
Lecture 2: Minimax Hypothesis Testing

14 Jan 2016

1 Continued from the Lecture 1

At the onset, we will look into two examples of Bayesian Hypothesis Testing.

Example 1.1 (The Binary Channel). A binary channel is the most common
communication channel model used in coding theory and information theory. In
this model, a transmitter sends a bit (0 or 1), and the receiver receives it. The
bit may be received correctly, or it may be ”flipped” with some probability. The
probability with which a flipped bit is received is known as ”crossover probability”.

Consider transmission of a bit over such a Binary Channel. Let the observation
at the output of the channel be Y , which can be either 0, or 1. Let the crossover
probability be λ0 when bit 0 is transmitted, i.e., a transmitted 0 is received as 1
with probability λ0 and as 0 with probability (1 - λ0), where 0 ≤ λ0 ≤ 1. Similarly,
let the crossover probability when a 1 is transmitted be λ1. A Binary Symmetric
Channel (BSC) is a special case, where λ0 = λ1 = λ. Observing Y does not tell
us exactly whether the transmitted digit was bit 0 or 1. The goal is to find an
optimum decision rule using the Bayesian Hypothesis Testing.

1 1
1− λ1

0 0
1− λ0

λ1
λ0

Figure 1: Block diagram for Binary Channel

The two hypothesis H0, and H1 depict the transmission of bit 0 and 1 respec-
tively. The observation set is Γ = {0, 1}. The received signal y ∈ Γ is an instance
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of a Bernoulli random variable Y with probability mass function (pmf) dependent
on the transmitted bit,

Y0 ∼ B (1− λ0) if H0 is transmitted, (1)

Y1 ∼ B (1− λ1) if H1 is transmitted,

where the notation B(λ) denotes the pmf of a Bernoulli random variable p with
parameter λ. The pmf of the observation Y can be written compactly as,

pj (y) =

{
λj, if y 6= j,

(1− λj) , if y = j,
j ∈ {0, 1}. (2)

The corresponding likelihood ratio is,

L(y) =
p1(y)

p0(y)
=

{
λ1

1−λ0 if y = 0,
1−λ1
λ0

if y = 1.
(3)

As discussed in last lecture, a Bayesian decision rule has the form,

δB(y) = 1{L(y)≥τ}, (4)

where τ = π0(C10−C00)
π1(C01−C11)

is a threshold, which depends on the prior probability π0
and the costs. If λ0, λ1, τ are such that λ1 ≥ τ (1− λ0), then according to the
likelihood ratio, a received 0 is decided as transmitted 1. Similarly a received 1 is
decided as a transmitted 0 when (1− λ1) < τλ0.

Consider the simple case of uniform cost, for which, Cij = 0 if i = j and
Cij = 1 if i 6= j, and equal priors i.e., π0 = 1/2. In this case, τ = 1, and the
Bayesian decision rule is given as,

δB(0) =

{
1 if (1− λ1) < λ0,

0 if (1− λ1) ≥ λ0,
(5)

δB(1) =

{
1 if (1− λ1) ≥ λ0,

0 if (1− λ1) < λ0.

This can be written in a compact form as,

δB(y) =

{
y, if (1− λ1) ≥ λ0

(1− y) , if (1− λ1) < λ0.
(6)

For a BSC with (λ1 = λ0 = λ),

δB(y) =

{
y, if λ ≤ 0.5

(1− y) , if λ > 0.5.
(7)
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For the optimal Bayes rule described above, conditional risks have the following
expressions,

R0(δ) =

{
λ0 if (1− λ1) ≥ λ0,

(1− λ0) if (1− λ1) < λ0,
(8)

and,

R1(δ) =

{
λ1 if (1− λ1) ≥ λ0,

(1− λ1) if (1− λ1) < λ0.
(9)

The unconditional risk can be obtained as a weighted sum of the conditional risks.
For a BSC, the expression for unconditional risk can be simplified to,

r(δ) = min (λ, 1− λ) . (10)

Example 1.2 (Location Testing with Gaussian Error). Consider the typical
communication model denoted by the equation,

y = x+ n, (11)

where n is a white noise signal with mean zero, and variance σ2. The null hy-

x ∈ {µ0, µ1}

n ∼ N (0, σ2)

y = x+ n+

Figure 2: AWGN channel

pothesis (H0) corresponds to the reception of a signal y with mean µ0 and under
alternative Hypothesis (H1), y has mean µ1.

