Lecture 2: Minimax Hypothesis Testing

14 Jan 2016

1 Continued from the Lecture 1

At the onset, we will look into two examples of Bayesian Hypothesis Testing.
Example 1.1 (The Binary Channel). A binary channel is the most common communication channel model used in coding theory and information theory. In this model, a transmitter sends a bit (0 or 1), and the receiver receives it. The bit may be received correctly, or it may be "flipped" with some probability. The probability with which a flipped bit is received is known as "crossover probability".

Consider transmission of a bit over such a Binary Channel. Let the observation at the output of the channel be Y, which can be either 0 , or 1 . Let the crossover probability be λ_{0} when bit 0 is transmitted, i.e., a transmitted 0 is received as 1 with probability λ_{0} and as 0 with probability ($1-\lambda_{0}$), where $0 \leq \lambda_{0} \leq 1$. Similarly, let the crossover probability when a 1 is transmitted be λ_{1}. A Binary Symmetric Channel (BSC) is a special case, where $\lambda_{0}=\lambda_{1}=\lambda$. Observing Y does not tell us exactly whether the transmitted digit was bit 0 or 1 . The goal is to find an optimum decision rule using the Bayesian Hypothesis Testing.

Figure 1: Block diagram for Binary Channel
The two hypothesis H_{0}, and H_{1} depict the transmission of bit 0 and 1 respectively. The observation set is $\Gamma=\{0,1\}$. The received signal $y \in \Gamma$ is an instance
of a Bernoulli random variable Y with probability mass function (pmf) dependent on the transmitted bit,

$$
\begin{align*}
Y_{0} & \sim \mathcal{B}\left(1-\lambda_{0}\right) \text { if } H_{0} \text { is transmitted, } \tag{1}\\
Y_{1} & \sim \mathcal{B}\left(1-\lambda_{1}\right) \text { if } H_{1} \text { is transmitted }
\end{align*}
$$

where the notation $\mathcal{B}(\lambda)$ denotes the pmf of a Bernoulli random variable p with parameter λ. The pmf of the observation Y can be written compactly as,

$$
p_{j}(y)=\left\{\begin{array}{ll}
\lambda_{j}, & \text { if } y \neq j, \tag{2}\\
\left(1-\lambda_{j}\right), & \text { if } y=j,
\end{array} \quad j \in\{0,1\}\right.
$$

The corresponding likelihood ratio is,

$$
L(y)=\frac{p_{1}(y)}{p_{0}(y)}= \begin{cases}\frac{\lambda_{1}}{1-\lambda_{0}} & \text { if } y=0 \tag{3}\\ \frac{1-\lambda_{1}}{\lambda_{0}} & \text { if } y=1\end{cases}
$$

As discussed in last lecture, a Bayesian decision rule has the form,

$$
\begin{equation*}
\delta_{B}(y)=\mathbb{1}_{\{L(y) \geq \tau\}}, \tag{4}
\end{equation*}
$$

where $\tau=\frac{\pi_{0}\left(C_{10}-C_{00}\right)}{\pi_{1}\left(C_{01}-C_{11}\right)}$ is a threshold, which depends on the prior probability π_{0} and the costs. If $\lambda_{0}, \lambda_{1}, \tau$ are such that $\lambda_{1} \geq \tau\left(1-\lambda_{0}\right)$, then according to the likelihood ratio, a received 0 is decided as transmitted 1 . Similarly a received 1 is decided as a transmitted 0 when $\left(1-\lambda_{1}\right)<\tau \lambda_{0}$.

Consider the simple case of uniform cost, for which, $C_{i j}=0$ if $i=j$ and $C_{i j}=1$ if $i \neq j$, and equal priors i.e., $\pi_{0}=1 / 2$. In this case, $\tau=1$, and the Bayesian decision rule is given as,

$$
\begin{align*}
& \delta_{B}(0)=\left\{\begin{array}{l}
1 \text { if }\left(1-\lambda_{1}\right)<\lambda_{0}, \\
0 \text { if }\left(1-\lambda_{1}\right) \geq \lambda_{0},
\end{array}\right. \tag{5}\\
& \delta_{B}(1)=\left\{\begin{array}{l}
1 \text { if }\left(1-\lambda_{1}\right) \geq \lambda_{0}, \\
0 \text { if }\left(1-\lambda_{1}\right)<\lambda_{0} .
\end{array}\right.
\end{align*}
$$

