Lecture 26: Dominated Convergence Theorem

Continuation of Fatou's Lemma.

Corollary 0.1. If $f \in L^{+}$and $\left\{f_{n} \in L^{+}: n \in \mathbb{N}\right\}$ is any sequence of functions such that $f_{n} \rightarrow f$ almost everywhere, then

$$
\int_{X} f \leqslant \liminf \int_{X} f_{n}
$$

Proof. Let $f_{n} \rightarrow f$ everywhere in X. That is, $\lim \inf f_{n}(x)=f(x)\left(=\limsup f_{n}\right.$ also) for all $x \in X$. Then, by Fatou's lemma,

$$
\int_{X} f=\int_{X} \liminf f_{n} \leqslant \liminf \int_{X} f_{n}
$$

If $f_{n} \nrightarrow f$ everywhere in X, then let $E=\left\{x \in X: \liminf f_{n}(x) \neq f(x)\right\}$. Since $f_{n} \rightarrow f$ almost everywhere in $X, \mu(E)=0$ and

$$
\int_{X} f=\int_{X-E} f \quad \text { and } \quad \int_{X} f_{n}=\int_{X-E} f_{n} \forall n
$$

thus making $f_{n} \rightarrow f$ everywhere in $X-E$. Hence,

$$
\int_{X} f=\int_{X-E} f \leqslant \liminf \int_{X-E} f_{n}=\liminf \int_{X} f_{n} .
$$

Example 0.2 (Strict inequality). Let $S_{n}=[n, n+1] \subset \mathbb{R}$ and $f_{n}=\chi_{S_{n}}$. Then, $f=\liminf f_{n}=0$ and

$$
0=\int_{\mathbb{R}} f d \mu<\liminf \int_{\mathbb{R}} f_{n} d \mu=1
$$

Example 0.3 (Importance of non-negativity). Let $S_{n}=[n, n+1] \subset \mathbb{R}$ and $f_{n}=-\chi_{S_{n}}$. Then, $f=\liminf f_{n}=0$ but

$$
0=\int_{\mathbb{R}} f d \mu>\liminf \int_{\mathbb{R}} f_{n} d \mu=-1 .
$$

Proposition 0.4. If $f \in L^{+}$and $\int_{X} f d \mu<\infty$, then (a) the set $A=\{x \in X$: $f(x)=\infty\}$ is a null set and (b) the set $B=\{x \in X: f(x)>0\}$ is σ-finite.

Proof. Recall that for any $f \in L^{+}$

$$
\int_{X} f d \mu=\sup \left\{\int_{X} \phi d \mu: 0 \leqslant \phi \leqslant f, \phi \text { simple }\right\}
$$

and for a simple function $\psi, \int_{X} \psi d \mu=\sum_{j=1}^{n} a_{j} \mu\left(E_{j}\right)$, where $E_{j}=\psi^{-1}\left(\left\{a_{j}\right\}\right)$ and $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is the the range of ψ.
(a) Assume, on the contrary, that $\mu(A)>0$ and let $I=\int_{X} f d \mu<\infty$. Define a simple function ϕ as

$$
\phi=2 \frac{I}{\mu(A)} \chi_{A}
$$

Since $f(x)=\infty$ for all $x \in A$ and $\phi(x)=0$ for all $x \in X-A, \phi(x) \leqslant f(x)$ for all $x \in X$ and therefore, $\int_{X} \phi d \mu \leqslant \int_{X} f d \mu$. But $\int_{X} \phi d \mu=2 I>I=\int_{X} f d \mu$, which is a contradiction. Thus, $\mu(A)=0$.
(b) A σ-finite set is a countable union of sets of finite measure. Define $B_{n}=$ $\left\{x \in X: f(x)>n^{-1}\right\}$. Then, B is a countable union of B_{n}. For each B_{n}, define the simple functions $\phi_{n}=n^{-1} \chi_{B_{n}}$. For all $n \in \mathbb{N}, \phi_{n} \leqslant f$, and hence $\int_{X} \phi_{n} d \mu \leqslant \int_{X} f d \mu<\infty$. Since $\int_{X} \phi_{n} d \mu=n^{-1} \mu\left(B_{n}\right), \mu\left(B_{n}\right)<\infty$. Thus, $B=\cup_{n \in \mathbb{N}} B_{n}$ is σ-finite.

