
Lecture 1: Introduction to Statistical Inference

1 Introduction

We are interested in processing of information-bearing signals to extract informa-
tion. There are two types of problems of fundamental interest.

1. Detection: Finite number of possible situations

2. Estimation: “Nearest” to the possible situation

We look at three examples of interest.

Example 1.1 (Communication System). We need to estimate unknown analog
signal from the received signal that is distorted and corrupted.
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Figure 1: Block diagram for analog communication.

Example 1.2 (Radar communication). Pulse electromagnetic waves are sent
and received after possible reflection from a target if it exists. Target could be an
aircraft, ship, spacecraft, missile etc. If the target is detected, then one is interested
in estimating range, angle, and velocity of the target. One may be interested in
tracking the mobile target trajectory or even controlling it.

Example 1.3 (Automatic Control). In automatic control problem, given a
linear time invariant system H, we need to design a controller C for achieving
a desired response through output signal y(t). Typically, reference signal x(t) is
unknown in such systems, and only a noisy version of the state may be observable.
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Figure 2: Block diagram for automatic control.

Other applications of estimation and detection theory are in seismology, radio
astronomy, sonar, speech, signal, and image processing, biomedical signal process-
ing, optimal communications etc.

2 Probability Review

We denote observation space by Γ equipped with a σ-algebra G, that is a measur-
able collection of sets. Further, for all elements of A ∈ G, we have a non-negative
set function P : Γ→ [0, 1] that satisfies the following axioms of probability:

1. P (Γ) = 1,

2. for any disjoint countable collection of sets {An : n ∈ N}, we have P (∪nAn) =∑
n P (An).

Example 2.1 (Finite Observations). When observation space Γ has finitely
many elements, we can take G = P(Γ). Further, specifying P ({γ}) for all γ ∈ Γ
completely specifies the probability set function.

Example 2.2 (Euclidean Space). For the case when observation space Γ = Rn,
we take G = Bn, Borel σ-algebra on Rn. For this case, it suffices to specify the set
function P (A) for sets A ∈ G of the form {γ ∈ Γ : γi ≤ xi, i ∈ [n]}.

Definition 2.3 (Expectation). For a real valued function g : Γ→ R, we denote
its expectation by E[g(Y )] and define it as

E[g(Y )] =

∫
y∈Γ

g(y)dP (y).

3 Hypothesis Testing

Definition 3.1. A hypothesis is a statement about a population parameter.

Definition 3.2. The two complementary hypotheses in a hypothesis testing prob-
lem are called the null hypothesis and the alternative hypothesis, and denoted
by H0 and H1 respectively.
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We assume that observation is a random variable Y ∈ Γ distributed with
probability set function Pi when true hypothesis is Hi for i ∈ {0, 1}.

Definition 3.3. A hypothesis test is a rule δ : Γ → {0, 1} that specifies for all
values of y ∈ Γ, index of the accepted true hypothesis Hδ(y).

Definition 3.4. Region Γ1 = {y ∈ Γ : δ(y) = 1} is called the rejection region,
and Γ0 = Γc1 is called the acceptance region.

Definition 3.5. When the true underlying hypothesis is Hj, the cost incurred on
accepting hypothesis Hi is denoted by Cij. Uniform cost is given by

Cij = 1{i 6=j}, i, j ∈ {0, 1}.

Definition 3.6. For each hypothesisHi, the conditional risk is denoted by Rj(δ)
and defined as the expected cost incurred by the decision rule δ, when it is the
underlying true hypothesis. That is,

Rj(δ) = E

[∑
i

Cij1{δ(y)=i}|Hj holds

]
= Ej

[∑
i

Cij1{δ(y)=i}

]
= C0jPj(Γ0) + C1jPj(Γ1).

Our objective is to design a decision rule δ that minimizes risk. Usually, costs
of correct identification of the true hypothesis is low, and cost of incorrect identi-
fication is higher. Hence, minimizing risk for any hypothesis would be to ensure
that probability Pj(Γi) is low for i 6= j. One can’t simultaneously decrease all
decision regions {Γi}, since they form a partition of observation space Γ.

3.1 Bayesian Hypothesis Testing

In this approach, we assume a prior distribution π on hypotheses to be true.
Specifically, let πi denotes the prior probability of Hi being true.

Definition 3.7. We can defined unconditional risk as expected value of risk over
all possible hypotheses, denoted by r(δ). That is,

r(δ) = ERj(δ) =
∑
j

Rj(δ)πj.

Definition 3.8. For two distributions P1(y) and P0(y) we can define likelihood
ratio as L(y) = dP1

dP0
(y). When two distributions admit density, it is ratio of their

densities at y. For discrete distributions, it is ratio of their probability mass
functions at y.
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Theorem 3.9. For a Bayesian hypothesis testing problem optimal decision rule
that minimizes unconditional risk for a prior distribution π and costs {Cij} is a
threshold based rule called likelihood ratio test . That is,

δB(y) = 1{L(y)≥τ},

where likelihood ratio L(y) = dP1

dP0
(y) and threshold τ = π0(C10−C00)

π1(C01−C11)
.

Proof. We can write unconditional risk as

r(δ) =
∑
j

πjC0j +

∫
y∈Γ1

∑
j

πj(C1j − C0j)dPj(y).

Minimizing unconditional risk is equivalent to selecting rejection region Γ1 such
that the integrand is negative. That is,

Γ1 = {y ∈ Γ :
∑
j

πj(C1j − C0j)dPj(y) ≤ 0}.

By the definition of likelihood ratio and the threshold as defined in the theorem
hypothesis, theorem follows.

Remark 1. For uniform cost, threshold τ = π0
π1

and conditional risk

r(δ) = π0P0(Γ1) + π1P1(Γ0),

is probability of error in detection.

Definition 3.10. We can define posterior probability of hypothesis Hj being
true conditioned on observation being y as

πj(y) = Pr{Hj is true |Y = y} =
πjdPj(y)

π0dP0(y) + π1dP1(y)
.

Remark 2. Observe that rejection region can be written in terms of posterior
probabilities as

Γ1 = {y ∈ Γ : (C10 − C00)π0(y)− (C01 − C11)π1(y) ≤ 0}.

This is again a likelihood ratio test in term of ratio of posterior probabilities
L′(y) = π1(y)

π0(y)
and threshold τ ′ = C10−C00

C01−C11
. That is, Bayes’ decision rule is

δB(y) = 1{L′(y)≥τ ′}.
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Definition 3.11. The expected cost of choosing hypothesis Hi given observation
y is called posterior cost and denoted as Ri(y), where

Ri(y) = E[
∑
k,j

Ckj1{δ(y)=i}|Y = y] =
∑
j

Cijπj(y) = Ci0π0(y) + Ci1π1(y).

Remark 3. Alternatively, one can also write rejection region in terms of posterior
costs as

Γ1 = {y ∈ Γ : R0(y) ≤ R1(y)}.

Therefore, Bayes’ decision rule can be interpreted as the one that minimizes the
posterior cost of choosing a hypothesis when the observation is y. That is,

δB(y) = 1{R1(y)
R0(y)

≥1}.

Remark 4. For uniform cost, Bayes’ decision rule is likelihood ratio test for poste-
rior probabilities when the threshold is unity, That is,

δB(y) = 1{L′(y)≥1}.

This is equivalent to maximizing a posterior probability of underlying hypothesis
based on the observation. This is also called a MAP decision rule for binary
hypothesis test.
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