This can be written in a compact form as,

$$
\delta_{B}(y)= \begin{cases}y, & \text { if }\left(1-\lambda_{1}\right) \geq \lambda_{0} \tag{6}\\ (1-y), & \text { if }\left(1-\lambda_{1}\right)<\lambda_{0}\end{cases}
$$

For a BSC with $\left(\lambda_{1}=\lambda_{0}=\lambda\right)$,

$$
\delta_{B}(y)= \begin{cases}y, & \text { if } \lambda \leq 0.5 \tag{7}\\ (1-y), & \text { if } \lambda>0.5\end{cases}
$$

For the optimal Bayes rule described above, conditional risks have the following expressions,

$$
R_{0}(\delta)= \begin{cases}\lambda_{0} & \text { if }\left(1-\lambda_{1}\right) \geq \lambda_{0} \tag{8}\\ \left(1-\lambda_{0}\right) & \text { if }\left(1-\lambda_{1}\right)<\lambda_{0}\end{cases}
$$

and,

$$
R_{1}(\delta)= \begin{cases}\lambda_{1} & \text { if }\left(1-\lambda_{1}\right) \geq \lambda_{0} \tag{9}\\ \left(1-\lambda_{1}\right) & \text { if }\left(1-\lambda_{1}\right)<\lambda_{0}\end{cases}
$$

The unconditional risk can be obtained as a weighted sum of the conditional risks. For a BSC, the expression for unconditional risk can be simplified to,

$$
\begin{equation*}
r(\delta)=\min (\lambda, 1-\lambda) . \tag{10}
\end{equation*}
$$

Example 1.2 (Location Testing with Gaussian Error). Consider the typical communication model denoted by the equation,

$$
\begin{equation*}
y=x+n, \tag{11}
\end{equation*}
$$

where n is a white noise signal with mean zero, and variance σ^{2}. The null hy-

Figure 2: AWGN channel
pothesis $\left(H_{0}\right)$ corresponds to the reception of a signal y with mean μ_{0} and under alternative Hypothesis $\left(H_{1}\right), y$ has mean μ_{1}.

$$
\begin{align*}
& H_{0}: Y \tag{12}\\
& H_{1}: Y \sim \mathcal{N}\left(\mu_{0}, \sigma^{2}\right) \tag{13}\\
& \sim \mathcal{N}\left(\mu_{1}, \sigma^{2}\right)
\end{align*}
$$

The corresponding observation space is $\Gamma=\mathcal{R}$. Assuming $\mu_{1}>\mu_{0}$, we have the
following expression for the likelihood ratio $L(y)$,

$$
\begin{align*}
L(y)=\frac{P_{1}(y)}{P_{0}(y)} & =\frac{\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[\frac{-\left(y-\mu_{1}\right)^{2}}{2 \sigma^{2}}\right]}{\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[\frac{-\left(y-\mu_{0}\right)^{2}}{2 \sigma^{2}}\right]} \\
& =\exp \left[\frac{-\left(y-\mu_{1}\right)^{2}+\left(y-\mu_{0}\right)^{2}}{2 \sigma^{2}}\right] \\
& =\exp \left[\frac{\left(\mu_{1}-\mu_{0}\right)\left(y-\frac{\mu_{1}+\mu_{0}}{2}\right)}{\sigma^{2}}\right] . \tag{14}
\end{align*}
$$

For uniform cost and equal priors, $\tau=1$ and $\Gamma_{1}=\{y \in \Gamma \mid L(y) \geq 1\}$. From eqn. (14), we get,

$$
\begin{align*}
\exp \left[\frac{\left(\mu_{1}-\mu_{0}\right)\left(y-\left(\frac{\mu_{1}+\mu_{0}}{2}\right)\right)}{\sigma^{2}}\right] & \geq 1 \tag{15}\\
\frac{\left(\mu_{1}-\mu_{0}\right)\left(y-\left(\frac{\mu_{1}+\mu_{0}}{2}\right)\right)}{\sigma^{2}} & \geq 0
\end{align*}
$$

In terms of y, we can write the decision region as,

$$
\begin{equation*}
\Gamma_{1}=\left\{y \in \Gamma: y \geq \frac{\mu_{1}+\mu_{0}}{2}\right\} \tag{16}
\end{equation*}
$$