1 Integration of Real-Valued Functions

We now discuss integration of real-valued function which need not be positive. Let f^{+}and f^{-}be the positive and negative parts of f respectively, where

$$
f^{+}(x)=\max \{f(x), 0\} \quad \text { and } \quad f^{-}(x)=\max \{-f(x), 0\} \quad \text { for all } \quad x \in X
$$

Then, $f=f^{+}-f^{-}$. Note that both f^{+}and f^{-}are positive real-valued functions. If at least one of $\int_{X} f^{+} d \mu$ and $\int_{X} f^{-} d \mu$ is finite, then we define

$$
\int_{X} f d \mu=\int_{X} f^{+} d \mu-\int_{X} f^{-} d \mu
$$

If both $\int_{X} f^{+} d \mu$ and $\int_{X} f^{-} d \mu$ are finite, then f is said to be integrable. Since $|f|=f^{+}+f^{-}, f$ is integrable iff $\int_{X}|f| d \mu<\infty$.

Proposition 1.1. The set of integrable real-valued functions on X, denoted by $\mathcal{F}(X, \mathbb{R})$, is a real vector space, and the integral is linear functional on it.

Proof. To prove that $\mathcal{F}(X, \mathbb{R})$ is a vector space, it suffices to prove that any linear combination of integrable real-valued functions in $\mathcal{F}(X, \mathbb{R})$ also in $\mathcal{F}(X, \mathbb{R})$. For any $f, g \in \mathcal{F}(X, \mathbb{R})$ and $a, b \in \mathbb{R},|a f+b g| \leqslant|a||f|+|b||g|$ (by triangle inequality). Hence, $\int_{X}|a f+b g| d \mu \leqslant \int_{X}(|a||f|+|b||g|) d \mu=|a| \int_{X}|f| d \mu+|b| \int_{X}|g| d \mu<\infty$ since both f and g are integrable. Thus, $a f+b g$ is also in $\mathcal{F}(X, \mathbb{R})$.

To prove that the functional $I: f \longmapsto \int_{X} f d \mu, f \in \mathcal{F}(X, \mathbb{R})$, is linear, we need to show that $(a) I(c f)=c I(f)$ and $(b) I(f+g)=I(f)+I(g)$ for all $f, g \in \mathcal{F}(X, \mathbb{R})$.
(a) We will use the facts that $(c f)^{+}=c f^{+}$and $(c f)^{-}=c f^{-}$for $c \geqslant 0$ and that $(c f)^{+}=|c| f^{-}$and $(c f)^{-}=|c| f^{+}$for $c<0$. Recall that for any $g \in L^{+}$, $I(c g)=c I(g)$ and for any $f \in \mathcal{F}(X, \mathbb{R})$, both f^{+}and f^{-}are positive. Let $c \geqslant 0$. Then, using the above facts, $I(c f)=c\left(I\left(f^{+}\right)-I\left(f^{-}\right)\right)=c I(f)$. For $c<0, I(c f)=I\left((c f)^{+}\right)-I\left((c f)^{-}\right)=|c|\left(I\left(f^{-}\right)-I\left(f^{+}\right)\right)=-|c| I(f)=c I(f)$.
(b) Let $f, g \in \mathcal{F}(X, \mathbb{R})$ and $h=f+g$. Then, $h^{+}-h^{-}=f^{+}-f^{-}+g^{+}-g^{-}$and consequently $h^{+}+f^{-}+g^{-}=h^{-}+f^{+}+g^{+}$. Recall that if $\left\{f_{n}\right\}$ is a finite of infinite sequence in L^{+}and $f=\sum_{n} f_{n}$, then $\int f=\sum_{n} \int f_{n}$. So,

$$
\int h^{+}+\int f^{-}+\int g^{-}=\int h^{-}+\int f^{+}+\int g^{+}
$$

Rearranging the terms above, we get

$$
\int h=\int h^{+}-\int h^{-}=\int f^{+}-\int f^{-}+\int g^{+}-\int g^{-}=\int f+\int g
$$

Proposition 1.2. For any $f \in \mathcal{F}(X, \mathbb{R}),\left|\int f\right| \leqslant \int|f|$.
Proof. If $\int f=0$, then this is trivial. For any real $f,\left|\int f\right|=\left|\int f^{+}-\int f^{-}\right| \leqslant$ $\left|\int f^{+}\right|+\left|\int f^{-}\right|=\int f^{+}+\int f^{-}=\int|f|$ (by triangle inequality).

