Lecture 25: Integration of non-negative functions

1 Integration of non-negative functions

Definition 1.1. Let (X, \mathcal{M}, μ) be the measurable space, we define $L^+ = \{f \in \mathcal{F}(X, [0, \infty]) : f \text{ is } (\mu, B_{[0, \infty]}) \text{ measurable} \}.$

Definition 1.2. If ϕ is simple, $\phi \in L^+$, with standard representation $\phi = \sum_{i=1}^n a_i \mathbb{1}_{E_i}$ then we define **integral** of ϕ with respect to μ by

$$\int \phi \ d\mu = \sum_{j=1}^{n} a_j \mu(E_j)$$

Remark 1. By convention, $0.\infty = 0$.

Remark 2. $\int \phi \ d\mu = \int \phi$.

Remark 3. $\int \phi \ d\mu = \int \phi(x) \ d\mu(x)$.

Remark 4. If $A \in \mathcal{M}$, then $\phi \mathbb{1}_A$ is simple.

$$\phi \mathbb{1}_A = \sum_{j=1}^n a_j \mathbb{1}_{E_j \cap A}$$

$$\int_A \phi \ d\mu = \int \phi \mathbb{1}_A \ d\mu = \sum_{j=1}^n a_j \mu(E_j \cap A).$$

Remark 5. $\int_A \phi \ d\mu = \int \phi \mathbb{1}_A \ d\mu = \int_A \phi = \int \phi \mathbb{1}_A.$

Remark 6. $\int = \int_X$

Proposition 1.3. Let ϕ, ψ simple in L^+ ,

- a) If $c \ge 0$, $\int c\phi \ d\mu = c \int \phi \ d\mu$.
- b) $\int (\phi + \psi) d\mu = \int \phi d\mu + \int \psi d\mu$.
- c) If $\phi \leq \psi$, then $\int \phi \ d\mu \leq \int \psi \ d\mu$.

d) The map $A \to \int_A \phi \ d\mu$ is measure on \mathcal{M} .

Proof. a) It is trivial. consider $\phi = \sum_{j=1}^{m} a_j \mathbb{1}_{E_j}$. Then $\int c\phi \, d\mu = \sum_{j=1}^{n} ca_j \mu(E_j) = c \sum_{j=1}^{n} a_j \mu(E_j) = c \int \phi \, d\mu$.

b) Let $\phi = \sum_{j=1}^m a_j \mathbb{1}_{E_j}$, $\psi = \sum_{k=1}^m b_j \mathbb{1}_{F_k}$. Then $\{E_j \cap f_k : j, k\}$ is pairwise disjoint and covers set X. Then

$$\phi + \psi = \sum_{j,k} (a_j + b_k) \mathbb{1}_{E_j \cap F_k}.$$

Where $\phi = \sum_{j,k} a_j \mathbb{1}_{E_j \cap F_k}$ and $\psi = \sum_{j,k} b_k \mathbb{1}_{E_j \cap F_k}$. To complete the proof consider the following

$$\int (\phi + \psi) \ d\mu = \sum_{j,k} (a_j + b_k) \ \mu(E_j \cap F_k) = \sum_{j,k} a_j \ \mu(E_j \cap F_k) + \sum_{j,k} b_k \ \mu(E_j \cap F_k)$$
$$= \int \phi \ d\mu + \int \psi \ d\mu.$$

c) Given $\phi \leq \psi$ then we can get $a_i \leq b_k \ \forall j, k$ such that $\mu(E_j \cap F_k) \neq 0$. Then

$$\sum_{j,k} a_j \mu(E_j \cap F_k) \le b_k \mu(E_j \cap F_k)$$
$$\sum_{j,k} a_j \mu(E_j \cap F_k) \le \sum_{j,k} b_k \mu(E_j \cap F_k)$$
$$\int \phi \ d\mu \le \int \psi \ d\mu$$

d) Let $\{A_k \in \mathcal{M} : k \in \mathbb{N}\}$ be a disjoint sequence in \mathcal{M} , and call $A = \bigcup_{k \in \mathbb{N}} A_k$. Then

$$\int_{A} \phi \ d\mu = \int \sum_{j=1}^{n} a_{j} \mathbb{1}_{E_{j} \cap A} \ d\mu$$

$$= \sum_{j=1}^{n} a_{j} \ \mu(E_{j} \cap A)$$

$$= \sum_{j=1}^{n} \sum_{k \in \mathbb{N}} a_{j} \ \mu(E_{j} \cap A_{k})$$

$$= \sum_{k \in \mathbb{N}} \int_{A_{k}} \phi \ d\mu$$

Which completes the proof.

Definition 1.4. For $f \in L^+$ we can define $\int f \ d\mu = \sup\{\int \phi \ d\mu \colon 0 \le \phi \le f, \phi \text{ being simple function}\}.$

Remark 7. This definition is consistent for simple functions.

Remark 8. If $f \leq g$, then $\int f d\mu \leq \int g d\mu$.

