Lecture 26: Dominated Convergence Theorem

Continuation of Fatou's Lemma.

Corollary 0.1. If $f \in L^+$ and $\{f_n \in L^+ : n \in \mathbb{N}\}$ is any sequence of functions such that $f_n \to f$ almost everywhere, then

$$\int_X f \leqslant \liminf \int_X f_n.$$

Proof. Let $f_n \to f$ everywhere in X. That is, $\liminf f_n(x) = f(x)$ (= $\limsup f_n$ also) for all $x \in X$. Then, by Fatou's lemma,

$$\int_X f = \int_X \liminf f_n \leqslant \liminf \int_X f_n.$$

If $f_n \nleftrightarrow f$ everywhere in X, then let $E = \{x \in X : \liminf f_n(x) \neq f(x)\}$. Since $f_n \to f$ almost everywhere in X, $\mu(E) = 0$ and

$$\int_X f = \int_{X-E} f \quad \text{and} \quad \int_X f_n = \int_{X-E} f_n \ \forall n$$

thus making $f_n \not\rightarrow f$ everywhere in X - E. Hence,

$$\int_X f = \int_{X-E} f \leqslant \liminf \int_{X-E} f_n = \liminf \int_X f_n.$$

Example 0.2 (Strict inequality). Let $S_n = [n, n+1] \subset \mathbb{R}$ and $f_n = \chi_{S_n}$. Then, $f = \liminf f_n = 0$ and

$$0 = \int_{\mathbb{R}} f \, d\mu < \liminf \int_{\mathbb{R}} f_n \, d\mu = 1.$$

Example 0.3 (Importance of non-negativity). Let $S_n = [n, n+1] \subset \mathbb{R}$ and $f_n = -\chi_{S_n}$. Then, $f = \liminf f_n = 0$ but

$$0 = \int_{\mathbb{R}} f \, d\mu > \liminf \int_{\mathbb{R}} f_n \, d\mu = -1.$$

Proposition 0.4. If $f \in L^+$ and $\int_X f d\mu < \infty$, then (a) the set $A = \{x \in X : f(x) = \infty\}$ is a null set and (b) the set $B = \{x \in X : f(x) > 0\}$ is σ -finite.

Proof. Recall that for any $f \in L^+$

$$\int_X f \, d\mu = \sup \left\{ \int_X \phi \, d\mu \ : \ 0 \leqslant \phi \leqslant f, \ \phi \ \text{simple} \right\}$$

and for a simple function ψ , $\int_X \psi d\mu = \sum_{j=1}^n a_j \mu(E_j)$, where $E_j = \psi^{-1}(\{a_j\})$ and $\{a_1, a_2, \ldots, a_n\}$ is the the range of ψ .

(a) Assume, on the contrary, that $\mu(A) > 0$ and let $I = \int_X f d\mu < \infty$. Define a simple function ϕ as

$$\phi = 2 \frac{I}{\mu(A)} \chi_A.$$

Since $f(x) = \infty$ for all $x \in A$ and $\phi(x) = 0$ for all $x \in X - A$, $\phi(x) \leq f(x)$ for all $x \in X$ and therefore, $\int_X \phi \, d\mu \leq \int_X f \, d\mu$. But $\int_X \phi \, d\mu = 2I > I = \int_X f \, d\mu$, which is a contradiction. Thus, $\mu(A) = 0$.

(b) A σ -finite set is a countable union of sets of finite measure. Define $B_n = \{x \in X : f(x) > n^{-1}\}$. Then, B is a countable union of B_n s. For each B_n , define the simple functions $\phi_n = n^{-1}\chi_{B_n}$. For all $n \in \mathbb{N}$, $\phi_n \leqslant f$, and hence $\int_X \phi_n d\mu \leqslant \int_X f d\mu < \infty$. Since $\int_X \phi_n d\mu = n^{-1}\mu(B_n)$, $\mu(B_n) < \infty$. Thus, $B = \bigcup_{n \in \mathbb{N}} B_n$ is σ -finite.

