
Lecture 26: Dominated Convergence Theorem

Continuation of Fatou’s Lemma.

Corollary 0.1. If f ∈ L+ and {fn ∈ L+ : n ∈ N} is any sequence of functions
such that fn → f almost everywhere, then∫

X

f 6 lim inf

∫
X

fn.

Proof. Let fn → f everywhere in X. That is, lim inf fn(x) = f(x) (= lim sup fn
also) for all x ∈ X. Then, by Fatou’s lemma,∫

X

f =

∫
X

lim inf fn 6 lim inf

∫
X

fn.

If fn 9 f everywhere in X, then let E = {x ∈ X : lim inf fn(x) 6= f(x)}. Since
fn → f almost everywhere in X, µ(E) = 0 and∫

X

f =

∫
X−E

f and

∫
X

fn =

∫
X−E

fn ∀n

thus making fn 9 f everywhere in X − E. Hence,∫
X

f =

∫
X−E

f 6 lim inf

∫
X−E

fn = lim inf

∫
X

fn.

Example 0.2 (Strict inequality). Let Sn = [n, n+ 1] ⊂ R and fn = χ
Sn . Then,

f = lim inf fn = 0 and

0 =

∫
R
f dµ < lim inf

∫
R
fn dµ = 1.

Example 0.3 (Importance of non-negativity). Let Sn = [n, n + 1] ⊂ R and
fn = −χSn . Then, f = lim inf fn = 0 but

0 =

∫
R
f dµ > lim inf

∫
R
fn dµ = −1.
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Proposition 0.4. If f ∈ L+ and
∫
X
f dµ < ∞, then (a) the set A = {x ∈ X :

f(x) =∞} is a null set and (b) the set B = {x ∈ X : f(x) > 0} is σ-finite.

Proof. Recall that for any f ∈ L+∫
X

f dµ = sup

{∫
X

φ dµ : 0 6 φ 6 f, φ simple

}
and for a simple function ψ,

∫
X
ψ dµ =

∑n
j=1 ajµ(Ej), where Ej = ψ−1({aj}) and

{a1, a2, . . . , an} is the the range of ψ.

(a) Assume, on the contrary, that µ(A) > 0 and let I =
∫
X
f dµ < ∞. Define a

simple function φ as

φ = 2
I

µ(A)
χ
A.

Since f(x) =∞ for all x ∈ A and φ(x) = 0 for all x ∈ X −A, φ(x) 6 f(x) for
all x ∈ X and therefore,

∫
X
φ dµ 6

∫
X
f dµ. But

∫
X
φ dµ = 2I > I =

∫
X
f dµ,

which is a contradiction. Thus, µ(A) = 0.

(b) A σ-finite set is a countable union of sets of finite measure. Define Bn =
{x ∈ X : f(x) > n−1}. Then, B is a countable union of Bns. For each Bn,
define the simple functions φn = n−1χBn . For all n ∈ N, φn 6 f , and hence∫
X
φn dµ 6

∫
X
f dµ < ∞. Since

∫
X
φn dµ = n−1µ(Bn), µ(Bn) < ∞. Thus,

B = ∪n∈NBn is σ-finite.

1 Integration of Real-Valued Functions

We now discuss integration of real-valued function which need not be positive. Let
f+ and f− be the positive and negative parts of f respectively, where

f+(x) = max{f(x), 0} and f−(x) = max{−f(x), 0} for all x ∈ X.

Then, f = f+ − f−. Note that both f+ and f− are positive real-valued functions.
If at least one of

∫
X
f+ dµ and

∫
X
f− dµ is finite, then we define∫

X

f dµ =

∫
X

f+ dµ −
∫
X

f− dµ.

If both
∫
X
f+ dµ and

∫
X
f− dµ are finite, then f is said to be integrable. Since

|f | = f+ + f−, f is integrable iff
∫
X
|f | dµ <∞.
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Proposition 1.1. The set of integrable real-valued functions on X, denoted by
F(X,R), is a real vector space, and the integral is linear functional on it.