H0 : Y ∼ N
(
µ0, σ

2
)
, (12)

H1 : Y ∼ N
(
µ1, σ

2
)
. (13)

The corresponding observation space is Γ = R. Assuming µ1 > µ0, we have the
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following expression for the likelihood ratio L(y),

L(y) =
P1(y)

P0(y)
=

1
σ
√
2π

exp[−(y−µ1)
2

2σ2 ]

1
σ
√
2π

exp[−(y−µ0)
2

2σ2 ]

= exp

[
−(y − µ1)

2 + (y − µ0)
2

2σ2

]

= exp

[
(µ1 − µ0)

(
y − µ1+µ0

2

)
σ2

]
. (14)

For uniform cost and equal priors, τ = 1 and Γ1 = {y ∈ Γ| L(y) ≥ 1}. From eqn.
(14), we get,

exp

[
(µ1 − µ0)

(
y − (µ1+µ0

2
)
)

σ2

]
≥ 1, (15)

(µ1 − µ0)
(
y − (µ1+µ0

2
)
)

σ2
≥ 0.

In terms of y, we can write the decision region as,

Γ1 =

{
y ∈ Γ : y ≥ µ1 + µ0

2

}
(16)

Thus, the decision rule in this case will be

δ(y) =

{
1 if y ≥ µ1+µ0

2

0 if y < µ1+µ0
2

(17)

The corresponding conditional risks are,

R0(δ) = P0(Γ1) =

∞∫
τ ′

dP0(x) = 1− Φ

(
τ ′ − µ1

σ

)

R1(δ) = P1(Γ0) =

τ ′∫
−∞

dP1(x) = Φ

(
τ ′ − µ0

σ

)
(18)
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Figure 3: Illustration of decision regions for the uniform cost and equal prior case.

2 Minimax Hypothesis Testing

Bayesian hypothesis testing assumes the knowledge of prior probabilities for the
hypotheses. However, in a practical scenario, the priors are not necessarily avail-
able at the receiver. Under such circumstances, it is not possible to design a single
Bayesian decision criterion that minimizes the average risk or Bayes risk for all
possible prior distributions. Hence, it is necessary to develop a separate design
criterion. In this section, we look at the ”Minimax criterion”, which considers
the minimization of the maximum of conditional risks R0(δ) and R1(δ) over all
possible decision rules δ.

Definition 2.1. The decision rule (δ) minimizing the max risk given by the ex-
pression max {R0(δ), R1(δ)} is known as Minimax Rule.

2.1 The Minimax Rule

To derive the Minimax rule, we first consider the unconditional risk for a given
decision rule δ and a given prior for H0, i.e π0 ∈ [0, 1]. The average risk for a
decision rule δ is,

r(π0, δ) = π0R0(δ) + (1− π0)R1(δ), π0 ∈ [0, 1]. (19)

The unconditional risk function is shown in Fig. 4. As can be seen, for a fixed δ, the
function r(π0, δ) is a straight line taking values R1(δ) at π0 = 0 and R0(δ) at π0 = 1.
Thus, it is an affine function, and hence attains maximum value at the extremities,

max
0≤π0≤1

r(π0, δ) = max{R0(δ), R1(δ)}. (20)

We can state the minimax criterion as the minimizer of the expression in eqn. (20)
over all δ,

min
δ

max
0≤π0≤1

r(π0, δ). (21)
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Figure 4: Illustration of the functions r(π0, δ) and V (π0)

Now, for each prior π0 ∈ [0, 1], let δπ0 denote the optimum Bayes rule cor-
responding to that prior, and let V (π0) = r(π0, δπ0), be the Bayes risk for the
prior π0. It can be proved that V (π0) is a continuous concave function of π0 for
π0 ∈ [0, 1] with V (0) = C11 and V (1) = C00. The proof is given below.

Lemma 2.2. The function V (π) : [0, 1]→ R is concave

A function is concave, if, for any {x, y} in the domain of f and any α ∈ [0, 1],

f(αx+ (1− α)y) ≥ αf(x) + (1− α)f(y).

Proof. Consider two priors π, π′, and a third prior π′′ = απ + (1 − α)π′. We can
write,

V (π′′) = r(π′′, δπ′′), (22)

= αr(π, δπ′′) + (1− α)r(π′, δπ′′).