1 Integration of Real-Valued Functions

We now discuss integration of real-valued function which need not be positive. Let f^+ and f^- be the positive and negative parts of f respectively, where

$$f^+(x) = \max\{f(x), 0\}$$
 and $f^-(x) = \max\{-f(x), 0\}$ for all $x \in X$.

Then, $f = f^+ - f^-$. Note that both f^+ and f^- are positive real-valued functions. If at least one of $\int_X f^+ d\mu$ and $\int_X f^- d\mu$ is finite, then we define

$$\int_X f \, d\mu = \int_X f^+ \, d\mu - \int_X f^- \, d\mu.$$

If both $\int_X f^+ d\mu$ and $\int_X f^- d\mu$ are finite, then f is said to be **integrable**. Since $|f| = f^+ + f^-$, f is integrable iff $\int_X |f| d\mu < \infty$.

Proposition 1.1. The set of integrable real-valued functions on X, denoted by $\mathcal{F}(X,\mathbb{R})$, is a real vector space, and the integral is linear functional on it.

Proof. To prove that $\mathcal{F}(X, \mathbb{R})$ is a vector space, it suffices to prove that any linear combination of integrable real-valued functions in $\mathcal{F}(X, \mathbb{R})$ also in $\mathcal{F}(X, \mathbb{R})$. For any $f, g \in \mathcal{F}(X, \mathbb{R})$ and $a, b \in \mathbb{R}$, $|af + bg| \leq |a||f| + |b||g|$ (by triangle inequality). Hence, $\int_X |af + bg| d\mu \leq \int_X (|a||f| + |b||g|) d\mu = |a| \int_X |f| d\mu + |b| \int_X |g| d\mu < \infty$ since both f and g are integrable. Thus, af + bg is also in $\mathcal{F}(X, \mathbb{R})$.

To prove that the functional $I: f \mapsto \int_X f d\mu$, $f \in \mathcal{F}(X, \mathbb{R})$, is linear, we need to show that (a)I(cf) = cI(f) and (b)I(f+g) = I(f)+I(g) for all $f, g \in \mathcal{F}(X, \mathbb{R})$.

- (a) We will use the facts that $(cf)^+ = cf^+$ and $(cf)^- = cf^-$ for $c \ge 0$ and that $(cf)^+ = |c|f^-$ and $(cf)^- = |c|f^+$ for c < 0. Recall that for any $g \in L^+$, I(cg) = cI(g) and for any $f \in \mathcal{F}(X,\mathbb{R})$, both f^+ and f^- are positive. Let $c \ge 0$. Then, using the above facts, $I(cf) = c(I(f^+) I(f^-)) = cI(f)$. For $c < 0, I(cf) = I((cf)^+) I((cf)^-) = |c|(I(f^-) I(f^+)) = -|c|I(f) = cI(f)$.
- (b) Let $f, g \in \mathcal{F}(X, \mathbb{R})$ and h = f + g. Then, $h^+ h^- = f^+ f^- + g^+ g^-$ and consequently $h^+ + f^- + g^- = h^- + f^+ + g^+$. Recall that if $\{f_n\}$ is a finite of infinite sequence in L^+ and $f = \sum_n f_n$, then $\int f = \sum_n \int f_n$. So,

$$\int h^{+} + \int f^{-} + \int g^{-} = \int h^{-} + \int f^{+} + \int g^{+}.$$

Rearranging the terms above, we get

$$\int h = \int h^{+} - \int h^{-} = \int f^{+} - \int f^{-} + \int g^{+} - \int g^{-} = \int f + \int g.$$

Proposition 1.2. For any $f \in \mathcal{F}(X, \mathbb{R})$, $|\int f| \leq \int |f|$.