Proof. To prove that F(X,R) is a vector space, it suffices to prove that any linear
combination of integrable real-valued functions in F(X,R) also in F(X,R). For
any f, g ∈ F(X,R) and a, b ∈ R, |af + bg| 6 |a||f |+ |b||g| (by triangle inequality).
Hence,

∫
X
|af + bg| dµ 6

∫
X

(|a||f |+ |b||g|) dµ = |a|
∫
X
|f | dµ + |b|

∫
X
|g| dµ <∞

since both f and g are integrable. Thus, af + bg is also in F(X,R).
To prove that the functional I : f 7−→

∫
X
f dµ, f ∈ F(X,R), is linear, we need

to show that (a)I(cf) = cI(f) and (b)I(f+g) = I(f)+I(g) for all f, g ∈ F(X,R).

(a) We will use the facts that (cf)+ = cf+ and (cf)− = cf− for c > 0 and that
(cf)+ = |c|f− and (cf)− = |c|f+ for c < 0. Recall that for any g ∈ L+,
I(cg) = cI(g) and for any f ∈ F(X,R), both f+ and f− are positive. Let
c > 0. Then, using the above facts, I(cf) = c(I(f+) − I(f−)) = cI(f). For
c < 0, I(cf) = I((cf)+)− I((cf)−) = |c|(I(f−)− I(f+)) = −|c|I(f) = cI(f).

(b) Let f, g ∈ F(X,R) and h = f + g. Then, h+ − h− = f+ − f− + g+ − g− and
consequently h+ + f− + g− = h− + f+ + g+. Recall that if {fn} is a finite of
infinite sequence in L+ and f =

∑
n fn, then

∫
f =

∑
n

∫
fn. So,∫

h+ +

∫
f− +

∫
g− =

∫
h− +

∫
f+ +

∫
g+.

Rearranging the terms above, we get∫
h =

∫
h+ −

∫
h− =

∫
f+ −

∫
f− +

∫
g+ −

∫
g− =

∫
f +

∫
g.

Proposition 1.2. For any f ∈ F(X,R), |
∫
f | 6

∫
|f |.

Proof. If
∫
f = 0, then this is trivial. For any real f , |

∫
f | = |

∫
f+ −

∫
f−| 6

|
∫
f+|+ |

∫
f−| =

∫
f+ +

∫
f− =

∫
|f | (by triangle inequality).

Proposition 1.3. (a) For any f ∈ F(X,R), A = {x : f(x) 6= 0} is σ-finite.

(b) If f, g ∈ F(X,R), then
∫
E
f =

∫
E
g for all E ∈ M iff

∫
|f − g| = 0 iff f = g

almost everywhere.

Proof. (a) Note that A = A+ ∪ A−, where A+ = {x : f+(x) > 0} and A− = {x :
f−(x) > 0}. Since both f+ and f− are in L+, by Proposition 0.4, both A+

and A− are σ-finite. Hence, A is σ-finite.
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(b) The second equivalence follows from the fact that for any h ∈ L+,
∫
h = 0 iff

h = 0 almost everywhere. If
∫
|f − g| = 0, then by Proposition 1.2, for any

E ∈M, ∣∣∣∣∫
E

f −
∫
E

g

∣∣∣∣ 6
∫
X

χ
E|f − g| 6

∫
X

|f − g| = 0

so that
∫
E
f =

∫
E
g. Let h = f − g and assume that f = g almost everywhere

is false, then at least one of h+ and h− must be nonzero on a set of positive
measure. Let E = {x : h+(x) > 0} be one such set; note that h−(x) = 0 and
hence,

∫
E
h−(x) = 0 for all x ∈ E. Then,

∫
E
f −

∫
E
g =

∫
E
h =

∫
E
h+ > 0.