Thus, the decision rule in this case will be

$$
\delta(y)=\left\{\begin{array}{l}
1 \text { if } y \geq \frac{\mu_{1}+\mu_{0}}{2} \tag{17}\\
0 \text { if } y<\frac{\mu_{1}+\mu_{0}}{2}
\end{array}\right.
$$

The corresponding conditional risks are,

$$
\begin{array}{r}
R_{0}(\delta)=P_{0}\left(\Gamma_{1}\right)=\int_{\tau^{\prime}}^{\infty} d P_{0}(x)=1-\Phi\left(\frac{\tau^{\prime}-\mu_{1}}{\sigma}\right) \\
R_{1}(\delta)=P_{1}\left(\Gamma_{0}\right)=\int_{-\infty}^{\tau^{\prime}} d P_{1}(x)=\Phi\left(\frac{\tau^{\prime}-\mu_{0}}{\sigma}\right) \tag{18}
\end{array}
$$

Figure 3: Illustration of decision regions for the uniform cost and equal prior case.

2 Minimax Hypothesis Testing

Bayesian hypothesis testing assumes the knowledge of prior probabilities for the hypotheses. However, in a practical scenario, the priors are not necessarily available at the receiver. Under such circumstances, it is not possible to design a single Bayesian decision criterion that minimizes the average risk or Bayes risk for all possible prior distributions. Hence, it is necessary to develop a separate design criterion. In this section, we look at the "Minimax criterion", which considers the minimization of the maximum of conditional risks $R_{0}(\delta)$ and $R_{1}(\delta)$ over all possible decision rules δ.

Definition 2.1. The decision rule (δ) minimizing the max risk given by the expression max $\left\{R_{0}(\delta), R_{1}(\delta)\right\}$ is known as Minimax Rule.

2.1 The Minimax Rule

To derive the Minimax rule, we first consider the unconditional risk for a given decision rule δ and a given prior for H_{0}, i.e $\pi_{0} \in[0,1]$. The average risk for a decision rule δ is,

$$
\begin{equation*}
r\left(\pi_{0}, \delta\right)=\pi_{0} R_{0}(\delta)+\left(1-\pi_{0}\right) R_{1}(\delta), \quad \pi_{0} \in[0,1] . \tag{19}
\end{equation*}
$$

The unconditional risk function is shown in Fig. 4. As can be seen, for a fixed δ, the function $r\left(\pi_{0}, \delta\right)$ is a straight line taking values $R_{1}(\delta)$ at $\pi_{0}=0$ and $R_{0}(\delta)$ at $\pi_{0}=1$. Thus, it is an affine function, and hence attains maximum value at the extremities,

$$
\begin{equation*}
\max _{0 \leq \pi_{0} \leq 1} r\left(\pi_{0}, \delta\right)=\max \left\{R_{0}(\delta), R_{1}(\delta)\right\} . \tag{20}
\end{equation*}
$$

We can state the minimax criterion as the minimizer of the expression in eqn. (20) over all δ,

$$
\begin{equation*}
\min _{\delta} \max _{0 \leq \pi_{0} \leq 1} r\left(\pi_{0}, \delta\right) . \tag{21}
\end{equation*}
$$

Figure 4: Illustration of the functions $r\left(\pi_{0}, \delta\right)$ and $V\left(\pi_{0}\right)$

Now, for each prior $\pi_{0} \in[0,1]$, let $\delta_{\pi_{0}}$ denote the optimum Bayes rule corresponding to that prior, and let $V\left(\pi_{0}\right)=r\left(\pi_{0}, \delta_{\pi_{0}}\right)$, be the Bayes risk for the prior π_{0}. It can be proved that $V\left(\pi_{0}\right)$ is a continuous concave function of π_{0} for $\pi_{0} \in[0,1]$ with $V(0)=C_{11}$ and $V(1)=C_{00}$. The proof is given below.