Proof. If $\int f = 0$, then this is trivial. For any real f, $|\int f| = |\int f^+ - \int f^-| \leq |\int f^+| + |\int f^-| = \int f^+ + \int f^- = \int |f|$ (by triangle inequality). \Box

Proposition 1.3. (a) For any $f \in \mathcal{F}(X, \mathbb{R})$, $A = \{x : f(x) \neq 0\}$ is σ -finite.

- (b) If $f, g \in \mathcal{F}(X, \mathbb{R})$, then $\int_E f = \int_E g$ for all $E \in \mathcal{M}$ iff $\int |f g| = 0$ iff f = g almost everywhere.
- *Proof.* (a) Note that $A = A^+ \cup A^-$, where $A^+ = \{x : f^+(x) > 0\}$ and $A^- = \{x : f^-(x) > 0\}$. Since both f^+ and f^- are in L^+ , by Proposition 0.4, both A^+ and A^- are σ -finite. Hence, A is σ -finite.

(b) The second equivalence follows from the fact that for any $h \in L^+$, $\int h = 0$ iff h = 0 almost everywhere. If $\int |f - g| = 0$, then by Proposition 1.2, for any $E \in \mathcal{M}$,

$$\left| \int_{E} f - \int_{E} g \right| \leq \int_{X} \chi_{E} |f - g| \leq \int_{X} |f - g| = 0$$

so that $\int_E f = \int_E g$. Let h = f - g and assume that f = g almost everywhere is false, then at least one of h^+ and h^- must be nonzero on a set of positive measure. Let $E = \{x : h^+(x) > 0\}$ be one such set; note that $h^-(x) = 0$ and hence, $\int_E h^-(x) = 0$ for all $x \in E$. Then, $\int_E f - \int_E g = \int_E h = \int_E h^+ > 0$. Similar conclusion can be drawn for h^- being nonzero on a set of positive measure.

Remark 1. (i) Altering functions on a mull set does not alter their integration.

- (ii) Let $E \in \mathcal{M}$. Then, it is possible to integrate f by defining $f|_{E^c} = 0$.
- (*iii*) It is possible to treat $\overline{\mathbb{R}}$ -valued functions that are finite almost everywhere as \mathbb{R} -valued functions.

Definition 1.4. L^1 can be redefined as follows:

 $L^{1}(\mu) = \{$ Equivalence class of almost everywhere-defined integrable functions on $X\},\$

where two functions f and g are equivalent if $\mu(\{x \in X : f(x) \neq g(x)\}) = 0$.

- Remark 2. (i) $L^{1}(\mu)$ is still a vector space (under pointwise almost everywhere addition and scalar multiplication).
- (ii) $f \in L^1(\mu)$ will mean that f is an almost everywhere-defined integrable function.
- (iii) For any two $f, g \in L^1(\mu)$, define $\rho(f, g) = \int |f g| d\mu$. This is a metric, since it is symmetric, satisfies triangle inequality, and is 0 if f and g are equal almost everywhere. This definition allows $L^1(\mu)$ to be a metric space with $\rho(f, g)$ as the metric.

Theorem 1.5 (The Dominated Convergence Theorem). Let $\{f_n \in L^1 : n \in \mathbb{N}\}$ be a sequence of functions such that (a) $f_n \to f$ almost everywhere and (b) there exists a non-negative $g \in L^1$ such that $|f_n| \leq g$ almost everywhere for all $n \in \mathbb{N}$. Then, $f \in L^1$ and $\int f = \lim_{n \to \infty} \int f_n$.

Remark 3. (i) $\int \lim_{n \to \infty} f_n = \lim_{n \to \infty} \int f_n$ is an equivalent statement.

(*ii*) Here g dominates f_n s.