Proposition 1.3. (a) For any $f \in \mathcal{F}(X, \mathbb{R}), A=\{x: f(x) \neq 0\}$ is σ-finite.
(b) If $f, g \in \mathcal{F}(X, \mathbb{R})$, then $\int_{E} f=\int_{E} g$ for all $E \in \mathcal{M}$ iff $\int|f-g|=0$ iff $f=g$ almost everywhere.

Proof. (a) Note that $A=A^{+} \cup A^{-}$, where $A^{+}=\left\{x: f^{+}(x)>0\right\}$ and $A^{-}=\{x:$ $\left.f^{-}(x)>0\right\}$. Since both f^{+}and f^{-}are in L^{+}, by Proposition 0.4, both A^{+} and A^{-}are σ-finite. Hence, A is σ-finite.
(b) The second equivalence follows from the fact that for any $h \in L^{+}, \int h=0$ iff $h=0$ almost everywhere. If $\int|f-g|=0$, then by Proposition 1.2, for any $E \in \mathcal{M}$,

$$
\left|\int_{E} f-\int_{E} g\right| \leqslant \int_{X} \chi_{E}|f-g| \leqslant \int_{X}|f-g|=0
$$

so that $\int_{E} f=\int_{E} g$. Let $h=f-g$ and assume that $f=g$ almost everywhere is false, then at least one of h^{+}and h^{-}must be nonzero on a set of positive measure. Let $E=\left\{x: h^{+}(x)>0\right\}$ be one such set; note that $h^{-}(x)=0$ and hence, $\int_{E} h^{-}(x)=0$ for all $x \in E$. Then, $\int_{E} f-\int_{E} g=\int_{E} h=\int_{E} h^{+}>0$. Similar conclusion can be drawn for h^{-}being nonzero on a set of positive measure.

Remark 1. (i) Altering functions on a mull set does not alter their integration.
(ii) Let $E \in \mathcal{M}$. Then, it is possible to integrate f by defining $\left.f\right|_{E^{c}}=0$.
(iii) It is possible to treat $\overline{\mathbb{R}}$-valued functions that are finite almost everywhere as \mathbb{R}-valued functions.

Definition 1.4. L^{1} can be redefined as follows:
$L^{1}(\mu)=\{$ Equivalence class of almost everywhere-defined integrable functions on $X\}$,
where two functions f and g are equivalent if $\mu(\{x \in X: f(x) \neq g(x)\})=0$.
Remark 2. (i) $L^{1}(\mu)$ is still a vector space (under pointwise almost everywhere addition and scalar multiplication).
(ii) $f \in L^{1}(\mu)$ will mean that f is an almost everywhere-defined integrable function.
(iii) For any two $f, g \in L^{1}(\mu)$, define $\rho(f, g)=\int|f-g| d \mu$. This is a metric, since it is symmetric, satisfies triangle inequality, and is 0 if f and g are equal almost everywhere. This definition allows $L^{1}(\mu)$ to be a metric space with $\rho(f, g)$ as the metric.

Theorem 1.5 (The Dominated Convergence Theorem). Let $\left\{f_{n} \in L^{1}: n \in\right.$ $\mathbb{N}\}$ be a sequence of functions such that (a) $f_{n} \rightarrow f$ almost everywhere and (b) there exists a non-negative $g \in L^{1}$ such that $\left|f_{n}\right| \leqslant g$ almost everywhere for all $n \in \mathbb{N}$. Then, $f \in L^{1}$ and $\int f=\lim _{n \rightarrow \infty} \int f_{n}$.

Remark 3. (i) $\int \lim _{n \rightarrow \infty} f_{n}=\lim _{n \rightarrow \infty} \int f_{n}$ is an equivalent statement.
(ii) Here g dominates f_{n} s.

Proof. Since f is the limit of measurable functions $\left\{f_{n}\right\}$ almost every where, it is measurable. Since $\left|f_{n}\right| \leqslant g$ almost everywhere, $|f|=\lim _{n \rightarrow \infty} f_{n} \leqslant g$ almost everywhere, and hence, $f \in L^{1}$. Furthermore, $g+f_{n} \leqslant 0$ almost everywhere and $g-f_{n} \leqslant 0$ almost everywhere. By Corollary 0.1

$$
\int g+\int f=\int(g+f) \leqslant \liminf \int\left(g+f_{n}\right)=\int g+\liminf \int f_{n}
$$

or

$$
\begin{equation*}
\int f \leqslant \liminf \int f_{n} \tag{1}
\end{equation*}
$$