Similar conclusion can be drawn for h− being nonzero on a set of positive
measure.

Remark 1. (i) Altering functions on a mull set does not alter their integration.

(ii) Let E ∈M. Then, it is possible to integrate f by defining f |Ec = 0.

(iii) It is possible to treat R-valued functions that are finite almost everywhere
as R-valued functions.

Definition 1.4. L1 can be redefined as follows:

L1(µ) = {Equivalence class of almost everywhere-defined integrable functions on X},

where two functions f and g are equivalent if µ({x ∈ X : f(x) 6= g(x)}) = 0.

Remark 2. (i) L1(µ) is still a vector space (under pointwise almost everywhere
addition and scalar multiplication).

(ii) f ∈ L1(µ) will mean that f is an almost everywhere-defined integrable func-
tion.

(iii) For any two f, g ∈ L1(µ), define ρ(f, g) =
∫
|f−g| dµ. This is a metric, since

it is symmetric, satisfies triangle inequality, and is 0 if f and g are equal
almost everywhere. This definition allows L1(µ) to be a metric space with
ρ(f, g) as the metric.

Theorem 1.5 (The Dominated Convergence Theorem). Let {fn ∈ L1 : n ∈
N} be a sequence of functions such that (a) fn → f almost everywhere and (b)
there exists a non-negative g ∈ L1 such that |fn| 6 g almost everywhere for all
n ∈ N. Then, f ∈ L1 and

∫
f = limn→∞

∫
fn.

Remark 3. (i)
∫

limn→∞ fn = limn→∞
∫
fn is an equivalent statement.
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(ii) Here g dominates fns.

Proof. Since f is the limit of measurable functions {fn} almost every where, it
is measurable. Since |fn| 6 g almost everywhere, |f | = limn→∞ fn 6 g almost
everywhere, and hence, f ∈ L1. Furthermore, g + fn 6 0 almost everywhere and
g − fn 6 0 almost everywhere. By Corollary 0.1∫

g +

∫
f =

∫
(g + f) 6 lim inf

∫
(g + fn) =

∫
g + lim inf

∫
fn,

or ∫
f 6 lim inf

∫
fn. (1)

Using Corollary 0.1 for g − fn we obtain∫
g −

∫
f =

∫
(g − f) 6 lim inf

∫
(g − fn) =

∫
g − lim inf

∫
fn,

or ∫
f > lim sup

∫
fn. (2)

Since lim inf
∫
fn 6 lim sup

∫
fn, using 1 and 2 we get∫

f 6 lim inf

∫
fn 6 lim sup

∫
fn 6

∫
f,

which forces ∫
f = lim inf

∫
fn = lim sup

∫
fn 6

∫
f = lim

n→∞

∫
fn.

as claimed.

Theorem 1.6. Let {fn ∈ L1 : n ∈ N} be a sequence of functions such that∑
n∈N

∫
|fn| <∞. Then,

∑
n∈N fn converges to a function in L1 and

∫ ∑
n∈N fn =∑

n∈N
∫
fn.

Proof. Recall that if {hn} is a finite of infinite sequence in L+, then
∫ ∑

n hn =∑
n

∫
hn. Set hn = |fn| and let g =

∑
n∈N |fn|. Then,

∫
g =

∑
n∈N

∫
|fn| <∞ and

hence g ∈ L1.
By Proposition 0.4, g(x)(=

∑
n∈N |fn(x)|) is finite for all {x : g(x) > 0},

and for each such x
∑

n∈N fn(x) converges. Furthermore, the partial sums Fk ,
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∑k
n=1 fn 6 g (by triangle inequality) for all k. We can now apply dominated

convergence theorem to the sequence of partial sums Fk to obtain∫
lim
k→∞

Fk = lim
k→∞

∫
Fk,

which can be simplified to (using linearity of
∫

)∫ ∑
n∈N

fn =
∑
n∈N

∫
fn.