Proof. Since f is the limit of measurable functions $\{f_n\}$ almost every where, it is measurable. Since $|f_n| \leq g$ almost everywhere, $|f| = \lim_{n \to \infty} f_n \leq g$ almost everywhere, and hence, $f \in L^1$. Furthermore, $g + f_n \leq 0$ almost everywhere and $g - f_n \leq 0$ almost everywhere. By Corollary 0.1

$$\int g + \int f = \int (g+f) \leq \liminf \int (g+f_n) = \int g + \liminf \int f_n,$$

or

$$\int f \leqslant \liminf \int f_n. \tag{1}$$

Using Corollary 0.1 for $g - f_n$ we obtain

$$\int g - \int f = \int (g - f) \leqslant \liminf \int (g - f_n) = \int g - \liminf \int f_n,$$

or

$$\int f \geqslant \limsup \int f_n. \tag{2}$$

Since $\liminf \int f_n \leq \limsup \int f_n$, using 1 and 2 we get

$$\int f \leqslant \liminf \int f_n \leqslant \limsup \int f_n \leqslant \int f,$$

which forces

$$\int f = \liminf \int f_n = \limsup \int f_n \leqslant \int f = \lim_{n \to \infty} \int f_n.$$

as claimed.

Theorem 1.6. Let $\{f_n \in L^1 : n \in \mathbb{N}\}$ be a sequence of functions such that $\sum_{n \in \mathbb{N}} \int |f_n| < \infty$. Then, $\sum_{n \in \mathbb{N}} f_n$ converges to a function in L^1 and $\int \sum_{n \in \mathbb{N}} f_n = \sum_{n \in \mathbb{N}} \int f_n$.

Proof. Recall that if $\{h_n\}$ is a finite of infinite sequence in L^+ , then $\int \sum_n h_n = \sum_n \int h_n$. Set $h_n = |f_n|$ and let $g = \sum_{n \in \mathbb{N}} |f_n|$. Then, $\int g = \sum_{n \in \mathbb{N}} \int |f_n| < \infty$ and hence $g \in L^1$.

By Proposition 0.4, $g(x) (= \sum_{n \in \mathbb{N}} |f_n(x)|)$ is finite for all $\{x : g(x) > 0\}$, and for each such $x \sum_{n \in \mathbb{N}} f_n(x)$ converges. Furthermore, the partial sums $F_k \triangleq$ $\sum_{n=1}^{k} f_n \leq g$ (by triangle inequality) for all k. We can now apply dominated convergence theorem to the sequence of partial sums F_k to obtain

$$\int \lim_{k \to \infty} F_k = \lim_{k \to \infty} \int F_k,$$

which can be simplified to (using linearity of \int)

$$\int \sum_{n \in \mathbb{N}} f_n = \sum_{n \in \mathbb{N}} \int f_n.$$

Theorem 1.7. If $f \in L^1$ and $\epsilon > 0$, then there is an integrable simple function $\phi = \sum a_j \chi_{E_j}$ such that $\int |f - \phi| < \epsilon$. (That is, the integrable simple functions are dense in L^1 in the L^1 metric.)

Proof. Recall that for any real-valued measurable function g, there exists a sequence $\{\psi_n\}$ of simple functions such that $\psi_n \to g$ and $0 \leq |\psi_1| \leq |\psi_2| \leq \ldots \leq |g|$ pointwise. Let $\{\phi_n\}$ be as above for f. Then, ϕ_n s are integrable. Since $|\phi_n - f| \leq 2|f|, \int |\phi_n - f| < \epsilon$ for sufficiently large n by the dominated convergence theorem.

2 Modes of Convergence

Let (X, \mathcal{M}, μ) be a measure space. Let $\{f_n\}$ be a sequence of functions in L^1 and $f \in L^1$.

Definition 2.1 (Convergence in L^1). If $f_n \to f$ in the metric $\rho(f,g) = \int |f - g| d\mu$, then $\{f_n\}$ is said to converge to f in $L^1(\mu)$.

Lemma 2.2. $f_n \to f$ in L^1 iff $\lim_{n \in \mathbb{N}} \int |f_n - f| d\mu = 0$.

