure.
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1.1 Complete Measure

Definition 1.18. Let (X,F , µ) be a measure space. A set N ∈ F is said to be
µ-null if µ(N) = 0.

Lemma 1.19. Any countable union of null sets is null.

Proof. It follows from sub-additivity of measures.

Definition 1.20. For a measure space (X,F , µ), if a statement about points
x ∈ X is true except for x in some µ-null set, the statement is said to be true
µ-almost everywhere.

Remark 2. If µ(E) = 0 then µ(F ) = 0 for all F ⊆ E by monotonicity if F ∈ F .
However, in general, F /∈ F .

Definition 1.21. Let (X,F , µ) be measure space. Measure µ is called complete
if its domain includes all subsets of null sets.

Theorem 1.22 (Measure completion). Let (X,F , µ) be a measure space. Let
N = {N ∈ F : µ(N) = 0} and

F̄ = {E ∪ F : E ∈ F , F ⊆ N for some N ∈ N}.

Then, F̄ is a σ-algebra, and there is a unique extension µ̄ of µ to a complete
measure on F̄ .

Proof. First, we will show that F̄ is a σ-algebra. Since F and N are closed under
countable unions, so is F̄ . To show F̄ is closed under complements, consider an
element E∪F ∈ F̄ , where E ∈ F and F ⊆ N ∈ N . We can assume that E∩N = ∅,
since otherwise we can replace F and N by F \ E and N \ E respectively. Then,

E ∪ F = (E ∪N) ∩ (X \N ∪ F ).

Taking complements and using De Moivre’s Theorem, we get

X \ (E ∪ F ) = X \ (E ∪N) ∪ (N \ F ),

where E ∪N ∈ F and N \ F ⊆ N and hence X \ (E ∪ F ) belongs to F .
We can define a set function µ̄ : F̄ → [0,∞] for each E ∪ F ∈ F̄ as before, as

µ̄(E ∪ F ) = µ(E). We verify that it is indeed a well-defined function by taking
E1 ∪ F1 = E2 ∪ F2 where Ej ∈ F and Fj ⊆ Nj ∈ N . Then, E1 ⊆ E2 ∪ N2, and
hence µ(E1) ≤ µ(E2) + µ(N2) = µ(E2) and similarly, µ(E2) ≤ µ(E1). It is easy to
see that µ̄ is a complete measure on F̄ , and unique measure that extends µ.

Definition 1.23. Let (X,F , µ) be a measure space with F̄ and µ̄ as defined in
measure completion theorem. Then, the unique extension µ̄ of measure µ is called
the completion of µ, and F̄ is called the completion of F with respect to µ.
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