Lecture 25 : Integration of non-negative functions

1 Integration of non-negative functions

Definition 1.1. Let (X, M, u) be the measurable space, we define Lt = {f €
F(X,[0,00]): fis (1, Bpo,oc)) measurable}.

Definition 1.2. If ¢ is simple, ¢ € L*, with standard representation ¢ = Y | a;1,
then we define integral of ¢ with respect to u by

/925 dp = Zn:aju(Ej)

Remark 1. By convention, 0.00 = 0.
Remark 2. [ ¢ dp= [ ¢.

Remark 3. [ ¢ dp= [ ¢(x) du(z).
Remark 4. If A € M, then ¢1 4 is simple.

n

Ly = Z ajlpna

j=1
/A " / A dp ;au

Remark 5. ngb dp= [ ¢la du:ngb:fgb]lA.
Remark 6. f:fX

Proposition 1.3. Let ¢, simple in L+,
a) Ife>0, [cddp=c[¢dpu

b) [(p+4)du=[¢du+ [ dpu.

¢) I/ 6 <, then [ ¢ du< [ dp.



d) The map A — [, ¢ du is measure on M.

Proof. a) Ttis trivial. consider ¢ = 3°7" a;1g,. Then [c¢du =377, caju(E;) =
¢y iy aji(Ey) = c ¢ du.

b) Let ¢ =37 ajlp;, =, bjlg,. Then {£;N fi: j,k} is pairwise disjoint
and covers set X. Then

S+ = (a;+bx)lenp,.
7.k

Where ¢ = Zj,k a;jlpnp, and ¢ = Zj,k bilg,nr,. To complete the proof
consider the following

/(¢ +1) dp =Y (a; +bi) p(E; N Fy) = Z%’ u(E; N Fy) + Zbk pu(E; N F)

g,k g,k i,k
. / & du + / b dp.

c) Given ¢ < then we can get a; < by Vj, k such that u(E; N Fy) # 0. Then

7,k 7.k
Jodus [van

d) Let {4y € M: k € N} be a disjoint sequence in M, and call A = UenAy.
Then

/¢ dp = /ZajﬂEij dp
A =

= a; p(E;NA)

J=1

= ZZ%‘ p(E; N Ay)

j=1 keN

=> | ¢du

keN 7 Ak

Which completes the proof.



Definition 1.4. For f € L* we can define [ f du = sup{[¢ dpu: 0 < ¢ <
f, ¢ being simple function}.

Remark 7. This definition is consistent for simple functions.
Remark 8. If f < g, then [ f du < [ g dpu.

Theorem 1.5 (Monotone convergence theorem). Let {f, € LT: n € N}
such that fi(x) = fij1(x) Vj € N, and f(z) = limjey fj(x) = sup;ey fi(x), then

Proof. Let x € X and {f,(z): n € N}, increasing sequence with f = lim, . f,
exists and possibly co and f,, < f. Then from the previous remark we know that
[ fo du < [ f du¥n € N. To prove reverse inequality consider lim,, o [ f,, dp <
JfduV¥n € N. Let a € (0,1) and 0 < ¢ < f simple function, E, = {x €
X: fu(z) > ag(x)}. Then {E,: n € N} is a sequence of increasing sets such that
Unen = X. Then [y fo dp > [ fodp > o [ ¢ dp. Then from previous propo-
sition part d and the continuity from below definition we get lim,, o || B, @ dp =
fX ¢ dp. Hence o [ ¢ dp < limpen [ fn dp. Then [ ¢ dp < limyey [ fn, dp. Then
by taking supremum over all such simple functions we get [ f du < limyey [ fn dp
which completes the proof. O]

Theorem 1.6. If {f, € Lt} and f =3 fu then [ fdu=3", [ fn dp.

Proof. Consider fi, fo € L™, and {¢,} and 1; increasing and converging to f1, fo
respectively. Then

[t 1 du=1tm [ (6,4 w)
=t [0, vt [ v,
— [fidu+ [ 1o

Hence by induction we get [ > " | fi du=>"", [ f; dp for any any finite n. From
Monotone convergence theorem, as n — oo we get [ > 0 fi du = >, [ f; du.
whichis [ fdu=>", [ fn dp. O
Proposition 1.7. If f € LT, and [ f dp=0,then f =0 a.e

Proof. This is clear if f is simple. Since, if f = Z?:l ajlg, then [ fdp=0ifand
only if either a; = 0 or p(E;) = 0. In general, ¢ simple, 0 < ¢ < f and f =0 a.e
then ¢ = 0 a.e. Hence, [ f du = sup, [ ¢ du = 0. Conversely, {z: f(z) > 0} =
UnenE, where E, = {z € X: f(z) > £}. If f # 0 a.e then In € N such that
w(E,) > 0. That is, p{z € X: f(z) > £} > 0. Then [ f du > Je | du >
%,u(En) > 0. Which is contradiction since we considered [ f du = 0. m

3



Corollary 1.8. If{f, € LT: n € N}, f € L*, such that sup,,_,, fn(x) = f(x) for
a.e X thenlim, [ f, du= [ f dp.

Proof. Let E = {z € X: f,(x) T f(x)} where u(E€) = 0. Then f — flg =0 a.e
and f, — folp = 0 a.e. By Monotone convergence theorem, [ f dp= [ flp du=

limffn]lE dp = limffn du. L]
Lemma 1.9 (Fatou’s lemma). If {f, € L*: n € N} then [(liminf f,) dp <
liminf, [ f, dpu.

Proof. For k € N, inf, > fr < f; Vj > k. Hence, finfnzk fadp < inszkffj dp.
By letting n — oo and applying monotone convergence theorem we get [ liminf,, f, <

liminfnffn du. L]
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