Using Corollary 0.1 for $g-f_{n}$ we obtain

$$
\int g-\int f=\int(g-f) \leqslant \liminf \int\left(g-f_{n}\right)=\int g-\liminf \int f_{n},
$$

or

$$
\begin{equation*}
\int f \geqslant \limsup \int f_{n} \tag{2}
\end{equation*}
$$

Since $\liminf \int f_{n} \leqslant \limsup \int f_{n}$, using 1 and 2 we get

$$
\int f \leqslant \liminf \int f_{n} \leqslant \limsup \int f_{n} \leqslant \int f
$$

which forces

$$
\int f=\liminf \int f_{n}=\limsup \int f_{n} \leqslant \int f=\lim _{n \rightarrow \infty} \int f_{n}
$$

as claimed.
Theorem 1.6. Let $\left\{f_{n} \in L^{1}: n \in \mathbb{N}\right\}$ be a sequence of functions such that $\sum_{\sum_{n \in \mathbb{N}} \int\left|f_{n}\right|<\infty \text {. Then, } \sum_{n \in \mathbb{N}} f_{n} \text { converges to a function in } L^{1} \text { and } \int \sum_{n \in \mathbb{N}} f_{n}=}$

Proof. Recall that if $\left\{h_{n}\right\}$ is a finite of infinite sequence in L^{+}, then $\int \sum_{n} h_{n}=$ $\sum_{n} \int h_{n}$. Set $h_{n}=\left|f_{n}\right|$ and let $g=\sum_{n \in \mathbb{N}}\left|f_{n}\right|$. Then, $\int g=\sum_{n \in \mathbb{N}} \int\left|f_{n}\right|<\infty$ and hence $g \in L^{1}$.

By Proposition 0.4 $g(x)\left(=\sum_{n \in \mathbb{N}}\left|f_{n}(x)\right|\right)$ is finite for all $\{x: g(x)>0\}$, and for each such $x \sum_{n \in \mathbb{N}} f_{n}(x)$ converges. Furthermore, the partial sums $F_{k} \triangleq$
$\sum_{n=1}^{k} f_{n} \leqslant g$ (by triangle inequality) for all k. We can now apply dominated convergence theorem to the sequence of partial sums F_{k} to obtain

$$
\int \lim _{k \rightarrow \infty} F_{k}=\lim _{k \rightarrow \infty} \int F_{k},
$$

which can be simplified to (using linearity of \int)

$$
\int \sum_{n \in \mathbb{N}} f_{n}=\sum_{n \in \mathbb{N}} \int f_{n}
$$

Theorem 1.7. If $f \in L^{1}$ and $\epsilon>0$, then there is an integrable simple function $\phi=\sum a_{j} \chi_{E_{j}}$ such that $\int|f-\phi|<\epsilon$. (That is, the integrable simple functions are dense in L^{1} in the L^{1} metric.)

Proof. Recall that for any real-valued measurable function g, there exists a sequence $\left\{\psi_{n}\right\}$ of simple functions such that $\psi_{n} \rightarrow g$ and $0 \leqslant\left|\psi_{1}\right| \leqslant\left|\psi_{2}\right| \leqslant \ldots \leqslant|g|$ pointwise. Let $\left\{\phi_{n}\right\}$ be as above for f. Then, ϕ_{n} s are integrable. Since $\left|\phi_{n}-f\right| \leqslant$ $2|f|, \int\left|\phi_{n}-f\right|<\epsilon$ for sufficiently large n by the dominated convergence theorem.

2 Modes of Convergence

Let (X, \mathcal{M}, μ) be a measure space. Let $\left\{f_{n}\right\}$ be a sequence of functions in L^{1} and $f \in L^{1}$.

Definition 2.1 (Convergence in L^{1}). If $f_{n} \rightarrow f$ in the metric $\rho(f, g)=\int \mid f-$ $g \mid d \mu$, then $\left\{f_{n}\right\}$ is said to converge to f in $L^{1}(\mu)$.

Lemma 2.2. $f_{n} \rightarrow f$ in L^{1} iff $\lim _{n \in \mathbb{N}} \int\left|f_{n}-f\right| d \mu=0$.
Definition 2.3 (Pointwise Convergence). $\left\{f_{n}\right\}$ is said to converge to f pointwise if $f_{n}(x)$ converges to $f(x)$ for all $x \in X$. In other words, for every $\epsilon>0$ and x, there exists an $N_{\epsilon, x}$ such that $\left|f_{n}(x)-f(x)\right| \leqslant \epsilon$ for all $n \geqslant N_{\epsilon, x}$.