Lemma 2.2. The function $V(\pi):[0,1] \rightarrow \mathcal{R}$ is concave
A function is concave, if, for any $\{x, y\}$ in the domain of f and any $\alpha \in[0,1]$,

$$
f(\alpha x+(1-\alpha) y) \geq \alpha f(x)+(1-\alpha) f(y) .
$$

Proof. Consider two priors π, π^{\prime}, and a third prior $\pi^{\prime \prime}=\alpha \pi+(1-\alpha) \pi^{\prime}$. We can write,

$$
\begin{align*}
V\left(\pi^{\prime \prime}\right) & =r\left(\pi^{\prime \prime}, \delta_{\pi^{\prime \prime}}\right), \tag{22}\\
& =\alpha r\left(\pi, \delta_{\pi^{\prime \prime}}\right)+(1-\alpha) r\left(\pi^{\prime}, \delta_{\pi^{\prime \prime}}\right) .
\end{align*}
$$

Since $V(\pi)=r\left(\pi, \delta_{\pi}\right)$ is the minimizer of $r(\pi, \delta)$, we get,

$$
\begin{equation*}
V\left(\pi^{\prime \prime}\right) \geq \alpha V(\pi)+(1-\alpha) V\left(\pi^{\prime}\right) \tag{23}
\end{equation*}
$$

Figure 5: $V(\pi)$ as a concave function

Hence $V(\pi)$ is concave.
Suppose that $V\left(\pi_{0}\right)$ and $r\left(\pi_{0}, \delta\right)$ are as depicted in Fig. 4. Also shown in Fig. 4 is the line labelled $r\left(\pi_{0}, \delta_{\pi_{0}^{\prime}}\right)$, that is both parallel to $r\left(\pi_{0}, \delta\right)$ as well as tangent to $V\left(\pi_{0}\right)$. For this case, δ cannot be the minimax rule because the risk line shown as $r\left(\pi_{0}, \delta_{\pi_{0}^{\prime}}\right)$ lies completely below $r\left(\pi_{0}, \delta\right)$ and thus has a smaller maximum value. Since $r\left(\pi_{0}, \delta_{\pi_{0}^{\prime}}\right)$ touches $V\left(\pi_{0}\right)$ at $\pi_{0}=\pi_{0}^{\prime}, \delta_{\pi_{0}^{\prime}}$ is a Bayes Rule for the prior π_{0}^{\prime}. Since a similar tangent line can be drawn for any decision rule δ, it is easily seen that only Bayes Rules can possibly be Minimax rules for Fig. 4 ,

Moreover, by examination of Fig. 6, we see that the Minimax rule for this case is a Bayes rule corresponding to the prior value π_{L} that maximizes $V\left(\pi_{0}\right)$ over $\pi_{0} \in[0,1]$. Note that for this prior we have that $r\left(\pi_{0}, \delta_{\pi_{L}}\right)$ is constant over π_{0}, so,

$$
\begin{equation*}
\max \left\{R_{0}\left(\delta_{\pi_{L}}\right), R_{1}\left(\delta_{\pi_{L}}\right)\right\}=R_{0}\left(\delta_{\pi_{L}}\right)=R_{1}\left(\delta_{\pi_{L}}\right) \tag{24}
\end{equation*}
$$

The fact that $\delta_{\pi_{L}}$ is minimax follows from the Fig. 6, since if $\pi_{0}^{\prime}<\pi_{L}$, we have $\max \left\{R_{0}\left(\delta_{\pi_{0}^{\prime}}\right), R_{1}\left(\delta_{\pi_{0}^{\prime}}\right)\right\}=R_{0}\left(\delta_{\pi_{0}^{\prime}}\right)>R_{0}\left(\delta_{\pi_{L}}\right)$, and if $\pi_{0}^{\prime \prime}>\pi_{L}$, we have that $\max \left\{R_{0}\left(\delta_{\pi_{0}^{\prime \prime}}\right), R_{1}\left(\delta_{\pi_{0}^{\prime \prime}}\right)\right\}=R_{1}\left(\delta_{\pi_{0}^{\prime \prime}}\right)>R_{1}\left(\delta_{\pi_{L}}\right)$, as depicted. Because π_{L} maximizes the minimum Bayes risk, it is also called the least-favorable prior. Hence, a minimax decision rule is the Bayes rule for the least-favorable prior.

Proposition 2.3. Suppose π_{L} maximizes $V\left(\pi_{0}\right)$ for $\pi_{0} \in[0,1]$. Suppose that either $\pi_{L}=0, \pi_{L}=1$, or $R_{1}\left(\delta_{\pi_{L}}\right)=R_{0}\left(\delta_{\pi_{L}}\right)$. Then $\delta_{\pi_{L}}$ is a Minimax rule.