Definition 2.3 (Pointwise Convergence). $\{f_n\}$ is said to converge to f pointwise if $f_n(x)$ converges to f(x) for all $x \in X$. In other words, for every $\epsilon > 0$ and x, there exists an $N_{\epsilon,x}$ such that $|f_n(x) - f(x)| \leq \epsilon$ for all $n \geq N_{\epsilon,x}$.

Definition 2.4 (Uniform Convergence). $\{f_n\}$ is said to converge to f uniformly if for every $\epsilon > 0$, there exists an N_{ϵ} such that $|f_n(x) - f(x)| \leq \epsilon$ for all $n \geq N_{\epsilon}$ and $x \in X$.

Definition 2.5 (Almost Everywhere Convergence). $\{f_n\}$ is said to converge to f almost everywhere if $\mu(\{x \in X : \lim_{n \to \infty} f_n(x) \neq f(x)\}) = 0$.

Definition 2.6 (Convergence in Measure). $\{f_n\}$ is said to converge to f in measure if for every $\epsilon > 0$, $\lim_{n\to\infty} \mu(\{x \in X : |f_n(x) - f(x)| \ge \epsilon\}) = 0$.

Definition 2.7 (Cauchy Convergence). $\{f_n\}$ is said to be Cauchy in measure if for every $\epsilon > 0$, $\mu(\{x \in X : |f_n(x) - f_m(x)| \ge 0\}) \to 0$ as $m, n \to \infty$.

Theorem 2.8. If $f_n \to f$ almost everywhere and $f_n \leq g$ for all $n \in \mathbb{N}$ and some $g \in L^1$, then $f_n \to f$ in L^1 .

Proof. Follows from the dominated convergence theorem since $|f_n - f| \leq 2g$. \Box

Proposition 2.9. If $f_n \to f$ in L^1 , then $f_n \to f$ in measure.

Proof. Let $E_{n,\epsilon} = \{x : |f_n(x) - f(x)| \ge \epsilon\}$. Then, $\int |f_n - f| \ge \int_{E_{n,\epsilon}} |f_n - f| \ge \epsilon \mu(E_{n,\epsilon})$, and hence $\mu(E_{n,\epsilon}) \le \epsilon^{-1} \int |f_n - f| \to 0$ as $n \to \infty$.

Theorem 2.10 (Erogoff's Theorem, Almost Uniform Convergence). Let $\mu(X) < \infty$ and f_1, f_2, \ldots, f be measurable real-valued functions on X such that $f_n \to f$ almost everywhere. Then, for every $\epsilon > 0$, there exists $E \subseteq X$ such that $\mu(E) < \epsilon$ and $f_n \to f$ uniformly on E^{c} .

Remark 4. $\{f_n\}$ is said to converge to f almost uniformly if for every $\epsilon > 0$, there exists $E \in \mathcal{M}$ of measure $\mu(E) < \epsilon$ such that $f_n \to f$ uniformly on E^{c} .

Proof. Without loss of generality, assume that $f_n \to f$ everywhere on X. For $k, n \in \mathbb{N}$, let

$$E_n(k) = \bigcup_{m=n}^{\infty} \{ x \in X : |f_m(x) - f(x)| \ge \frac{1}{k} \}.$$

Then, for fixed k, $E_n(k)$ decreases as n increases and $\bigcap_{n=1}^{\infty} E_n(k) = \emptyset$. Since $\mu(X)\infty$, we conclude that $\lim_{n\to\infty} \mu(E_n(k)) = 0$. Given $\epsilon > 0$ and $k \in \mathbb{N}$, choose n_k large enough that $\mu(E_n(k)) < \epsilon 2^{-k}$ and let $E = \bigcup_{k=1}^{\infty} E_{n_k}(k)$. Then, $\mu(E) < \epsilon$ and we have $|f_n(x) - f(x)| < \frac{1}{k}$ for $n > n_k$ and $x \notin E$. Thus, $f_n \to f$ uniformly on E^{c} .