Theorem 1.7. If f ∈ L1 and ε > 0, then there is an integrable simple function
φ =

∑
ajχEj such that

∫
|f − φ| < ε. (That is, the integrable simple functions are

dense in L1 in the L1 metric.)

Proof. Recall that for any real-valued measurable function g, there exists a se-
quence {ψn} of simple functions such that ψn → g and 0 6 |ψ1| 6 |ψ2| 6 . . . 6 |g|
pointwise. Let {φn} be as above for f . Then, φns are integrable. Since |φn− f | 6
2|f |,

∫
|φn − f | < ε for sufficiently large n by the dominated convergence theo-

rem.

2 Modes of Convergence

Let (X,M, µ) be a measure space. Let {fn} be a sequence of functions in L1 and
f ∈ L1.

Definition 2.1 (Convergence in L1). If fn → f in the metric ρ(f, g) =
∫
|f −

g| dµ, then {fn} is said to converge to f in L1(µ).

Lemma 2.2. fn → f in L1 iff limn∈N
∫
|fn − f | dµ = 0.

Definition 2.3 (Pointwise Convergence). {fn} is said to converge to f point-
wise if fn(x) converges to f(x) for all x ∈ X. In other words, for every ε > 0 and
x, there exists an Nε,x such that |fn(x)− f(x)| 6 ε for all n > Nε,x.

Definition 2.4 (Uniform Convergence). {fn} is said to converge to f uni-
formly if for every ε > 0, there exists an Nε such that |fn(x) − f(x)| 6 ε for all
n > Nε and x ∈ X.

Definition 2.5 (Almost Everywhere Convergence). {fn} is said to converge
to f almost everywhere if µ({x ∈ X : limn→∞ fn(x) 6= f(x)}) = 0.

6



Definition 2.6 (Convergence in Measure). {fn} is said to converge to f in
measure if for every ε > 0, limn→∞ µ({x ∈ X : |fn(x)− f(x)| > ε}) = 0.

Definition 2.7 (Cauchy Convergence). {fn} is said to be Cauchy in measure
if for every ε > 0, µ({x ∈ X : |fn(x)− fm(x)| > 0})→ 0 as m,n→∞.

Theorem 2.8. If fn → f almost everywhere and fn 6 g for all n ∈ N and some
g ∈ L1, then fn → f in L1.

Proof. Follows from the dominated convergence theorem since |fn − f | 6 2g.

Proposition 2.9. If fn → f in L1, then fn → f in measure.

Proof. Let En,ε = {x : |fn(x) − f(x)| > ε}. Then,
∫
|fn − f | >

∫
En,ε
|fn − f | >

εµ(En,ε), and hence µ(En,ε) 6 ε−1
∫
|fn − f | → 0 as n→∞.

Theorem 2.10 (Erogoff’s Theorem, Almost Uniform Convergence). Let
µ(X) < ∞ and f1, f2, . . . , f be measurable real-valued functions on X such that
fn → f almost everywhere. Then, for every ε > 0, there exists E ⊆ X such that
µ(E) < ε and fn → f uniformly on Ec.

Remark 4. {fn} is said to converge to f almost uniformly if for every ε > 0, there
exists E ∈M of measure µ(E) < ε such that fn → f uniformly on Ec.

Proof. Without loss of generality, assume that fn → f everywhere on X. For
k, n ∈ N, let

En(k) = ∪∞m=n{x ∈ X : |fm(x)− f(x)| > 1/k}.

Then, for fixed k, En(k) decreases as n increases and ∩∞n=1En(k) = ∅. Since
µ(X)∞, we conclude that limn→∞ µ(En(k)) = 0. Given ε > 0 and k ∈ N, choose
nk large enough that µ(En(k)) < ε2−k and let E = ∪∞k=1Enk(k). Then, µ(E) < ε
and we have |fn(x)− f(x)| < 1/k for n > nk and x /∈ E. Thus, fn → f uniformly
on Ec.
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