Theorem 1.5 (Monotone convergence theorem). Let $\{f_n \in L^+ : n \in \mathbb{N}\}$ such that $f_j(x) = f_{j+1}(x) \ \forall j \in \mathbb{N}$, and $f(x) = \lim_{j \in \mathbb{N}} f_j(x) = \sup_{j \in \mathbb{N}} f_j(x)$, then $\lim_{n \in \mathbb{N}} \int f_n \ d\mu = \int (\lim_{n \in \mathbb{N}} f_n) \ d\mu$

Proof. Let $x \in X$ and $\{f_n(x) \colon n \in \mathbb{N}\}$, increasing sequence with $f = \lim_{n \to \infty} f_n$ exists and possibly ∞ and $f_n \leq f$. Then from the previous remark we know that $\int f_n \ d\mu \leq \int f \ d\mu \ \forall n \in \mathbb{N}$. To prove reverse inequality consider $\lim_{n \to \infty} \int f_n \ d\mu \leq \int f \ d\mu \ \forall n \in \mathbb{N}$. Let $\alpha \in (0,1)$ and $0 \leq \phi \leq f$ simple function, $E_n = \{x \in X \colon f_n(x) \geq \alpha \phi(x)\}$. Then $\{E_n \colon n \in \mathbb{N}\}$ is a sequence of increasing sets such that $\bigcup_{n \in \mathbb{N}} = X$. Then $\int_X f_n \ d\mu \geq \int_{E_n} f_n \ d\mu \geq \alpha \int_{E_n} \phi \ d\mu$. Then from previous proposition part d and the continuity from below definition we get $\lim_{n \to \infty} \int_{E_n} \phi \ d\mu = \int_X \phi \ d\mu$. Hence $\alpha \int \phi \ d\mu \leq \lim_{n \in \mathbb{N}} \int f_n \ d\mu$. Then by taking supremum over all such simple functions we get $\int f \ d\mu \leq \lim_{n \in \mathbb{N}} \int f_n \ d\mu$ which completes the proof.

Theorem 1.6. If $\{f_n \in L^+\}$ and $f = \sum_n f_n$ then $\int f \ d\mu = \sum_n \int f_n \ d\mu$.

Proof. Consider $f_1, f_2 \in L^+$, and $\{\phi_j\}$ and ψ_j increasing and converging to f_1, f_2 respectively. Then

$$\int (f_1 + f_2) d\mu = \lim_{j \in \mathbb{N}} \int (\phi_j + \psi_j)$$
$$= \lim_{j \in \mathbb{N}} \int \phi_j + \lim_{j \in \mathbb{N}} \int \psi_j$$
$$= \int f_1 d\mu + \int f_2 d\mu$$

Hence by induction we get $\int \sum_{i=1}^n f_i \ d\mu = \sum_{i=1}^n \int f_i \ d\mu$ for any any finite n. From Monotone convergence theorem, as $n \to \infty$ we get $\int \sum_{i=1}^{\infty} f_i \ d\mu = \sum_{i=1}^{\infty} \int f_i \ d\mu$. which is $\int f \ d\mu = \sum_n \int f_n \ d\mu$.

Proposition 1.7. If $f \in L^+$, and $\int f \ d\mu = 0$, then f = 0 a.e

Proof. This is clear if f is simple. Since, if $f = \sum_{j=1}^n a_j \mathbb{1}_{E_j}$ then $\int f \ d\mu = 0$ if and only if either $a_j = 0$ or $\mu(E_j) = 0$. In general, ϕ simple, $0 \le \phi \le f$ and f = 0 a.e then $\phi = 0$ a.e. Hence, $\int f \ d\mu = \sup_{\phi} \int \phi \ d\mu = 0$. Conversely, $\{x \colon f(x) > 0\} = \bigcup_{n \in \mathbb{N}} E_n$ where $E_n = \{x \in X \colon f(x) > \frac{1}{n}\}$. If $f \ne 0$ a.e then $\exists n \in \mathbb{N}$ such that $\mu(E_n) > 0$. That is, $\mu\{x \in X \colon f(x) > \frac{1}{n}\} > 0$. Then $\int f \ d\mu \ge \int_{E_n} f \ d\mu > \frac{1}{n} \mu(E_n) > 0$. Which is contradiction since we considered $\int f \ d\mu = 0$.

Corollary 1.8. If $\{f_n \in L^+ : n \in \mathbb{N}\}$, $f \in L^+$, such that $\sup_{n \to \infty} f_n(x) = f(x)$ for a.e X then $\lim_n \int f_n \ d\mu = \int f \ d\mu$.

Proof. Let $E = \{x \in X : f_n(x) \uparrow f(x)\}$ where $\mu(E^c) = 0$. Then $f - f \mathbb{1}_E = 0$ a.e and $f_n - f_n \mathbb{1}_E = 0$ a.e. By Monotone convergence theorem, $\int f \ d\mu = \int f \mathbb{1}_E \ d\mu = \lim \int f_n \mathbb{1}_E \ d\mu = \lim \int f_n \ d\mu$.

Lemma 1.9 (Fatou's lemma). If $\{f_n \in L^+ : n \in \mathbb{N}\}\ then \ \int (\liminf f_n) \ d\mu \le \liminf_n \int f_n \ d\mu$.

Proof. For $k \in \mathbb{N}$, $\inf_{n \geq k} f_k \leq f_j \ \forall j \geq k$. Hence, $\int \inf_{n \geq k} f_n d\mu \leq \inf_{j \geq k} \int f_j \ d\mu$. By letting $n \to \infty$ and applying monotone convergence theorem we get $\int \liminf_n f_n \leq \liminf_n \int f_n \ d\mu$.