Since V (π) = r(π, δπ) is the minimizer of r(π, δ), we get,

V (π′′) ≥ αV (π) + (1− α)V (π′). (23)

6



Figure 5: V (π) as a concave function

Hence V (π) is concave.

Suppose that V (π0) and r(π0, δ) are as depicted in Fig. 4. Also shown in Fig.
4 is the line labelled r(π0, δπ′

0
), that is both parallel to r(π0, δ) as well as tangent

to V (π0). For this case, δ cannot be the minimax rule because the risk line shown
as r(π0, δπ′

0
) lies completely below r(π0, δ) and thus has a smaller maximum value.

Since r(π0, δπ′
0
) touches V (π0) at π0 = π′0, δπ′

0
is a Bayes Rule for the prior π′0.

Since a similar tangent line can be drawn for any decision rule δ, it is easily seen
that only Bayes Rules can possibly be Minimax rules for Fig. 4.

Moreover, by examination of Fig. 6, we see that the Minimax rule for this case
is a Bayes rule corresponding to the prior value πL that maximizes V (π0) over
π0 ∈ [0, 1]. Note that for this prior we have that r(π0, δπL) is constant over π0, so,

max{R0(δπL), R1(δπL)} = R0(δπL) = R1(δπL) (24)

The fact that δπL is minimax follows from the Fig. 6, since if π′0 < πL, we
have max{R0(δπ′

0
), R1(δπ′

0
)} = R0(δπ′

0
) > R0(δπL), and if π′′0 > πL, we have that

max{R0(δπ′′
0
), R1(δπ′′

0
)} = R1(δπ′′

0
) > R1(δπL), as depicted. Because πL maximizes

the minimum Bayes risk, it is also called the least-favorable prior. Hence, a
minimax decision rule is the Bayes rule for the least-favorable prior.

Proposition 2.3. Suppose πL maximizes V (π0) for π0 ∈ [0, 1]. Suppose that either
πL = 0, πL = 1, or R1(δπL) = R0(δπL). Then δπL is a Minimax rule.
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Figure 6: Illustration of the Minimax Rule when V has an interior maximum

Proof. Consider the case when R1(δπL) = R0(δπL). We know that,

V (πL) = max
π0∈[0,1]

min
δ
r(π0, δ) = r(πL, δπL) = r(π0, δπL). (25)

The second equality follows from the fact that r(π0, δπL) is a constant in π0.

max
π0∈[0,1]

min
δ
r(π0, δ) = max

π0∈[0,1]
r(π0, δπL), (26)

≥ min
δ

max
π0∈[0,1]

r(π0, δ).

For every δ, we note that,

max
π0∈[0,1]

r(π0, δ) ≥ max
π0∈[0,1]

min
δ
r(π0, δ). (27)

which shows that,

min
δ

max
π0∈[0,1]

r(π0, δ) ≥ max
π0∈[0,1]

min
δ
r(π0, δ). (28)

Combining eqns. (26), (28), we see that,

min
δ

max
π0∈[0,1]

r(π0, δ) = max
π0∈[0,1]

min
δ
r(π0, δ). (29)

Indeed we have shown that,

r(πL, δπL) = min
δ

max
π0∈[0,1]

r(π, δ), (30)
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which was to be shown.
For πL = 0, we note that, max

π0∈[0,1]
r(π0, δπL) = R1(δπL) = r(πL, δπL). Using

a similar argument as above, we can note that δπL is a minimax rule. Similar
argument can be made for πL = 1 case. This completes the proof.

Now, for any π′0 ∈ [0, 1], r(π, δπ′
0
) ≥ V (π) since V (π) minimizes Bayes risk

for all δ. Also r(π, δπ′
0
) is a straight line tangent to V at π = π′0. Hence, if V is

differentiable,

V ′(π′0) =
d

dπ
r(π, δπ′

0
)
∣∣
π=π′

0
, (31)

= R0(δπ′
0
)−R1(δπ′

0
).

If V has an interior maximum, i.e., πL ∈ (0, 1), then V ′(πL) equals zero, if V is
differentiable at πL.

Thus, under the condition of unknown priors, Minimax rule considers the worst
case scenario by taking the least favorable prior πL into account and minimizes
the maximum unconditional risk for that prior.
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