Definition 2.4 (Uniform Convergence). $\left\{f_{n}\right\}$ is said to converge to f uniformly if for every $\epsilon>0$, there exists an N_{ϵ} such that $\left|f_{n}(x)-f(x)\right| \leqslant \epsilon$ for all $n \geqslant N_{\epsilon}$ and $x \in X$.

Definition 2.5 (Almost Everywhere Convergence). $\left\{f_{n}\right\}$ is said to converge to f almost everywhere if $\mu\left(\left\{x \in X: \lim _{n \rightarrow \infty} f_{n}(x) \neq f(x)\right\}\right)=0$.

Definition 2.6 (Convergence in Measure). $\left\{f_{n}\right\}$ is said to converge to f in measure if for every $\epsilon>0, \lim _{n \rightarrow \infty} \mu\left(\left\{x \in X:\left|f_{n}(x)-f(x)\right| \geqslant \epsilon\right\}\right)=0$.

Definition 2.7 (Cauchy Convergence). $\left\{f_{n}\right\}$ is said to be Cauchy in measure if for every $\epsilon>0, \mu\left(\left\{x \in X:\left|f_{n}(x)-f_{m}(x)\right| \geqslant 0\right\}\right) \rightarrow 0$ as $m, n \rightarrow \infty$.

Theorem 2.8. If $f_{n} \rightarrow f$ almost everywhere and $f_{n} \leqslant g$ for all $n \in \mathbb{N}$ and some $g \in L^{1}$, then $f_{n} \rightarrow f$ in L^{1}.

Proof. Follows from the dominated convergence theorem since $\left|f_{n}-f\right| \leqslant 2 g$.
Proposition 2.9. If $f_{n} \rightarrow f$ in L^{1}, then $f_{n} \rightarrow f$ in measure.
Proof. Let $E_{n, \epsilon}=\left\{x:\left|f_{n}(x)-f(x)\right| \geqslant \epsilon\right\}$. Then, $\int\left|f_{n}-f\right| \geqslant \int_{E_{n, \epsilon}}\left|f_{n}-f\right| \geqslant$ $\epsilon \mu\left(E_{n, \epsilon}\right)$, and hence $\mu\left(E_{n, \epsilon}\right) \leqslant \epsilon^{-1} \int\left|f_{n}-f\right| \rightarrow 0$ as $n \rightarrow \infty$.

Theorem 2.10 (Erogoff's Theorem, Almost Uniform Convergence). Let $\mu(X)<\infty$ and f_{1}, f_{2}, \ldots, f be measurable real-valued functions on X such that $f_{n} \rightarrow f$ almost everywhere. Then, for every $\epsilon>0$, there exists $E \subseteq X$ such that $\mu(E)<\epsilon$ and $f_{n} \rightarrow f$ uniformly on E^{c}.

Remark 4. $\left\{f_{n}\right\}$ is said to converge to f almost uniformly if for every $\epsilon>0$, there exists $E \in \mathcal{M}$ of measure $\mu(E)<\epsilon$ such that $f_{n} \rightarrow f$ uniformly on $E^{\text {c }}$.

Proof. Without loss of generality, assume that $f_{n} \rightarrow f$ everywhere on X. For $k, n \in \mathbb{N}$, let

$$
E_{n}(k)=\cup_{m=n}^{\infty}\left\{x \in X:\left|f_{m}(x)-f(x)\right| \geqslant 1 / k\right\} .
$$

Then, for fixed $k, E_{n}(k)$ decreases as n increases and $\cap_{n=1}^{\infty} E_{n}(k)=\emptyset$. Since $\mu(X) \infty$, we conclude that $\lim _{n \rightarrow \infty} \mu\left(E_{n}(k)\right)=0$. Given $\epsilon>0$ and $k \in \mathbb{N}$, choose n_{k} large enough that $\mu\left(E_{n}(k)\right)<\epsilon 2^{-k}$ and let $E=\cup_{k=1}^{\infty} E_{n_{k}}(k)$. Then, $\mu(E)<\epsilon$ and we have $\left|f_{n}(x)-f(x)\right|<{ }^{1} / k$ for $n>n_{k}$ and $x \notin E$. Thus, $f_{n} \rightarrow f$ uniformly on E^{c}.