Figure 6: Illustration of the Minimax Rule when V has an interior maximum

Proof. Consider the case when $R_{1}\left(\delta_{\pi_{L}}\right)=R_{0}\left(\delta_{\pi_{L}}\right)$. We know that,

$$
\begin{equation*}
V\left(\pi_{L}\right)=\max _{\pi_{0} \in[0,1]} \min _{\delta} r\left(\pi_{0}, \delta\right)=r\left(\pi_{L}, \delta_{\pi_{L}}\right)=r\left(\pi_{0}, \delta_{\pi_{L}}\right) \tag{25}
\end{equation*}
$$

The second equality follows from the fact that $r\left(\pi_{0}, \delta_{\pi_{L}}\right)$ is a constant in π_{0}.

$$
\begin{align*}
\max _{\pi_{0} \in[0,1]} \min _{\delta} r\left(\pi_{0}, \delta\right) & =\max _{\pi_{0} \in[0,1]} r\left(\pi_{0}, \delta_{\pi_{L}}\right), \tag{26}\\
& \geq \min _{\delta} \max _{\pi_{0} \in[0,1]} r\left(\pi_{0}, \delta\right) .
\end{align*}
$$

For every δ, we note that,

$$
\begin{equation*}
\max _{\pi_{0} \in[0,1]} r\left(\pi_{0}, \delta\right) \geq \max _{\pi_{0} \in[0,1]} \min _{\delta} r\left(\pi_{0}, \delta\right) \tag{27}
\end{equation*}
$$

which shows that,

$$
\begin{equation*}
\min _{\delta} \max _{\pi_{0} \in[0,1]} r\left(\pi_{0}, \delta\right) \geq \max _{\pi_{0} \in[0,1]} \min _{\delta} r\left(\pi_{0}, \delta\right) . \tag{28}
\end{equation*}
$$

Combining eqns. (26), 28), we see that,

$$
\begin{equation*}
\min _{\delta} \max _{\pi_{0} \in[0,1]} r\left(\pi_{0}, \delta\right)=\max _{\pi_{0} \in[0,1]} \min _{\delta} r\left(\pi_{0}, \delta\right) . \tag{29}
\end{equation*}
$$

Indeed we have shown that,

$$
\begin{equation*}
r\left(\pi_{L}, \delta_{\pi_{L}}\right)=\min _{\delta} \max _{\pi_{0} \in[0,1]} r(\pi, \delta) \tag{30}
\end{equation*}
$$

which was to be shown.
For $\pi_{L}=0$, we note that, $\max _{\pi_{0} \in[0,1]} r\left(\pi_{0}, \delta_{\pi_{L}}\right)=R_{1}\left(\delta_{\pi_{L}}\right)=r\left(\pi_{L}, \delta_{\pi_{L}}\right)$. Using a similar argument as above, we can note that $\delta_{\pi_{L}}$ is a minimax rule. Similar argument can be made for $\pi_{L}=1$ case. This completes the proof.

Now, for any $\pi_{0}^{\prime} \in[0,1], r\left(\pi, \delta_{\pi_{0}^{\prime}}\right) \geq V(\pi)$ since $V(\pi)$ minimizes Bayes risk for all δ. Also $r\left(\pi, \delta_{\pi_{0}^{\prime}}\right)$ is a straight line tangent to V at $\pi=\pi_{0}^{\prime}$. Hence, if V is differentiable,

$$
\begin{align*}
V^{\prime}\left(\pi_{0}^{\prime}\right) & =\left.\frac{d}{d \pi} r\left(\pi, \delta_{\pi_{0}^{\prime}}\right)\right|_{\pi=\pi_{0}^{\prime}} \tag{31}\\
& =R_{0}\left(\delta_{\pi_{0}^{\prime}}\right)-R_{1}\left(\delta_{\pi_{0}^{\prime}}\right) .
\end{align*}
$$

If V has an interior maximum, i.e., $\pi_{L} \in(0,1)$, then $V^{\prime}\left(\pi_{L}\right)$ equals zero, if V is differentiable at π_{L}.

Thus, under the condition of unknown priors, Minimax rule considers the worst case scenario by taking the least favorable prior π_{L} into account and minimizes the maximum unconditional risk for that prior.

